JPH11343108A - Preparation of cathode material for lithium battery - Google Patents

Preparation of cathode material for lithium battery

Info

Publication number
JPH11343108A
JPH11343108A JP11086529A JP8652999A JPH11343108A JP H11343108 A JPH11343108 A JP H11343108A JP 11086529 A JP11086529 A JP 11086529A JP 8652999 A JP8652999 A JP 8652999A JP H11343108 A JPH11343108 A JP H11343108A
Authority
JP
Japan
Prior art keywords
carbon material
pitch
core material
coating
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11086529A
Other languages
Japanese (ja)
Other versions
JP2976300B1 (en
Inventor
Koichi Morita
浩一 森田
Hiromi Fujiwara
裕己 藤原
Yoshiteru Nakagawa
喜照 中川
Masamitsu Katsuura
将光 勝浦
Hiroaki Matsuyoshi
弘明 松好
Naoto Nishimura
直人 西村
Yoshihiro Tsukuda
至弘 佃
Kazuaki Minato
和明 湊
Takehito Mitachi
武仁 見立
Kazuo Yamada
和夫 山田
Tetsuya Yoneda
哲也 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Sharp Corp
Original Assignee
Osaka Gas Co Ltd
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26427634&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH11343108(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Osaka Gas Co Ltd, Sharp Corp filed Critical Osaka Gas Co Ltd
Priority to JP11086529A priority Critical patent/JP2976300B1/en
Application granted granted Critical
Publication of JP2976300B1 publication Critical patent/JP2976300B1/en
Publication of JPH11343108A publication Critical patent/JPH11343108A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain a cathode material having low reactivity with an electrolytic solution and an excellent electric discharge characteristic by adding an org. solvent to a separated carbon core material and washing, drying and calcining, after immersing the carbon core material in a carbon material for coating film formation. SOLUTION: Washing of a carbon core material with an org. solvent is preferably carried out at 10-300 deg.C, after immersing the carbon core material in a coating film forming carbon material at 10-300 deg.C. The coating film forming carbon material is a coal and/or petroleum heavy oil, suitably a tar and/or a pitch, which is preferably made to have primary QI of <=3% by removing previously at least a part of the primary QI. The org. solvent for washing is selected from toluene, quinoline, acetone or the like, a coal oil and a petroleum oil. Coating ratio (c) of the coating film forming carbon material/(core material + the coating film forming material) is preferably 0<c<=0.3. Spherical particles of which the corner becomes round are obtained without pulverizing because inter particle fusion and aggregation do not occur even if carrying out washing, drying and calcining.

Description

【発明の詳細な説明】技 術 分 野 本発明は、炭素材料とその製造方法、特に表面が重質油
など成分で被覆された炭素粉末とその製造方法に関し、
より詳細には、等方性黒鉛材原料、リチウム二次電池負
極材料などして有用な炭素材料およびその製造方法なら
びにこの様な炭素材料を用いたリチウム二次電池に関す
る。
DETAILED DESCRIPTION OF THE INVENTION technical content field The present invention relates to a method and its manufacturing a carbon material, particularly surface carbon powder coated with components such as heavy oil and relates its production process,
More specifically, the present invention relates to a carbon material useful as an isotropic graphite material, a negative electrode material for a lithium secondary battery, a method for producing the same, and a lithium secondary battery using such a carbon material.

【0001】背 景 技 術 近年電子機器、情報機器などの携帯用機器類(以下「携
帯機器」という)の小型化および軽量化が目覚ましく進
行しつつあり、それらを駆動する二次電池が非常に重要
な部品となってきている。リチウム二次電池は、軽量か
つ高エネルギー密度を有するため、携帯機器の駆動用電
源として有望視され、研究開発が活発に進められてい
る。しかしながら、リチウム金属を負極に用いた場合に
は、充放電サイクルを繰り返すことにより金属リチウム
上にデンドライトが生成・成長して、内部短絡を引き起
こすため、二次電池化が困難である。また、リチウム金
属に代えてリチウム・アルミニウム合金の様なリチウム
合金の使用が提案されているが、この場合には、充放電
サイクル或いは深い充放電を行うと、合金の偏析などが
おこるため、長期的に十分な特性は得られない。
[0001] Background technology in recent years electronic devices, portable devices such as information devices are becoming progress (hereinafter referred to as "portable devices") compact and lightweight is remarkable, is very secondary battery to drive them It is becoming an important part. Lithium secondary batteries are lightweight and have high energy densities, so they are promising as power sources for driving portable devices, and research and development are being actively promoted. However, when lithium metal is used for the negative electrode, repetition of charge / discharge cycles generates and grows dendrite on lithium metal, causing an internal short circuit, making it difficult to form a secondary battery. The use of a lithium alloy such as a lithium-aluminum alloy instead of lithium metal has been proposed. However, in this case, when a charge / discharge cycle or deep charge / discharge is performed, segregation of the alloy occurs, so that a long term However, sufficient characteristics cannot be obtained.

【0002】そこで、炭素材料をホスト材料とし、リチ
ウムイオンの挿入脱離反応を利用した負極を用いた電池
が提案され、研究開発が進められ、実用化されてきてい
る。炭素材料を負極に用いるリチウム二次電池は、サイ
クル特性、安全性などに優れている。
Therefore, a battery using a negative electrode utilizing a carbon material as a host material and utilizing lithium ion insertion / desorption reaction has been proposed, researched and developed, and put to practical use. A lithium secondary battery using a carbon material for a negative electrode is excellent in cycle characteristics, safety, and the like.

【0003】しかしながら、炭素材料は、黒鉛から無定
形炭素までの幅広い構造乃至形態を有するとともに、そ
れらの物性値或いは炭素の六角網面が形成する微細組織
が電極の性能を大きく左右するため、物性値或いは微細
組織を規定した種々の炭素材料が提案されている。
However, carbon materials have a wide range of structures and forms from graphite to amorphous carbon, and their physical properties or the fine structure formed by the hexagonal mesh of carbon greatly affect the performance of the electrode. Various carbon materials having specified values or microstructures have been proposed.

【0004】現在使用されているリチウム二次電池用の
負極材料には、大きく分けて1000℃前後で焼成された炭
素系のものと2800℃前後で焼成された黒鉛系のものがあ
る。前者はリチウム二次電池の負極として用いた場合、
電解液との反応が少なく、電解液の分解が起きがたいと
いう利点を有するが、リチウムイオンの放出に伴う電位
の変化が大きいという欠点がある。これに対し、後者は
リチウム二次電池の負極として用いた場合、リチウムイ
オンの放出に伴う電位の変化が小さいという利点を有す
るが、電解液と反応して、電解液の分解が生じ、さらに
は炭素材料が破壊されるという欠点がある(J. Electro
chem. Soc. 117, 222(1970))。その結果、後者では、
充放電効率の低下、サイクル特性の低下、電池の安全性
低下などの問題が生じる。特定の電解液を用いる場合に
は、黒鉛系の材料も使用可能であることが報告されてい
るが(J. Electrochem. Soc. 137, 2009(1990))、電解
液が限定されるため、電池を作製した場合に、電池の温
度特性、サイクル特性などの改善が、電解液の種類によ
りかなり制限されるという問題点がある。
The currently used negative electrode materials for lithium secondary batteries are roughly classified into carbon-based materials fired at about 1000 ° C. and graphite-based materials fired at about 2800 ° C. When the former is used as a negative electrode of a lithium secondary battery,
It has the advantage that the reaction with the electrolytic solution is small and the decomposition of the electrolytic solution is unlikely to occur, but it has the disadvantage that the change in potential due to the release of lithium ions is large. On the other hand, the latter has an advantage that when used as a negative electrode of a lithium secondary battery, the change in potential accompanying the release of lithium ions is small, but the latter reacts with the electrolytic solution to cause decomposition of the electrolytic solution. The disadvantage is that the carbon material is destroyed (J. Electro
chem. Soc. 117, 222 (1970)). As a result, in the latter,
Problems such as a decrease in charge / discharge efficiency, a decrease in cycle characteristics, and a decrease in battery safety occur. It has been reported that a graphite-based material can be used when a specific electrolyte is used (J. Electrochem. Soc. 137, 2009 (1990)). Is problematic in that the improvement in battery temperature characteristics, cycle characteristics and the like is considerably limited by the type of electrolyte.

【0005】この問題を解決すべく、特開平4-368778号
公報、特開平4-370662号公報、特開平5-94838号公報、
特開平5-121066号公報などは、黒鉛粒子の表面を低結晶
性炭素で被覆した炭素材料を提案している。これらの表
面改質炭素材料は、電解液の分解を押さえるので、電池
容量の増加、サイクル特性の改善などに対して、有効で
ある。
In order to solve this problem, Japanese Patent Application Laid-Open Nos. 4-368778, 4-370662, 5-94838,
Japanese Patent Application Laid-Open No. 5-121066 proposes a carbon material in which the surface of graphite particles is coated with low-crystalline carbon. Since these surface-modified carbon materials suppress the decomposition of the electrolytic solution, they are effective for increasing the battery capacity, improving the cycle characteristics, and the like.

【0006】しかしながら、特開平4-368778号公報記載
の技術によれば、炭素粒子表面に気相法により炭素被覆
層を形成しているため、各炭素粒子の融着、凝集などは
起こらず、性能の優れた材料が得られるが、コスト面、
量産性などの面で、実用上大きな問題点がある。
However, according to the technique described in Japanese Patent Application Laid-Open No. 4-368778, since the carbon coating layer is formed on the surface of the carbon particles by a vapor phase method, fusion and aggregation of the carbon particles do not occur. Materials with excellent performance can be obtained, but cost,
There is a serious problem in terms of mass productivity and the like.

【0007】特開平4-370662号公報、特開平5-94838号
公報、特開平5-121066号公報などには、コスト面および
量産性から有望である液相炭素化を利用した手法が記載
されている。しかしながら、単に液相の有機化合物と黒
鉛粒子とを混合して焼成するのみでは、炭素化の際に黒
鉛粒子同士が融着・凝集するので、電極作製の際に材料
を粉砕する必要があり、粉砕により黒鉛の活性な面が新
たに露出する、粉砕時に不純物が混入する、さらには工
程が複雑となるなどの問題点を生ずる。
[0007] JP-A-4-370662, JP-A-5-94838, and JP-A-5-121066 disclose a method utilizing liquid-phase carbonization which is promising in terms of cost and mass productivity. ing. However, simply mixing and firing a liquid phase organic compound and graphite particles causes the graphite particles to fuse and agglomerate during carbonization, so it is necessary to pulverize the material during electrode fabrication, The pulverization causes problems such as newly exposing an active surface of graphite, mixing of impurities during the pulverization, and complicating the process.

【0008】発 明 の 開 示 本発明は、電解液についての選択性乃至制約がなく、且
つリチウムイオンの放出の電位変化が小さい炭素材料を
使用する負極を作製することにより、サイクル性、安全
性などの諸特性に優れたリチウム二次電池を得ることを
主な目的とする。
[0008] onset Ming disclosures present invention has no selectivity or restrictions on the electrolyte, and by making a negative electrode for use potential change is small carbon materials of lithium ions, cycle, safety The main object is to obtain a lithium secondary battery having excellent characteristics such as the above.

【0009】本発明者は、上記の様な従来技術の問題点
を解消乃至軽減すべく、鋭意研究を行った結果、芯材と
なる粒子状炭素材料(以下「芯材炭素材料」乃至「芯材
となる炭素材料」或いは単に「芯材」ということもあ
る)を被覆形成用炭素材料用原料(例えば、タール、ピ
ッチなどの石炭系重質油或いは石油系重質油;以下単に
「重質油など」ともいう)に浸漬させた後、これを重質
油などから分離するに際し、特定の手段を採用する場合
には、芯材表面がピッチで均一に覆われている炭素材料
を製造し得ることを見出した。そして、この様にして得
られた二層構造の炭素材料粒子は、球状乃至楕円体状或
いはそれに近似する形状をしており、炭素結晶のエッジ
部分が丸くなった様な形状をしていることが判明した。
さらに、BET法による測定の結果、処理前の芯材炭素材
料に比べて、粒子の比表面積の値が小さくなっており、
BET法による比表面積に関与する細孔が、何らかの様式
で塞がれていることも明らかとなった。
The present inventor has conducted intensive studies in order to eliminate or reduce the problems of the prior art as described above. As a result, the present inventors have found that a particulate carbon material as a core material (hereinafter referred to as a "core carbon material" to a "core carbon material"). "Carbon material to be used as material" or simply "core material") is used as a raw material for coating-forming carbon material (for example, coal-based heavy oil such as tar or pitch or petroleum-based heavy oil; Oil, etc.), and when separating it from heavy oil, etc., if a specific means is adopted, manufacture a carbon material whose core material surface is uniformly covered with pitch. I found that I got it. The carbon material particles having a two-layer structure obtained in this manner have a spherical or ellipsoidal shape or a shape similar thereto, and have a shape in which the edge portion of the carbon crystal is rounded. There was found.
Furthermore, as a result of the measurement by the BET method, the value of the specific surface area of the particles is smaller than that of the core carbon material before the treatment,
It was also revealed that pores related to the specific surface area by the BET method were blocked in some way.

【0010】本発明によれば、芯材となる炭素材料のエ
ッジおよび基底面の一部または全部に重質油などに由来
する炭素材料が付着するか、或いはエッジおよび基底面
の一部または全部が該炭素材料により被覆されており、
ほぼ球状乃至楕円体状であることを特徴とする粒子状被
覆炭素材料が提供される。この炭素材料においては、BE
T法により測定される比表面積に関与する細孔が、重質
油などに由来する炭素の付着或いは被覆により塞がれて
おり、比表面積が5m2/g以下(好ましくは1〜5m 2/g程
度)である。
According to the present invention, the carbon material serving as the core material is
From heavy oil, etc. on part of or the entire base surface
Carbon material adheres or edges and basal plane
Is partially or entirely coated with the carbon material,
A particulate coating having a substantially spherical or elliptical shape;
A coated carbon material is provided. In this carbon material, BE
The pores involved in the specific surface area measured by the T method are heavy
Blocked by adhesion or coating of carbon derived from oil etc.
And the specific surface area is 5mTwo/ g or less (preferably 1 to 5 m Two/ g
Degree).

【0011】本発明においては、芯材となる炭素材料と
して、X線広角回折法による(002)面の平均面間隔(d
002)が0.335〜0.340nm、(002)面方向の結晶子厚み
(Lc)が10nm以上(より好ましくは、40nm以上)、(11
0)面方向の結晶子厚み(La)が10nm以上(より好まし
くは、50nm以上)である結晶性の高い黒鉛材料を使用す
る。
In the present invention, as a carbon material serving as a core material, an average spacing (d) of (002) planes by X-ray wide-angle diffraction method is used.
(002) is 0.335 to 0.340 nm, the crystallite thickness (Lc) in the (002) plane direction is 10 nm or more (more preferably, 40 nm or more), and (11)
0) A highly crystalline graphite material having a crystallite thickness (La) in the plane direction of 10 nm or more (more preferably, 50 nm or more) is used.

【0012】本発明による炭素材料においては、上記の
芯材の結晶化度に比べ、芯材表面に付着し或いは芯材表
面を被覆している炭素材料(以下、被覆形成用炭素材料
ともいう)の結晶化度が低いことが特徴である。
In the carbon material according to the present invention, the carbon material which adheres to the core material surface or coats the core material surface (hereinafter also referred to as a carbon material for forming a coating), compared with the crystallinity of the core material described above. Is characterized by low crystallinity.

【0013】また、本発明による炭素材料の真比重の値
は、1.50〜2.26g/cm3の範囲にある。
The value of the true specific gravity of the carbon material according to the present invention is in the range of 1.50 to 2.26 g / cm 3 .

【0014】この様な炭素材料をリチウム二次電池の負
極材料として採用する場合には、高容量で且つ安全性の
高いリチウム二次電池を得ることができる。
When such a carbon material is employed as a negative electrode material of a lithium secondary battery, a lithium secondary battery having high capacity and high safety can be obtained.

【0015】本発明による上記の様な被覆炭素材料は、
以下の様にして製造される。まず、芯材となる炭素材料
をタール、ピッチなどの石炭系或いは石油系の重質油な
どに好ましくは10〜300℃程度で浸漬し、重質油などで
被覆し、次いでこの被覆芯材炭素材料を重質油などから
分離した後、分離した被覆炭素材料に有機溶媒を加え、
好ましくは10〜300℃程度で洗浄した後、乾燥する。
The coated carbon material as described above according to the present invention comprises:
It is manufactured as follows. First, a carbon material serving as a core material is immersed in coal or petroleum heavy oil such as tar or pitch, preferably at about 10 to 300 ° C., and coated with heavy oil or the like. After separating the material from heavy oil, etc., add an organic solvent to the separated coated carbon material,
Preferably, after washing at about 10 to 300 ° C, drying is performed.

【0016】また、本発明は、上記の様にして得られた
重質油などで被覆された被覆炭素材料を炭化焼成する炭
素材料の製造方法、および上記の様にして得られた重質
油で被覆された被覆炭素材料を黒鉛化焼成する炭素材料
の製造方法をも提供する。
Further, the present invention provides a method for producing a carbon material by carbonizing and firing the coated carbon material coated with the heavy oil obtained as described above, and the heavy oil obtained as described above. The present invention also provides a method for producing a carbon material by graphitizing and firing the coated carbon material coated with the carbon material.

【0017】本発明においては、上記の製造方法によっ
て得られた炭素材料において、レーザー回折式粒度分布
測定による1μm以下の粒子が、体積基準の積算値で全
体の10%以下となるようにすることが好ましい。
In the present invention, in the carbon material obtained by the above-described production method, particles having a particle size of 1 μm or less as measured by a laser diffraction type particle size distribution are set to be 10% or less of the total volume-based integrated value. Is preferred.

【0018】さらに、本発明においては、炭素材料を浸
漬する重質油として、一次QIの少なくとも一部を除去
し、残存する一次QIが3%以下(好ましくは1%以下)と
したタールまたはピッチを用いることが好ましい。
Further, in the present invention, as the heavy oil for immersing the carbon material, at least a part of the primary QI is removed and the remaining primary QI is reduced to 3% or less (preferably 1% or less). It is preferable to use

【0019】また、本発明は、上述の炭化或いは黒鉛化
炭素材料を構成要素とすることを特徴とするリチウム二
次電池用負極材料、および該負極材料を用いたリチウム
二次電池用負極、さらには該負極を用いた非水系リチウ
ム二次電池および固体電解質二次電池を提供する。
Further, the present invention provides a negative electrode material for a lithium secondary battery comprising the above-mentioned carbonized or graphitized carbon material as a constituent element, a negative electrode for a lithium secondary battery using the negative electrode material, Provide a non-aqueous lithium secondary battery and a solid electrolyte secondary battery using the negative electrode.

【0020】本発明において「ほぼ球状或いは楕円体状
である」炭素材料とは、SEMなどにより観察した際に、
芯材である炭素材料粒子の形状は継承しているが、芯材
である炭素材料のエッジおよび基底面の全部または一部
に重油などに由来する炭素成分が付着して、角がなくな
っている様な状態の炭素材料をも含む。この様な炭素材
料は、被覆および焼成後に粉砕工程を含まない本願発明
の製造方法において効率よく製造されるものであるが、
本製造方法により作製された材料に限定されるものでは
ない本発明において、「BET法により測定される比表面
積に関与する細孔が、被覆形成用炭素材料用原料、すな
わち、タールやピッチなどの石炭系或いは石油系重質油
などに由来する炭素材料が付着して、あるいはこの様な
炭素材料により被覆されて、塞がれている」炭素材料と
は、BET法により測定される比表面積に関与する細孔
が、被覆形成用炭素材料用原料の焼成物(これを被覆形
成用炭素材料という)で少なくとも部分的に塞がれてい
る状態を含む。すなわち、細孔が、重質油などに由来す
る炭素材料で完全に埋まっている必要はなく、例えば、
細孔の入り口付近のみに炭素材料が付着して、入り口が
塞がれた細孔を有する炭素材料をも含む。このような状
態は、BET法により比表面積を測定した際に比表面積が
小さくなっていることにより、確認される。
In the present invention, the “substantially spherical or ellipsoidal” carbon material is defined as
Although the shape of the carbon material particles as the core material is inherited, the carbon components derived from heavy oil etc. adhere to all or a part of the edges and the basal plane of the carbon material as the core material, and the corners are eliminated. It also includes carbon materials in various states. Such a carbon material is efficiently produced by the production method of the present invention which does not include a pulverizing step after coating and firing,
In the present invention, which is not limited to the material produced by the present production method, the `` pores involved in the specific surface area measured by the BET method, the raw material for coating-forming carbon material, that is, such as tar and pitch A carbon material derived from coal-based or petroleum-based heavy oil adheres or is covered by such a carbon material, and is blocked. "A carbon material has a specific surface area measured by the BET method. This includes a state in which the involved pores are at least partially blocked by a fired product of the carbon material for forming the coating (this is referred to as the carbon material for forming the coating). That is, the pores need not be completely filled with a carbon material derived from heavy oil, etc., for example,
It also includes a carbon material having pores in which the carbon material adheres only near the entrance of the pore and the entrance is closed. Such a state is confirmed by the fact that the specific surface area is small when the specific surface area is measured by the BET method.

【0021】本発明により得られる炭素材料において
は、低結晶性炭素材料+低結晶性炭素材料;低結晶性炭
素材料+高結晶性炭素材料;高結晶性炭素材料+低結晶性
炭素材料;高結晶性炭素材料+高結晶性炭素材料という
4つの組み合わせが可能であり、すべての場合において
電解液の分解などを低減する効果が得られる。
In the carbon material obtained by the present invention, a low crystalline carbon material + a low crystalline carbon material; a low crystalline carbon material + a high crystalline carbon material; a high crystalline carbon material + a low crystalline carbon material; Four combinations of a crystalline carbon material and a highly crystalline carbon material are possible, and in all cases, an effect of reducing decomposition of the electrolytic solution and the like can be obtained.

【0022】本発明において、低結晶性炭素とは、「黒
鉛化するために必要とされる処理(例えば、高温処理)
をしても黒鉛結晶とはなり得ない炭素」を意味し、この
様な炭素は、通常ハードカーボンと称される。また、高
結晶性炭素とは、「黒鉛化するために処理とされる処理
をすることにより黒鉛結晶となる炭素」を意味し、この
様な炭素は、通常ソフトカーボンと称される。
In the present invention, low-crystalline carbon refers to a treatment required for graphitization (for example, high-temperature treatment)
Carbon that cannot be made into graphite crystals even if the above method is used, and such carbon is usually called hard carbon. The term “highly crystalline carbon” means “carbon that becomes a graphite crystal by being treated to be graphitized”, and such carbon is usually called soft carbon.

【0023】本発明においては、芯材と芯材に付着し或
いは芯材を被覆している重質油などに由来する外装炭素
材料(「被覆形成用炭素材料」、「表面改質用炭素材
料」、「被覆材」などということがある)との組合せな
らびに最終焼成温度の調整により、以下の8通りの構成
を有する炭素材料が得られる。即ち、 炭素化処理された、芯材が低結晶性炭素材料からなり
被覆形成用炭素材料が低結晶性炭素材料からなる炭素材
料; 炭素化処理された、芯材が低結晶性炭素材料からなり
被覆形成用炭素材料が高結晶性炭素材料からなる炭素材
料; 黒鉛化処理された、芯材が低結晶性炭素材料からなり
被覆形成用炭素材料が低結晶性炭素材料からなる炭素材
料; 黒鉛化処理された、芯材が低結晶性炭素材料からなり
被覆形成用炭素材料が高結晶性炭素材料からなる炭素材
料; 炭素化処理された、芯材が高結晶性炭素材料からなり
被覆形成用炭素材料が低結晶性炭素材料からなる炭素材
料; 炭素化処理された、芯材が高結晶性炭素材料からなり
被覆形成用炭素材料が高結晶性炭素材料からなる炭素材
料; 黒鉛化処理された、芯材が高結晶性炭素材料からなり
被覆形成用炭素材料が低結晶性炭素材料からなる炭素材
料;および 黒鉛化処理された、芯材が高結晶性炭素材料からなり
被覆形成用炭素材料が高結晶性炭素材料からなる炭素材
料である。
In the present invention, an outer carbon material ("carbon material for forming a coating", "carbon material for surface modification") derived from a core material and heavy oil adhering to or coating the core material. , "Coating material", etc.) and adjustment of the final baking temperature, a carbon material having the following eight configurations can be obtained. A carbon material in which the carbonized core material is made of a low-crystalline carbon material and the carbon material for forming the coating is made of a low-crystalline carbon material; the carbonized core material is made of a low-crystalline carbon material A carbon material whose coating-forming carbon material is made of a high-crystalline carbon material; a carbon material that has been graphitized and whose core material is made of a low-crystalline carbon material and whose coating-forming carbon material is made of a low-crystalline carbon material; A carbon material in which the treated core material is made of a low-crystalline carbon material and the carbon material for forming the coating is made of a high-crystalline carbon material; A carbon material whose material is made of a low crystalline carbon material; a carbon material that has been carbonized, a carbon material whose core material is made of a high crystalline carbon material, and a carbon material for forming a coating that is made of a high crystalline carbon material; The core material is made of highly crystalline carbon material A carbon material in which the coating-forming carbon material is made of a low-crystalline carbon material; and a graphitized carbon material in which the core material is made of a high-crystalline carbon material and the coating-forming carbon material is made of a high-crystalline carbon material. is there.

【0024】本発明によれば、芯材を外装炭素材料によ
り被覆することにより、比表面積が小さく、且つ充放電
性に優れた二次電池用炭素材料を効率良く得ることがで
きる。特に、上記の、およびに示す芯材と被覆材
との組合せによれば、充放電性に著しく優れた電池用炭
素材料が得られ、また、、、、およびに示す
芯材と被覆材との組合せによれば、比表面積が小さく、
電池の安全性を改善しうる電池用炭素材料が得られる。
According to the present invention, by coating the core material with the exterior carbon material, a carbon material for a secondary battery having a small specific surface area and excellent charge / discharge properties can be efficiently obtained. In particular, according to the combination of the core material and the coating material shown in the above and the above, a carbon material for a battery having remarkably excellent charge / discharge properties is obtained, and, and According to the combination, the specific surface area is small,
A carbon material for a battery that can improve the safety of the battery is obtained.

【0025】本発明において、芯材となる炭素材料とし
ては、粒子状(鱗片状乃至塊状、繊維状、ウイスカー
状、球状、破砕状など)の天然黒鉛、人造黒鉛、メソカ
ーボンマイクロビーズ、メソフェーズピッチ粉末、等方
性ピッチ粉末、樹脂炭、およびそれぞれの炭化品および
黒鉛化品の1種または2種以上が使用できる。これらの
中でも、鱗片状乃至塊状の天然黒鉛および人造黒鉛は、
非常に安価であるので、コストの面から好ましい。ま
た、メソカーボンマイクロビーズ(MCMB)の炭化品およ
び黒鉛化品は、非常に比表面積の小さい材料であるの
で、芯材として使用する場合には、より比表面積の小さ
い材料が得ることができるため、二次電池の安全性の面
から好ましい。
In the present invention, the carbon material serving as the core material may be natural graphite, artificial graphite, mesocarbon microbeads, mesophase pitch, etc. in the form of particles (flaky to massive, fibrous, whisker-like, spherical, crushed, etc.). One or more of powder, isotropic pitch powder, resin charcoal, and their respective carbonized and graphitized products can be used. Among these, scaly or massive natural graphite and artificial graphite are:
Since it is very cheap, it is preferable in terms of cost. In addition, since carbonized and graphitized products of mesocarbon microbeads (MCMB) are materials having a very small specific surface area, when used as a core material, a material having a smaller specific surface area can be obtained. This is preferable from the viewpoint of safety of the secondary battery.

【0026】芯材となる炭素材料としては、さらに好ま
しくは、X線広角回折法による(002)面の平均面間隔(d00
2)が0.335〜0.340nm、(002)面方向の結晶子厚み(Lc)が1
0nm以上(より好ましくは、40nm以上)、(110)面方向の
結晶子厚み(La)が10nm以上(より好ましくは、50nm以
上)、またアルゴンレーザーラマンによる1580cm-1付近
のピーク強度比に対する1360cm-1付近のピーク強度比
(以後R値と記す)が0.5以下(より好ましくは、0.4以
下)であることが好ましい。平均面間隔が0.340nmより
大きい場合、或いはLc、Laが10nmより小さい場合、或い
はR値が0.5を超える場合には、炭素材料の結晶性が充分
ではなく、被覆炭素材料を作製した際に、リチウムの溶
解析出に近い低い電位部分(Liの電位基準で0〜300mV)
の容量が十分ではなくなるので、好ましくない。
As the carbon material as the core material, more preferably, the average interplanar spacing (d00) of the (002) plane by X-ray wide-angle diffraction method is used.
2) is 0.335 to 0.340 nm, and the crystallite thickness (Lc) in the (002) plane direction is 1
0 nm or more (more preferably, 40 nm or more), the crystallite thickness (La) in the (110) plane direction is 10 nm or more (more preferably, 50 nm or more), and the peak intensity ratio of 1360 cm- 1 around 1580 cm -1 by argon laser Raman. The peak intensity ratio near the -1 (hereinafter referred to as R value) is preferably 0.5 or less (more preferably, 0.4 or less). If the average plane spacing is greater than 0.340 nm, or if Lc, La is less than 10 nm, or if the R value exceeds 0.5, the crystallinity of the carbon material is not sufficient, and when producing a coated carbon material, Low potential near lithium dissolution precipitation (0 to 300 mV based on Li potential)
This is not preferable because the capacity of the device becomes insufficient.

【0027】芯材となる炭素材料の粒径分布は、0.1〜1
50μm程度であることが好ましい。重質油などに由来す
る被覆形成用炭素材料を含む最終生成物の粒径は、実質
的に芯材である炭素材料の粒径に依存するため、芯材の
粒径により、最終生成物の粒径もほぼ規定されることに
なる。芯材の粒径が、0.1μmよりも小さい場合には、
電池のセパレーターの空孔を通して内部短絡を引き起こ
す危険性が高くなるのに対し、150μmよりも大きくな
る場合には、電極の均一性、活物質の充填密度、電極を
作製する工程上でのハンドリング性などが低下するの
で、いずれも好ましくない。
The particle size distribution of the carbon material as the core material is 0.1 to 1
It is preferably about 50 μm. The particle size of the final product containing the carbon material for coating formation derived from heavy oil and the like substantially depends on the particle size of the carbon material as the core material. The particle size will also be approximately defined. When the particle size of the core material is smaller than 0.1 μm,
While the risk of causing an internal short circuit through the pores of the battery separator increases, if it is larger than 150 μm, the uniformity of the electrode, the packing density of the active material, and the ease of handling in the process of manufacturing the electrode Are not preferred.

【0028】また、重質油に由来する被覆形成用炭素材
料の重量比、すなわち被覆形成用炭素材料/(芯材炭素材
料+被覆形成用炭素材料)(:以下、この比を「被覆
比」という)は、0よりは大きく0.3以下であることが好
ましく、0.01〜0.2であることがより好ましい。この場
合被覆炭素の膜厚は、0.01〜10μm程度の範囲となり、
さらに好ましい膜厚は、0.05〜5μm程度である。
The weight ratio of the carbon material for forming the coating derived from the heavy oil, that is, the carbon material for forming the coating / (the carbon material for the core material + the carbon material for forming the coating) (hereinafter, this ratio is referred to as the “coating ratio”) Is preferably larger than 0 and 0.3 or less, more preferably 0.01 to 0.2. In this case, the thickness of the coated carbon is in the range of about 0.01 to 10 μm,
A more preferred film thickness is about 0.05 to 5 μm.

【0029】被覆比が0.3を超えると、芯材に由来する
低電位部分での容量が減少するために電池を作製した場
合に、十分な容量を得ることが困難になる。ここでいう
被覆炭素の量は、焼成前の芯材の周囲を覆っている重質
油などに由来する炭素成分について溶剤分析を行って、
キノリン可溶分の量を測定した値である。また、被覆形
成用炭素材料の厚みは、レーザー回折式粒度分布計に
て、芯材となる被覆前の炭素材料の中心粒径(D50)と
焼成前のピッチ成分被覆炭素材料の中心粒径(D50)と
を測定するとともに、炭素材料は球体であり、焼成後も
ピッチ成分の被覆層の形状は維持されていると仮定し
て、{(被覆後の粒径)-(被覆前原料の粒径)}/2として
算出した値である。
When the covering ratio exceeds 0.3, the capacity in the low potential portion derived from the core material decreases, so that it becomes difficult to obtain a sufficient capacity when a battery is manufactured. The amount of the coated carbon referred to here is determined by performing a solvent analysis on the carbon component derived from heavy oil or the like covering the periphery of the core material before firing,
This is a value obtained by measuring the amount of quinoline-soluble components. The thickness of the carbon material for forming the coating is measured by a laser diffraction type particle size distribution analyzer using a central particle size (D50) of the carbon material before coating as a core material and a central particle size of the pitch component-coated carbon material before firing ( D50), and assuming that the carbon material is spherical and the shape of the coating layer of the pitch component is maintained after firing, {(particle size after coating)-(particle size of raw material before coating) This value is calculated as (diameter)} / 2.

【0030】本発明においては、表面の被覆形成用炭素
材料が、芯材の炭素材料よりも低結晶性である組み合わ
せが好ましい。さらに、広角X線回折法による(002)面
の平均面間隔(d002)が0.335〜0.340nm、(002)面方
向の結晶子厚み(Lc)が10nm以上(より好ましくは、40nm
以上)、(110)面方向の結晶子厚み(La)が10nm以上
(より好ましくは、50nm以上)、またアルゴンレーザー
ラマン分光法によるR値が0.5以上(より好ましくは、0.
5〜1.5程度)であることが好ましい。面間隔およびR値
は、一般的な黒鉛の結晶化度の指標であるが、それら測
定方法の性質上、X線回折法では物性値にバルクの性質
が反映されるのに対し、ラマン分光法では材料の表面の
物性が反映される。つまり、上記物性値を満たす材料
は、バルクの性質としては高結晶な材料でありながら、
表面は低結晶性であることを意味する。焼成後の材料R
値が0.5よりも小さい場合には、表面の結晶性が高いた
め、溶媒の選択性は完全にはなくならない。またバルク
としての性質である平均面間隔(d002)が0.335〜0.340
nmの範囲を逸脱する場合には、リチウムイオンの吸蔵・
放出に伴う電位の変化が大きくなり、好ましくない。
In the present invention, a combination in which the carbon material for forming the coating on the surface has lower crystallinity than the carbon material of the core material is preferable. Further, the average plane spacing (d002) of the (002) plane by the wide angle X-ray diffraction method is 0.335 to 0.340 nm, and the crystallite thickness (Lc) in the (002) plane direction is 10 nm or more (more preferably, 40 nm).
Above), the crystallite thickness (La) in the (110) plane direction is 10 nm or more (more preferably, 50 nm or more), and the R value by argon laser Raman spectroscopy is 0.5 or more (more preferably, 0.
About 5 to 1.5). Plane spacing and R value are indicators of the general crystallinity of graphite.However, due to the nature of these measurement methods, physical properties are reflected in bulk by X-ray diffraction, whereas Raman spectroscopy Reflects the physical properties of the material surface. In other words, a material that satisfies the above physical property values is a highly crystalline material as a bulk property,
The surface means low crystalline. Material after firing R
When the value is smaller than 0.5, the selectivity of the solvent is not completely lost because the crystallinity of the surface is high. In addition, the average plane spacing (d002), which is a property of bulk, is 0.335 to 0.340.
If the deviation is out of the nm range, occlusion of lithium ions
The change in the potential due to the release is large, which is not preferable.

【0031】また得られた二層構造の被覆炭素材料の真
密度は、1.50〜2.26g/cm3程度、好ましくは1.8〜2.26g/
cm3程度、より好ましくは2.0〜2.26g/cm3程度である。
真密度が低い材料を使用して電極を作製する場合には、
電極中の活物質密度を上げることができないため、重量
あたりの特性が優れた材料であっても、高容量の電池を
得ることは困難である。
The true density of the coated carbon material having the two-layer structure is about 1.50 to 2.26 g / cm 3 , preferably 1.8 to 2.26 g / cm 3.
cm 3 , more preferably about 2.0 to 2.26 g / cm 3 .
When making electrodes using materials with low true density,
Since the active material density in the electrode cannot be increased, it is difficult to obtain a high-capacity battery even with a material having excellent properties per weight.

【0032】被覆炭素材料の粒径は、0.1〜150μmの範
囲に粒度分布を有するものが好ましく、さらにこの粒度
分布において1μm以下の粒子が体積基準で10%以下で
あることがより好ましい。粒径が1μm以下の粒子が体
積基準で10%を超える場合には、比表面積の増大によ
り、電池特性が低下するので、好ましくない。
The particle size of the coated carbon material is preferably one having a particle size distribution in the range of 0.1 to 150 μm, and more preferably 1% or less in this particle size distribution is 10% or less on a volume basis. If the particles having a particle size of 1 μm or less exceed 10% on a volume basis, the specific surface area increases, and the battery characteristics deteriorate, which is not preferable.

【0033】本発明で得られた被覆炭素材料は、粉末の
状態で金型充填し、加圧成型した後、焼成することによ
り、均一な組成を有する炭素ブロック或いは黒鉛ブロッ
クを得ることも、可能である。
The coated carbon material obtained in the present invention can be filled in a mold in a powder state, molded under pressure, and then fired to obtain a carbon block or a graphite block having a uniform composition. It is.

【0034】被覆形成用炭素材料用原料としては、ナフ
タレン、フェナントレン、アセナフチレン、アントラセ
ン、トリフェニレン、ピレン、クリセン、ペリレンなど
の芳香族炭化水素、これらを加熱加圧下で重縮合して得
られたタール或いはピッチ類、あるいはこれらの芳香族
炭化水素の混合物を主成分とするタール、ピッチ、アス
ファルト、油類があげられ、その由来は、石油系および
石炭系を問わない。本明細書においては、これらの被覆
形成用炭素材料用原料を単に「(石油系或いは石炭系)
重質油など」ということがある。また、コスト的には不
利となるが、各種の熱硬化性樹脂を被覆形成用原料とし
て用いることも、可能である。
Examples of the raw material for the carbon material for forming the coating include aromatic hydrocarbons such as naphthalene, phenanthrene, acenaphthylene, anthracene, triphenylene, pyrene, chrysene, and perylene; Tars, pitches, asphalts, and oils containing pitches or a mixture of these aromatic hydrocarbons as main components are mentioned, and their origin is not limited to petroleum and coal. In the present specification, these materials for forming a coating carbon material are simply referred to as “(petroleum-based or coal-based).
Heavy oil etc. " Although it is disadvantageous in terms of cost, it is also possible to use various thermosetting resins as a raw material for forming a coating.

【0035】石炭系重質油を使用する場合には、原料中
に存在する一次QIの少なくとも一部を除去し、残存する
一次QIを3%以下(好ましくは1%以下)としたタールま
たはピッチを用いることが好ましい。ここで一次QIと
は、コールタールに元来含まれているフリ−カ−ボンを
意味する。原料中に一次QIが存在すると、焼成の際に炭
素化を阻害したり、また1μm程度の球状の炭素粒とし
て最終生成物中に混入したりするなど、電極の製造工程
上問題を引き起こしたり、あるいは電極とした際の特性
の低下を招く場合がある。
When using coal-based heavy oil, tar or pitch is used in which at least a part of the primary QI present in the raw material is removed and the remaining primary QI is 3% or less (preferably 1% or less). It is preferable to use Here, primary QI means free carbon originally contained in coal tar. If primary QI exists in the raw material, it may cause problems in the electrode manufacturing process, such as inhibiting carbonization during firing, or mixing into the final product as spherical carbon particles of about 1 μm, Alternatively, the characteristics of the electrode may be deteriorated.

【0036】通常、重質油は、常温で固体であるが、加
熱することにより、軟化溶融する。この軟化し始める温
度を軟化点(SP)という。また、重質油の品質を規定す
るには、通常トルエンにより溶媒分別した場合のトルエ
ン不溶分が用いられる。これらが重質油を規定する代表
的な方法であるが、本発明では、重質油の品質を規定す
るに当たって、任意の方法を適宜選択することができ
る。
Normally, heavy oil is solid at room temperature, but softens and melts when heated. The temperature at which softening starts is called the softening point (SP). Further, in order to regulate the quality of heavy oil, a toluene-insoluble matter obtained by solvent fractionation with toluene is usually used. These are typical methods for defining heavy oil. In the present invention, any method can be appropriately selected for defining the quality of heavy oil.

【0037】本発明においては、上記の芯材となる炭素
材料と重質油などとを混合し、攪拌処理する。撹拌方法
としては、特に限定されず、例えば、リボンミキサー、
スクリュー型ニーダー、万能ミキサーなどを使用する機
械的攪拌方法が挙げられる。
In the present invention, the carbon material serving as the above core material and heavy oil are mixed and stirred. The stirring method is not particularly limited, for example, a ribbon mixer,
A mechanical stirring method using a screw-type kneader, a universal mixer, or the like can be given.

【0038】撹拌処理条件(温度および時間)は、原料
(芯材と被覆用重質油)の成分、混合物の粘度などに応
じて適宜選択されるが、通常10〜300℃程度であり、50
〜200℃程度の範囲とすること、或いは混合物の粘度が5
000Pa・s以下になるように時間をも併せて調整すること
が、より好ましい。この様に、攪拌時の処理温度と時間
とを調整することにより、被覆形成用原料の被覆層(単
に、被覆層ともいう)の厚さをコントロールすることが
可能である。すなわち、温度を高くすることおよび/ま
たは時間を短くすることにより、被覆層の厚さを小さく
することができ、逆に温度を低くすることにより、被覆
層の厚さはを大きくすることができる。撹拌が十分でな
いと被覆層が均一にならないので、好ましくない。攪拌
時間は、一般に製品の性状には悪影響を及ぼさないもの
の、長すぎる場合には、実用的には量産性が低くなり、
好ましくないので、適宜選択すればよい。
The stirring conditions (temperature and time) are appropriately selected according to the components of the raw materials (core material and heavy oil for coating), the viscosity of the mixture, and the like.
~ 200 ° C or the viscosity of the mixture is 5
It is more preferable to adjust the time so as to be 000 Pa · s or less. As described above, by adjusting the processing temperature and time during stirring, it is possible to control the thickness of the coating layer (also simply referred to as a coating layer) of the coating forming raw material. That is, by increasing the temperature and / or shortening the time, the thickness of the coating layer can be reduced, and conversely, by decreasing the temperature, the thickness of the coating layer can be increased. . If the stirring is not sufficient, the coating layer will not be uniform, which is not preferable. The stirring time generally has no adverse effect on the properties of the product, but if it is too long, the mass productivity is practically low,
Since it is not preferable, it may be appropriately selected.

【0039】また、撹拌時の雰囲気としては、大気圧
下、加圧下、減圧下のいずれであってもよいが、減圧下
で撹拌する場合には、芯材と重質油とのなじみが向上す
るので、好ましい。
The atmosphere during the stirring may be any of atmospheric pressure, pressurized pressure, and reduced pressure. When stirring is performed under reduced pressure, the affinity between the core material and the heavy oil is improved. Is preferred.

【0040】本発明においては、芯材と被覆層とのなじ
みを改善する、被覆層の厚さを均一とする、被覆層の厚
さを大きくするなどのために、必要ならば、上記の混合
攪拌工程を複数回繰り返すことも可能である。また、引
き続く洗浄工程に先立って、被覆された芯材を一旦分離
した後、洗浄工程に供しても良い。
In the present invention, if necessary, the above-mentioned mixing is carried out in order to improve the conformity between the core material and the coating layer, to make the thickness of the coating layer uniform and to increase the thickness of the coating layer. It is also possible to repeat the stirring step a plurality of times. Further, prior to the subsequent washing step, the coated core material may be once separated and then subjected to the washing step.

【0041】次いで、上記の様にして得られた重質油な
どで覆われた被覆炭素材料は、洗浄工程に供される。洗
浄に用いる有機溶媒としては、トルエン、キノリン、ア
セトン、ヘキサン、ベンゼン、キシレン、メチルナフタ
レン、アルコール類、石炭系油、石油系油などが挙げら
れる。これらの中では、トルエン、キノリン、アセト
ン、ベンゼン、キシレン、メタノール、石炭系軽油・中
油、石油系軽油・中油などがより好ましい。これらの有
機溶媒を適宜選択する場合には、洗浄溶媒中の不溶分を
新たに被覆層に付与することができるので、被覆層の重
質油成分をコントロールすることも、可能である。
Next, the coated carbon material covered with heavy oil or the like obtained as described above is subjected to a washing step. Examples of the organic solvent used for washing include toluene, quinoline, acetone, hexane, benzene, xylene, methylnaphthalene, alcohols, coal oil, and petroleum oil. Among them, toluene, quinoline, acetone, benzene, xylene, methanol, coal-based light oil / medium oil, petroleum-based light oil / medium oil, and the like are more preferable. When these organic solvents are appropriately selected, insolubles in the washing solvent can be newly imparted to the coating layer, so that the heavy oil component of the coating layer can be controlled.

【0042】洗浄温度は、最終的に得られる被覆炭素材
料、特にその表面被覆層の性状などを考慮して定めれば
よく、特に限定されないが、10〜300℃程度が好まし
い。
The washing temperature may be determined in consideration of the finally obtained coated carbon material, particularly the properties of the surface coating layer, and is not particularly limited, but is preferably about 10 to 300 ° C.

【0043】洗浄の際の固形物{=芯材+被覆層乃至含
浸層(以下単に被覆層とする)}と有機溶剤との割合
は、重量比で1:0.1〜10の範囲であることが好ましい。
The ratio of the solid matter at the time of washing {= core material + coating layer or impregnated layer (hereinafter simply referred to as coating layer)} to the organic solvent may be in the range of 1: 0.1 to 10 by weight. preferable.

【0044】なお洗浄工程においては、溶媒の種類、洗
浄時間、洗浄温度などを選択することにより、被覆層の
厚み、残存する重質油成分などを調整することが、可能
である。例えば、洗浄力の強い溶媒を用いる、洗浄温度
を高くするなどの条件を適宜を組み合わせる場合には、
被覆層の厚さは薄くなるのに対し、洗浄力の弱い溶媒を
用いる、洗浄温度を低くするなどの条件を適宜組み合わ
せる場合には、被覆層の厚さを厚くすることが可能とな
る。洗浄時間は、上記の各条件を考慮して、適宜選択す
ればよい。
In the washing step, it is possible to adjust the thickness of the coating layer, the remaining heavy oil component, etc. by selecting the type of solvent, washing time, washing temperature and the like. For example, when using a solvent having a strong detergency, appropriately combining conditions such as increasing the washing temperature,
While the thickness of the coating layer is reduced, the thickness of the coating layer can be increased by appropriately combining conditions such as using a solvent with low detergency and lowering the cleaning temperature. The washing time may be appropriately selected in consideration of the above conditions.

【0045】次いで、被覆炭素材料と有機溶媒との分離
工程は、遠心分離、圧搾濾過、重力沈降などの手法によ
り行われる。分離する際の温度は、通常10〜300℃程度
の範囲にある。
Next, the step of separating the coated carbon material and the organic solvent is performed by a method such as centrifugation, squeezing filtration, and gravity sedimentation. The temperature at the time of separation is usually in the range of about 10 to 300 ° C.

【0046】分離された被覆炭素材料の乾燥は、通常10
0〜400℃の範囲で行われる。
Drying of the separated coated carbon material is usually performed for 10 minutes.
It is performed in the range of 0 to 400 ° C.

【0047】このようにして得られた乾燥被覆炭素材料
は、炭化処理、さらには黒鉛化処理を行っても、芯材粒
子周囲のピッチ成分は維持され、粒子同士が融着乃至凝
集することはない。
[0047] The dry-coated carbon material thus obtained retains the pitch component around the core material particles even if it is subjected to carbonization treatment and further graphitization treatment, and it is difficult for the particles to fuse or aggregate. Absent.

【0048】次いで、上記で乾燥された被覆炭素材料
は、焼成される。被覆炭素材料を炭化する場合には、60
0〜2000℃程度の温度において焼成することが可能であ
り、900〜1300℃程度の温度で焼成することがより好ま
しい。また黒鉛化する場合には、2000〜3000℃程度の温
度において、焼成することが可能であり。2500〜3000℃
程度の温度で焼成することがより好ましい。
Next, the coated carbon material dried above is fired. When carbonizing the coated carbon material, 60
It is possible to fire at a temperature of about 0 to 2000 ° C, and it is more preferable to fire at a temperature of about 900 to 1300 ° C. In the case of graphitization, firing can be performed at a temperature of about 2000 to 3000 ° C. 2500-3000 ℃
It is more preferable to bake at a temperature of the order.

【0049】炭化或いは黒鉛化条件における高温で焼成
しつつ低結晶性を保つために、被覆炭素材料の焼成に先
立ち、被覆した重質油層に対し、低温度域(50〜400℃
程度)で酸素、オゾン、一酸化炭素、イオウ酸化物など
の酸化性ガスで難黒鉛化処理を行い、その後高温で焼成
することも可能である。例えば、高結晶性の芯材に高結
晶性の被覆層を形成させた後、酸化処理を行うことによ
り、被覆層を低結晶性炭素に変換することも可能であ
る。逆に、この様な酸化処理を行わない場合には、被覆
層を高結晶性の状態に維持することも可能である。この
様な酸化処理は、被覆炭素材料の炭化焼成に先立って行
う。この場合に得られる炭素材料は、リチウム二次電池
負極材として有用である。
In order to maintain low crystallinity while firing at a high temperature under carbonization or graphitization conditions, a low temperature range (50 to 400 ° C.) is applied to the coated heavy oil layer prior to firing the coated carbon material.
It is also possible to perform a non-graphitizing treatment with an oxidizing gas such as oxygen, ozone, carbon monoxide, sulfur oxide or the like, and then fire at a high temperature. For example, after forming a highly crystalline coating layer on a highly crystalline core material, the coating layer can be converted to low crystalline carbon by performing an oxidation treatment. Conversely, when such oxidation treatment is not performed, the coating layer can be maintained in a highly crystalline state. Such oxidation treatment is performed prior to the carbonization and firing of the coated carbon material. The carbon material obtained in this case is useful as a negative electrode material for a lithium secondary battery.

【0050】被覆炭素材料の焼成時の雰囲気としては、
還元雰囲気中、不活性ガス気流中、不活性ガスの密閉状
態、真空状態などの非酸化性雰囲気が挙げられる。焼成
温度にかかわらず、昇温速度は、1〜300℃/hr程度の範
囲から適宜選択され、焼成時間は、6時間〜1ケ月程度で
ある。昇温は、被覆層の厚みなどに応じて、段階的に行
うことも可能である。
The atmosphere at the time of firing the coated carbon material is as follows:
Non-oxidizing atmospheres such as a reducing atmosphere, an inert gas stream, a closed state of an inert gas, and a vacuum state may be used. Regardless of the firing temperature, the heating rate is appropriately selected from the range of about 1 to 300 ° C./hr, and the firing time is about 6 hours to 1 month. The temperature can be raised stepwise according to the thickness of the coating layer and the like.

【0051】真空炭化を行う場合には、常温から最高到
達温度まで減圧状態を継続するか、適当な温度域(好ま
しくは、500℃以上)で減圧状態とすることが好まし
い。真空炭化は、被覆炭素材料の表面官能基を除去する
効果があり、電池の不可逆容量を低減することができ
る。
When performing vacuum carbonization, it is preferable to continue the reduced pressure state from the normal temperature to the maximum attained temperature or to reduce the pressure in an appropriate temperature range (preferably 500 ° C. or higher). Vacuum carbonization has the effect of removing the surface functional groups of the coated carbon material, and can reduce the irreversible capacity of the battery.

【0052】一般に、速い昇温速度においては量産性の
向上が期待できるのに対し、遅い昇温速度(10℃/hr以
下)においては緻密な被覆層の形成が期待できる。また
昇温時および焼成時の温度プロファイルとしては、直線
的な昇温、一定間隔で温度をホールドする段階的な昇温
などの様々な形態をとることが可能である。
In general, an improvement in mass productivity can be expected at a high heating rate, whereas a dense coating layer can be expected at a low heating rate (10 ° C./hr or less). The temperature profile at the time of temperature increase and firing can take various forms such as a linear temperature increase, a stepwise temperature increase in which the temperature is held at regular intervals, and the like.

【0053】このようして得られた周囲が被覆形成用炭
素材料で覆われている炭素材料をリチウム二次電池負極
として用いる場合には、電解液の有機溶媒との反応性が
低いので、電解液の分解や炭素材料の破壊などが起こり
にくい。その結果、電池の充放電効率が向上し、またそ
の安全性が改善されるという利点を有している。一般
に、黒鉛系の材料は、活性な結晶子の端面(edge plan
e)が外側に配向しているため、電解液と反応しやす
い。本発明においては、炭素の縮合多環網目である基底
面(basal plane)が外側に配向しているピッチ成分が
この活性な結晶子端面を覆っているので、電解液の有機
溶媒との反応が制御されるものと考えられる。
When the thus obtained carbon material whose periphery is covered with the carbon material for forming a coating is used as a negative electrode of a lithium secondary battery, the reactivity of the electrolyte with an organic solvent is low. Decomposition of liquid and destruction of carbon material are unlikely to occur. As a result, there is an advantage that the charge / discharge efficiency of the battery is improved and its safety is improved. Generally, graphite-based materials have an active crystallite edge (edge plan).
Since e) is oriented outward, it easily reacts with the electrolytic solution. In the present invention, the pitch component in which the basal plane (basal plane), which is a condensed polycyclic network of carbon, is oriented outward covers this active crystallite end face, so that the reaction of the electrolytic solution with the organic solvent is prevented. It is considered to be controlled.

【0054】本発明によれば、芯材である炭素材料を重
質油などに浸漬する温度と時間、或いは被覆された炭素
材料を洗浄する際の有機溶媒の種類と洗浄条件(時間、
温度)などを調整することにより、炭素材料周囲の被覆
重質油の量乃至被覆層の厚さを制御できるので、炭素の
縮合多環網目である基底面が炭素材料の表面方向に配向
しているピッチ成分により、表面を覆われた炭素材料を
製造することができる。
According to the present invention, the temperature and time for immersing the carbon material as the core material in heavy oil or the like, or the type of organic solvent and the cleaning conditions (time,
By adjusting the temperature, etc., the amount of the coated heavy oil around the carbon material or the thickness of the coating layer can be controlled, so that the basal plane, which is a condensed polycyclic network of carbon, is oriented in the surface direction of the carbon material. Depending on the pitch component, a carbon material whose surface is covered can be produced.

【0055】また、これらの炭素材料を炭化或いはさら
には黒鉛化しても、芯材表面の被覆においては、基底面
が炭素材料の表面方向に配向した状態が、維持される。
従って、この炭素材料をリチウム二次電池負極に用いる
場合には、電解液の有機溶媒と反応しにくいので、電解
液の分解や炭素材料の破壊は、起こらない。その結果、
電池の充放電効率が高い値となり、電池の安全性にも優
れているという顕著な効果が得られる。
Further, even if these carbon materials are carbonized or further graphitized, the state where the basal plane is oriented in the surface direction of the carbon material is maintained in coating the surface of the core material.
Therefore, when this carbon material is used for a negative electrode of a lithium secondary battery, it does not easily react with the organic solvent of the electrolytic solution, so that decomposition of the electrolytic solution and destruction of the carbon material do not occur. as a result,
A remarkable effect that the charge / discharge efficiency of the battery is high and the safety of the battery is excellent is obtained.

【0056】本願発明によるリチウム二次電池を作製す
る場合には、上述の様にして得られた被覆炭素材料を必
要ならば分散、解砕、分級などの処理に供した後、適当
な粒度に調整し、電極材料とする。
When the lithium secondary battery according to the present invention is manufactured, the coated carbon material obtained as described above is subjected to a process such as dispersion, crushing, and classification, if necessary, to obtain an appropriate particle size. Adjust and use as electrode material.

【0057】電極は、公知のバインダーなとと混合した
後 集電体上に活物質層を形成する。バインダーとして
は、特に限定されず、ポリテトラフルオロエチレン、ポ
リフッ化ビニリデンなどのフッ素系ポリマー;ポリエチ
レン、ポリプロピレンなどのポリオレフィン系ポリマ
ー;合成ゴム類などを用いることができる。この場合の
バインダーの量としては、活物質100重量部に対して、
通常3〜50重量部程度の範囲であり、より好ましくは5〜
20重量部程度であり、さらに好ましくは5〜15重量部程
度である。バインダーの量が多すぎると、電極中の活物
質の密度が低下するため、好ましくない。また、バイン
ダーが少なすぎると、電極中の活物質を保持する能力が
十分得られず、電極の安定性が低下するため、好ましく
ない。また、電極を形成する方法としては、活物質とバ
インダーとを混合したペーストを作製し、ドクターブレ
ード、バーコーターなどにより集電体上に活物質層を形
成する方法、或いは活物質とバインダーとを混合したも
のを成型器などに入れ、プレスなどにより成形体とする
方法などが挙げられる。
After the electrode is mixed with a known binder, an active material layer is formed on the current collector. The binder is not particularly limited, and a fluorine-based polymer such as polytetrafluoroethylene and polyvinylidene fluoride; a polyolefin-based polymer such as polyethylene and polypropylene; and synthetic rubbers can be used. As the amount of the binder in this case, based on 100 parts by weight of the active material,
Usually, it is in the range of about 3 to 50 parts by weight, more preferably 5 to 50 parts by weight.
It is about 20 parts by weight, more preferably about 5 to 15 parts by weight. If the amount of the binder is too large, the density of the active material in the electrode decreases, which is not preferable. On the other hand, if the amount of the binder is too small, the ability to retain the active material in the electrode is not sufficiently obtained, and the stability of the electrode is lowered. As a method for forming an electrode, a paste in which an active material and a binder are mixed is prepared, and a method in which an active material layer is formed on a current collector by a doctor blade, a bar coater, or the like, or an active material and a binder are used. A method in which the mixture is placed in a molding machine or the like and formed into a molded body by pressing or the like can be given.

【0058】また、本願発明によるリチウム二次電池の
電解質としては、公知の有機電解液、無機固体電解質、
高分子固体電解質などを用いることができる。
The electrolyte of the lithium secondary battery according to the present invention includes known organic electrolytes, inorganic solid electrolytes, and the like.
A polymer solid electrolyte or the like can be used.

【0059】これらの中でも、イオン伝導度の観点か
ら、有機電解液が特に好ましい。有機電解液用の溶媒と
しては、プロピレンカーボネート、エチレンカーボネー
ト、ブチレンカーボネート、ジエチルカーボネート、ジ
メチルカーボネート、メチルエチルカーボネート、γ−
ブチロラクトンなどのエステル類;テトラヒドロフラ
ン、2-メチルテトラヒドロフランなどの置換テトラヒド
ロフラン;ジオキソラン、ジエチルエーテル、ジメトキ
シエタン、ジエトキシエタン、メトキシエトキシエタン
などのエーテル類;ジメチルスルホキシド、スルホラ
ン、メチルスルホラン、アセトニトリル、ギ酸メチル、
酢酸メチルなどが例示され、これらを単独でまたは混合
して使用することができる。また電解質としては、過塩
素酸リチウム、ホウフッ化リチウム、6フッ化燐酸リチ
ウム、6フッ化砒酸リチウム、トリフルオロメタンスル
ホン酸リチウム、ハロゲン化リチウム、塩化アルミン酸
リチウムなどのリチウム塩などが例示され、これらの1
種或いは2種以上を使用することができる。有機電解液
は、上記の溶媒に電解質を溶解することにより、調製さ
れる。なお、電解液を調製する際に使用する溶媒および
電解質は、上記に掲げたものに限定されないことはいう
までもない。
Among these, an organic electrolyte is particularly preferred from the viewpoint of ionic conductivity. As the solvent for the organic electrolyte, propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, γ-
Esters such as butyrolactone; substituted tetrahydrofurans such as tetrahydrofuran and 2-methyltetrahydrofuran; ethers such as dioxolane, diethyl ether, dimethoxyethane, diethoxyethane and methoxyethoxyethane; dimethylsulfoxide, sulfolane, methylsulfolane, acetonitrile, methyl formate, methyl formate,
Examples thereof include methyl acetate, and these can be used alone or in combination. Examples of the electrolyte include lithium salts such as lithium perchlorate, lithium borofluoride, lithium hexafluorophosphate, lithium hexafluoroarsenate, lithium trifluoromethanesulfonate, lithium halide, and lithium chloride aluminate. Of 1
Species or two or more species can be used. The organic electrolyte is prepared by dissolving the electrolyte in the above-mentioned solvent. Needless to say, the solvent and the electrolyte used when preparing the electrolytic solution are not limited to those listed above.

【0060】無機固体電解質としては、Liの窒化物、ハ
ロゲン化物、酸素酸塩、硫化リン化合物などが挙げら
れ、より具体的には、Li3N、LiI、Li3N-LiI-LiOH、LiSi
O4、LiSiO4-LiI-LiOH、Li3PO4-Li4SiO4、Li2SiS3などが
例示される。
Examples of the inorganic solid electrolyte include nitrides, halides, oxyacid salts, and phosphorus sulfide compounds of Li. More specifically, Li 3 N, LiI, Li 3 N—LiI—LiOH, and LiSi
O 4, LiSiO 4 -LiI-LiOH , etc. Li 3 PO 4 -Li 4 SiO 4 , Li 2 SiS 3 is exemplified.

【0061】有機固体電解質には、上記の電解質と電解
質の解離を行う高分子とから構成された物質、高分子に
イオン解離基を持たせた物質などがある。電解質の解離
を行う高分子としては、例えば、ポリエチレンオキサイ
ド誘導体および該誘導体を含むポリマー、ポリプロピレ
ンオキサイド誘導体および該誘導体を含むポリマー、リ
ン酸エステルポリマーなどがある。上記の非プロトン性
極性溶媒を含有させた高分子マトリックス材料、イオン
解離基を含むポリマーと上記非プロトン性極性溶媒との
混合物、電解液にポリアクリロニトリルを添加した材料
も、使用可能である。さらに、無機固体電解質と有機固
体電解質とを併用することも、可能である。
Examples of the organic solid electrolyte include a substance composed of the above-mentioned electrolyte and a polymer that dissociates the electrolyte, a substance having an ion dissociating group in the polymer, and the like. Examples of the polymer that dissociates the electrolyte include a polyethylene oxide derivative and a polymer containing the derivative, a polypropylene oxide derivative and a polymer containing the derivative, and a phosphate ester polymer. A polymer matrix material containing the above-mentioned aprotic polar solvent, a mixture of a polymer containing an ion-dissociating group and the above-mentioned aprotic polar solvent, and a material obtained by adding polyacrylonitrile to an electrolytic solution can also be used. Furthermore, it is also possible to use an inorganic solid electrolyte and an organic solid electrolyte together.

【0062】本発明のリチウム二次電池における正極と
しては、常法に従って、例えばリチウムを含有する酸化
物を正極活物質として用いることができる。正極活物質
の具体的な例としては、LiCoO2、LiNiO2、LiFeO2、LiMn
O2、これらの類縁化合物であるLixMyNzO2(ここでMはF
e、Co、NiおよびMnのいずれかであり、Nは遷移金属、4B
族金属或いは5B族金属を表す)、LiMn2O4、その類縁化
合物であるLiMn2-xNyO4(ここでNは遷移金属、4B族金属
或いは5B族金属を表す)、LiVO2などが挙げられ、これ
に導電材、バインダーおよび場合によっては、固体電解
質などを混合して、正極が形成される。これら各材料の
混合比は、活物質100重量部に対して、導電材5〜50重量
部程度、バインダー1〜30重量部程度とすることができ
る。この様な導電材としては、特に制限されず、公知の
カーボンブラック(アセチレンブラック、サーマルブラ
ック、チャンネルブラックなど)などの炭素類、グラフ
ァイト粉末、金属粉末などを用いることができ。また、
バインダーとしても、特に限定されず、公知のポリテト
ラフルオロエチレン、ポリフッ化ビニリデンなどのフッ
素系ポリマー;ポリエチレン、ポリプロピレンなどのポ
リオレフィン系ポリマー;合成ゴム類などを用いること
ができる。導電材の配合量が5重量部より小さいか、或
いはバインダーの配合量が30重量部より大きい場合に
は、電極の抵抗あるいは分極などが大きくなり、放電容
量が小さくなるため、実用的なリチウム二次電池が作製
できない。導電材が50重量部より多い(混合する導電材
の種類により、その相対的な割合は変わる)場合には、
電極内に含まれる活物質量が減るため、正極としての放
電容量が小さくなる。バインダーは、1重量部より小さ
いと結着能力がなくなってしまうのに対し、30重量部よ
り大きいと、導電材の場合と同様に、電極内に含まれる
活物質量が減り、さらに、上記に記載のごとく、電極の
抵抗あるいは分極などが大きくなり、放電容量が小さく
なるため、実用的ではない。正極の作製に際しては、結
着性を上げるために、それぞれのバインダーの融点近傍
の温度で熱処理を行うことが好ましい。
As the positive electrode in the lithium secondary battery of the present invention, for example, an oxide containing lithium can be used as a positive electrode active material according to a conventional method. Specific examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , LiFeO 2 , LiMn
O 2 , Li x M y N z O 2 , which is an analog of these compounds, where M is F
e, any of Co, Ni and Mn, where N is a transition metal, 4B
Group metal or group 5B metal), LiMn 2 O 4 , or its related compound LiMn 2-x N y O 4 (where N represents a transition metal, group 4B metal or group 5B metal), LiVO 2, etc. And a conductive material, a binder, and in some cases, a solid electrolyte are mixed to form a positive electrode. The mixing ratio of these materials can be about 5 to 50 parts by weight of the conductive material and about 1 to 30 parts by weight of the binder with respect to 100 parts by weight of the active material. Such a conductive material is not particularly limited, and carbons such as known carbon black (such as acetylene black, thermal black, and channel black), graphite powder, and metal powder can be used. Also,
The binder is not particularly limited, and a known fluorine-based polymer such as polytetrafluoroethylene and polyvinylidene fluoride; a polyolefin-based polymer such as polyethylene and polypropylene; and synthetic rubbers can be used. If the compounding amount of the conductive material is less than 5 parts by weight or the compounding amount of the binder is more than 30 parts by weight, the resistance or polarization of the electrode becomes large, and the discharge capacity becomes small. The next battery cannot be manufactured. If the conductive material is more than 50 parts by weight (the relative proportion varies depending on the type of conductive material mixed),
Since the amount of active material contained in the electrode is reduced, the discharge capacity as a positive electrode is reduced. When the binder is smaller than 1 part by weight, the binding ability is lost.On the other hand, when the binder is larger than 30 parts by weight, similarly to the case of the conductive material, the amount of the active material contained in the electrode is reduced, and As described above, the resistance or polarization of the electrode increases and the discharge capacity decreases, which is not practical. In producing the positive electrode, it is preferable to perform a heat treatment at a temperature near the melting point of each binder in order to improve the binding property.

【0063】また電解液を保持するためのセパレーター
としては、公知の電気絶縁性の合成樹脂繊維、ガラス繊
維、天然繊維などの不織布あるいは織布、アルミナなど
の粉末の成形体などが挙げられる。これらの中でも、合
成樹脂であるポリエチレン、ポリプロピレンなどの不織
布が品質の安定性などの点から好ましい。これら合成樹
脂の不織布には、電池が異常発熱した場合に、セパレー
ターが熱により溶解して、正極と負極との間を遮断する
機能を付加したものがあり、安全性の観点から、これら
も好適に使用することができる。セパレーターの厚み
は、特に限定されず、必要量の電解液を保持することが
可能であり、かつ正極と負極との短絡を防ぐことができ
ればよく、通常0.01〜1mm程度であり、好ましくは0.02
〜0.05mm程度である。
Examples of the separator for holding the electrolytic solution include well-known non-woven fabrics or woven fabrics of synthetic resin fibers, glass fibers, and natural fibers having electrical insulation properties, and powder compacts of alumina and the like. Among them, nonwoven fabrics such as synthetic resins such as polyethylene and polypropylene are preferable from the viewpoint of quality stability and the like. Some of these synthetic resin nonwoven fabrics have a function to add a function of shutting off between the positive electrode and the negative electrode when the battery is abnormally heated, and the separator is melted by heat. Can be used for The thickness of the separator is not particularly limited, as long as it can hold a required amount of electrolytic solution and can prevent a short circuit between the positive electrode and the negative electrode, and is usually about 0.01 to 1 mm, and preferably about 0.02 mm.
It is about 0.05 mm.

【0064】集電体としては、公知の銅、ニッケル、ス
テンレス、アルミ、チタンなどの金属の箔状、メッシ
ュ、多孔質体などが例示されるが、これらに限定される
ものではない。
Examples of the current collector include, but are not limited to, known metal foils such as copper, nickel, stainless steel, aluminum, and titanium, meshes, and porous bodies.

【0065】発 明 の 効 果 本発明において、炭素材料、特に結晶度の高い黒鉛系の
材料をタール、ピッチなどの石炭系あるいは石油系重質
油などに浸漬し、被覆された炭素材料を重質油などから
分離した後、有機溶媒で洗浄し、乾燥することにより、
芯材としての炭素材料の表面が重質油などで覆われた新
規な炭素材料を得ることができる。
Effect of the Invention In the present invention, a carbon material, particularly a graphite material having a high degree of crystallinity, is immersed in coal or petroleum heavy oil such as tar or pitch, and the coated carbon material is subjected to heavy load. After being separated from high-grade oil, etc., it is washed with an organic solvent and dried,
A novel carbon material in which the surface of the carbon material as the core material is covered with heavy oil or the like can be obtained.

【0066】また、表面がピッチで均一に覆われている
黒鉛系の炭素材料を600℃〜2000℃で炭化することによ
り、芯材が結晶化度の高い黒鉛系の材料からなり、表面
が結晶化度の低い炭素系の材料で覆われているという特
異な構造の炭素材料を製造することができる。
Further, by carbonizing a graphite-based carbon material whose surface is uniformly covered with a pitch at 600 ° C. to 2000 ° C., the core material is made of a graphite-based material having a high degree of crystallinity, and the surface is crystallized. A carbon material having a peculiar structure that is covered with a carbon-based material having a low degree of conversion can be manufactured.

【0067】本願発明の製造方法によれば、芯材である
炭素材料をピッチ、タールなどの重質油で被覆した後、
洗浄、乾燥および焼成を行った場合でも、粒子同士の融
着乃至凝集を生じないので、得られた炭素材料を粉砕す
る必要はなく、いわゆる「角の取れた」球状に近い粒子
が得られる。また、粉砕に伴う不純物の混入という材料
の劣化要因も存在しない。
According to the production method of the present invention, after the carbon material as the core material is coated with heavy oil such as pitch and tar,
Even when washing, drying and baking are performed, fusion or aggregation of the particles does not occur, so that the obtained carbon material does not need to be pulverized, and so-called “sharp” spherical particles are obtained. In addition, there is no material deterioration factor such as mixing of impurities due to grinding.

【0068】本発明により得られた被覆炭素材料、特に
黒鉛材料の表面を重質油など若しくはそれらの焼成物で
被覆した炭素材料を用いて、非水系二次電池或いは固体
電解質電池を作製する場合には、充放電特性と安全性の
両方に優れた電池を製造することが可能となる。
When a non-aqueous secondary battery or a solid electrolyte battery is manufactured using the coated carbon material obtained by the present invention, in particular, a carbon material obtained by coating the surface of a graphite material with heavy oil or the like or a fired product thereof. Thus, it is possible to manufacture a battery having both excellent charge and discharge characteristics and safety.

【0069】本発明方法は、芯材として安価な天然黒
鉛、人造黒鉛などを使用し、被覆材料としても安価なピ
ッチ、タールなどを使用し、その製造方法も簡単であ
り、量産性にも非常に優れた製造方法であるため、安価
な高性能リチウム二次電池用負極材料を得ることができ
る。
The method of the present invention uses inexpensive natural graphite, artificial graphite or the like as a core material, uses inexpensive pitch or tar as a coating material, is simple in its production method, and is very low in mass productivity. Therefore, an inexpensive negative electrode material for a high-performance lithium secondary battery can be obtained.

【0070】また、本発明においては、芯材と表面材と
の組み合わせは、低結晶性炭素材料+低結晶性炭素材
料、低結晶性炭素材料+高結晶性炭素材料、高結晶性炭
素材料+低結晶性炭素材料および高結晶性炭素材料+高結
晶性炭素材料という4通りの組合せが可能であり、さら
に2つの焼成工程(炭素化焼成および黒鉛化焼成)を考
慮すれば、8種の炭素材料が得られる。このうち、炭素
化処理された高結晶性炭素材料+低結晶性炭素材料およ
び高結晶性炭素材料+高結晶性炭素材料、黒鉛化処理さ
れた高結晶性炭素材料+低結晶性炭素材料などの組合せ
からなる炭素材料を用いる場合には、電解液との反応性
が低く、優れた充放電特性を発揮するので、特にリチウ
ム二次電池用負極材料として有用である。
Further, in the present invention, the combination of the core material and the surface material is as follows: low-crystalline carbon material + low-crystalline carbon material, low-crystalline carbon material + high-crystalline carbon material, high-crystalline carbon material + Four combinations of a low-crystalline carbon material, a high-crystalline carbon material and a high-crystalline carbon material are possible, and if two firing steps (carbonization firing and graphitization firing) are considered, eight types of carbon can be obtained. The material is obtained. Among them, carbonized high crystalline carbon material + low crystalline carbon material and high crystalline carbon material + high crystalline carbon material, graphitized high crystalline carbon material + low crystalline carbon material, etc. When a carbon material composed of a combination is used, it is particularly useful as a negative electrode material for a lithium secondary battery because it has low reactivity with an electrolytic solution and exhibits excellent charge / discharge characteristics.

【0071】発明を実施するための最良の形態 以下実施例により、発明を具体的に説明する。なお、以
下の各実施例における各種の測定は、以下の様にして行
った。 1.粒径の測定 日機装株式会社製「FRA9220マイクロトラック」を用い
て、粒子の中心粒径および粒度分布を測定した。 2.被覆比および被覆厚さの測定 焼成前の芯材周囲を覆っている重質油由来の炭素成分に
ついては、JIS K2425に規定されている方法に準じて溶
剤分析を行って、キノリン不溶分(%)を測定し、「10
0-(キノリン不溶分)」によりキノリン可溶分(%)を算
出した。このキノリン可溶分の量が、被覆形成用炭素材
料の量である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described with reference to the following examples. Various measurements in each of the following examples were performed as follows. 1. Measurement of Particle Size The central particle size and the particle size distribution of the particles were measured using “FRA9220 Microtrack” manufactured by Nikkiso Co., Ltd. 2. Measurement of coating ratio and coating thickness For the carbon component derived from heavy oil covering the surroundings of the core material before firing, solvent analysis was performed according to the method specified in JIS K2425, and the quinoline insoluble content (% ) And measure "10
The quinoline-soluble matter (%) was calculated from “0- (quinoline-insoluble matter)”. The amount of the quinoline-soluble component is the amount of the coating-forming carbon material.

【0072】被覆形成用炭素材料/(芯材炭素材料+被
覆形成用炭素材料)の重量比(先に定義した被覆比)
は、前述の方法で算出した。 3.比表面積の測定 マイクロメリテックス社製「ASAP2400/窒素吸着BET比表
面積測定装置」を用いて比表面積を測定した。 4.真比重の測定 JIS R7212に規定されている方法に準じて、真比重を測
定した。 5.X線広角回折法による結晶子の大きさの測定 X線広角回折法による結晶子の大きさ(Lc、La)の測定
は、公知の方法、すなわち”炭素材料実験技術1 pp55
〜63 炭素材料学会編(科学技術社)”に記載された方
法によって行った。結晶子の大きさを求める形状因子K
は、0.9を用いた。 6.ラマン分光測定 さらに、炭素材料の表面物性として、514.5nmのアルゴ
ンレーザーを用いたラマン分光測定により観察される2
本のピークより、R値を1360cm-1/1580cm-1のピーク強度
比として求めた。 7.電解液に負極を浸し、高温で保持した際のガス発生
量の測定 ピッチ被覆炭素材料(ピッチ被覆黒鉛)を窒素雰囲気中
2800℃で1時間焼成することにより、黒鉛化した。黒鉛
化ピッチ被覆黒鉛95重量部とディスパージョンタイプの
PTFE(ダイキン工業株式会社製「D-1」)5重量部とを混
合し、液相で均一に攪拌した後、乾燥させ、ペースト状
とした。この負極用物質0.25gをプレス機により成型
し、直径2cmの負極体を作製した後、200℃で6時間真空
乾燥した。
Weight ratio of carbon material for coating formation / (carbon material for core material + carbon material for coating formation) (covering ratio as defined above)
Was calculated by the method described above. 3. Measurement of specific surface area The specific surface area was measured using “ASAP2400 / nitrogen adsorption BET specific surface area measuring device” manufactured by Micromeritex Corporation. 4. Measurement of true specific gravity True specific gravity was measured according to the method specified in JIS R7212. 5. Measurement of crystallite size by X-ray wide-angle diffraction method Measurement of crystallite size (Lc, La) by X-ray wide-angle diffraction method is a known method, that is, "Carbon Materials Experimental Technique 1 pp55
~ 63 Carbon Materials Society of Japan (Science and Technology Co., Ltd.) "Form factor K for determining crystallite size
Was used as 0.9. 6. Raman spectroscopy Further, the surface properties of the carbon material are observed by Raman spectroscopy using a 514.5 nm argon laser.
The peak of this was determined R value as the peak intensity ratio of 1360cm -1 / 1580cm -1. 7. Measurement of the amount of gas generated when the negative electrode is immersed in the electrolyte and kept at high temperature Pitch-coated carbon material (pitch-coated graphite) in a nitrogen atmosphere
It was graphitized by firing at 2800 ° C. for 1 hour. 95 parts by weight of graphitized pitch-coated graphite and dispersion type
5 parts by weight of PTFE (“D-1” manufactured by Daikin Industries, Ltd.) were mixed, uniformly stirred in a liquid phase, and dried to form a paste. 0.25 g of this negative electrode material was molded by a press machine to prepare a negative electrode body having a diameter of 2 cm, followed by vacuum drying at 200 ° C. for 6 hours.

【0073】次いで、この負極を電解液中で電位が0Vに
なるまで充電し、充電状態の負極を電解液25mlの入った
ビーカーセルに入れ、60℃で6時間加熱して黒鉛化ピッ
チ被覆黒鉛1gあたりのガス発生量を測定した。
Next, this negative electrode is charged in the electrolyte until the potential becomes 0 V, and the charged negative electrode is placed in a beaker cell containing 25 ml of the electrolyte and heated at 60 ° C. for 6 hours to be graphitized pitch-coated graphite. The amount of gas generated per gram was measured.

【0074】なお、電解液としては、1moldm-3のLiClO4
を溶解させたエチレンカーボネートとジエチルカーボネ
ートとメチルプロピオネートの混合溶媒(体積比で3:3:
4)を用いた。 8.非水系電池の作製及び電池特性の測定 正極は、一般的には正極材料と導電材およびバインダー
とを混合することにより作製される。この場合、導電材
としては、カーボンブラック、黒鉛などの炭素材料類ま
たは金属粉末、金属ウールなどの金属材料などが適宜使
用される。バインダーは、粉末のまま混合することもで
きるが、分散性をより高め、結着性を向上するために、
溶液に分散させたものや、溶解したものを混合する場合
もある。また、このようにして溶液に分散或いは溶解し
たものを用いた場合には、真空処理あるいは熱処理など
の手段によって溶液を取り除く必要がある。さらにバイ
ンダーの種類によっては、融点付近の温度で熱処理する
ことにより、さらに結着性を高めることも可能である。
The electrolyte used was 1 moldm -3 of LiClO 4
Mixed solvent of ethylene carbonate, diethyl carbonate, and methyl propionate (3: 3:
4) was used. 8. Preparation of Nonaqueous Battery and Measurement of Battery Characteristics The positive electrode is generally prepared by mixing a positive electrode material with a conductive material and a binder. In this case, as the conductive material, carbon materials such as carbon black and graphite or metal materials such as metal powder and metal wool are appropriately used. The binder can be mixed as powder, but in order to further improve dispersibility and improve binding,
In some cases, those dispersed in a solution or those dissolved therein are mixed. In addition, when the material dispersed or dissolved in the solution is used, it is necessary to remove the solution by means such as vacuum treatment or heat treatment. Further, depending on the type of the binder, it is possible to further enhance the binding property by performing a heat treatment at a temperature near the melting point.

【0075】本願実施例では、正極材料にLiCoO2100重
量部を用い、導電材としてのアセチレンブラックを10重
量部およびバインダーとしてPTFE粉末を10重量部混合し
たものを直径10mmの電極に成形し、正極体を得た。
In the embodiment of the present invention, 100 parts by weight of LiCoO 2 was used as a positive electrode material, 10 parts by weight of acetylene black as a conductive material and 10 parts by weight of PTFE powder as a binder were molded into an electrode having a diameter of 10 mm. A positive electrode body was obtained.

【0076】負極体は、本願実施例では、次の様にして
作製した。
In the examples of the present application, the negative electrode body was manufactured as follows.

【0077】まず、ピッチ被覆黒鉛を窒素雰囲気中1000
℃で1時間焼成し、炭化した。この炭化ピッチ被覆黒鉛9
5重量部とディスパージョンタイプのPTFE(ダイキン工
業株式会社製「D-1」)5重量部とを混合し、液相で均一
に攪拌した後、乾燥させ、ペースト状とした。さらに、
この負極用物質30mgをプレス機により成型し、直径10mm
の負極体を作製した後、200℃で6時間真空乾燥した。
First, the pitch-coated graphite was placed in a nitrogen atmosphere at 1000
It was calcined at ℃ for 1 hour and carbonized. This carbonized pitch-coated graphite 9
5 parts by weight and 5 parts by weight of a dispersion type PTFE (“D-1” manufactured by Daikin Industries, Ltd.) were mixed, uniformly stirred in a liquid phase, and dried to form a paste. further,
30 mg of this negative electrode material was molded by a press machine, and the diameter was 10 mm.
After preparing the negative electrode body described above, it was vacuum-dried at 200 ° C. for 6 hours.

【0078】また、ピッチ被覆黒鉛を窒素雰囲気中2800
℃で1時間焼成し、黒鉛化した。この黒鉛化ピッチ被覆
黒鉛95重量部とディスパージョンタイプのPTFE(ダイキ
ン工業株式会社製「D-1」)5重量部とを混合し、液相で
均一に攪拌した後、乾燥させ、ペ−スト状とした。この
負極用物質30mgをプレス機により成型し、直径10mmの負
極体を作製した後、200℃で6時間真空乾燥した。
Further, pitch-coated graphite was placed in a nitrogen atmosphere at 2800
It was baked at ℃ for 1 hour to be graphitized. 95 parts by weight of the graphitized pitch-coated graphite and 5 parts by weight of dispersion type PTFE ("D-1" manufactured by Daikin Industries, Ltd.) are mixed, uniformly stirred in a liquid phase, dried, and then dried. Shape. The negative electrode material (30 mg) was molded by a press machine to prepare a negative electrode body having a diameter of 10 mm, and then vacuum dried at 200 ° C. for 6 hours.

【0079】セパレーターとしては、ポリプロピレン不
繊布を用いた。
As the separator, a nonwoven polypropylene fabric was used.

【0080】電解液は、負極体として炭化ピッチ被覆黒
鉛を用いる場合には、1moldm-3のLiClO4を溶解させたプ
ロピレンカーボネートを用いた。また、黒鉛化ピッチ被
覆黒鉛を用いる場合には、1moldm-3のLiClO4を溶解させ
たエチレンカーボネートとジエチルカーボネートとメチ
ルプロピオネートの混合溶媒(体積比で3:3:4)を用い
た。
In the case of using carbonized pitch-coated graphite as the negative electrode body, propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved was used as the electrolytic solution. When using graphitized pitch-coated graphite, a mixed solvent of ethylene carbonate, diethyl carbonate and methyl propionate (volume ratio of 3: 3: 4) in which 1 moldm- 3 of LiClO 4 was dissolved was used.

【0081】上記のようにして得られた正極体、負極
体、セパレーターおよび電解液を用いて作製したコイン
型リチウム二次電池の放電特性を測定した。測定は1mA/
cm2の定電流充放電下で実施し、放電容量は電池電圧が
1.2Vに低下するまでの容量とした。 9.固体電解質電池の作製および電池特性の測定 非水系電池の作製の項(上記8.)と同様にして作製し
たペ−スト状負極物質を厚さ0.02mmの銅箔の両面に塗着
し、乾燥し、圧延して、厚さ0.10mm、幅55mm、長さ90mm
の負極板とした。
The discharge characteristics of the coin-type lithium secondary battery manufactured using the positive electrode body, the negative electrode body, the separator and the electrolyte obtained as described above were measured. Measurement is 1mA /
The test was performed under constant current charge / discharge of cm 2 and the discharge capacity was
The capacitance was set to drop to 1.2V. 9. Preparation of Solid Electrolyte Battery and Measurement of Battery Characteristics Paste negative electrode material prepared in the same manner as in the section of preparation of non-aqueous battery (8 above) is applied to both sides of copper foil of 0.02 mm thickness and dried. Rolled, thickness 0.10mm, width 55mm, length 90mm
Negative electrode plate.

【0082】ポリエチレンオキシド(分子量60万)とLi
ClO4とをアセトニトリルに溶解させ、この溶液をアルゴ
ン雰囲気のグロ−ブボックス中でPTFE膜(デュポン社製
「テフロン」)上にキャスティングした後、グローブボ
ックス中25℃で放置して溶媒を蒸発させ、さらに乾燥し
て固体電解質の(PFO)8・LiClO4を調製した。
Polyethylene oxide (molecular weight 600,000) and Li
ClO 4 was dissolved in acetonitrile, and this solution was cast on a PTFE membrane (“Teflon” manufactured by DuPont) in a glove box under an argon atmosphere, and then left at 25 ° C. in a glove box to evaporate the solvent. And further dried to prepare a solid electrolyte (PFO) 8 .LiClO 4 .

【0083】上記で得られた負極体としての炭化ピッチ
被覆黒鉛または黒鉛化ピッチ被覆黒鉛、固体電解質およ
び正極体としてのLiCoO2を用い、固体電解質としての(P
FO)8・LiClO4を用いてフィルム型リチウム二次電池を作
製した。
Using the carbonized pitch-coated graphite or graphitized pitch-coated graphite as the negative electrode obtained above, a solid electrolyte and LiCoO 2 as the positive electrode, (P) was used as the solid electrolyte.
A film-type lithium secondary battery was fabricated using FO) 8 · LiClO 4 .

【0084】上記で得られたリチウム二次電池の放電特
性を測定した。測定は、1mA/cm2の定電流充放電下で実
施し、放電容量は電池電圧が1.2Vに低下するまでの容量
とした。 実施例1 塊状の人造黒鉛(中心粒径D50=7.5μm、粒度分布0.1〜1
50μm、d002=0.336nm、Lc=100nm、La=97nm、比表面積=
10.8m2/g、R値=0.26、真比重=2.25g/cm2)50gとあらか
じめ一次QIを除去した軟化点80℃のコールタールピッ
チ(キノリン不溶分トレース、トルエン不溶分30%)100
gとを500mlのセパレルフラスコに入れ、200℃、常圧で2
時間撹拌混合し、粗製ピッチ被覆黒鉛を得た。得られた
粗製ピッチ被覆黒鉛1部に対してトルエン1部を加え、撹
拌下に80℃で1時間洗浄処理した後、濾過して、精製ピ
ッチ被覆黒鉛を得た。この精製ピッチ被覆黒鉛の中心粒
径D50を測定したところ、7.7μmであった。芯材として
の黒鉛の中心粒径D50は、7.5μmであったので、ピッチ
層の厚みは0.1μmである。
The discharge characteristics of the lithium secondary battery obtained above were measured. The measurement was performed under a constant current charge / discharge of 1 mA / cm 2 , and the discharge capacity was a capacity until the battery voltage dropped to 1.2 V. Example 1 Lumpy artificial graphite (center particle diameter D50 = 7.5 μm, particle size distribution 0.1 to 1
50 μm, d002 = 0.336 nm, Lc = 100 nm, La = 97 nm, specific surface area =
10.8 m 2 / g, R value = 0.26, true specific gravity = 2.25 g / cm 2 ) 50 g and coal tar pitch with a softening point of 80 ° C with primary QI removed (quinoline insoluble trace, toluene insoluble 30%) 100
g in a 500 ml separate flask at 200 ° C under normal pressure.
The mixture was stirred and mixed for an hour to obtain a crude pitch-coated graphite. 1 part of toluene was added to 1 part of the obtained crude pitch-coated graphite, and the mixture was washed at 80 ° C. for 1 hour with stirring, and then filtered to obtain a purified pitch-coated graphite. The center particle diameter D50 of the purified pitch-coated graphite was measured and found to be 7.7 μm. Since the center particle diameter D50 of graphite as the core material was 7.5 μm, the thickness of the pitch layer was 0.1 μm.

【0085】得られた精製ピッチ被覆黒鉛のキノリン可
溶分、比表面積および真比重を表1に示す。キノリン可
溶分の値が9.6%であることから、この精製ピッチ被覆黒
鉛の被覆比は、0.096である。
Table 1 shows the quinoline-soluble content, specific surface area and true specific gravity of the obtained purified pitch-coated graphite. Since the value of the quinoline soluble component is 9.6%, the coating ratio of the purified pitch-coated graphite is 0.096.

【0086】この精製ピッチ被覆黒鉛を窒素雰囲気中、
1000℃で1時間(昇温速度25℃/hr)焼成し、炭化した。
得られた炭化ピッチ被覆黒鉛の比表面積、真比重、R値
および1μm以下の粒子の体積基準積算値を表1に示す。
また、この精製ピッチ被覆黒鉛の粒度分布測定の結果、
芯材と同様に0.1〜150μmに分布を有することが確認さ
れ、また、X線回折測定結果も、芯材と同様であった。
さらに、芯材と炭化ピッチ被覆黒鉛のR値の比較によ
り、被覆層を形成する炭化ピッチは、芯材よりも結晶化
度が低いことが判った。さらに、SEM観測の結果、芯材
である人造黒鉛は、被覆層を形成する炭化ピッチにより
被覆され、エッジ部分が丸くなっていることが確認され
た。
This purified pitch-coated graphite is placed in a nitrogen atmosphere.
It was baked at 1000 ° C for 1 hour (heating rate 25 ° C / hr) and carbonized.
Table 1 shows the specific surface area, true specific gravity, R value, and volume-based integrated value of particles having a particle size of 1 μm or less of the obtained carbonized pitch-coated graphite.
In addition, as a result of measuring the particle size distribution of the purified pitch-coated graphite,
It was confirmed that it had a distribution of 0.1 to 150 μm as in the case of the core material, and the result of X-ray diffraction measurement was similar to that of the core material.
Furthermore, the comparison of the R value between the core material and the carbonized pitch-coated graphite indicated that the carbonized pitch forming the coating layer had a lower crystallinity than the core material. Further, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered with the carbonized pitch forming the coating layer, and the edge portion was rounded.

【0087】この炭化ピッチ被覆黒鉛を使用して、負極
を作製し、電解液として1moldm-3のLiClO4を溶解させた
プロピレンカーボネートを用いて、非水系二次電池を作
製した。その充放電特性測定結果を表2に示す。
A negative electrode was produced using the carbonized pitch-coated graphite, and a non-aqueous secondary battery was produced using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 shows the measurement results of the charge / discharge characteristics.

【0088】また、炭化ピッチ被覆黒鉛を使用して、負
極を作製し、固体電解質リチウム二次電池を作製した。
その充放電特性測定結果を表3に示す。 実施例2 実施例1と同様にして得られた精製ピッチ被覆黒鉛を10
torrの真空下1000℃で1時間(昇温速度25℃/hr)焼成
し、真空炭化した。得られた真空炭化ピッチ被覆黒鉛の
比表面積、真比重、R値および1μm以下の粒子の体積基
準積算値を表1に併せて示す。この真空炭化ピッチ被覆
黒鉛の粒度分布測定の結果、芯材と同様に0.1〜150μm
に分布を有することが確認され、また、X線回折測定結
果も、芯材と同様であった。さらに、芯材と真空炭化ピ
ッチ被覆黒鉛のR値の比較により、被覆層を形成する炭
化ピッチは、芯材よりも結晶化度が低いことが判った。
さらに、SEM観測の結果、芯材である人造黒鉛は、被覆
層を形成する真空炭化ピッチにより被覆され、エッジ部
分が丸くなっていることが確認された。
Further, a negative electrode was manufactured using graphite coated with carbonized pitch, and a solid electrolyte lithium secondary battery was manufactured.
Table 3 shows the measurement results of the charge / discharge characteristics. Example 2 Purified pitch-coated graphite obtained in the same manner as in Example 1 was used for 10
It was baked at 1000 ° C for 1 hour (heating rate 25 ° C / hr) under vacuum of torr, and vacuum carbonized. The specific surface area, true specific gravity, R value, and volume-based integrated value of particles having a particle size of 1 μm or less of the obtained vacuum carbonized pitch-coated graphite are also shown in Table 1. As a result of the particle size distribution measurement of this vacuum carbonized pitch-coated graphite, 0.1 to 150 μm
Was confirmed, and the result of X-ray diffraction measurement was the same as that of the core material. Furthermore, from the comparison of the R value between the core material and the vacuum carbonized pitch-coated graphite, it was found that the carbonized pitch forming the coating layer had a lower crystallinity than the core material.
Furthermore, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered with the vacuum carbonized pitch forming the covering layer, and the edge portion was rounded.

【0089】この真空炭化ピッチ被覆黒鉛を用いて負極
を作製し、電解液として1moldm-3のLiClO4を溶解させた
プロピレンカーボネートを用いて、非水系二次電池を作
製した。その充放電特性測定結果を表2に併せて示す。 実施例3 実施例1と同様にして得られた精製ピッチ被覆黒鉛を窒
素雰囲気中2800℃で1時間焼成し、黒鉛化した。得られ
た黒鉛化ピッチ被覆黒鉛の比表面積、真比重、R値およ
び1μm以下の粒子の体積基準積算値を表1に併せて示
す。この黒鉛化ピッチ被覆黒鉛の粒度分布測定の結果、
芯材と同様に0.1〜150μmに分布を有することが確認さ
れ、また、X線回折測定結果も、芯材と同様であった。
さらに、芯材と黒鉛化ピッチ被覆黒鉛のR値の比較によ
り、被覆層を形成する黒鉛化ピッチは、芯材よりも結晶
化度が低いことが判った。さらに、SEM観測の結果、芯
材である人造黒鉛は、被覆層を形成する黒鉛化ピッチに
より被覆され、エッジ部分が丸くなっていることが確認
された。
A negative electrode was manufactured using the vacuum carbonized pitch-coated graphite, and a nonaqueous secondary battery was manufactured using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 also shows the measurement results of the charge / discharge characteristics. Example 3 Purified pitch-coated graphite obtained in the same manner as in Example 1 was calcined at 2800 ° C. for 1 hour in a nitrogen atmosphere to be graphitized. Table 1 also shows the specific surface area, true specific gravity, R value, and volume-based integrated value of particles having a particle size of 1 μm or less of the obtained graphitized pitch-coated graphite. As a result of measuring the particle size distribution of the graphitized pitch-coated graphite,
It was confirmed that it had a distribution of 0.1 to 150 μm as in the case of the core material, and the result of X-ray diffraction measurement was similar to that of the core material.
Furthermore, a comparison of the R value between the core material and the graphitized pitch-coated graphite revealed that the graphitized pitch forming the coating layer had a lower degree of crystallinity than the core material. Furthermore, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered by the graphitized pitch forming the covering layer, and the edge portion was rounded.

【0090】この黒鉛化ピッチ被覆黒鉛を用いて負極を
作製し、電解液として1moldm-3のLiClO4を溶解させたエ
チレンカーボネートとジエチルカーボネートとメチルプ
ロピオネートの混合溶媒(3:3:4)を用いて、非水系二
次電池を作製した。
A negative electrode was prepared using the graphitized pitch-coated graphite, and a mixed solvent of ethylene carbonate, diethyl carbonate and methyl propionate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution (3: 3: 4) Was used to produce a non-aqueous secondary battery.

【0091】また、この黒鉛化ピッチ被覆黒鉛の電解液
中でのガス発生量を測定した。その充放電特性測定結果
とガス発生量を表2に併せて示す。 実施例4 実施例1と同様にして得られた精製ピッチ被覆黒鉛を非
常に緩慢な昇温のできるリ−ドハンマ−炉において1000
℃(還元雰囲気、昇温速度5℃/hr以下)で焼成し、炭化
した。この炭化ピッチ被覆黒鉛の比表面積、真比重、R
値および1μm以下の粒子の体積基準積算値を表1に併せ
て示す。この炭化ピッチ被覆黒鉛の粒度分布測定の結
果、芯材と同様に0.1〜150μmに分布を有することが確
認され、また、X線回折測定結果も、芯材と同様であっ
た。さらに、芯材と炭化ピッチ被覆黒鉛のR値の比較に
より、被覆層を形成する炭化ピッチは、芯材よりも結晶
化度が低いことが判った。さらに、SEM観測の結果、芯
材である人造黒鉛は、被覆層を形成する炭化ピッチによ
り被覆され、エッジ部分が丸くなっていることが確認さ
れた。
The amount of gas generated in the electrolytic solution of the graphitized pitch-coated graphite was measured. Table 2 also shows the measurement results of the charge and discharge characteristics and the gas generation amount. Example 4 A refined pitch-coated graphite obtained in the same manner as in Example 1 was placed in a lead hammer furnace capable of very slowly raising the temperature to 1000.
℃ (reducing atmosphere, heating rate 5 ° C / hr or less) and carbonized. Specific surface area, true specific gravity, R of this carbonized pitch-coated graphite
The values and the volume-based integrated value of the particles having a particle size of 1 μm or less are also shown in Table 1. As a result of measuring the particle size distribution of the carbonized pitch-coated graphite, it was confirmed that the graphite had a distribution of 0.1 to 150 μm as in the case of the core material, and the X-ray diffraction measurement result was the same as that of the core material. Furthermore, the comparison of the R value between the core material and the carbonized pitch-coated graphite indicated that the carbonized pitch forming the coating layer had a lower crystallinity than the core material. Further, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered with the carbonized pitch forming the coating layer, and the edge portion was rounded.

【0092】この炭化ピッチ被覆黒鉛を用いて負極を作
製し、電解液として1moldm-3のLiClO4を溶解させたプロ
ピレンカーボネートを用いて、非水系二次電池を作製し
た。充放電特性測定結果を表2に併せて示す。 実施例5 実施例1と同様にして得られた精製ピッチ被覆黒鉛を窒
素雰囲気中1300℃で1時間(昇温速度25℃/hr)焼成し、
炭化した。この炭化ピッチ被覆黒鉛の比表面積、真比
重、R値および1μm以下の粒子の体積基準積算値を表1
に併せて示す。この炭化ピッチ被覆黒鉛の粒度分布測定
の結果、芯材と同様に0.1〜150μmに分布を有すること
が確認され、また、X線回折測定結果も、芯材と同様で
あった。さらに、芯材と炭化ピッチ被覆黒鉛のR値の比
較により、被覆層を形成する炭化ピッチは、芯材よりも
結晶化度が低いことが判った。さらに、SEM観測の結
果、芯材である人造黒鉛は、被覆層を形成する炭化ピッ
チにより被覆され、エッジ部分が丸くなっていることが
確認された。
A negative electrode was manufactured using the carbonized pitch-coated graphite, and a non-aqueous secondary battery was manufactured using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 also shows the measurement results of the charge / discharge characteristics. Example 5 Purified pitch-coated graphite obtained in the same manner as in Example 1 was calcined in a nitrogen atmosphere at 1300 ° C. for 1 hour (heating rate 25 ° C./hr).
Carbonized. Table 1 shows the specific surface area, true specific gravity, R value, and volume-based integrated value of particles having a particle size of 1 μm or less of the carbonized pitch-coated graphite.
Are shown together. As a result of measuring the particle size distribution of the carbonized pitch-coated graphite, it was confirmed that the graphite had a distribution of 0.1 to 150 μm as in the case of the core material, and the X-ray diffraction measurement result was the same as that of the core material. Furthermore, the comparison of the R value between the core material and the carbonized pitch-coated graphite indicated that the carbonized pitch forming the coating layer had a lower crystallinity than the core material. Further, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered with the carbonized pitch forming the coating layer, and the edge portion was rounded.

【0093】この炭化ピッチ被覆黒鉛を用いて、負極を
作製し、電解液として1moldm-3のLiClO4を溶解させたプ
ロピレンカーボネートを用いて、非水系二次電池を作製
した。その充放電特性測定結果を表2に併せて示す。 実施例6 実施例1と同様にして得られた精製ピッチ被覆黒鉛を恒
温恒湿槽において空気雰囲気中300℃で8時間酸化処理し
た。得られた酸化精製ピッチ被覆黒鉛の被覆比、比表面
積および真比重を表1に示す。この酸化精製ピッチ被覆
黒鉛を窒素雰囲気中1000℃で1時間(昇温速度25℃/hr)
焼成し、炭化した。得られた炭化ピッチ被覆黒鉛の比表
面積、真比重、R値および1μm以下の粒子の体積基準積
算値を表1に併せて示す。この炭化ピッチ被覆黒鉛の粒
度分布測定の結果、芯材と同様に0.1〜150μmに分布を
有することが確認され、また、X線回折測定結果も、芯
材と同様であった。さらに、芯材と炭化ピッチ被覆黒鉛
のR値の比較により、被覆層を形成する炭化ピッチは、
芯材よりも結晶化度が低いことが判った。さらに、SEM
観測の結果、芯材である人造黒鉛は、被覆層を形成する
炭化ピッチにより被覆され、エッジ部分が丸くなってい
ることが確認された。
A negative electrode was manufactured using the carbonized pitch-coated graphite, and a non-aqueous secondary battery was manufactured using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 also shows the measurement results of the charge / discharge characteristics. Example 6 Purified pitch-coated graphite obtained in the same manner as in Example 1 was oxidized at 300 ° C. for 8 hours in an air atmosphere in a thermo-hygrostat. Table 1 shows the coating ratio, specific surface area and true specific gravity of the obtained oxidized purified pitch-coated graphite. This oxidized and refined pitch-coated graphite is heated at 1000 ° C for 1 hour in a nitrogen atmosphere (heating rate 25 ° C / hr).
Fired and carbonized. Table 1 also shows the specific surface area, true specific gravity, R value, and volume-based integrated value of particles having a particle size of 1 μm or less of the obtained carbonized pitch-coated graphite. As a result of measuring the particle size distribution of the carbonized pitch-coated graphite, it was confirmed that the graphite had a distribution of 0.1 to 150 μm as in the case of the core material, and the X-ray diffraction measurement result was the same as that of the core material. Furthermore, by comparing the R value of the core material and the carbonized pitch-coated graphite, the carbonized pitch forming the coating layer is:
It was found that the crystallinity was lower than that of the core material. In addition, SEM
As a result of the observation, it was confirmed that the artificial graphite as the core material was covered with the carbonized pitch forming the coating layer, and the edge portion was rounded.

【0094】この炭化ピッチ被覆黒鉛を用いて、負極を
作製し、電解液として1moldm-3のLiClO4を溶解させたプ
ロピレンカーボネートを用いて、非水系二次電池を作製
した。その充放電特性測定結果を表2に併せて示す。 実施例7 塊状の人造黒鉛(中心粒径D50=7.5μm、粒度分布=0.1〜
150μm、d002=0.336nm、Lc=100nm、La=97nm、比表面積=
10.8m2/g、R値=0.26、真比重=2.25g/cm3)50gと予め一
次QIを除去した軟化点80℃のコールタールピッチ(キノ
リン不溶分トレース、トルエン不溶分30%)100gとを500
mlのセパレルフラスコにいれ、200℃にて2時間撹拌混合
し、粗製ピッチ被覆黒鉛を得た。
A negative electrode was prepared using the carbonized pitch-coated graphite, and a non-aqueous secondary battery was prepared using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 also shows the measurement results of the charge / discharge characteristics. Example 7 Lumpy artificial graphite (center particle diameter D50 = 7.5 μm, particle size distribution = 0.1 to
150 μm, d002 = 0.336 nm, Lc = 100 nm, La = 97 nm, specific surface area =
10.8 m 2 / g, R value = 0.26, true specific gravity = 2.25 g / cm 3 ) 50 g and 100 g of coal tar pitch (quinoline insoluble trace, toluene insoluble 30%) with a softening point of 80 ° C with primary QI removed in advance 500
The mixture was placed in a ml flask and stirred and mixed at 200 ° C. for 2 hours to obtain a coarse pitch-coated graphite.

【0095】得られた粗製ピッチ被覆黒鉛1部に対して
トルエン1部を加え、撹拌下に20℃で1時間洗浄処理をし
た後、濾過して、精製ピッチ被覆黒鉛を得た。この精製
ピッチ被覆黒鉛の中心粒径D50を測定したところ7.9μm
であった。芯材としての人造黒鉛の中心粒径D50は7.5μ
mであったので、ピッチ層の厚みは0.2μmである。
1 part of toluene was added to 1 part of the obtained crude pitch-coated graphite, washed with stirring at 20 ° C. for 1 hour, and filtered to obtain purified pitch-coated graphite. When the center particle diameter D50 of the purified pitch-coated graphite was measured, 7.9 μm
Met. The center particle size D50 of artificial graphite as core material is 7.5μ
m, the thickness of the pitch layer is 0.2 μm.

【0096】得られた精製ピッチ被覆黒鉛の被覆比、比
表面積および真比重を表1に示す。キノリン可溶分の値
が20.4%であることから、この精製ピッチ被覆黒鉛の被
覆比は、0.204である。
Table 1 shows the coating ratio, specific surface area and true specific gravity of the obtained purified pitch-coated graphite. Since the value of the quinoline-soluble component is 20.4%, the coating ratio of the purified pitch-coated graphite is 0.204.

【0097】得られた精製ピッチ被覆黒鉛を窒素雰囲気
中1000℃で1時間(昇温速度25℃/hr)焼成し、炭化し
た。この炭化ピッチ被覆黒鉛の比表面積、真比重、R値
および1μm以下の粒子の体積基準積算値を表1に併せて
示す。この炭化ピッチ被覆黒鉛の粒度分布測定の結果、
芯材と同様に0.1〜150μmに分布を有することが確認さ
れ、また、X線回折測定結果も、芯材と同様であった。
さらに、芯材と炭化ピッチ被覆黒鉛のR値の比較によ
り、被覆層を形成する炭化ピッチは、芯材よりも結晶化
度が低いことが判った。さらに、SEM観測の結果、芯材
である人造黒鉛は、被覆層を形成する炭化ピッチにより
被覆され、エッジ部分が丸くなっていることが確認され
た。
The obtained purified pitch-coated graphite was calcined in a nitrogen atmosphere at 1000 ° C. for 1 hour (heating rate: 25 ° C./hr) and carbonized. Table 1 also shows the specific surface area, true specific gravity, R value, and volume-based integrated value of particles having a particle size of 1 μm or less of the carbonized pitch-coated graphite. As a result of measuring the particle size distribution of the carbonized pitch-coated graphite,
It was confirmed that it had a distribution of 0.1 to 150 μm as in the case of the core material, and the result of X-ray diffraction measurement was similar to that of the core material.
Furthermore, the comparison of the R value between the core material and the carbonized pitch-coated graphite indicated that the carbonized pitch forming the coating layer had a lower crystallinity than the core material. Further, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered with the carbonized pitch forming the coating layer, and the edge portion was rounded.

【0098】この炭化ピッチ被覆黒鉛を用いて負極を作
製し、電解液として1moldm-3のLiClO4を溶解させたプロ
ピレンカーボネートを用いて、非水系二次電池を作製し
た。その充放電特性測定結果を表2に併せて示す。 実施例8 実施例7と同様にして得られた精製ピッチ被覆黒鉛を窒
素雰囲気中2800℃で1時間焼成し、黒鉛化した。得られ
た黒鉛化ピッチ被覆黒鉛の比表面積、真比重、R値およ
び1μm以下の粒子の体積基準積算値を表1に併せて示
す。この黒鉛化ピッチ被覆黒鉛の粒度分布測定の結果、
芯材と同様に0.1〜150μmに分布を有することが確認さ
れ、また、X線回折測定結果も、芯材と同様であった。
さらに、芯材と黒鉛化ピッチ被覆黒鉛のR値の比較によ
り、被覆層を形成する黒鉛化ピッチは、芯材よりも結晶
化度が低いことが判った。さらに、SEM観測の結果、芯
材である人造黒鉛は、被覆層を形成する黒鉛化ピッチに
より被覆され、エッジ部分が丸くなっていることが確認
された。
A negative electrode was prepared using the carbonized pitch-coated graphite, and a non-aqueous secondary battery was prepared using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 also shows the measurement results of the charge / discharge characteristics. Example 8 The purified pitch-coated graphite obtained in the same manner as in Example 7 was calcined at 2800 ° C. for 1 hour in a nitrogen atmosphere to be graphitized. Table 1 also shows the specific surface area, true specific gravity, R value, and volume-based integrated value of particles having a particle size of 1 μm or less of the obtained graphitized pitch-coated graphite. As a result of measuring the particle size distribution of the graphitized pitch-coated graphite,
It was confirmed that it had a distribution of 0.1 to 150 μm as in the case of the core material, and the result of X-ray diffraction measurement was similar to that of the core material.
Furthermore, a comparison of the R value between the core material and the graphitized pitch-coated graphite revealed that the graphitized pitch forming the coating layer had a lower degree of crystallinity than the core material. Furthermore, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered by the graphitized pitch forming the covering layer, and the edge portion was rounded.

【0099】この黒鉛化ピッチ被覆黒鉛を用いて負極を
作製し、電解液として1moldm-3のLiClO4を溶解させたエ
チレンカーボネートとジエチルカーボネートとメチルプ
ロピオネートとの混合溶媒(3:3:4)を用いて、非水系
二次電池を作製した。また、この黒鉛化ピッチ被覆黒鉛
の電解液中でのガス発生量を測定した。その充放電特性
測定結果とガス発生量を表2に併せて示す。 実施例9 塊状の人造黒鉛(中心粒径D50=7.5μm、粒度分布=0.1〜
150μm、d002=0.336nm、Lc=100nm、La=97nm、比表面積=
10.8m2/g、R値=0.26、真比重=2.25g/cm3)50gとあらか
じめ一次QIを除去した軟化点80℃のコールタールピッ
チ(キノリン不溶分トレース、トルエン不溶分30%)100
gとを500mlのセパレルフラスコにいれ、減圧下(真空ポ
ンプで吸引、減圧度50torr)200℃にて2時間撹拌混合
し、粗製ピッチ被覆黒鉛を得た。
A negative electrode was prepared using the graphitized pitch-coated graphite, and a mixed solvent of ethylene carbonate, diethyl carbonate and methyl propionate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution (3: 3: 4 ) Was used to produce a non-aqueous secondary battery. In addition, the amount of gas generated in the electrolytic solution of the graphitized pitch-coated graphite was measured. Table 2 also shows the measurement results of the charge and discharge characteristics and the gas generation amount. Example 9 Lumpy artificial graphite (center particle diameter D50 = 7.5 μm, particle size distribution = 0.1 to
150 μm, d002 = 0.336 nm, Lc = 100 nm, La = 97 nm, specific surface area =
10.8 m 2 / g, R value = 0.26, true specific gravity = 2.25 g / cm 3 ) 100 g of coal tar pitch (quinoline insoluble trace, toluene insoluble 30%) with 50 g and a softening point of 80 ° C with primary QI removed in advance
g was placed in a 500 ml separate flask and stirred and mixed at 200 ° C. for 2 hours under reduced pressure (suction with a vacuum pump, degree of reduced pressure of 50 torr) to obtain crude pitch-coated graphite.

【0100】得られた粗製ピッチ被覆黒鉛1部に対して
トルエン1部を加え、撹拌下に80℃で1時間洗浄処理した
後、濾過して、精製ピッチ被覆黒鉛を得た。この精製ピ
ッチ被覆黒鉛の中心粒径D50を測定したところ7.7μmで
あった。芯材である人造黒鉛の中心粒径D50は7.5μmで
あったので、ピッチ層の厚みは0.1μmである。
To 1 part of the obtained crude pitch-coated graphite, 1 part of toluene was added, washed with stirring at 80 ° C. for 1 hour, and filtered to obtain a purified pitch-coated graphite. The center particle diameter D50 of the purified pitch-coated graphite was 7.7 μm. Since the central particle diameter D50 of the artificial graphite as the core material was 7.5 μm, the thickness of the pitch layer was 0.1 μm.

【0101】この精製ピッチ被覆黒鉛の被覆比、比表面
積および真比重を表1に示す。キノリン可溶分の値が1
0.4%であることから、この精製ピッチ被覆黒鉛の被覆比
は、0.104である。
Table 1 shows the coating ratio, specific surface area and true specific gravity of the purified pitch-coated graphite. Quinoline solubles value of 1
Since it is 0.4%, the coating ratio of the purified pitch-coated graphite is 0.104.

【0102】この精製ピッチ被覆黒鉛を窒素雰囲気中10
00℃で1時間(昇温速度25℃/hr)焼成し、炭化した。得
られた炭化ピッチ被覆黒鉛の比表面積、真比重、R値お
よび1μm以下の粒子の体積基準積算値を表1に併せて示
す。この黒鉛化ピッチ被覆黒鉛の粒度分布測定の結果、
芯材と同様に0.1〜150μmに分布を有することが確認さ
れ、また、X線回折測定結果も、芯材と同様であった。
さらに、芯材と黒鉛化ピッチ被覆黒鉛のR値の比較によ
り、被覆層を形成する黒鉛化ピッチは、芯材よりも結晶
化度が低いことが判った。さらに、SEM観測の結果、芯
材である人造黒鉛は、被覆層を形成する黒鉛化ピッチに
より被覆され、エッジ部分が丸くなっていることが確認
された。
This purified pitch-coated graphite was placed in a nitrogen atmosphere at 10
It was baked at 00 ° C for 1 hour (heating rate 25 ° C / hr) and carbonized. Table 1 also shows the specific surface area, true specific gravity, R value, and volume-based integrated value of particles having a particle size of 1 μm or less of the obtained carbonized pitch-coated graphite. As a result of measuring the particle size distribution of the graphitized pitch-coated graphite,
It was confirmed that it had a distribution of 0.1 to 150 μm as in the case of the core material, and the result of X-ray diffraction measurement was similar to that of the core material.
Furthermore, a comparison of the R value between the core material and the graphitized pitch-coated graphite revealed that the graphitized pitch forming the coating layer had a lower degree of crystallinity than the core material. Furthermore, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered by the graphitized pitch forming the covering layer, and the edge portion was rounded.

【0103】この炭化ピッチ被覆黒鉛を用いて負極を作
製し、電解液として1moldm-3のLiClO4を溶解させたプロ
ピレンカーボネートを用いて非水系二次電池を作製し
た。その充放電特性測定結果を表2に併せて示す。 実施例10 塊状の人造黒鉛(中心粒径D50=7.5μm、粒度分布=0.1〜
150μm、d002=0.336nm、Lc=100nm、La=97nm、比表面積=
10.8m2/g、R値=0.26、真比重=2.25g/cm3)50gとあらか
じめ一次QIを除去した軟化点80℃のコールタールピッ
チ(キノリン不溶分トレース、トルエン不溶分30%)100
gとを500mlのセパレルフラスコにいれ、200℃にて2時間
撹拌混合し、粗製ピッチ被覆黒鉛を得た。
A negative electrode was manufactured using the carbonized pitch-coated graphite, and a non-aqueous secondary battery was manufactured using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 also shows the measurement results of the charge / discharge characteristics. Example 10 Lumpy artificial graphite (center particle diameter D50 = 7.5 μm, particle size distribution = 0.1 to
150 μm, d002 = 0.336 nm, Lc = 100 nm, La = 97 nm, specific surface area =
10.8 m 2 / g, R value = 0.26, true specific gravity = 2.25 g / cm 3 ) 100 g of coal tar pitch (quinoline insoluble trace, toluene insoluble 30%) with 50 g and a softening point of 80 ° C with primary QI removed in advance
g was placed in a 500 ml separate flask and stirred and mixed at 200 ° C. for 2 hours to obtain coarse pitch-coated graphite.

【0104】得られた粗製ピッチ被覆黒鉛1部に対して
タ−ル中油1部を加え、撹拌下に20℃で1時間洗浄処理し
た後、濾過して、精製ピッチ被覆黒鉛を得た。この精製
ピッチ被覆黒鉛の中心粒径D50を測定したところ、7.6μ
mであった。芯材の黒鉛の中心粒径D50は7.5μmであった
ので、ピッチ層の厚みは0.05μmである。
1 part of oil in tar was added to 1 part of the obtained crude pitch-coated graphite, washed with stirring at 20 ° C. for 1 hour, and filtered to obtain purified pitch-coated graphite. When the center particle diameter D50 of the purified pitch-coated graphite was measured, it was 7.6 μm.
m. Since the core particle diameter D50 of graphite of the core material was 7.5 μm, the thickness of the pitch layer was 0.05 μm.

【0105】この精製ピッチ被覆黒鉛の被覆比、比表面
積および真比重を表1に示す。キノリン可溶分の値が、
8.8%であることから、この精製ピッチ被覆黒鉛の被覆比
は、0.088である。
Table 1 shows the coating ratio, specific surface area and true specific gravity of this purified pitch-coated graphite. The value of the quinoline soluble component is
Since it is 8.8%, the coating ratio of the purified pitch-coated graphite is 0.088.

【0106】この精製ピッチ被覆黒鉛を窒素雰囲気中10
00℃で1時間(昇温速度25℃/hr)焼成し、炭化した。こ
の炭化ピッチ被覆黒鉛の比表面積、真比重、R値および1
μm以下の粒子の体積基準積算値を表1に併せて示す。
この黒鉛化ピッチ被覆黒鉛の粒度分布測定の結果、芯材
と同様に0.1〜150μmに分布を有することが確認され、
また、X線回折測定結果も、芯材と同様であった。さら
に、芯材と黒鉛化ピッチ被覆黒鉛のR値の比較により、
被覆層を形成する黒鉛化ピッチは、芯材よりも結晶化度
が低いことが判った。さらに、SEM観測の結果、芯材で
ある人造黒鉛は、被覆層を形成する黒鉛化ピッチにより
被覆され、エッジ部分が丸くなっていることが確認され
た。
The purified pitch-coated graphite was placed in a nitrogen atmosphere at 10
It was baked at 00 ° C for 1 hour (heating rate 25 ° C / hr) and carbonized. The specific surface area, true specific gravity, R value and 1
Table 1 also shows the volume-based integrated value of the particles having a particle size of μm or less.
As a result of the particle size distribution measurement of the graphitized pitch-coated graphite, it was confirmed that the core material had a distribution of 0.1 to 150 μm, like the core material.
The X-ray diffraction measurement results were the same as those of the core material. Furthermore, by comparing the R value of the core material and the graphitized pitch-coated graphite,
The graphitized pitch forming the coating layer was found to have a lower crystallinity than the core material. Furthermore, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered by the graphitized pitch forming the covering layer, and the edge portion was rounded.

【0107】この炭化ピッチ被覆黒鉛を用いて負極を作
製し、電解液として1moldm-3のLiClO4を溶解させたプロ
ピレンカーボネートを用いて、非水系二次電池を作製し
た。その充放電特性測定結果を表2に併せて示す。 実施例11 塊状の人造黒鉛(中心粒径D50=7.5μm、粒度分布=0.1〜
150μm、d002=0.336nm、Lc=100nm、La=97nm、比表面積=
10.8m2/g、R値=0.26、真比重=2.25g/cm3)50gとあらか
じめ一次QIを除去した軟化点80℃のコールタールピッ
チ(キノリン不溶分トレース、トルエン不溶分30%)200
gとを1000mlのセパレルフラスコにいれ、200℃にて2時
間撹拌混合し、粗製ピッチ被覆黒鉛を得た。
A negative electrode was prepared using the carbonized pitch-coated graphite, and a non-aqueous secondary battery was prepared using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 also shows the measurement results of the charge / discharge characteristics. Example 11 Lumpy artificial graphite (center particle diameter D50 = 7.5 μm, particle size distribution = 0.1 to
150 μm, d002 = 0.336 nm, Lc = 100 nm, La = 97 nm, specific surface area =
10.8 m 2 / g, R value = 0.26, true specific gravity = 2.25 g / cm 3 ) 50 g and a coal tar pitch with a softening point of 80 ° C with primary QI removed (quinoline insoluble trace, toluene insoluble 30%) 200
g was placed in a 1000 ml separate flask and stirred and mixed at 200 ° C. for 2 hours to obtain coarse pitch-coated graphite.

【0108】得られた粗製ピッチ被覆黒鉛1部に対して
トルエン1部を加え、撹拌下に80℃で1時間洗浄処理をし
た後、濾過して、精製ピッチ被覆黒鉛を得た。この精製
ピッチ被覆黒鉛の中心粒径D50を測定したところ7.9μm
であった。芯材の黒鉛の中心粒径D50は7.5μmであった
ので、ピッチ層の厚みは0.2μmである。
[0108] 1 part of toluene was added to 1 part of the obtained crude pitch-coated graphite, and the mixture was washed with stirring at 80 ° C for 1 hour, and then filtered to obtain purified pitch-coated graphite. When the center particle diameter D50 of the purified pitch-coated graphite was measured, 7.9 μm
Met. Since the core particle diameter D50 of the graphite graphite was 7.5 μm, the thickness of the pitch layer was 0.2 μm.

【0109】この精製ピッチ被覆黒鉛の被覆比、比表面
積および真比重を表1に示す。キノリン可溶分の値が1
7.3%であることから、その被覆比は、0.173である。
Table 1 shows the coating ratio, specific surface area and true specific gravity of the purified pitch-coated graphite. Quinoline solubles value of 1
Since it is 7.3%, the coating ratio is 0.173.

【0110】この精製ピッチ被覆黒鉛を窒素雰囲気中10
00℃で1時間(昇温速度25℃/hr)焼成し、炭化した。こ
の炭化ピッチ被覆黒鉛の比表面積、真比重、R値および1
μm以下の粒子の体積基準積算値を表1に併せて示す。
この炭化ピッチ被覆黒鉛の粒度分布測定の結果、芯材と
同様に0.1〜150μmに分布を有することが確認され、ま
た、X線回折測定結果も、芯材と同様であった。さら
に、芯材と炭化ピッチ被覆黒鉛のR値の比較により、被
覆層を形成する炭化ピッチは、芯材よりも結晶化度が低
いことが判った。さらに、SEM観測の結果、芯材である
人造黒鉛は、被覆層を形成する炭化ピッチにより被覆さ
れ、エッジ部分が丸くなっていることが確認された。
The purified pitch-coated graphite was placed in a nitrogen atmosphere at 10
It was baked at 00 ° C for 1 hour (heating rate 25 ° C / hr) and carbonized. The specific surface area, true specific gravity, R value and 1
Table 1 also shows the volume-based integrated value of the particles having a particle size of μm or less.
As a result of measuring the particle size distribution of the carbonized pitch-coated graphite, it was confirmed that the graphite had a distribution of 0.1 to 150 μm as in the case of the core material, and the X-ray diffraction measurement result was the same as that of the core material. Furthermore, the comparison of the R value between the core material and the carbonized pitch-coated graphite indicated that the carbonized pitch forming the coating layer had a lower crystallinity than the core material. Further, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered with the carbonized pitch forming the coating layer, and the edge portion was rounded.

【0111】この炭化ピッチ被覆黒鉛を用いて負極を作
製し、電解液として1moldm-3のLiClO4を溶解させたプロ
ピレンカーボネートを用いて、非水系二次電池を作製し
た。その充放電特性測定結果を表2に併せて示す。 実施例12 塊状の人造黒鉛(中心粒径D50=7.5μm、粒度分布=0.1〜
150μm、d002=0.336nm、Lc=100nm、La=97nm、比表面積=
10.8m2/g、R値=0.26、真比重=2.25g/cm3) 50gと一次Q
Iを除去していない軟化点80℃のコールタールピッチ
(キノリン不溶分3.9%、トルエン不溶分34%)100gとを5
00mlのセパレルフラスコにいれ、常圧下200℃にて2時間
撹拌混合し、粗製ピッチ被覆黒鉛を得た。
A negative electrode was prepared using the carbonized pitch-coated graphite, and a non-aqueous secondary battery was prepared using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 also shows the measurement results of the charge / discharge characteristics. Example 12 Lumpy artificial graphite (center particle diameter D50 = 7.5 μm, particle size distribution = 0.1 to
150 μm, d002 = 0.336 nm, Lc = 100 nm, La = 97 nm, specific surface area =
10.8m 2 / g, R value = 0.26, true specific gravity = 2.25g / cm 3 ) 50g and primary Q
100 g of coal tar pitch (3.9% quinoline-insoluble matter, 34% toluene-insoluble matter) having a softening point of 80 ° C without removing I
The mixture was placed in a 00 ml separate flask and stirred and mixed at 200 ° C. under normal pressure for 2 hours to obtain a coarse pitch-coated graphite.

【0112】得られた粗製ピッチ被覆黒鉛1部に対して
トルエン1部を加え、撹拌下に80℃で1時間洗浄処理した
後、濾過して、精製ピッチ被覆黒鉛を得た。この精製ピ
ッチ被覆黒鉛の中心粒径D50を測定したところ7.9μmで
あった。芯材の黒鉛の中心粒径D50は7.5μmであったの
で、ピッチ層の厚みは0.2μmである。
To 1 part of the crude pitch-coated graphite thus obtained, 1 part of toluene was added, washed with stirring at 80 ° C. for 1 hour, and filtered to obtain a purified pitch-coated graphite. The center particle diameter D50 of the purified pitch-coated graphite was 7.9 μm. Since the core particle diameter D50 of the graphite graphite was 7.5 μm, the thickness of the pitch layer was 0.2 μm.

【0113】この精製ピッチ被覆黒鉛の被覆比、比表面
積、および真比重を表1に示す。キノリン可溶分の値が
7.5%であることから、被覆比は、0.075である。
Table 1 shows the coating ratio, specific surface area, and true specific gravity of the purified pitch-coated graphite. Quinoline solubles
Since it is 7.5%, the covering ratio is 0.075.

【0114】この精製ピッチ被覆黒鉛を窒素雰囲気中10
00℃で1時間(昇温速度25℃/hr)焼成し、炭化した。こ
の炭化ピッチ被覆黒鉛の比表面積、真比重、R値および1
μm以下の粒子の体積基準積算値を表1に併せて示す。
この炭化ピッチ被覆黒鉛の粒度分布測定の結果、芯材と
同様に0.1〜150μmに分布を有することが確認され、ま
た、X線回折測定結果も、芯材と同様であった。さら
に、芯材と炭化ピッチ被覆黒鉛のR値の比較により、被
覆層を形成する炭化ピッチは、芯材よりも結晶化度が低
いことが判った。さらに、SEM観測の結果、芯材である
人造黒鉛は、被覆層を形成する炭化ピッチにより被覆さ
れ、エッジ部分が丸くなっていることが確認された。
The purified pitch-coated graphite was placed in a nitrogen atmosphere at 10
It was baked at 00 ° C for 1 hour (heating rate 25 ° C / hr) and carbonized. The specific surface area, true specific gravity, R value and 1
Table 1 also shows the volume-based integrated value of the particles having a particle size of μm or less.
As a result of measuring the particle size distribution of the carbonized pitch-coated graphite, it was confirmed that the graphite had a distribution of 0.1 to 150 μm as in the case of the core material, and the X-ray diffraction measurement result was the same as that of the core material. Furthermore, the comparison of the R value between the core material and the carbonized pitch-coated graphite indicated that the carbonized pitch forming the coating layer had a lower crystallinity than the core material. Further, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered with the carbonized pitch forming the coating layer, and the edge portion was rounded.

【0115】この炭化ピッチ被覆黒鉛を用いて負極を作
製し、電解液として1moldm-3のLiClO4を溶解させたプロ
ピレンカーボネートを用いて、非水系二次電池を作製し
た。その充放電特性測定結果を表2に併せて示す。 実施例13 塊状の人造黒鉛(中心粒径D50=7.5μm、粒度分布=0.1〜
150μm、d002=0.336nm、Lc=100nm、La=97nm、比表面積=
10.8m2/g、R値=0.26、真比重=2.25g/cm3)50gとあらか
じめ一次QIを除去した軟化点10℃のコールタール(キ
ノリン不溶分トレース、トルエン不溶分8%)100gとを50
0mlのセパレルフラスコにいれ、常圧下200℃にて2時間
撹拌混合し、粗製ピッチ被覆黒鉛を得た。
A negative electrode was prepared using the carbonized pitch-coated graphite, and a non-aqueous secondary battery was prepared using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 also shows the measurement results of the charge / discharge characteristics. Example 13 Lumpy artificial graphite (center particle size D50 = 7.5 μm, particle size distribution = 0.1 to
150 μm, d002 = 0.336 nm, Lc = 100 nm, La = 97 nm, specific surface area =
10.8 m 2 / g, R value = 0.26, true specific gravity = 2.25 g / cm 3 ) 50 g and 100 g of coal tar (quinoline insoluble trace, toluene insoluble 8%) having a softening point of 10 ° C. from which primary QI has been removed in advance 50
The mixture was placed in a 0 ml separate flask and mixed with stirring at 200 ° C. for 2 hours under normal pressure to obtain a coarse pitch-coated graphite.

【0116】得られた粗製ピッチ被覆黒鉛1部に対して
トルエン1部を加え、撹拌下に80℃で1時間洗浄処理した
後、濾過して、精製ピッチ被覆黒鉛を得た。この精製ピ
ッチ被覆黒鉛の中心粒径D50を測定したところ、7.6μm
であった。芯材の黒鉛の中心粒径D50が7.5μmであった
ので、ピッチ層の厚みは、0.05μmである。
1 part of toluene was added to 1 part of the obtained crude pitch-coated graphite, washed at 80 ° C. for 1 hour with stirring, and filtered to obtain a purified pitch-coated graphite. When the center particle diameter D50 of the purified pitch-coated graphite was measured, 7.6 μm
Met. Since the core particle diameter D50 of the graphite of the core material was 7.5 μm, the thickness of the pitch layer was 0.05 μm.

【0117】得られた精製ピッチ被覆黒鉛の被覆比、比
表面積および真比重を表1に併せて示す。キノリン可溶
分の測定値が7.8%であることから、この精製ピッチ被覆
黒鉛の被覆比は、0.078である。
The coating ratio, specific surface area and true specific gravity of the obtained purified pitch-coated graphite are shown in Table 1. Since the measured value of the quinoline soluble component is 7.8%, the coating ratio of the purified pitch-coated graphite is 0.078.

【0118】この精製ピッチ被覆黒鉛を窒素雰囲気中10
00℃で1時間(昇温速度25℃/hr)焼成し、炭化した。こ
の炭化ピッチ被覆黒鉛の比表面積、真比重、R値および1
μm以下の粒子の体積基準積算値を表1に併せて示す。
この炭化ピッチ被覆黒鉛の粒度分布測定の結果、芯材と
同様に0.1〜150μmに分布を有することが確認され、ま
た、X線回折測定結果も、芯材と同様であった。さら
に、芯材と炭化ピッチ被覆黒鉛のR値の比較により、被
覆層を形成する炭化ピッチは、芯材よりも結晶化度が低
いことが判った。さらに、SEM観測の結果、芯材である
人造黒鉛は、被覆層を形成する炭化ピッチにより被覆さ
れ、エッジ部分が丸くなっていることが確認された。
The purified pitch-coated graphite was placed in a nitrogen atmosphere at 10
It was baked at 00 ° C for 1 hour (heating rate 25 ° C / hr) and carbonized. The specific surface area, true specific gravity, R value and 1
Table 1 also shows the volume-based integrated value of the particles having a particle size of μm or less.
As a result of measuring the particle size distribution of the carbonized pitch-coated graphite, it was confirmed that the graphite had a distribution of 0.1 to 150 μm as in the case of the core material, and the X-ray diffraction measurement result was the same as that of the core material. Furthermore, the comparison of the R value between the core material and the carbonized pitch-coated graphite indicated that the carbonized pitch forming the coating layer had a lower crystallinity than the core material. Further, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered with the carbonized pitch forming the coating layer, and the edge portion was rounded.

【0119】この炭化ピッチ被覆黒鉛を用いて負極を作
製し、電解液として1moldm-3のLiClO4を溶解させたプロ
ピレンカーボネートを用いて、非水系二次電池を作製し
た。その充放電特性測定結果を表2に併せて示す。
A negative electrode was prepared using the carbonized pitch-coated graphite, and a non-aqueous secondary battery was prepared using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 also shows the measurement results of the charge / discharge characteristics.

【0120】また、炭化ピッチ被覆黒鉛を用いて負極を
作製し、次いで固体電解質リチウム二次電池を作製し
た。その充放電特性測定結果を表3に併せて示す。 実施例14 球状のメソカーボンマイクロビーズ黒鉛化品(大阪ガス
(株)製「MCMB-6-28」、中心粒径D50=6.0mm、粒度分布
=0.1〜50μm、d002=0.336nm、Lc=50nm、La=90nm、比表
面積=3.0m2/g、R値=0.42、真比重=2.20g/cm3)50gとあ
らかじめ一次QIを除去した軟化点80℃のコールタール
ピッチ(キノリン不溶分トレース、トルエン不溶分30
%)100gとを500mlのセパレルフラスコにいれ、常圧下20
0℃にて2時間撹拌混合し、粗製ピッチ被覆メソカーボン
マイクロビーズ黒鉛化品を得た。
Further, a negative electrode was prepared using carbonized pitch-coated graphite, and then a solid electrolyte lithium secondary battery was prepared. Table 3 also shows the measurement results of the charge and discharge characteristics. Example 14 Graphite product of spherical mesocarbon microbeads (“MCMB-6-28” manufactured by Osaka Gas Co., Ltd., central particle size D50 = 6.0 mm, particle size distribution
= 0.1-50 μm, d002 = 0.336 nm, Lc = 50 nm, La = 90 nm, specific surface area = 3.0 m 2 / g, R value = 0.42, true specific gravity = 2.20 g / cm 3 ) 50 g and softening with primary QI removed in advance 80 ° C coal tar pitch (quinoline insoluble trace, toluene insoluble 30
%) Into a 500 ml separate flask and put under normal pressure for 20 g.
The mixture was stirred and mixed at 0 ° C. for 2 hours to obtain a graphitized product of crude pitch-coated mesocarbon microbeads.

【0121】得られた粗製ピッチ被覆メソカーボンマイ
クロビーズ黒鉛化品1部に対してトルエン1部を加え、撹
拌下に80℃で1時間洗浄処理した後、濾過して、精製ピ
ッチ被覆メソカーボンマイクロビーズ黒鉛化品を得た。
この精製ピッチ被覆メソカーボンマイクロビーズ黒鉛化
品の中心粒径D50を測定したところ、6.2μmであった。
芯材としての黒鉛の中心粒径D50は6.0μmであったの
で、ピッチ層の厚みは0.1μmである。
To 1 part of the obtained graphitized crude pitch-coated mesocarbon microbeads, 1 part of toluene was added, and the mixture was washed at 80 ° C. for 1 hour with stirring, filtered, and purified to obtain a purified pitch-coated mesocarbon microbead. Graphitized beads were obtained.
When the center particle diameter D50 of the graphitized mesocarbon microbeads coated with the purified pitch was measured, it was 6.2 μm.
Since the center particle diameter D50 of graphite as the core material was 6.0 μm, the thickness of the pitch layer was 0.1 μm.

【0122】この精製ピッチ被覆メソカーボンマイクロ
ビーズ黒鉛化品の被覆比、比表面積および真比重を表1
に示す。キノリン可溶分の値が9.8%であることから、被
覆比は、0.098である。
Table 1 shows the coating ratio, specific surface area and true specific gravity of the graphitized purified pitch-coated mesocarbon microbeads.
Shown in Since the value of the quinoline-soluble component is 9.8%, the coating ratio is 0.098.

【0123】この精製ピッチ被覆メソカーボンマイクロ
ビーズ黒鉛化品を窒素雰囲気中1000℃で1時間(昇温速
度25℃/hr)焼成し、炭化した。この炭化ピッチ被覆メ
ソカーボンマイクロビーズ黒鉛化品の比表面積、真比
重、R値および1μm以下の粒子の体積基準積算値を表1
に併せて示す。この炭化ピッチ被覆メソカーボンマイク
ロビーズ黒鉛化品の粒度分布測定の結果、芯材と同様に
0.1〜50μmに分布を有することが確認された。さらに、
芯材と炭化ピッチ被覆メソカーボンマイクロビーズ黒鉛
化品のR値の比較により、被覆層を形成する炭化ピッチ
は、芯材よりも結晶化度が低いことが判った。
The graphitized product of the purified pitch-coated mesocarbon microbeads was calcined in a nitrogen atmosphere at 1000 ° C. for 1 hour (heating rate 25 ° C./hr) and carbonized. Table 1 shows the specific surface area, true specific gravity, R value, and volume-based integrated value of particles having a particle size of 1 μm or less of the graphitized mesocarbon microbeads coated with carbonized pitch.
Are shown together. As a result of the particle size distribution measurement of the graphitized mesocarbon microbeads coated with carbonized pitch,
It was confirmed that the particles had a distribution of 0.1 to 50 μm. further,
Comparison of the R value between the core material and the graphitized mesocarbon microbeads coated with carbonized pitch revealed that the carbonized pitch forming the coating layer had a lower crystallinity than the core material.

【0124】この炭化ピッチ被覆メソカーボンマイクロ
ビーズ黒鉛化品を用いて負極を作製し、電解液として1
moldm-3のLiClO4を溶解させたプロピレンカーボネート
を用いて、非水系二次電池を作製した。その充放電特性
測定結果を表2に示す。 実施例15 塊状の人造黒鉛(中心粒径D50=16.2μm、粒度分布0.1〜
120μm、d002=0.337nm、Lc=100nm、La=71nm、比表面積
=14.4m2/g、R値=0.31、真比重1.96g/cm3)50gと予め一
次QIを除去した軟化点80℃のコールタールピッチ(キノ
リン不溶分トレース、トルエン不溶分30%)100gとを100
0mlのセパレルフラスコに入れ、250℃常圧で5時間撹拌
混合し、粗製ピッチ被覆黒鉛を得た。
A negative electrode was prepared using the graphitized mesocarbon microbeads coated with carbonized pitch, and 1% was used as an electrolyte.
A non-aqueous secondary battery was manufactured using propylene carbonate in which LiClO 4 of moldm- 3 was dissolved. Table 2 shows the measurement results of the charge / discharge characteristics. Example 15 Lumpy artificial graphite (center particle diameter D50 = 16.2 μm, particle size distribution 0.1 to
120 μm, d002 = 0.337 nm, Lc = 100 nm, La = 71 nm, specific surface area = 14.4 m 2 / g, R value = 0.31, true specific gravity 1.96 g / cm 3 ) 50 g and a softening point of 80 ° C. from which primary QI was previously removed. 100 g of coal tar pitch (quinoline insoluble trace, toluene insoluble 30%) and 100 g
The mixture was placed in a 0 ml separate flask and stirred and mixed at 250 ° C. and normal pressure for 5 hours to obtain a coarse pitch-coated graphite.

【0125】得られた粗製ピッチ被覆黒鉛1部に対して
トルエン3部を加え、撹拌下に50℃で5時間洗浄処理をし
た後、濾過して、精製ピッチ被覆黒鉛を得た。この精製
ピッチ被覆黒鉛の中心粒径D50を測定したところ、16.6
μmであった。芯材としての黒鉛の中心粒径D50は、16.2
μmであったので、ピッチ層の厚みは0.2μmである。
To 1 part of the obtained crude pitch-coated graphite, 3 parts of toluene was added, washed with stirring at 50 ° C. for 5 hours, and filtered to obtain purified pitch-coated graphite. When the center particle diameter D50 of the purified pitch-coated graphite was measured, 16.6
μm. The core particle size D50 of graphite as a core material is 16.2
μm, the thickness of the pitch layer was 0.2 μm.

【0126】得られた精製ピッチ被覆黒鉛の被覆比、比
表面積、および真比重を表1に示す。キノリン可溶分の
測定値が11.3%であることから、被覆形成用炭素材料の
被覆比は0.113である。
Table 1 shows the coating ratio, specific surface area, and true specific gravity of the obtained purified pitch-coated graphite. Since the measured value of the quinoline-soluble component is 11.3%, the coating ratio of the coating-forming carbon material is 0.113.

【0127】この精製ピッチ被覆黒鉛を窒素雰囲気中、
1000℃で1時間(昇温速度25℃/hr)焼成し、炭化した。
得られた炭化ピッチ被覆黒鉛の比表面積、真比重、R値
及び1μm以下の粒子の体積基準積算値を表1に示す。ま
た、粒度分布測定の結果、0.1〜120μmに分布を有する
ものであり、X線回折測定結果は芯材と同様であった。
芯材と炭化ピッチ被覆黒鉛のR値の比較により、被覆形
成用炭素材料である炭化ピッチは芯材より結晶化度の低
いことがわかった。さらに、SEM観察の結果、芯材の人
造黒鉛は被覆形成用炭素材料である炭化ピッチにより被
覆され、エッジ部分が丸くなっていることが確認され
た。
The purified pitch-coated graphite was placed in a nitrogen atmosphere.
It was baked at 1000 ° C for 1 hour (heating rate 25 ° C / hr) and carbonized.
Table 1 shows the specific surface area, true specific gravity, R value, and volume-based integrated value of particles having a particle size of 1 μm or less of the obtained carbonized pitch-coated graphite. As a result of the particle size distribution measurement, the powder had a distribution of 0.1 to 120 μm, and the X-ray diffraction measurement result was the same as that of the core material.
Comparison of the R value between the core material and the carbonized pitch-coated graphite indicated that carbonized pitch, a carbon material for forming the coating, had a lower degree of crystallinity than the core material. Furthermore, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered with carbonized pitch, which is a carbon material for forming the coating, and the edge portion was rounded.

【0128】この炭化ピッチ被覆黒鉛を使用して、負極
を作製し、電解液として1moldm-3のLiClO4を溶解させた
プロピレンカーボネートを用いて、非水系二次電池を作
製した。その充放電特性測定結果を表2に示す。 実施例16 塊状の人造黒鉛(中心粒径D50=16.2μm、粒度分布1〜80
μm、d002=0.338nm、Lc=83nm、La=63nm、比表面積=6.8
m2/g、R値=0.38、真比重2.02g/cm3)50gと予め一次QIを
除去した軟化点80℃のコールタールピッチ(キノリン不
溶分トレース、トルエン不溶分30%)100gとを1000mlの
セパレルフラスコに入れ、250℃常圧で5時間撹拌混合
し、粗製ピッチ被覆黒鉛を得た。得られた粗製ピッチ被
覆黒鉛1部に対してトルエン3部を加え、撹拌下に50℃で
5時間洗浄処理をした後、濾過して、精製ピッチ被覆黒
鉛を得た。この精製ピッチ被覆黒鉛の中心粒径D50を測
定したところ、12.0μmであった。芯材としての黒鉛の
中心粒径D50は、11.6μmであったので、ピッチ層の厚み
は0.2μmである。
A negative electrode was produced using the carbonized pitch-coated graphite, and a non-aqueous secondary battery was produced using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 shows the measurement results of the charge / discharge characteristics. Example 16 Lumpy artificial graphite (center particle diameter D50 = 16.2 μm, particle size distribution 1 to 80
μm, d002 = 0.338 nm, Lc = 83 nm, La = 63 nm, specific surface area = 6.8
m 2 / g, R value = 0.38, true specific gravity 2.02 g / cm 3 ) 50 g and 100 g of coal tar pitch (quinoline insoluble trace, toluene insoluble 30%) having a softening point of 80 ° C. with primary QI removed in advance And stirred and mixed at 250 ° C. and normal pressure for 5 hours to obtain a coarse pitch-coated graphite. To 1 part of the obtained crude pitch-coated graphite, 3 parts of toluene was added, and the mixture was stirred at 50 ° C.
After a washing treatment for 5 hours, filtration was performed to obtain a purified pitch-coated graphite. The center particle diameter D50 of the purified pitch-coated graphite was measured and found to be 12.0 μm. Since the center particle diameter D50 of graphite as the core material was 11.6 μm, the thickness of the pitch layer was 0.2 μm.

【0129】得られた精製ピッチ被覆黒鉛の被覆比、比
表面積、および真比重を表1に示す。キノリン可溶分の
測定値が12.3%であることから、被覆比は0.123である。
Table 1 shows the coating ratio, specific surface area and true specific gravity of the obtained purified pitch-coated graphite. Since the measured value of the quinoline-soluble component is 12.3%, the coating ratio is 0.123.

【0130】この精製ピッチ被覆黒鉛を窒素雰囲気中、
1000℃で1時間(昇温速度25℃/hr)焼成し、炭化した。
得られた炭化ピッチ被覆黒鉛の比表面積、真比重、R値
及び1μm以下の粒子の体積基準積算値を表1に示す。ま
た、粒度分布測定の結果、1〜80μmに分布を有するもの
であり、X線回折測定結果は芯材と同様であった。芯材
と炭化ピッチ被覆黒鉛のR値の比較により、被覆形成用
炭素材料である炭化ピッチは芯材より結晶化度の低いこ
とがわかった。さらに、SEM観察の結果、芯材の人造黒
鉛は被覆形成用炭素材料である炭化ピッチにより被覆さ
れ、エッジ部分が丸くなっていることが確認された。
This purified pitch-coated graphite was placed in a nitrogen atmosphere.
It was baked at 1000 ° C for 1 hour (heating rate 25 ° C / hr) and carbonized.
Table 1 shows the specific surface area, true specific gravity, R value, and volume-based integrated value of particles having a particle size of 1 μm or less of the obtained carbonized pitch-coated graphite. As a result of the particle size distribution measurement, the powder had a distribution of 1 to 80 μm, and the X-ray diffraction measurement result was the same as that of the core material. Comparison of the R value between the core material and the carbonized pitch-coated graphite indicated that carbonized pitch, a carbon material for forming the coating, had a lower degree of crystallinity than the core material. Furthermore, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered with carbonized pitch, which is a carbon material for forming the coating, and the edge portion was rounded.

【0131】この炭化ピッチ被覆黒鉛を使用して、負極
を作製し、電解液として1moldm-3のLiClO4を溶解させた
プロピレンカーボネートを用いて、非水系二次電池を作
製した。その充放電特性測定結果を表2に示す。 実施例17 鱗片状の人造黒鉛(中心粒径D50=18.9μm、粒度分布0.1
〜150μm、d002=0.340nm、Lc=42nm、La=50nm、比表面積
=9.2m2/g、R値=0.49、真比重1.82g/cm3)50gと予め一
次QIを除去した軟化点80℃のコールタールピッチ(キノ
リン不溶分トレース、トルエン不溶分30%)100gとを100
0mlのセパレルフラスコに入れ、250℃常圧で5時間撹拌
混合し、粗製ピッチ被覆黒鉛を得た。得られた粗製ピッ
チ被覆黒鉛1部に対してトルエン3部を加え、撹拌下に50
℃で5時間洗浄処理をした後、濾過して、精製ピッチ被
覆黒鉛を得た。この精製ピッチ被覆黒鉛の中心粒径D50
を測定したところ、19.3μmであった。芯材としての黒
鉛の中心粒径D50は、18.9μmであったので、ピッチ層の
厚みは0.2μmである。
A negative electrode was prepared using the carbonized pitch-coated graphite, and a non-aqueous secondary battery was prepared using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 shows the measurement results of the charge / discharge characteristics. Example 17 Scale-like artificial graphite (center particle diameter D50 = 18.9 μm, particle size distribution 0.1
150150 μm, d002 = 0.340 nm, Lc = 42 nm, La = 50 nm, specific surface area = 9.2 m 2 / g, R value = 0.49, true specific gravity 1.82 g / cm 3 ) 50 g and softening point 80 ° C. from which primary QI was previously removed 100 g of coal tar pitch (quinoline insoluble trace, toluene insoluble 30%) and 100 g
The mixture was placed in a 0 ml separate flask and stirred and mixed at 250 ° C. and normal pressure for 5 hours to obtain a coarse pitch-coated graphite. To 1 part of the obtained crude pitch-coated graphite, 3 parts of toluene was added, and 50 parts were stirred.
After washing at 5 ° C. for 5 hours, the solution was filtered to obtain purified pitch-coated graphite. The center particle diameter D50 of this refined pitch-coated graphite
Was 19.3 μm. Since the center particle diameter D50 of graphite as a core material was 18.9 μm, the thickness of the pitch layer was 0.2 μm.

【0132】得られた精製ピッチ被覆黒鉛の被覆比、比
表面積、および真比重を表1に示す。キノリン可溶分の
測定値が10.6%であることから、被覆比は0.106である。
Table 1 shows the coating ratio, specific surface area and true specific gravity of the obtained purified pitch-coated graphite. Since the measured value of the quinoline-soluble component is 10.6%, the coating ratio is 0.106.

【0133】この精製ピッチ被覆黒鉛を窒素雰囲気中、
1000℃で1時間(昇温速度25℃/hr)焼成し、炭化した。
得られた炭化ピッチ被覆黒鉛の比表面積、真比重、R値
及び1μm以下の粒子の体積基準積算値を表1に示す。ま
た、粒度分布測定の結果、0.1〜150μmに分布を有する
ものであり、X線回折測定結果は芯材と同様であった。
芯材と炭化ピッチ被覆黒鉛のR値の比較により、被覆形
成用炭素材料である炭化ピッチは芯材より結晶化度の低
いことがわかった。さらに、SEM観察の結果、芯材の人
造黒鉛は被覆形成用炭素材料である炭化ピッチにより被
覆され、エッジ部分が丸くなっていることが確認され
た。
The purified pitch-coated graphite was placed in a nitrogen atmosphere.
It was baked at 1000 ° C for 1 hour (heating rate 25 ° C / hr) and carbonized.
Table 1 shows the specific surface area, true specific gravity, R value, and volume-based integrated value of particles having a particle size of 1 μm or less of the obtained carbonized pitch-coated graphite. As a result of the particle size distribution measurement, the powder had a distribution of 0.1 to 150 μm, and the X-ray diffraction measurement result was the same as that of the core material.
Comparison of the R value between the core material and the carbonized pitch-coated graphite indicated that carbonized pitch, a carbon material for forming the coating, had a lower degree of crystallinity than the core material. Furthermore, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered with carbonized pitch, which is a carbon material for forming the coating, and the edge portion was rounded.

【0134】この炭化ピッチ被覆黒鉛を使用して、負極
を作製し、電解液として1moldm-3のLiClO4を溶解させた
プロピレンカーボネートを用いて、非水系二次電池を作
製した。その充放電特性測定結果を表2に示す。 実施例18 ウイスカー状の人造黒鉛(中心粒径D50=23.8μm、粒度
分布0.1〜150μm、d002=0.347nm、Lc=25nm、La=15nm、
比表面積=13.5m2/g、R値=0.68、真比重1.60g/cm 3)50g
と予め一次QIを除去した軟化点80℃のコールタールピッ
チ(キノリン不溶分トレース、トルエン不溶分30%)100
gとを1000mlのセパレルフラスコに入れ、250℃常圧で5
時間撹拌混合し、粗製ピッチ被覆黒鉛を得た。得られた
粗製ピッチ被覆黒鉛1部に対してトルエン3部を加え、撹
拌下に50℃で5時間洗浄処理をした後、濾過して、精製
ピッチ被覆黒鉛を得た。この精製ピッチ被覆黒鉛の中心
粒径D50を測定したところ、24.2μmであった。芯材とし
ての黒鉛の中心粒径D50は、23.8μmであったので、ピッ
チ層の厚みは0.2μmである。
Using the carbonized pitch-coated graphite, a negative electrode
1moldm as electrolyte-3LiClOFourWas dissolved
Producing non-aqueous secondary batteries using propylene carbonate
Made. Table 2 shows the measurement results of the charge / discharge characteristics. Example 18 Whisker-like artificial graphite (center particle size D50 = 23.8 μm, particle size
Distribution 0.1-150 μm, d002 = 0.347 nm, Lc = 25 nm, La = 15 nm,
Specific surface area = 13.5mTwo/ g, R value = 0.68, true specific gravity 1.60g / cm Three) 50g
And a coal tar pit with a softening point of 80 ° C
J (quinoline insoluble trace, toluene insoluble 30%) 100
g in a 1000 ml separate flask, and 5
The mixture was stirred and mixed for an hour to obtain a crude pitch-coated graphite. Got
3 parts of toluene are added to 1 part of the coarse pitch-coated graphite, and the mixture is stirred.
After washing for 5 hours at 50 ° C under stirring, filtration and purification
Pitch-coated graphite was obtained. The center of this refined pitch-coated graphite
The measured particle diameter D50 was 24.2 μm. As a core material
The center particle diameter D50 of all the graphites was 23.8 μm.
The thickness of the layer is 0.2 μm.

【0135】得られた精製ピッチ被覆黒鉛の被覆比、比
表面積、および真比重を表1に示す。キノリン可溶分の
測定値が13.1%であることから、被覆形成用炭素材料の
被覆比は0.131である。
Table 1 shows the coating ratio, specific surface area and true specific gravity of the obtained purified pitch-coated graphite. Since the measured value of the quinoline-soluble component is 13.1%, the coating ratio of the coating-forming carbon material is 0.131.

【0136】この精製ピッチ被覆黒鉛を窒素雰囲気中、
1000℃で1時間(昇温速度25℃/hr)焼成し、炭化した。
得られた炭化ピッチ被覆黒鉛の比表面積、真比重、R値
及び1μm以下の粒子の体積基準積算値を表1に示す。ま
た、粒度分布測定の結果、0.1〜150μmに分布を有する
ものであり、X線回折測定結果は芯材と同様であった。
芯材と炭化ピッチ被覆黒鉛のR値の比較により、被覆形
成用炭素材料である炭化ピッチは芯材より結晶化度の低
いことがわかった。さらに、SEM観察の結果、芯材の人
造黒鉛は被覆形成用炭素材料である炭化ピッチにより被
覆され、エッジ部分が丸くなっていることが確認され
た。
This refined pitch-coated graphite was placed in a nitrogen atmosphere.
It was baked at 1000 ° C for 1 hour (heating rate 25 ° C / hr) and carbonized.
Table 1 shows the specific surface area, true specific gravity, R value, and volume-based integrated value of particles having a particle size of 1 μm or less of the obtained carbonized pitch-coated graphite. As a result of the particle size distribution measurement, the powder had a distribution of 0.1 to 150 μm, and the X-ray diffraction measurement result was the same as that of the core material.
Comparison of the R value between the core material and the carbonized pitch-coated graphite indicated that carbonized pitch, a carbon material for forming the coating, had a lower degree of crystallinity than the core material. Furthermore, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered with carbonized pitch, which is a carbon material for forming the coating, and the edge portion was rounded.

【0137】この炭化ピッチ被覆黒鉛を使用して、負極
を作製し、電解液として1moldm-3のLiClO4を溶解させた
プロピレンカーボネートを用いて、非水系二次電池を作
製した。その充放電特性測定結果を表2に示す。 実施例19 塊状の人造黒鉛(中心粒径D50=7.5μm、粒度分布0.1〜1
50μm、d002=0.336nm、Lc=100nm、La=97nm、比表面積=
10.8m2/g、R値=0.26、真比重2.25g/cm3)50gと予め一次
QIを除去した軟化点80℃のコールタールピッチ(キノリ
ン不溶分トレース、トルエン不溶分30%)100gとを500ml
のセパレルフラスコに入れ、300℃常圧で1時間撹拌混合
し、粗製ピッチ被覆黒鉛を得た。得られた粗製ピッチ被
覆黒鉛1部に対してキノリン0.1部を加え、撹拌下に150
℃で10時間洗浄処理した後、濾過して、精製ピッチ被覆
黒鉛を得た。この精製ピッチ被覆黒鉛の中心粒径D50を
測定したところ、8.1μmであった。芯材としての黒鉛の
中心粒径D50は、7.5μmであったので、ピッチ層の厚み
は0.3μmである。
A negative electrode was produced using the carbonized pitch-coated graphite, and a non-aqueous secondary battery was produced using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 shows the measurement results of the charge / discharge characteristics. Example 19 Lumpy artificial graphite (center particle size D50 = 7.5 μm, particle size distribution 0.1 to 1
50 μm, d002 = 0.336 nm, Lc = 100 nm, La = 97 nm, specific surface area =
10.8 m 2 / g, R value = 0.26, true specific gravity 2.25 g / cm 3 ) 50 g and primary
500 g of 100 g of coal tar pitch (quinoline insoluble trace, toluene insoluble 30%) having a softening point of 80 ° C from which QI has been removed
And stirred and mixed at 300 ° C. and a normal pressure for 1 hour to obtain a coarse pitch-coated graphite. 0.1 part of quinoline was added to 1 part of the obtained crude pitch-coated graphite, and 150 parts were stirred.
After a washing treatment at 10 ° C. for 10 hours, filtration was performed to obtain a purified pitch-coated graphite. The center particle diameter D50 of the purified pitch-coated graphite was measured and found to be 8.1 μm. Since the center particle diameter D50 of graphite as a core material was 7.5 μm, the thickness of the pitch layer was 0.3 μm.

【0138】得られた精製ピッチ被覆黒鉛の被覆比、比
表面積および真比重を表1に示す。キノリン可溶分の測
定値が29.0%であることから、被覆比は0.290である。
Table 1 shows the coating ratio, specific surface area and true specific gravity of the obtained purified pitch-coated graphite. Since the measured value of the quinoline-soluble component is 29.0%, the coating ratio is 0.290.

【0139】この精製ピッチ被覆黒鉛を窒素雰囲気中、
1000℃で1時間(昇温速度100℃/hr)焼成し、炭化し
た。得られた炭化ピッチ被覆黒鉛の比表面積、真比重、
R値および1μm以下の粒子の体積基準積算値を表1に示
す。また、粒度分布測定の結果、0.1〜150μmに分布を
有するものであり、X線回折測定結果は芯材と同様であ
った。芯材と炭化ピッチ被覆黒鉛のR値の比較により、
被覆形成用炭素材料である炭化ピッチは芯材より結晶化
度の低いことがわかった。さらに、SEM観察の結果、芯
材の人造黒鉛は被覆形成用炭素材料である炭化ピッチに
より被覆され、エッジ部分が丸くなっていることが確認
された。
The purified pitch-coated graphite was placed in a nitrogen atmosphere.
It was baked at 1000 ° C for 1 hour (heating rate 100 ° C / hr) and carbonized. Specific surface area, true specific gravity, of the obtained carbonized pitch-coated graphite,
Table 1 shows the R value and the volume-based integrated value of the particles having a particle size of 1 μm or less. As a result of the particle size distribution measurement, the powder had a distribution of 0.1 to 150 μm, and the X-ray diffraction measurement result was the same as that of the core material. By comparing the R value of the core material and the carbonized pitch-coated graphite,
It was found that carbonized pitch, which is a carbon material for forming a coating, had lower crystallinity than the core material. Furthermore, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered with carbonized pitch, which is a carbon material for forming the coating, and the edge portion was rounded.

【0140】この炭化ピッチ被覆黒鉛を使用して、負極
を作製し、電解液として1moldm-3のLiClO4を溶解させた
プロピレンカーボネートを用いて、非水系二次電池を作
製した。その充放電特性測定結果を表2に示す。 実施例20 塊状の人造黒鉛(中心粒径D50=7.5μm、粒度分布0.1〜1
50μm、d002=0.336nm、Lc=100nm、La=97nm、比表面積=
10.8m2/g、R値=0.26、真比重2.25g/cm3)25gと予め一次
QIを除去した軟化点80℃のコールタールピッチ(キノリ
ン不溶分トレース、トルエン不溶分30%)50gとを1000ml
のセパレルフラスコに入れ、30℃常圧で3時間撹拌混合
し、粗製ピッチ被覆黒鉛を得た。得られた粗製ピッチ被
覆黒鉛1部に対してアセトン10部を加え、撹拌下に30℃
で5時間洗浄処理をした後、濾過して、精製ピッチ被覆
黒鉛を得た。この精製ピッチ被覆黒鉛の中心粒径D50を
測定したところ、7.8μmであった。芯材としての黒鉛の
中心粒径D50は、7.5μmであったので、ピッチ層の厚み
は0.15μmである。
A negative electrode was prepared using the carbonized pitch-coated graphite, and a non-aqueous secondary battery was prepared using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 shows the measurement results of the charge / discharge characteristics. Example 20 Lumpy artificial graphite (center particle diameter D50 = 7.5 μm, particle size distribution 0.1 to 1
50 μm, d002 = 0.336 nm, Lc = 100 nm, La = 97 nm, specific surface area =
10.8 m 2 / g, R value = 0.26, true specific gravity 2.25g / cm 3) 25g and advance primary
1000 g of 50 g of coal tar pitch (quinoline insoluble trace, toluene insoluble 30%) having a softening point of 80 ° C from which QI has been removed
And stirred and mixed at 30 ° C. and normal pressure for 3 hours to obtain a coarse pitch-coated graphite. 10 parts of acetone was added to 1 part of the obtained crude pitch-coated graphite, and the mixture was stirred at 30 ° C.
After washing for 5 hours, filtration was performed to obtain purified pitch-coated graphite. The center particle diameter D50 of the purified pitch-coated graphite was 7.8 μm. Since the center particle diameter D50 of graphite as a core material was 7.5 μm, the thickness of the pitch layer was 0.15 μm.

【0141】得られた精製ピッチ被覆黒鉛の被覆比、比
表面積および真比重を表1に示す。キノリン可溶分の測
定値が15.0%であることから、被覆比は0.150である。
Table 1 shows the coating ratio, specific surface area and true specific gravity of the obtained purified pitch-coated graphite. Since the measured value of the quinoline-soluble component is 15.0%, the coating ratio is 0.150.

【0142】この精製ピッチ被覆黒鉛を窒素雰囲気中、
1000℃で1時間(昇温速度25℃/hr)焼成し、炭化した。
得られた炭化ピッチ被覆黒鉛の比表面積、真比重、R値
および1μm以下の粒子の体積基準積算値を表1に示す。
また、粒度分布測定の結果、0.1〜150μmに分布を有す
るものであり、X線回折測定結果は芯材と同様であっ
た。芯材と炭化ピッチ被覆黒鉛のR値の比較により、被
覆形成用炭素材料である炭化ピッチは芯材より結晶化度
の低いことがわかった。さらに、SEM観察の結果、芯材
の人造黒鉛は被覆形成用炭素材料である炭化ピッチによ
り被覆され、エッジ部分が丸くなっていることが確認さ
れた。
The purified pitch-coated graphite was placed in a nitrogen atmosphere.
It was baked at 1000 ° C for 1 hour (heating rate 25 ° C / hr) and carbonized.
Table 1 shows the specific surface area, true specific gravity, R value, and volume-based integrated value of particles having a particle size of 1 μm or less of the obtained carbonized pitch-coated graphite.
As a result of the particle size distribution measurement, the powder had a distribution of 0.1 to 150 μm, and the X-ray diffraction measurement result was the same as that of the core material. Comparison of the R value between the core material and the carbonized pitch-coated graphite indicated that carbonized pitch, a carbon material for forming the coating, had a lower degree of crystallinity than the core material. Furthermore, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered with carbonized pitch, which is a carbon material for forming the coating, and the edge portion was rounded.

【0143】この炭化ピッチ被覆黒鉛を使用して、負極
を作製し、電解液として1moldm-3のLiClO4を溶解させた
プロピレンカーボネートを用いて、非水系二次電池を作
製した。その充放電特性測定結果を表2に示す。 実施例21 塊状の人造黒鉛(中心粒径D50=7.5μm、粒度分布0.1〜1
50μm、d002=0.336nm、Lc=100nm、La=97nm、比表面積=
10.8m2/g、R値=0.26、真比重2.25g/cm3)50gと予め一次
QIを除去した軟化点10℃のコールタール(キノリン不溶
分トレース、トルエン不溶分8%)50gとを500mlのセパレ
ルフラスコに入れ、250℃常圧で3時間撹拌混合し、粗製
ピッチ被覆黒鉛を得た。得られた粗製ピッチ被覆黒鉛1
部に対してタール中油10部を加え、撹拌下に200℃で1時
間洗浄処理をした後、濾過して、精製ピッチ被覆黒鉛を
得た。この精製ピッチ被覆黒鉛の中心粒径D50を測定し
たところ、7.5μmであった。
A negative electrode was produced using the carbonized pitch-coated graphite, and a non-aqueous secondary battery was produced using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 shows the measurement results of the charge / discharge characteristics. Example 21 Lumpy artificial graphite (center particle diameter D50 = 7.5 μm, particle size distribution 0.1 to 1
50 μm, d002 = 0.336 nm, Lc = 100 nm, La = 97 nm, specific surface area =
10.8 m 2 / g, R value = 0.26, true specific gravity 2.25 g / cm 3 ) 50 g and primary
50 g of coal tar (quinoline-insoluble trace, 8% toluene-insoluble 8%) having a softening point of 10 ° C. from which QI has been removed is placed in a 500 ml separate flask, and stirred and mixed at 250 ° C. under normal pressure for 3 hours to obtain coarse pitch-coated graphite. Obtained. The obtained crude pitch-coated graphite 1
10 parts of tar medium oil was added to each part, and the mixture was washed at 200 ° C. for 1 hour with stirring, and then filtered to obtain purified pitch-coated graphite. When the center particle diameter D50 of the purified pitch-coated graphite was measured, it was 7.5 μm.

【0144】得られた精製ピッチ被覆黒鉛の被覆比、比
表面積および真比重を表1に示す。キノリン可溶分の測
定値が2.0%であることから、被覆比は0.020である。
Table 1 shows the coating ratio, specific surface area and true specific gravity of the obtained purified pitch-coated graphite. Since the measured value of the quinoline soluble component is 2.0%, the coating ratio is 0.020.

【0145】この精製ピッチ被覆黒鉛を窒素雰囲気中、
1000℃で1時間(昇温速度25℃/hr)焼成し、炭化した。
得られた炭化ピッチ被覆黒鉛の比表面積、真比重、R値
および1μm以下の粒子の体積基準積算値を表1に示す。
また、粒度分布測定の結果、0.1〜150μmに分布を有す
るものであり、X線回折測定結果は芯材と同様であっ
た。芯材と炭化ピッチ被覆黒鉛のR値の比較により、被
覆形成用炭素材料である炭化ピッチは芯材より結晶化度
の低いことがわかった。さらに、SEM観察の結果、芯材
の人造黒鉛は被覆形成用炭素材料である炭化ピッチによ
り被覆され、エッジ部分が丸くなっていることが確認さ
れた。
The purified pitch-coated graphite was placed in a nitrogen atmosphere.
It was baked at 1000 ° C for 1 hour (heating rate 25 ° C / hr) and carbonized.
Table 1 shows the specific surface area, true specific gravity, R value, and volume-based integrated value of particles having a particle size of 1 μm or less of the obtained carbonized pitch-coated graphite.
As a result of the particle size distribution measurement, the powder had a distribution of 0.1 to 150 μm, and the X-ray diffraction measurement result was the same as that of the core material. Comparison of the R value between the core material and the carbonized pitch-coated graphite indicated that carbonized pitch, a carbon material for forming the coating, had a lower degree of crystallinity than the core material. Furthermore, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered with carbonized pitch, which is a carbon material for forming the coating, and the edge portion was rounded.

【0146】この炭化ピッチ被覆黒鉛を使用して、負極
を作製し、電解液として1moldm-3のLiClO4を溶解させた
プロピレンカーボネートを用いて、非水系二次電池を作
製した。その充放電特性測定結果を表2に示す。 実施例22 塊状の人造黒鉛(中心粒径D50=7.5μm、粒度分布0.1〜1
50μm、d002=0.336nm、Lc=100nm、La=97nm、比表面積=
10.8m2/g、R値=0.26、真比重2.25g/cm3)50gと予め一次
QIを除去した軟化点80℃のコールタールピッチ(キノリ
ン不溶分トレース、トルエン不溶分30%)100gとを1000m
lのセパレルフラスコに入れ、250℃常圧で3時間撹拌混
合し、粗製ピッチ被覆黒鉛を得た。得られた粗製ピッチ
被覆黒鉛1部に対してトルエン4部を加え、撹拌下に80℃
で1時間洗浄処理した後、濾過して、精製ピッチ被覆黒
鉛を得た。この精製ピッチ被覆黒鉛の中心粒径D50を測
定したところ、7.6μmであった。芯材としての黒鉛の中
心粒径D50は、7.5μmであったので、ピッチ層の厚みは
0.05μmである。
A negative electrode was prepared using the carbonized pitch-coated graphite, and a non-aqueous secondary battery was prepared using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 shows the measurement results of the charge / discharge characteristics. Example 22 Lumpy artificial graphite (center particle diameter D50 = 7.5 μm, particle size distribution 0.1 to 1
50 μm, d002 = 0.336 nm, Lc = 100 nm, La = 97 nm, specific surface area =
10.8 m 2 / g, R value = 0.26, true specific gravity 2.25 g / cm 3 ) 50 g and primary
100 g of coal tar pitch (quinoline insoluble trace, toluene insoluble 30%) with a softening point of 80 ° C after removal of QI
The resulting mixture was stirred and mixed at 250 ° C. and normal pressure for 3 hours to obtain a coarse pitch-coated graphite. 1 part of the obtained crude pitch-coated graphite was added with 4 parts of toluene, and stirred at 80 ° C.
, And filtered to obtain purified pitch-coated graphite. When the center particle diameter D50 of the purified pitch-coated graphite was measured, it was 7.6 μm. Since the center particle diameter D50 of graphite as the core material was 7.5 μm, the thickness of the pitch layer was
0.05 μm.

【0147】得られた精製ピッチ被覆黒鉛の被覆比、比
表面積および真比重を表1に示す。キノリン可溶分の測
定値が8.2%であることから、被覆比は0.082である。
Table 1 shows the coating ratio, specific surface area and true specific gravity of the obtained purified pitch-coated graphite. Since the measured value of the quinoline-soluble component is 8.2%, the covering ratio is 0.082.

【0148】この精製ピッチ被覆黒鉛を窒素雰囲気中、
700℃で1時間(昇温速度25℃/hr)焼成し、炭化した。
得られた炭化ピッチ被覆黒鉛の比表面積、真比重、R値
および1μm以下の粒子の体積基準積算値を表1に示す。
また、粒度分布測定の結果、0.1〜150μmに分布を有す
るものであり、X線回折測定結果は芯材と同様であっ
た。芯材と炭化ピッチ被覆黒鉛のR値の比較により、被
覆形成用炭素材料である炭化ピッチは芯材より結晶化度
の低いことがわかった。さらに、SEM観察の結果、芯材
の人造黒鉛は被覆形成用炭素材料である炭化ピッチによ
り被覆され、エッジ部分が丸くなっていることが確認さ
れた。
The purified pitch-coated graphite was placed in a nitrogen atmosphere.
It was baked at 700 ° C for 1 hour (heating rate 25 ° C / hr) and carbonized.
Table 1 shows the specific surface area, true specific gravity, R value, and volume-based integrated value of particles having a particle size of 1 μm or less of the obtained carbonized pitch-coated graphite.
As a result of the particle size distribution measurement, the powder had a distribution of 0.1 to 150 μm, and the X-ray diffraction measurement result was the same as that of the core material. Comparison of the R value between the core material and the carbonized pitch-coated graphite indicated that carbonized pitch, a carbon material for forming the coating, had a lower degree of crystallinity than the core material. Furthermore, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered with carbonized pitch, which is a carbon material for forming the coating, and the edge portion was rounded.

【0149】この炭化ピッチ被覆黒鉛を使用して、負極
を作製し、電解液として1moldm-3のLiClO4を溶解させた
プロピレンカーボネートを用いて、非水系二次電池を作
製した。その充放電特性測定結果を表2に示す。 実施例23 実施例22と同様にして得られた精製ピッチ被覆黒鉛を
窒素雰囲気中、1500℃で2時間(昇温速度25℃/hr)焼成
し、炭化した。得られた炭化ピッチ被覆黒鉛の比表面
積、真比重、R値および1μm以下の粒子の体積基準積算
値を表1に示す。また、粒度分布測定の結果、0.1〜150
μmに分布を有するものであり、X線回折測定結果は芯材
と同様であった。芯材と炭化ピッチ被覆黒鉛のR値の比
較により、被覆形成用炭素材料である炭化ピッチは芯材
より結晶化度の低いことがわかった。さらに、SEM観察
の結果、芯材の人造黒鉛は被覆形成用炭素材料である炭
化ピッチにより被覆され、エッジ部分が丸くなっている
ことが確認された。
A negative electrode was prepared using the carbonized pitch-coated graphite, and a non-aqueous secondary battery was prepared using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 shows the measurement results of the charge / discharge characteristics. Example 23 Purified pitch-coated graphite obtained in the same manner as in Example 22 was calcined in a nitrogen atmosphere at 1500 ° C. for 2 hours (heating rate 25 ° C./hr) and carbonized. Table 1 shows the specific surface area, true specific gravity, R value, and volume-based integrated value of particles having a particle size of 1 μm or less of the obtained carbonized pitch-coated graphite. Also, as a result of the particle size distribution measurement, 0.1 to 150
It had a distribution at μm, and the result of X-ray diffraction measurement was the same as that of the core material. Comparison of the R value between the core material and the carbonized pitch-coated graphite indicated that carbonized pitch, a carbon material for forming the coating, had a lower degree of crystallinity than the core material. Furthermore, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered with carbonized pitch, which is a carbon material for forming the coating, and the edge portion was rounded.

【0150】この炭化ピッチ被覆黒鉛を使用して、負極
を作製し、電解液として1moldm-3のLiClO4を溶解させた
プロピレンカーボネートを用いて、非水系二次電池を作
製した。その充放電特性測定結果を表2に示す。 実施例24 塊状の人造黒鉛(中心粒径D50=7.5μm、粒度分布0.1〜1
50μm、d002=0.336nm、Lc=100nm、La=97nm、比表面積=
10.8m2/g、R値=0.26、真比重2.25g/cm3)50gと予め一次
QI量を調整した軟化点10℃のコールタール(キノリン不
溶分2.9%、トルエン不溶分7.8%)100gとを1000mlのセパ
レルフラスコに入れ、200℃常圧で2時間撹拌混合し、粗
製ピッチ被覆黒鉛を得た。得られた粗製ピッチ被覆黒鉛
1部に対してトルエン4部を加え、撹拌下に80℃で1時間
洗浄処理をした後、濾過して、精製ピッチ被覆黒鉛を得
た。この精製ピッチ被覆黒鉛の中心粒径D50を測定した
ところ、7.6μmであった。芯材としての黒鉛の中心粒径
D50は、7.5μmであったので、ピッチ層の厚みは0.05μm
である。
A negative electrode was prepared using the carbonized pitch-coated graphite, and a non-aqueous secondary battery was prepared using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 shows the measurement results of the charge / discharge characteristics. Example 24 Lumpy artificial graphite (center particle diameter D50 = 7.5 μm, particle size distribution 0.1 to 1
50 μm, d002 = 0.336 nm, Lc = 100 nm, La = 97 nm, specific surface area =
10.8 m 2 / g, R value = 0.26, true specific gravity 2.25 g / cm 3 ) 50 g and primary
100g of coal tar (quinoline insoluble content 2.9%, toluene insoluble content 7.8%) with adjusted softening point of 10 ° C adjusted in QI amount is put in a 1000ml separate flask, and stirred and mixed at 200 ° C under normal pressure for 2 hours to coat crude pitch. Graphite was obtained. The obtained crude pitch-coated graphite
4 parts of toluene was added to 1 part, and a washing treatment was performed at 80 ° C. for 1 hour with stirring, followed by filtration to obtain a purified pitch-coated graphite. When the center particle diameter D50 of the purified pitch-coated graphite was measured, it was 7.6 μm. Core particle size of graphite as core material
Since D50 was 7.5 μm, the thickness of the pitch layer was 0.05 μm
It is.

【0151】得られた精製ピッチ被覆黒鉛の被覆比、比
表面積および真比重を表1に示す。キノリン可溶分の測
定値が8.7%であることから、被覆比は0.087である。
Table 1 shows the coating ratio, specific surface area and true specific gravity of the obtained purified pitch-coated graphite. Since the measured value of the quinoline-soluble component is 8.7%, the covering ratio is 0.087.

【0152】この精製ピッチ被覆黒鉛を窒素雰囲気中、
1000℃で1時間(昇温速度25℃/hr)焼成し、炭化した。
得られた炭化ピッチ被覆黒鉛の比表面積、真比重、R値
および1μm以下の粒子の体積基準積算値を表1に示す。
また、粒度分布測定の結果、0.1〜150μmに分布を有す
るものであり、X線回折測定結果は芯材と同様であっ
た。芯材と炭化ピッチ被覆黒鉛のR値の比較により、被
覆形成用炭素材料である炭化ピッチは芯材より結晶化度
の低いことがわかった。さらに、SEM観察の結果、芯材
の人造黒鉛は被覆形成用炭素材料である炭化ピッチによ
り被覆され、エッジ部分が丸くなっていることが確認さ
れた。
The purified pitch-coated graphite was placed in a nitrogen atmosphere.
It was baked at 1000 ° C for 1 hour (heating rate 25 ° C / hr) and carbonized.
Table 1 shows the specific surface area, true specific gravity, R value, and volume-based integrated value of particles having a particle size of 1 μm or less of the obtained carbonized pitch-coated graphite.
As a result of the particle size distribution measurement, the powder had a distribution of 0.1 to 150 μm, and the X-ray diffraction measurement result was the same as that of the core material. Comparison of the R value between the core material and the carbonized pitch-coated graphite indicated that carbonized pitch, a carbon material for forming the coating, had a lower degree of crystallinity than the core material. Furthermore, as a result of SEM observation, it was confirmed that the artificial graphite as the core material was covered with carbonized pitch, which is a carbon material for forming the coating, and the edge portion was rounded.

【0153】この炭化ピッチ被覆黒鉛を使用して、負極
を作製し、電解液として1moldm-3のLiClO4を溶解させた
プロピレンカーボネートを用いて、非水系二次電池を作
製した。その充放電特性測定結果を表2に示す。 比較例1 塊状の人造黒鉛(中心粒径D50=7.5μm、粒度分布0.1〜1
50μm、d002=0.336nm、Lc=100nm、La=97nm、比表面積=
10.8m2/g、R値=0.26、真比重2.25g/cm3)をそのまま用
いて負極を作製し、電解液として1moldm-3のLiClO4
溶解させたプロピレンカーボネートを用いて、非水系二
次電池を作製した。
A negative electrode was prepared using the carbonized pitch-coated graphite, and a non-aqueous secondary battery was prepared using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 shows the measurement results of the charge / discharge characteristics. Comparative Example 1 Lumpy artificial graphite (center particle size D50 = 7.5 μm, particle size distribution 0.1 to 1
50 μm, d002 = 0.336 nm, Lc = 100 nm, La = 97 nm, specific surface area =
10.8 m 2 / g, R value = 0.26, true specific gravity 2.25 g / cm 3 ) were used as they were to produce a negative electrode, and propylene carbonate in which 1 moldm -3 of LiClO 4 was dissolved was used as an electrolyte. A secondary battery was manufactured.

【0154】しかしながら、この電池は、電解液の分解
により充放電がほとんどできなかった。
However, this battery could hardly be charged or discharged due to decomposition of the electrolytic solution.

【0155】なお、使用した人工黒鉛の被覆比、比表面
積および真比重を表1に示す。 比較例2 塊状の人造黒鉛(中心粒径D50=7.5μm、粒度分布0.1〜1
50μm、d002=0.336nm、Lc=100nm、La=97nm、比表面積=
10.8m2/g、R値=0.26、真比重2.25g/cm3)をそのまま用
いて負極を作製し、電解液として1moldm-3のLiClO4
溶解させたエチレンカーボネートとジエチルカ−ボネ−
トとメチルプロピオネ−トの混合溶媒(3:3:4)を用い
て、非水系二次電池を作製した。また、この黒鉛の電解
液中でのガス発生量を測定した。充放電特性測定結果と
ガス発生量を表2に併せて示す。 比較例3 塊状の人造黒鉛(中心粒径D50=7.5μm、粒度分布0.1〜1
50μm、d002=0.336nm、Lc=100nm、La=97nm、比表面積=
10.8m2/g、R値=0.26、真比重2.25g/cm3)をそのまま用
いて負極を作製し、固体電解質リチウム二次電池を作製
した。その充放電特性測定結果とガス発生量を表2に併
せて示す。 比較例4 球状のメソカーボンマイクロビーズ黒鉛化品(大阪ガス
(株)製「MCMB-6-28」、中心粒径D50=6.0μm、粒度分
布0.1〜50μm、d002=0.336nm、Lc=50nm、La=90nm、比表
面積=3.0m2/g、R値=0.42、真比重2.20g/cm3)をそのま
ま用いて負極を作製し、電解液として1moldm-3のLiClO
4を溶解させたエチレンカーボネートとジエチルカーボ
ネートとメチルプロピオネートの混合溶媒(3:3:4)を
用いて、非水系二次電池を作製した。充放電特性測定結
果を表2に示す。 比較例5 塊状の人造黒鉛(中心粒径D50=7.5μm、粒度分布0.1〜1
50μm、d002=0.336nm、Lc=100nm、La=97nm、比表面積=
10.8m2/g、R値=0.26、真比重2.25g/cm3)50gと予め一次
QIを除去した軟化点80℃のコールタールピッチ(キノリ
ン不溶分トレース、トルエン不溶分30%)100gとを1000m
lのセパレルフラスコに入れ、200℃常圧で2時間撹拌混
合し、粗製ピッチ被覆黒鉛を得た。得られた粗製ピッチ
被覆黒鉛を有機溶剤で洗浄することなく、窒素雰囲気中
1000℃で1時間(昇温速度25℃/hr)焼成し、炭化した。
焼成後、試料を取り出したところ、人造黒鉛粉末は塊と
なっていた。得られた炭素材料の塊をコーヒーミルで粉
砕し、粉末状の炭素材料を得た。得られた炭素材料の比
表面積、真比重、R値および1μm以下の粒子の体積基準
積算値を表1に示す。R値が小さいこと、さらにSEM観察
の結果、本願発明の製造法にて得られた炭素材料に比較
し、角の多い形状をしていることがわかったが、これは
粉砕により、黒鉛の面があらたに露出したことに起因す
るものと思われる。
Table 1 shows the coating ratio, specific surface area and true specific gravity of the artificial graphite used. Comparative Example 2 Lumpy artificial graphite (center particle diameter D50 = 7.5 μm, particle size distribution 0.1 to 1
50 μm, d002 = 0.336 nm, Lc = 100 nm, La = 97 nm, specific surface area =
10.8 m 2 / g, R value = 0.26, true specific gravity 2.25 g / cm 3 ) were used as they were to produce a negative electrode, and ethylene carbonate and diethyl carbonate in which 1 moldm -3 of LiClO 4 was dissolved as an electrolytic solution.
A non-aqueous secondary battery was manufactured using a mixed solvent of methyl and methyl propionate (3: 3: 4). Further, the amount of gas generated by the graphite in the electrolytic solution was measured. Table 2 also shows the measurement results of the charge / discharge characteristics and the gas generation amount. Comparative Example 3 Lumpy artificial graphite (center particle diameter D50 = 7.5 μm, particle size distribution 0.1 to 1
50 μm, d002 = 0.336 nm, Lc = 100 nm, La = 97 nm, specific surface area =
Using 10.8 m 2 / g, R value = 0.26, and true specific gravity of 2.25 g / cm 3 ), a negative electrode was produced, and a solid electrolyte lithium secondary battery was produced. Table 2 also shows the measurement results of the charge and discharge characteristics and the gas generation amount. Comparative Example 4 Spherical mesocarbon microbead graphitized product (“MCMB-6-28” manufactured by Osaka Gas Co., Ltd., central particle size D50 = 6.0 μm, particle size distribution 0.1-50 μm, d002 = 0.336 nm, Lc = 50 nm, La = 90 nm, specific surface area = 3.0 m 2 / g, R value = 0.42, true specific gravity 2.20 g / cm 3 ) to prepare a negative electrode as it is, and use 1 moldm -3 LiClO 3 as an electrolyte.
A non-aqueous secondary battery was fabricated using a mixed solvent of ethylene carbonate, diethyl carbonate, and methyl propionate (3: 3: 4) in which 4 was dissolved. Table 2 shows the measurement results of the charge and discharge characteristics. Comparative Example 5 Lumpy artificial graphite (center particle diameter D50 = 7.5 μm, particle size distribution 0.1 to 1
50 μm, d002 = 0.336 nm, Lc = 100 nm, La = 97 nm, specific surface area =
10.8 m 2 / g, R value = 0.26, true specific gravity 2.25 g / cm 3 ) 50 g and primary
100 g of coal tar pitch (quinoline insoluble trace, toluene insoluble 30%) with a softening point of 80 ° C after removal of QI
The resulting mixture was stirred and mixed at 200 ° C. and normal pressure for 2 hours to obtain a coarse pitch-coated graphite. In a nitrogen atmosphere, the obtained crude pitch-coated graphite is not washed with an organic solvent.
It was baked at 1000 ° C for 1 hour (heating rate 25 ° C / hr) and carbonized.
After firing, when the sample was taken out, the artificial graphite powder was in a lump. The obtained lump of carbon material was pulverized with a coffee mill to obtain a powdery carbon material. Table 1 shows the specific surface area, true specific gravity, R value, and volume-based integrated value of particles having a particle size of 1 μm or less of the obtained carbon material. The R value was small, and as a result of SEM observation, it was found that the carbon material obtained by the production method of the present invention had a shape with more corners, but this was crushed, and the graphite surface was This is probably due to the new exposure.

【0156】この炭素材料を使用して、負極を作製し、
電解液として1moldm-3のLiClO4を溶解させたプロピレン
カーボネートを用いて、非水系二次電池を作製した。そ
の充放電特性測定結果を表2に示す。
Using this carbon material, a negative electrode was fabricated.
A non-aqueous secondary battery was manufactured using propylene carbonate in which 1 moldm- 3 of LiClO 4 was dissolved as an electrolytic solution. Table 2 shows the measurement results of the charge / discharge characteristics.

【0157】[0157]

【表1】 [Table 1]

【0158】[0158]

【表2】 [Table 2]

【0159】[0159]

【表3】 [Table 3]

【0160】表1から明かな様に、黒鉛の表面をピッチ
或いはタールで被覆することにより、その比表面積を低
減することができる。また、被覆された黒鉛を焼成する
ことにより、比表面積は、さらに低減する。
As is clear from Table 1, the specific surface area can be reduced by coating the surface of graphite with pitch or tar. In addition, by firing the coated graphite, the specific surface area is further reduced.

【0161】表2から明かな様に、黒鉛の表面をピッチ
或いはタールで被覆することにより、非水系リチウム二
次電池の放電容量および充放電効率が、大幅に改善され
る。また、黒鉛の表面をピッチで被覆することにより、
電解液との反応が抑制され、ガス発生量も低減する。さ
らに、MCMB黒鉛化品の表面をピッチで被覆することによ
り、電池の放電容量および充放電特性をより一層改善す
ることができる。
As is clear from Table 2, by covering the surface of graphite with pitch or tar, the discharge capacity and charge / discharge efficiency of the non-aqueous lithium secondary battery are greatly improved. Also, by coating the surface of graphite with pitch,
The reaction with the electrolytic solution is suppressed, and the amount of gas generated is also reduced. Furthermore, by covering the surface of the graphitized MCMB with a pitch, the discharge capacity and charge / discharge characteristics of the battery can be further improved.

【0162】表3から明らかなように、黒鉛の表面をピ
ッチ或いはタールで被覆することにより、固体電解質リ
チウム二次電池においても、放電容量および充放電効率
が大幅に改善される。
As is clear from Table 3, by coating the surface of graphite with pitch or tar, the discharge capacity and charge / discharge efficiency of the solid electrolyte lithium secondary battery are significantly improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 勝浦 将光 大阪府大阪市此花区酉島6−3−4−506 (72)発明者 松好 弘明 大阪府東大阪市金岡2−14−2 (72)発明者 西村 直人 奈良県北葛城郡新庄町薑192−1 (72)発明者 佃 至弘 大阪府大阪市阿倍野区王子町4−1−9− 306 (72)発明者 湊 和明 大阪府大阪市城東区鴫野西5−1−2− 1308 (72)発明者 見立 武仁 奈良県大和高田市野口65−4 (72)発明者 山田 和夫 奈良県北葛城郡新庄町疋田500−4 (72)発明者 米田 哲也 三重県名張市つつじが丘北9番地17番地 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masamitsu Katsuura 6-3-4-506 Torishima, Konohana-ku, Osaka-shi, Osaka (72) Inventor Hiroaki Matsuyoshi 2-14-2, Kanaoka, Higashi-Osaka-shi, Osaka (72 ) Inventor Naoto Nishimura 192-1 Ginga, Shinjo-cho, Kitakatsuragi-gun, Nara Prefecture 5-1-2, 1308, Shigino-nishi, Joto-ku (72) Inventor Takehito Mitate 65-4, Noguchi 65-4, Yamatotakada-shi, Nara Prefecture Tetsuya Yoneda 9-17, Azumigaoka North, Nabari City, Mie Prefecture

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】芯材炭素材料を、被覆形成用炭素材料に浸
漬した後、分離された芯材炭素材料に有機溶媒を加え、
洗浄し、乾燥し、焼成することを特徴とする表面に被覆
層を有する被覆炭素材料の製造方法。
1. After immersing a core carbon material in a carbon material for forming a coating, an organic solvent is added to the separated core carbon material,
A method for producing a coated carbon material having a coating layer on a surface, comprising washing, drying, and firing.
【請求項2】芯材炭素材料を、被覆形成用炭素材料に、
10〜300℃で浸漬した後、分離された芯材炭素材料
に有機溶媒を加え、洗浄し、乾燥し、焼成することを特
徴とする表面に被覆層を有する炭素材料の製造方法。
2. The core carbon material is used as a carbon material for coating formation.
A method for producing a carbon material having a coating layer on its surface, characterized by adding an organic solvent to the separated core carbon material after immersion at 10 to 300 ° C., washing, drying and firing.
【請求項3】分離された芯材炭素材料に有機溶媒を加
え、10〜300℃で洗浄する請求項1または2に記載の被
覆炭素材料の製造方法。
3. The method for producing a coated carbon material according to claim 1, wherein an organic solvent is added to the separated core material carbon material, followed by washing at 10 to 300 ° C.
【請求項4】芯材炭素材料を減圧下に被覆形成用炭素材
料に浸漬する請求項1〜3のいずれかに記載の被覆炭素
材料の製造方法。
4. The method for producing a coated carbon material according to claim 1, wherein the core carbon material is immersed in the carbon material for forming a coating under reduced pressure.
【請求項5】被覆形成用炭素材料が、石炭系および/ま
たは石油系重質油である請求項1〜4のいずれかに記載
の被覆炭素材料の製造方法。
5. The method for producing a coated carbon material according to claim 1, wherein the carbon material for forming a coating is a coal-based and / or petroleum-based heavy oil.
【請求項6】被覆形成用炭素材料が、タールおよび/ま
たはピッチである請求項1〜5のいずれかに記載の被覆
炭素材料の製造方法。
6. The method for producing a coated carbon material according to claim 1, wherein the carbon material for forming a coating is tar and / or pitch.
【請求項7】洗浄に用いる有機溶媒が、トルエン、キノ
リン、アセトン、ヘキサン、ベンゼン、キシレン、メチ
ルナフタレン、アルコール類、石炭系油および石油系油
から選択される少なくとも1種である請求項1〜6のい
ずれかに記載の被覆炭素材料の製造方法。
7. The organic solvent used for washing is at least one selected from toluene, quinoline, acetone, hexane, benzene, xylene, methylnaphthalene, alcohols, coal oil and petroleum oil. 7. The method for producing a coated carbon material according to any one of 6.
【請求項8】洗浄時の固形分と有機溶剤との割合が、重
量比で1:0.1〜10の範囲である請求項1〜7のいずれか
に記載の被覆炭素材料の製造方法。
8. The method for producing a coated carbon material according to claim 1, wherein the ratio between the solid content and the organic solvent at the time of washing is in the range of 1: 0.1 to 10 by weight.
【請求項9】被覆形成用炭素材料/(芯材+被覆形成用
炭素材料)の重量比として定義される被覆比(c)が、
0<c≦0.3である請求項1〜8のいずれかに記載の被覆
炭素材料の製造方法。
9. A coating ratio (c) defined as a weight ratio of the coating-forming carbon material / (core material + coating-forming carbon material) is as follows:
The method for producing a coated carbon material according to claim 1, wherein 0 <c ≦ 0.3.
【請求項10】被覆形成用炭素材料が、予め一次QIの
少なくとも一部を除去して、一次QIを3%以下にしたも
のである請求項1〜9のいずれかに記載の被覆炭素材料
の製造方法。
10. The coated carbon material according to any one of claims 1 to 9, wherein the coating-forming carbon material is obtained by removing at least a part of the primary QI in advance to reduce the primary QI to 3% or less. Production method.
JP11086529A 1995-11-14 1999-03-29 Method for producing negative electrode material for lithium secondary battery Expired - Fee Related JP2976300B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11086529A JP2976300B1 (en) 1995-11-14 1999-03-29 Method for producing negative electrode material for lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-295462 1995-11-14
JP29546295 1995-11-14
JP11086529A JP2976300B1 (en) 1995-11-14 1999-03-29 Method for producing negative electrode material for lithium secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1997518742 Division 1996-11-14

Publications (2)

Publication Number Publication Date
JP2976300B1 JP2976300B1 (en) 1999-11-10
JPH11343108A true JPH11343108A (en) 1999-12-14

Family

ID=26427634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11086529A Expired - Fee Related JP2976300B1 (en) 1995-11-14 1999-03-29 Method for producing negative electrode material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2976300B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111341A (en) * 1997-09-30 1999-04-23 Sony Corp Gel electrolyte secondary battery
JP2001332263A (en) * 2000-03-16 2001-11-30 Sony Corp Secondary battery and manufacturing method for negative electrode material of carbon
JP2004511422A (en) * 2000-10-25 2004-04-15 ハイドロ−ケベック Graphite particles with a potato shape and a small amount of impurities on the surface, and a method for producing the same
WO2005043653A1 (en) * 2003-10-31 2005-05-12 Showa Denko K.K. Carbon material for battery electrode and production method and use thereof
JP2008140707A (en) * 2006-12-04 2008-06-19 Kansai Coke & Chem Co Ltd Negative electrode material for lithium ion secondary battery, and its manufacturing method
US7816037B2 (en) 2002-01-25 2010-10-19 Toyo Tanso Co., Ltd. Anode material for lithium ion secondary battery
JP2013191302A (en) * 2012-03-12 2013-09-26 Toyota Motor Corp Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPWO2012026067A1 (en) * 2010-08-25 2013-10-28 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
JP2014099419A (en) * 2000-03-16 2014-05-29 Sony Corp Negative electrode and secondary battery
WO2022265040A1 (en) * 2021-06-18 2022-12-22 Eneos株式会社 Method for producing artificial graphite material for lithium ion secondary battery negative electrodes, artificial graphite material for lithium ion secondary battery negative electrodes, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111341A (en) * 1997-09-30 1999-04-23 Sony Corp Gel electrolyte secondary battery
JP2014099419A (en) * 2000-03-16 2014-05-29 Sony Corp Negative electrode and secondary battery
JP2001332263A (en) * 2000-03-16 2001-11-30 Sony Corp Secondary battery and manufacturing method for negative electrode material of carbon
JP2004511422A (en) * 2000-10-25 2004-04-15 ハイドロ−ケベック Graphite particles with a potato shape and a small amount of impurities on the surface, and a method for producing the same
US9312537B2 (en) 2000-10-25 2016-04-12 Hydro-Quebec Potato-shaped graphite particles with low impurity rate at the surface, method for preparing the same
US9184437B2 (en) 2000-10-25 2015-11-10 Hydro-Quebec Potato-shaped graphite particles with low impurity rate at the surface, method for preparing the same
JP2009184915A (en) * 2000-10-25 2009-08-20 Hydro Quebec Potato-shaped graphite particle with low impurity rate at the surface, and method for preparing same
US9412999B2 (en) 2000-10-25 2016-08-09 Hydro-Quebec Potato-shaped graphite particles with low impurity rate at the surface, method for preparing the same
US9508983B2 (en) 2000-10-25 2016-11-29 Hydro-Quebec Potatolike shaped graphite particles with low impurity rate at the surface, process for preparing same
US9444092B2 (en) 2000-10-25 2016-09-13 Hydro-Quebec Potato-shaped graphite particles with low impurity rate at the surface, method for preparing the same
JP2014028753A (en) * 2000-10-25 2014-02-13 Hydro Quebec Potato-shaped graphite particle with low impurity rate at surface, and method for preparing the same
US7816037B2 (en) 2002-01-25 2010-10-19 Toyo Tanso Co., Ltd. Anode material for lithium ion secondary battery
WO2005043653A1 (en) * 2003-10-31 2005-05-12 Showa Denko K.K. Carbon material for battery electrode and production method and use thereof
JP4579892B2 (en) * 2006-12-04 2010-11-10 関西熱化学株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same
JP2008140707A (en) * 2006-12-04 2008-06-19 Kansai Coke & Chem Co Ltd Negative electrode material for lithium ion secondary battery, and its manufacturing method
JP5584299B2 (en) * 2010-08-25 2014-09-03 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
JPWO2012026067A1 (en) * 2010-08-25 2013-10-28 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
JP2013191302A (en) * 2012-03-12 2013-09-26 Toyota Motor Corp Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2022265040A1 (en) * 2021-06-18 2022-12-22 Eneos株式会社 Method for producing artificial graphite material for lithium ion secondary battery negative electrodes, artificial graphite material for lithium ion secondary battery negative electrodes, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2976300B1 (en) 1999-11-10

Similar Documents

Publication Publication Date Title
CA2238286C (en) Material for negative electrode of lithium secondary battery, method for production thereof and lithium secondary battery using the same
JP3803866B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
EP1683219B1 (en) Carbon material for battery electrode and production method and use thereof
JP4040381B2 (en) Composite graphite particles, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2976299B2 (en) Anode material for lithium secondary battery
JP5082207B2 (en) Method for producing negative electrode material for lithium secondary battery, and negative electrode for lithium secondary battery and lithium secondary battery using the same
WO2012086826A1 (en) Anode material for lithium ion rechargeable battery, anode for lithium ion rechargeable battery, and lithium ion rechargeable battery
EP3319154A1 (en) Negative electrode material for lithium-ion batteries and use therefor
JP6535467B2 (en) Graphite powder for lithium ion secondary battery negative electrode active material
WO2012017677A1 (en) Anode active material for lithium secondary battery
US20040151837A1 (en) Material for negative electrode of lithium secondary battery, method for production thereof and lithium secondary battery using the same
JP2003173778A (en) Complex graphite material and its manufacturing method, as well as anode material for lithium ion secondary battery and lithium ion secondary battery
JP5671110B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4045438B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
JP2022552486A (en) Negative Electrode Material, Production Method Thereof, Use Thereof, and Lithium Ion Battery
JP2019175851A (en) Negative electrode active material for lithium ion secondary batteries and manufacturing method therefor
JP2000182617A (en) Carbon material for lithium secondary battery electrode and its manufacture, and lithium secondary battery
JP4171259B2 (en) Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP4933092B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2976300B1 (en) Method for producing negative electrode material for lithium secondary battery
JP4123313B2 (en) Carbon material for negative electrode, method for producing the same, and lithium secondary battery using the same
JP2000003708A (en) Coated carbon material, manufacture thereof and lithium secondary battery using the material
JP4354723B2 (en) Method for producing graphite particles
JP5551883B2 (en) Method for producing mesophase microspheres and carbon material, and lithium ion secondary battery
JP2003176115A (en) Method of manufacturing graphite powder, graphite powder and lithium ion secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees