JP7246194B2 - 医用画像処理装置、医用画像処理方法、およびプログラム - Google Patents

医用画像処理装置、医用画像処理方法、およびプログラム Download PDF

Info

Publication number
JP7246194B2
JP7246194B2 JP2019012168A JP2019012168A JP7246194B2 JP 7246194 B2 JP7246194 B2 JP 7246194B2 JP 2019012168 A JP2019012168 A JP 2019012168A JP 2019012168 A JP2019012168 A JP 2019012168A JP 7246194 B2 JP7246194 B2 JP 7246194B2
Authority
JP
Japan
Prior art keywords
denoising
image
medical image
function
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019012168A
Other languages
English (en)
Other versions
JP2020119429A (ja
Inventor
裕市 山下
和人 中林
仁 金澤
和也 岡本
博司 高井
伸行 小沼
健輔 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Canon Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Medical Systems Corp filed Critical Canon Medical Systems Corp
Priority to JP2019012168A priority Critical patent/JP7246194B2/ja
Publication of JP2020119429A publication Critical patent/JP2020119429A/ja
Application granted granted Critical
Publication of JP7246194B2 publication Critical patent/JP7246194B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Image Processing (AREA)

Description

本発明の実施形態は、医用画像処理装置、医用画像処理方法、およびプログラムに関する。
従来、画像診断等に利用される医用装置において、画質の向上を目的とした様々な研究が進められている。例えば、ノイズ成分を含む画像に対してデノイズ処理を行うことでノイズ成分が除去或いは抑制された画像を得る技術が知られている。
画像にノイズ成分が局所的に残留すると、このノイズ成分は構造物に見えてしまう恐れがあるため、ノイズ成分が残留しない程度にノイズ除去の度合いを設定する必要がある。しかしながら、ノイズ除去の度合いを過度に増大させると画像がぼけてしまう場合があった。
米国特許出願公開第2004/0258325号明細書
本発明が解決しようとする課題は、デノイズ処理の精度を高めることである。
実施形態の医用画像処理装置は、設定部と、デノイズ画像生成部と、差分画像生成部と、決定部とを備える。前記設定部は、医用画像からノイズ成分を除去する度合い示す複数のデノイズ強度を設定する。前記デノイズ画像生成部は、前記設定部によって設定された複数の前記デノイズ強度の各々に基づいて、前記医用画像からノイズ成分を除去し、複数のデノイズ画像を生成する。前記差分画像生成部は、前記医用画像と、前記デノイズ画像生成部によって生成された複数の前記デノイズ画像の各々との差分である複数の差分画像を生成する。前記決定部は、前記差分画像生成部によって生成された複数の前記差分画像に基づいて、前記デノイズ強度の最適値を決定する。
第1の実施形態に係る医用画像処理装置200を含む医用画像処理システム1の構成の一例を示す図。 第1の実施形態に係る医用画像生成装置100の一例を示す図。 第1の実施形態に係る医用画像生成装置100に備えられる受信コイル108の配置の一例を示す図。 第1の実施形態に係る医用画像処理装置200の一例を示す図。 第1の実施形態に係るデノイズモデルMDL1の構成の一例を示す図。 第1の実施形態に係るアクティベーション層330の活性化関数の一例を示す図。 第1の実施形態に係る原画像からデノイズ画像を生成する構成の一例を示す図。 第1の実施形態に係る差分画像を生成する構成の一例を示す図。 第1の実施形態に係る差分画像と制御関数との関係の一例を示す図。 第1の実施形態に係る制御関数と差分画像の歪度との関係の一例を示す図。 第1の実施形態に係る処理回路210の学習処理の一連の流れを示すフローチャート。 第1の実施形態に係る処理回路210の画像処理の一連の流れを示すフローチャート。 第2の実施形態に係る処理回路210の画像処理の一連の流れを示すフローチャート。 第2の実施形態に係る差分画像の信号値のヒストグラムの一例を示す図。 第2の実施形態に係る差分画像の信号値のヒストグラムの一例を示す図。 第2の実施形態に係る差分画像の信号値のヒストグラムの一例を示す図。 第2の実施形態に係る差分画像の信号値のヒストグラムの一例を示す図。 第1及び第2の実施形態の変形例に係る医用画像生成装置100を示す図。
以下、図面を参照しながら、医用画像処理装置、医用画像処理方法、およびプログラムの実施形態について詳細に説明する。
(第1の実施形態)
図1は、第1の実施形態に係る医用画像処理装置200を含む医用画像処理システム1の構成の一例を示す図である。図1に示すように、医用画像処理システム1は、例えば、医用画像生成装置100と、医用画像処理装置200とを備える。医用画像生成装置100と医用画像処理装置200とは、ネットワークNWを介して互いに接続される。ネットワークNWは、例えば、WAN(Wide Area Network)やLAN(Local Area Network)、インターネット、専用回線、無線基地局、プロバイダなどを含む。
医用画像生成装置100は、例えば、MRI(Magnetic Resonance Imaging)装置や、CT(Computed Tomography)装置などを含む。MRI装置は、例えば、被検体(例えば人体)に磁場を与えて、核磁気共鳴現象によって被検体内の水素原子核から発生する電磁波を、コイルを利用して受信し、その受信した電磁波に基づく信号を再構成することで医用画像(MR画像)を生成する。CT装置は、例えば、被検体の周囲を回転するX線管から被検体にX線を照射すると共に、その被検体を通過したX線を検出し、検出したX線に基づく信号を再構成することで医用画像(CT画像)を生成する。以下の説明では、一例として医用画像生成装置100がMRI装置であるものとして説明する。
医用画像処理装置200は、一つまたは複数のプロセッサにより実現される。例えば、医用画像処理装置200は、クラウドコンピューティングシステムに含まれるコンピュータであってもよいし、他の機器に依存せずに単独で動作するコンピュータ(スタンドアローンのコンピュータ)であってもよい。
[医用画像生成装置(MRI装置)の構成例]
図2は、第1の実施形態に係る医用画像生成装置100の一例を示す図である。図2に示すように、医用画像生成装置100は、例えば、静磁場磁石101と、傾斜磁場コイル102と、傾斜磁場電源103と、寝台104と、寝台制御回路105と、送信コイル106と、送信回路107と、受信コイル108と、受信回路109と、シーケンス制御回路110と、コンソール装置120とを備える。
静磁場磁石101は、中空の略円筒形状に形成された磁石である。静磁場磁石101は、内部の空間に一様な静磁場を発生させる。静磁場磁石101は、例えば、永久磁石や超伝導磁石などである。傾斜磁場コイル102は、中空の略円筒形状に形成されたコイルであり、静磁場磁石101の内側に配置される。傾斜磁場コイル102は、互いに直交するx,y,zの各軸に対応する3つのコイルが組み合わされて形成される。z軸方向は、寝台104の天板104aの長手方向を表し、x軸方向は、z軸方向に直交し、医用画像生成装置100が設置される部屋の床面に対して平行である軸方向を表し、y軸方向は、床面に対して垂直方向である軸方向を表している。各軸方向に対応した3つのコイルは、傾斜磁場電源103から個別に電流を受けて、x,y,zの各軸に沿って磁場強度が変化する傾斜磁場を発生させる。なお、z軸方向は、静磁場と同方向とする。
傾斜磁場電源103は、傾斜磁場コイル102に電流を供給する。ここで、傾斜磁場コイル102によって発生するx,y,zの各軸の傾斜磁場は、例えば、スライス選択用傾斜磁場Gs、位相エンコード用傾斜磁場Ge、およびリードアウト用傾斜磁場Grにそれぞれ対応する。スライス選択用傾斜磁場Gsは、任意に撮像断面を決めるために利用される。位相エンコード用傾斜磁場Geは、空間的位置に応じて磁気共鳴信号の位相を変化させるために利用される。リードアウト用傾斜磁場Grは、空間的位置に応じて磁気共鳴信号の周波数を変化させるために利用される。
寝台104は、被検体OBが載置される天板104aを備える。寝台104は、寝台制御回路105による制御のもと、天板104aを、被検体OBが載置された状態で撮像口内へ挿入する。通常、寝台104は、長手方向が静磁場磁石101の中心軸と平行になるように設置される。寝台制御回路105は、コンソール装置120による制御のもと、寝台104を駆動して天板104aを長手方向および上下方向へ移動する。
送信コイル106は、傾斜磁場コイル102の内側に配置される。送信コイル106は、送信回路107からRF(Radio Frequency)パルスの供給を受けて、高周波磁場を発生する。送信回路107は、対象とする原子核の種類および磁場の強度で決まるラーモア周波数に対応するRFパルスを送信コイル106に供給する。
受信コイル108は、傾斜磁場コイル102の内側に配置される。受信コイル108は、高周波磁場の影響によって被検体OBから発せられる磁気共鳴信号を受信する。磁気共鳴信号には、例えば、信号強度成分と位相成分が含まれる。受信コイル108は、磁気共鳴信号を受信すると、受信した磁気共鳴信号を受信回路109へ出力する。なお、第1の実施形態において、受信コイル108は、複数の受信コイルを有するコイルアレイである。以下、コイルアレイを構成する各コイルを、コイルエレメントと称して説明する。また、送信コイル106と受信コイル108とを分けて説明したが、例えば一つのRF(Radio Frequency)コイルが送信と受信とを兼ね備えた構成であってもよい。さらに、送信コイル106と受信コイル108とは、静磁場磁石101を含む架台に収められる全身コイルの形態や、被検体OBの体表面近傍に配置される局所コイルの形態をとることができ、本実施例においてその形態は問わない。
図3は、第1の実施形態に係る医用画像生成装置100に備えられる受信コイル108の配置の一例を示す図である。図3では、受信コイル108が、8つのコイルエレメント108a~108hを備える例を示す。これらのコイルエレメント108a~108hは、被検体OBを取り囲むように配置される。各コイルエレメント108a~108hは、被検体OBから発せられた磁気共鳴信号を受信し、受信回路109へ出力する。
受信回路109は、コイルエレメント108a~108hにより出力される磁気共鳴信号ごとに磁気共鳴データを生成する。例えば、受信回路109は、コイルエレメント108a~108hにより出力されるアナログ信号である磁気共鳴信号の各々をアナログ・デジタル変換することによって、デジタル信号である磁気共鳴データの組を生成する。また、受信回路109は、生成した磁気共鳴データの組をシーケンス制御回路110へ送信する。なお、受信回路109は、静磁場磁石101や傾斜磁場コイル102などを備える架台装置側に備えられていてもよい。
シーケンス制御回路110は、コンソール装置120により出力されるシーケンス情報に基づいて、傾斜磁場電源103、送信回路107および受信回路109を駆動することによって、被検体OBを撮像する。シーケンス情報は、撮像処理を行うための手順を定義した情報である。シーケンス情報には、傾斜磁場電源103が傾斜磁場コイル102に供給する電流の強さや電流を供給するタイミング、送信回路107が送信コイル106に送信するRFパルスの強さやRFパルスを印加するタイミング、受信回路109が磁気共鳴信号を検出するタイミングなどが定義された情報が含まれる。
なお、シーケンス制御回路110は、傾斜磁場電源103、送信回路107および受信回路109を駆動して被検体OBを撮像し、受信回路109から磁気共鳴データを受信すると、受信した磁気共鳴データをコンソール装置120へ転送する。
コンソール装置120は、医用画像生成装置100の全体を制御したり、磁気共鳴データを収集したりする。例えば、コンソール装置120は、通信インターフェース122と、入力インターフェース124と、ディスプレイ126と、処理回路130と、メモリ(ストレージ)150とを備える。
通信インターフェース122は、例えば、NIC(Network Interface Card)などの通信インターフェースを含む。通信インターフェース122は、ネットワークNWを介して医用画像処理装置200と通信し、医用画像処理装置200との間で情報を送受信する。通信インターフェース122は、受信した情報を処理回路130に出力する。また、通信インターフェース122は、処理回路130による制御を受けて、ネットワークNWを介して接続された他の装置に情報を送信してもよい。
入力インターフェース124は、操作者から各種の入力操作を受け付けるインターフェースである。入力インターフェース124は、入力操作を受け付けると、その受け付けた入力操作を電気信号に変換して処理回路130に出力する。例えば、入力インターフェース124は、マウスやキーボード、トラックボール、スイッチ、ボタン、ジョイスティック、タッチパネルなどにより実現される。また、入力インターフェース124は、例えば、マイクなどの音声入力を受け付けるユーザインターフェースによって実現されてもよい。入力インターフェース124がタッチパネルである場合、後述するディスプレイ126は入力インターフェース124と一体として形成されてよい。
ディスプレイ126は、各種の情報を表示する。例えば、ディスプレイ126は、処理回路130によって生成された画像を表示したり、操作者からの各種の入力操作を受け付けるためのGUI(Graphical User Interface)などを表示したりする。例えば、ディスプレイ126は、LCD(Liquid Crystal Display)や、CRT(Cathode Ray Tube)ディスプレイ、有機EL(Electroluminescence)ディスプレイなどである。
処理回路130は、例えば、取得機能132と、生成機能134と、通信制御機能136と、表示制御機能138とを備える。これらの機能(構成要素)は、例えば、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)などのプロセッサ(あるいはプロセッサ回路)が、メモリ150に記憶されたプログラム(ソフトウェア)を実行することにより実現される。また、処理回路130の機能の一部または全部は、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)などのハードウェア(回路部:circuitry)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。また、上記のプログラムは、予めメモリ150に格納されていてもよいし、DVDやCD-ROMなどの着脱可能な記憶媒体に格納されており、記憶媒体がコンソール装置120のドライブ装置に装着されることで記憶媒体からメモリ150にインストールされてもよい。
メモリ150は、例えば、RAM(Random Access Memory)、フラッシュメモリなどの半導体メモリ素子、ハードディスク、光ディスクなどによって実現される。これらの非一過性の記憶媒体は、NAS(Network Attached Storage)や外部ストレージサーバ装置といったネットワークNWを介して接続される他の記憶装置によって実現されてもよい。また、これらの非一過性の記憶媒体は、ROM(Read Only Memory)やレジスタなどの記憶装置によって実現されてもよい。
取得機能132は、シーケンス制御回路110から磁気共鳴データを取得する。磁気共鳴データは、上述したように、核磁気共鳴現象によって被検体OB内において発生した電磁波の信号(磁気共鳴信号)をアナログ・デジタル変換することで得られるデータである。なお、磁気共鳴データを上述した傾斜磁場により付与された位相エンコード量や周波数エンコード量に従って配列させたデータは、k空間データとも称される。k空間とは、磁気共鳴信号が1次元の波形として受信コイル108により繰り返し収集される際に、その1次元の波形が収集される周波数空間を表している。
生成機能134は、取得機能132によって取得されたk空間データに対してフーリエ変換(例えば、逆フーリエ変換)などの処理を含む再構成処理を行うことで、k空間データから再構成された医用画像であるMR画像(以下、原画像)を生成する。生成機能134は、コイルエレメント108a~108hにより出力される磁気共鳴信号ごとの磁気共鳴データに対してフーリエ変換(例えば、逆フーリエ変換)などの処理を含む再構成処理を行うことで、原画像を生成する。生成機能134は、例えば、平方二乗和(SOS)法などの合成アルゴリズムを用いて原画像を生成する。医用画像生成装置100がパラレルイメージングにより原画像の再構成を行う装置である場合、生成機能134は、再構成処理において画像の折り返しを展開する処理などを行ってよい。
通信制御機能136は、生成機能134により原画像が再構成により生成されると、通信インターフェース122に医用画像処理装置200と通信させ、その通信相手の医用画像処理装置200に、再構成された原画像を送信する。また、通信制御機能136は、通信インターフェース122に医用画像処理装置200と通信させ、その通信相手の医用画像処理装置200から各種情報を受信させてよい。
表示制御機能138は、医用画像処理装置200から受信した医用画像を、ディスプレイ126に表示させる。また、表示制御機能138は、生成機能134により生成された原画像をディスプレイ126に表示させてもよい。
[医用画像処理装置の構成例]
図4は、第1の実施形態に係る医用画像処理装置200の一例を示す図である。医用画像処理装置200は、医用画像生成装置100から受信した原画像に対して、デノイズ処理を行うことでノイズを除去或いは軽減された画像(以下、デノイズ画像)を生成する。また、医用画像処理装置200は、上述のデノイズ処理におけるノイズ除去の度合い(以下、デノイズ強度)の最適値を決定する機能を有する。以下においては、ノイズを除去或いは軽減することを、単にノイズを除去すると記載する。図4に示すように、医用画像処理装置200は、例えば、通信インターフェース202と、入力インターフェース204と、ディスプレイ206と、処理回路210と、メモリ230とを備える。
通信インターフェース202は、例えば、NICなどの通信インターフェースを含む。例えば、通信インターフェース202は、ネットワークNWを介して医用画像生成装置100と通信し、医用画像生成装置100から、再構成された原画像を受信する。通信インターフェース202は、受信した原画像を処理回路210に出力する。また、通信インターフェース202は、処理回路210による制御を受けて、ネットワークNWを介して接続された医用画像生成装置100やその他の装置に情報を送信してもよい。他の装置とは、例えば、医師や看護師などの画像の読影者が利用可能な端末装置であってよい。
入力インターフェース204は、操作者からの各種の入力操作を受け付け、受け付けた入力操作を電気信号に変換して処理回路210に出力する。例えば、入力インターフェース204は、マウスやキーボード、トラックボール、スイッチ、ボタン、ジョイスティック、タッチパネルなどにより実現される。また、入力インターフェース204は、例えば、マイクなどの音声入力を受け付けるユーザインターフェースによって実現されてもよい。入力インターフェース204がタッチパネルである場合、後述するディスプレイ206は入力インターフェース204と一体として形成されてよい。
ディスプレイ206は、各種の情報を表示する。例えば、ディスプレイ206は、処理回路210によって生成されたデノイズ画像を表示したり、操作者からの各種の入力操作を受け付けるためのGUIなどを表示したりする。例えば、ディスプレイ206は、LCDや、CRTディスプレイ、有機ELディスプレイなどである。
処理回路210は、例えば、取得機能212と、導出機能214と、パラメータ調整機能216と、デノイズ機能218と、差分画像生成機能220と、デノイズ強度決定機能222と、出力制御機能224と、学習機能226とを実行する。導出機能214は、「導出部」の一例であり、パラメータ調整機能216は、「設定部」の一例であり、デノイズ機能218は、「デノイズ画像生成部」の一例であり、差分画像生成機能220は、「差分画像生成部」の一例であり、デノイズ強度決定機能222は、「決定部」の一例である。
これらの機能(構成要素)は、例えば、CPUやGPUなどのプロセッサ(あるいはプロセッサ回路)が、メモリ230に記憶されたプログラム(ソフトウェア)を実行することにより実現される。また、これらの複数の機能のうち一部または全部は、LSI、ASIC、FPGAなどのハードウェア(回路部:circuitry)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。また、上記のプログラムは、予めメモリ230に格納されていてもよいし、DVDやCD-ROMなどの着脱可能な記憶媒体に格納されており、記憶媒体が医用画像処理装置200のドライブ装置に装着されることで記憶媒体からメモリ230にインストールされてもよい。
メモリ230は、例えば、RAM、フラッシュメモリなどの半導体メモリ素子、ハードディスク、光ディスクなどにより実現される。これらの非一過性の記憶媒体は、NASや外部ストレージサーバ装置といったネットワークNWを介して接続される他の記憶装置によって実現されてもよい。また、これらの非一過性の記憶媒体は、ROMやレジスタなどの記憶装置によって実現されてもよい。メモリ230には、例えば、デノイズモデル情報232、原画像の情報(以下、原画像情報234)、デノイズ画像の情報(以下、デノイズ画像情報236)、後述する差分画像の情報(以下、差分画像情報238)などが格納される。
デノイズモデル情報232は、後述するデノイズモデルMDL1を定義した情報(プログラムまたはデータ構造)である。デノイズモデルMDL1は、ある画像が入力されたときに該画像からノイズが除去された画像を出力するように学習されたモデルである。デノイズモデルMDL1は、例えば、一つ以上のDNN(Deep Neural Network(s))を含む。
デノイズモデル情報232には、例えば、デノイズモデルMDL1に含まれる各DNNを構成する入力層、一以上の隠れ層(中間層)、出力層の各々に含まれるニューロン(ユニットあるいはノード)が互いにどのように結合されるのかという結合情報や、結合されたニューロン間で入出力されるデータに付与される結合係数がいくつであるのかという重み情報などが含まれる。結合情報は、例えば、各層に含まれるニューロン数や、各ニューロンの結合先のニューロンの種類を指定する情報、各ニューロンを実現する活性化関数、隠れ層のニューロン間に設けられたゲートなどの情報を含む。ニューロンを実現する活性化関数は、例えば、入力符号に応じて動作を切り替える関数(ReLU(Rectified Linear Unit)関数やELU(Exponential Linear Units)関数、クリッピング関数)であってもよいし、シグモイド関数や、ステップ関数、ハイパポリックタンジェント関数であってもよいし、恒等関数であってもよい。ゲートは、例えば、活性化関数によって返される値(例えば1または0)に応じて、ニューロン間で伝達されるデータを選択的に通過させたり、重み付けたりする。結合係数は、活性化関数のパラメータであり、例えば、ニューラルネットワークの隠れ層において、ある層のニューロンから、より深い層のニューロンにデータが出力される際に、出力データに対して付与される重みを含む。また、結合係数は、各層の固有のバイアス成分などを含んでもよい。
例えば、デノイズモデルMDL1は、CNN(Convolutional Neural Network)によって実現されてよい。CNNは、畳み込み層や、アクティベーション層などが多層に構成されていてよい。
図5は、デノイズモデルMDL1の構成の一例を示す図である。図5に示すように、デノイズモデルMDL1には、例えば、入力層310と、一以上の畳み込み層320と、一以上のアクティベーション層330と、出力層340とが含まれてよい。
例えば、原画像を、各画素に対応した要素をもつ行列とした場合、入力層310には、原画像に対応した行列が入力される。入力層310は、入力された行列に対して適時バイアス成分を加えるなどして、後段の畳み込み層320に出力する。
畳み込み層320は、入力された行列に対して、フィルタまたはカーネルと呼ばれる線形変換行列を、ある決められたストライド量でスライドさせながら積和演算を繰り返し、入力された行列から、線形変換行列との積和が要素値として対応付けられた複数の要素を含む行列を生成する。この際、畳み込み層320は、入力された行列の周囲に任意の値の要素を補間するパディング(例えばゼロパティング)を行って、畳み込み層320に入力された行列を、入力層310に入力される原画像の行列と行数および列数が同じ行列に変換してよい。そして、畳み込み層320は、生成した行列をアクティベーション層330に出力する。
アクティベーション層330は、畳み込み層320から入力された行列の各要素に対して活性化関数の計算処理を行い、その計算処理を行った行列を、後段のレイヤに出力する。
図6は、アクティベーション層330の活性化関数の一例を表す図である。図6に示すように、アクティベーション層330の活性化関数は、Soft‐Shrinkage関数であってよい。Soft‐Shrinkage関数は、例えば、以下の数式(1)によって表される。なお、アクティベーション層330の活性化関数は、Soft‐Shrinkage関数に代えて、Hard‐Shrinkage関数であってもよい。
Figure 0007246194000001
Soft‐Shrinkage関数あるいはHard‐Shrinkage関数は、入力値である要素値xが、ゼロを中心にした所定の正負の閾値±Tの範囲内である場合、ゼロを出力し、入力値である要素値xが、閾値Tを超える、あるいは閾値T未満である場合、その要素値xに比例する値を出力する関数である。アクティベーション層330の活性化関数に、Soft‐Shrinkage関数やHard‐Shrinkage関数を適用することで、振幅が閾値Tよりも小さな画像信号、すなわち、ノイズである蓋然性が高い微弱な画像信号を、活性化関数の出力においてゼロとすることができる。
閾値Tは、入力画像に含まれるノイズのレベル(信号強度あるいは信号電力)に応じて変動するパラメータであり、例えば、以下の数式(2)によって表される。
Figure 0007246194000002
数式(2)のGは、入力画像に含まれるノイズのレベルを表すものであり、閾値Tの値を制御する信号(以下、制御信号)である。入力画像に含まれるノイズのレベルが大きいほど、制御信号Gは大きくなり、入力画像に含まれるノイズのレベルが小さいほど、制御信号Gは小さくなる。入力画像に含まれるノイズのレベルは、入力画像の信号対雑音比(SNR:Signal-Noise Ratio)の大きさによって決定されてよい。
数式(2)のαは、ノイズレベルに乗算される重み係数である。重み係数αは、機械学習によって決定される。数式(2)に示すように閾値Tを変動させることで、アクティベーション層330の活性化関数を、ある一定の強度以上の信号に対して反応する活性化関数とすることができる。この結果、原画像に含まれるノイズの信号強度がばらついていても原画像からノイズを精度よく除去することができる。
出力層340は、前段の畳み込み層320およびアクティベーション層330によって処理された行列を出力する。
なお、図5に例示したデノイズモデルMDL1はあくまでも一例であり、例えば、プーリング層などが含まれていてもよい。プーリング層は、入力された行列の要素値を、その行列に含まれる全要素値の平均値や最大値といった代表値に置き換えることで、行列の次元数を圧縮する(減らす)。プーリング層は、次元数を圧縮した行列を後段のレイヤに出力する。
取得機能212は、通信インターフェース202に医用画像生成装置100と通信させ、その通信相手の医用画像生成装置100から再構成された原画像を取得する。取得機能212は、取得した原画像を、原画像情報234としてメモリ230に記憶させる。
導出機能214は、取得機能212によって取得された原画像に基づいて、原画像に含まれるノイズに関する指標値を導出する。例えば、導出機能214は、ノイズに関する指標値として、SNRを導出する。SNRは、画像の信号強度を、ノイズの信号強度で除算した指標値である。SNRの導出方法の詳細について後述する。導出機能214は、原画像の信号強度、ノイズの大きさ、正規化処理時の利得など、SNRに関連するデータを導出してもよい。導出機能214は、原画像の付帯情報に基づいて、原画像に含まれるノイズに関する指標値を導出してもよい。
パラメータ調整機能216は、導出機能214によって導出されたSNRに基づいて、デノイズモデルMDL1の内部パラメータである制御関数Gを調整する。すなわち、パラメータ調整機能216は、導出機能214により導出された指標値であるSNRに基づいて、制御関数Gを調整する。パラメータ調整機能216は、信号対雑音比が小さくなるほど制御関数Gを高く設定し、信号対雑音比が大きくなるほど制御関数Gを低く設定する。
ここで、パラメータ調整機能216は、パラメータの調整をより正確に行うために、導出機能214によって導出されたSNRに基づいて、複数の制御関数Gを設定する。例えば、パラメータ調整機能216は、導出機能214によって導出されたSNRの大きさに基づいて、大まかな制御関数Gの範囲を設定し、設定した制御関数Gの範囲に含まれる複数の制御関数Gを設定する。パラメータ調整機能216は、アクティベーション層330の少なくとも1つのノードに対して設定した複数の制御関数Gを入力する。
デノイズ機能218は、デノイズモデル情報232が示すデノイズモデルMDL1を利用して、取得機能212によって取得された原画像からノイズを除去したデノイズ画像を生成する。デノイズ機能218は、デノイズモデルMDL1の出力層340により出力された行列を、原画像からノイズを除去したデノイズ画像として取得する。デノイズ機能218は、生成したデノイズ画像を、デノイズ画像情報236としてメモリ230に記憶させる。
図7は、第1の実施形態に係る原画像からデノイズ画像を生成する構成の一例を示す図である。デノイズ画像を生成する場合、デノイズ機能218は、パラメータ調整機能216により調整されたパラメータに基づいて、デノイズモデルMDL1に設定される内部パラメータの値を調整することができる。すなわち、デノイズ機能218は、原画像のSNRに基づいて調整された複数の制御関数Gにより、原画像のデノイズ強度を可変とすることができる。
図7では、パラメータ調整機能216により設定された4つの制御関数G1~G4に基づくデノイズ処理(すなわち、4つのデノイズ強度でのデノイズ処理)が行われ、4つのデノイズ画像B1~B4がそれぞれ生成される例を示している。ここで、制御関数G1~G4は、G1<G2<G3<G4とする。すなわち、制御関数G1からG4に向かって、デノイズ強度が大きくなるものとする。
図7に示すように、デノイズ機能218は、原画像Aに対して、制御関数G1のデノイズ処理を行うことで、デノイズ画像B1を生成する。デノイズ機能218は、原画像Aに対して、制御関数G2のデノイズ処理を行うことで、デノイズ画像B2を生成する。デノイズ機能218は、原画像Aに対して、制御関数G3のデノイズ処理を行うことで、デノイズ画像B3を生成する。デノイズ機能218は、原画像Aに対して、制御関数G4のデノイズ処理を行うことで、デノイズ画像B4を生成する。このように、デノイズ機能218は、パラメータ調整機能216によって設定された複数のデノイズ強度の各々に基づいて、原画像Aからノイズ成分を除去し、複数のデノイズ画像を生成する。
なお、デノイズモデルMDL1は、例えば、プロセッサがデノイズモデルMDL1を実行することによって、デノイズモデルMDL1がデノイズ機能218の一部として実現されてよい。また、デノイズ機能218は、ニューラルネットワークを用いたものに限られない。デノイズ機能218は、例えば、ロジスティック回帰分析、決定木分析、サポートベクターマシンに基づく技術などの任意の機械学習により生成されたモデルを用いてノイズを除去または軽減するものであってよい。また、デノイズ機能218は、原画像に対するウェーブレット変換によりノイズを除去または軽減するものであってよい。
差分画像生成機能220は、取得機能212によって取得された原画像と、デノイズ機能218によって生成されたデノイズ画像とに基づいて、両者の差分である画像(以下、差分画像)を生成する。例えば、差分画像生成機能220は、画素ごとの信号成分に関して、原画像からデノイズ画像を減算することで、差分画像を生成する。差分画像生成機能220は、生成した差分画像を、差分画像情報238としてメモリ230に記憶させる。
図8は、第1の実施形態に係る差分画像を生成する構成の一例を示す図である。図8に示すように、デノイズ機能218によって4つのデノイズ画像B1~B4が生成されている場合、差分画像生成機能220は、原画像Aから、デノイズ画像B1を減算することで差分画像C1を生成する。差分画像生成機能220は、原画像Aから、デノイズ画像B2を減算することで差分画像C2を生成する。差分画像生成機能220は、原画像Aから、デノイズ画像B3を減算することで差分画像C3を生成する。差分画像生成機能220は、原画像Aから、デノイズ画像B4を減算することで差分画像C4を生成する。
基本的に、デノイズ処理では、制御関数Gが大きくなるにつれて(デノイズ強度が高くなるにつれて)、より多くのノイズ成分が除去されるようになる。しかしながら、デノイズ強度が高くなりすぎると、本来除去すべきではない撮像対象の構造物の成分(以下、構造物成分)が除去されてしまうことになる。図9は、第1の実施形態に係る制御関数と差分画像との関係を示す図である。ここで、仮に、制御関数G2と、制御関数G3との間に、最適な制御関数(最適なデノイズ強度)が存在する場合を考える。最適な制御関数とは、構造物成分が除去されることなくノイズ成分を最大限除去することができる制御関数をいう。
図9に示すように、原画像Aと、最適値OPよりも小さい制御関数G1(OP>G1)でのデノイズ処理により得られたデノイズ画像B1との差分画像C1は、ノイズ成分のみを含む。また、原画像Aと、最適値OPよりも小さい制御関数G2(OP>G2>G1)でのデノイズ処理により得られたデノイズ画像B2との差分画像C2は、ノイズ成分のみを含む。この差分画像C2のノイズ成分は、差分画像C1のノイズ成分よりも多くなる。
また、図9に示すように、原画像Aと、最適値OPよりも大きい制御関数G3(G3>OP)でのデノイズ処理により得られたデノイズ画像B3との差分画像C3は、ノイズ成分に加えて本来含まれるべきではない構造物成分を含む。また、原画像Aと、最適値OPよりも大きい制御関数G4(G4>G3)でのデノイズ処理により得られたデノイズ画像B4との差分画像C4は、ノイズ成分に加えて本来含まれるべきではない構造物成分を含む。この差分画像C4の構造物成分は、差分画像C3の構造物成分よりも多くなる。以上のように、差分画像生成機能220は、原画像と、複数のデノイズ画像の各々との差分である複数の差分画像を生成する。
デノイズ強度決定機能222は、差分画像生成機能220によって生成された差分画像に基づいて、デノイズ強度(例えば、制御関数)の最適値OPを決定する。例えば、デノイズ強度決定機能222は、差分画像ごとに、ノイズの分布との相関がある指標値を求める。例えば、画像全面の画素ごとの輝度値に関して、歪度(Skewness)を算出し、差分画像間で比較することで制御関数の最適値OPを決定する。
図10は、第1の実施形態に係る制御関数と差分画像の歪度との関係を示す図である。デノイズモデルMDL1を利用したデノイズ処理においては、基本的に、ガウス分布に従うノイズ成分を除去している。このため、最適値OP付近においては、画像全面にわたってこのガウス分布に従うノイズ成分が適切に除去された結果、差分画像の歪度が0に近づくことが想定される。すなわち、最適値OP付近では、差分画像の歪度は小さくなる傾向がある。そこで、例えば、デノイズ強度決定機能222は、複数の差分画像の各々の歪度を相互に比較し、最も歪度が小さい差分画像の生成に利用された制御関数の値を、最適値OPとして決定する。
以上のように、デノイズ強度決定機能222は、複数の差分画像の各々のノイズの分布との相関がある指標値を相互に比較することで、デノイズ強度の最適値を決定する。
なお、デノイズ強度決定機能222は、複数の差分画像間の差分(例えば、差分画像C1と差分画像C2との差分、差分画像C1と差分画像C3との差分など)を取り、その差分の画像のノイズの分布との相関がある指標値に基づいて、制御関数の最適値OPを決定してもよい。例えば、デノイズ強度決定機能222は、複数の差分画像間の差分を取り、その差分の画像の輝度値の標準偏差が最小になる制御関数の組の平均値を、制御関数の最適値OPと決定する。このように最適値OPを決定する理由は、標準偏差が小さいことは、変化が少ないことを示しており、デノイズモデルMDL1を利用したデノイズ処理におけるノイズ成分の除去の効果が飽和した状態(すなわち、ノイズ成分が最大限除去された状態)を示すことが想定されるためである。なお、デノイズ強度決定機能222は、全てのデノイズ画像間の差分を取る必要はなく、制御関数が近いデノイズ画像間の差分のみを取るようにしてもよい。ノイズの分布との相関がある指標値としては、上記の歪度や標準偏差以外にも、ピークカウントやクルトシス、平均も、ノイズの分布との相関があると判断できる場合には採用して良い。
出力制御機能224は、デノイズ強度決定機能222により最適値OPが決定されると、通信インターフェース202に医用画像生成装置100と通信させ、その通信相手の医用画像生成装置100に、原画像に対して最適値OPでのデノイズ処理を行うことにより得られたデノイズ画像を送信する。また、出力制御機能224は、デノイズ画像をディスプレイ206に表示させてもよい。
学習機能226は、デノイズモデルMDL1に対して、ある学習データとする画像(以下、学習画像)を入力し、デノイズモデルMDL1によって出力されたデノイズ画像が、教師データとする画像(以下、教師画像)に近づくようにデノイズモデルMDL1を学習する。例えば、教師画像は、サンプリング周波数を大きくするなどしてSNRを高くした画像であってよい。学習画像は、教師画像に既知のノイズを加えた画像であってよい。既知のノイズは、例えば、ガウシアンノイズであってよい。
例えば、学習機能226は、デノイズモデルMDL1によって出力されたデノイズ画像と、教師画像との差分が小さくなるように、畳み込み層320の線形変換行列の要素値や、アクティベーション層330の各ノードの活性化関数の重み係数αといった種々のパラメータを、SGD(Stochastic Gradient Descent)、Momentum SGD、AdaGrad、RMSprop、AdaDelta、Adam(Adaptive moment estimation)などの勾配法を利用して学習する。学習処理の詳細については後述する。
[処理フロー(学習処理)]
以下、第1の実施形態における処理回路210の処理フローについて説明する。処理回路210の処理には、デノイズモデルMDL1を学習する学習処理と、学習済みのデノイズモデルMDL1を使用してノイズを除去する処理を行う画像処理とが含まれる。以下においては、まず、処理回路210の学習処理について説明する。図11は、第1の実施形態における処理回路210の学習処理の一連の流れを示すフローチャートである。本フローチャートの処理は、例えば、医用画像処理装置200の操作者が、入力インターフェース204を操作して学習処理の開始を指示した場合に行われる。
まず、学習機能226は、デノイズモデルMDL1に対する制御信号G、アクティベーション層330の各ノードの活性化関数の重み係数αなどの各種パラメータを初期値に設定する(ステップS100)。例えば、制御信号Gおよび重み係数αを1に設定する。
次に、学習機能226は、学習画像をデノイズモデルMDL1に入力し、その処理結果を得る(ステップS102)。学習画像は、例えば、ノイズを含まない画像またはSNRが高い画像である教師画像に対して、既知のノイズを付加した画像である。学習画像は、例えば、このノイズと教師画像の画素値とを加算することで得られる。
例えば、学習機能226は、デノイズモデルMDL1の入力層の各入力端に、学習画像の各画素の画素値を入力する。この画素値は、デノイズモデルMDL1の中間層の各ノードを、重み付き加算、バイアス加算、及び活性化関数処理の演算により、入力層から出力層に向かって、値を変化させながら伝搬していく。そして、出力層の出力端に、デノイズモデルMDL1による処理を受けた画像(以下、処理結果画像)の画素値が処理結果として出力される。
次に、学習機能226は、処理結果画像と教師画像との間の誤差である訓練誤差を算出する(ステップS104)。訓練誤差は、例えば、処理結果画像と教師画像の各画素の平均二乗誤差、各画素の二乗誤差の総和などである。
次に、学習機能226は、例えば、誤差逆伝播法を用いて、算出した訓練誤差が小さくなるようにデノイズモデルMDL1の内部パラメータを更新する(ステップS106)。次に、学習機能226は、例えば、教師画像とは別途準備されたノイズを含まない画像またはSNRが高い画像である正解画像と、この正解画像にノイズを加えた検証画像とを用いて、検証画像をデノイズモデルMDL1に入力した場合の処理結果画像と、正解画像との間の誤差である汎化誤差を算出する(ステップS108)。次に、学習機能226は、汎化誤差が極小値に達したか否かを判定する(ステップS110)。
学習機能226は、汎化誤差が極小値に達していないと判定した場合、再度、ステップS102以降の処理を繰り返す。一方、学習機能226は、汎化誤差が極小値に達していると判定した場合、学習後のデノイズモデルMDL1の内部パラメータをメモリ230に保存する(ステップS112)。以上により、本フローチャートの処理が終了する。
[処理フロー(画像処理)]
次に、処理回路210の画像処理について説明する。図12は、第1の実施形態における処理回路210の画像処理の一連の流れを示すフローチャートである。本フローチャートの処理は、例えば、医用画像生成装置100により送信された原画像が取得機能212によって取得された場合に行われる。
まず、導出機能214は、取得機能212によって取得された原画像のSNRを導出する(ステップS200)。例えば、導出機能214は、取得機能212によって取得された原画像に関して、傾斜磁場コイル102が傾斜磁場を発生させた状態で、送信コイル106にRFパルスを供給し、その送信コイル106から高周波磁場が出力されたときに得られた原画像(以下、RFパルスあり原画像と称する)と、傾斜磁場コイル102が傾斜磁場を発生させた状態で、送信コイル106にRFパルスを供給せず、その送信コイル106から高周波磁場が出力されなかったときに得られた原画像(以下、RFパルスなし原画像と称する)との画素値の差分に基づいて、SNRを導出する。
また、導出機能214は、取得機能212によって取得された原画像に関して、同じ被検体OBに向けて高周波磁場が出力されたときに得られた2つ以上のRFパルスあり原画像の画素値の差分に基づいて、原画像のSNRを導出してもよい。この際、導出機能214は、中心スライスに近い2つのRFパルスあり原画像の画素値の差分に基づいて、原画像のSNRを導出してよい。例えば、本スキャンがスキャンを10回繰り返すシーケンスである場合、中心スライスとは、5回目または6回目のスキャンによって得られる原画像である。
このように、被検体OBが同じであるという条件の下、複数回にわたってスキャンを行って得られた2つの原画像の差分をとることによって、磁気共鳴信号成分を互いにキャンセルし、受信系の熱雑音に起因したランダムノイズ成分を基にしてSNRを求めることができる。
次に、パラメータ調整機能216は、原画像に関して、導出機能214により導出されたSNRに基づいて、複数の制御関数Gを設定する(ステップS202)。例えば、パラメータ調整機能216は、導出機能214によって導出されたSNRの大きさに基づいて、制御関数Gの範囲を設定し、設定した制御関数Gの範囲における複数の制御関数Gを設定する。
次に、デノイズ機能218は、パラメータ調整機能216により設定された制御関数Gごとの閾値Tが内部パラメータとして設定されたデノイズモデルMDL1を利用し、原画像に対してデノイズ処理を行い、複数のデノイズ画像を生成する(ステップS204)。
次に、差分画像生成機能220は、取得機能212によって取得された原画像と、デノイズ機能218によって生成された複数のデノイズ画像とに基づいて、複数の差分画像を生成する(ステップS206)。例えば、差分画像生成機能220は、画素ごとの信号成分に関して、原画像からデノイズ画像を減算することで、差分画像を生成する。
次に、デノイズ強度決定機能222は、差分画像ごとに、ノイズの分布との相関がある指標値を算出する(ステップS208)。
次に、デノイズ強度決定機能222は、算出した差分画像の各々の指標値に基づいて、制御関数の最適値を決定する(ステップS210)。
次に、デノイズ機能218は、デノイズ強度決定機能222によって決定された制御関数の最適値OPに基づく内部パラメータとして設定されたデノイズモデルMDL1を利用し、原画像に対してデノイズ処理を行って最適値に基づくデノイズ画像を生成する(ステップS212)。なお、デノイズ画像を生成せずに、ステップS204において生成されたデノイズ画像のうち、決定された最適値OPに最も近い制御関数でのデノイズ処理によって生成されたデノイズ画像を最適値に基づくデノイズ画像としてもよい。
次に、出力制御機能224は、通信インターフェース202を制御して、最適値に基づくデノイズ画像を医用画像生成装置100に送信する(ステップS214)。この際、出力制御機能224は、ディスプレイ206にデノイズ画像を表示させてもよい。医用画像生成装置100の通信インターフェース122が医用画像処理装置200からデノイズ画像を受信した場合、医用画像生成装置100の表示制御機能138は、デノイズ画像をディスプレイ126に表示させてよい。また、出力制御機能224は、通信インターフェース202を制御して、画像の読影者が利用可能な端末装置にデノイズ画像を送信してもよい。
以上説明した第1の実施形態によれば、差分画像から求まるノイズの分布との相関がある指標値に基づいてデノイズ強度の最適値を決定し、決定したデノイズ強度の最適値でのデノイズ処理を行うことで、構造物成分が除去されることなくノイズ成分を最大限除去することができる。これにより、画像のノイズ分布が不均一である場合においても、デノイズ処理の精度を高めることができる。
(第2の実施形態)
以下、第2の実施形態について説明する。上述した第1の実施形態では、医用画像処理装置200のデノイズ強度決定機能222が差分画像から求まるノイズの分布との相関がある指標値に基づいてデノイズ強度の最適値OPを決定する構成を説明した。これに対して、本実施形態のデノイズ強度決定機能222は、差分画像の画素ごとの信号値のヒストグラムに基づいてデノイズ強度の最適値OPを決定する。このため、構成などについては第1の実施形態で説明した図および関連する記載を援用し、詳細な説明を省略する。
[処理フロー(画像処理)]
次に、処理回路210の画像処理について説明する。図13は、第2の実施形態における処理回路210の画像処理の一連の流れを示すフローチャートである。本フローチャートの処理は、例えば、医用画像生成装置100により送信された原画像が取得機能212によって取得された場合に行われる。
まず、導出機能214は、取得機能212によって取得された原画像のSNRを導出する(ステップS300)。次に、パラメータ調整機能216は、導出機能214により導出されたSNRに基づいて、複数の制御関数Gを設定する(ステップS302)。例えば、パラメータ調整機能216は、導出機能214によって導出されたSNRの大きさに基づいて、制御関数Gの範囲を設定し、設定した制御関数Gの範囲に含まれる複数の制御関数Gを設定する。
次に、デノイズ機能218は、パラメータ調整機能216により設定された制御関数Gごとに閾値Tが内部パラメータとして設定されたデノイズモデルMDL1を利用し、原画像に対してデノイズ処理を行い、複数のデノイズ画像を生成する(ステップS304)。
次に、差分画像生成機能220は、取得機能212によって取得された原画像と、デノイズ機能218によって生成された複数のデノイズ画像とに基づいて、複数の差分画像を生成する(ステップS306)。例えば、差分画像生成機能220は、画素ごとの信号成分に関して、原画像からデノイズ画像を減算することで、差分画像を生成する。
次に、デノイズ強度決定機能222は、差分画像ごとに、画像全面の信号値のヒストグラムを生成する(ステップS308)。例えば、デノイズ強度決定機能222は、差分画像ごとに、画素ごとの輝度値のヒストグラムを生成する。
次に、デノイズ強度決定機能222は、算出した差分画像の各々の信号値のヒストグラムに基づいて、デノイズ強度の最適値を決定する(ステップS310)。例えば、デノイズ強度決定機能222は、差分画像ごとに、ノイズの分布との相関がある指標値を求める。図14~図17は、差分画像C1~C4の各々の画素ごとの輝度値を示す信号値のヒストグラムを示す図である。例えば、デノイズ強度決定機能222は、差分画像C1~C4の各々のヒストグラムに関して、ある範囲内の信号値(例えば、信号値0を中心とする所定の範囲の信号値)の歪度を算出し、差分画像間で比較することでデノイズ強度(例えば、制御関数)の最適値OPを決定する。すなわち、第1実施形態では差分画像における画素ごとの輝度値に関して歪度を算出している(画素ごとの輝度値を個別に評価している)のに対して、第2実施形態では差分画像における画素ごとの輝度値のヒストグラムを生成し、このヒストグラムにおいて歪度を算出する(ある範囲内の輝度値をまとめて評価している)。例えば、デノイズ強度決定機能222は、複数の差分画像の各々の歪度を相互に比較し、最も歪度が小さい差分画像の生成に利用された制御関数の値を、最適値OPとして決定する。
また、図16及び17に示すように、差分画像C3及びC4においては、構造部成分に起因する頻度上昇がみられる部分P1及びP2が発生する。デノイズ強度決定機能222は、このような構造部成分に起因する頻度上昇がみられる部分P1及びP2が発生していない差分画像と関連付けられたデノイズ強度のうち、最大のデノイズ強度(例えば、差分画像C2と関連付けられたデノイズ強度)を、デノイズ強度の最適値OPと決定してよい。
次に、デノイズ機能218は、デノイズ強度決定機能222によって決定されたデノイズ強度の最適値OPに基づく内部パラメータが設定されたデノイズモデルMDL1を利用し、原画像に対してデノイズ処理を行い、最適値に基づくデノイズ画像を生成する(ステップS312)。
次に、出力制御機能224は、通信インターフェース202を制御して、最適値に基づくデノイズ画像を医用画像生成装置100に送信する(ステップS314)。この際、出力制御機能224は、ディスプレイ206にデノイズ画像を表示させてもよい。医用画像生成装置100の通信インターフェース122が医用画像処理装置200からデノイズ画像を受信した場合、医用画像生成装置100の表示制御機能138は、デノイズ画像をディスプレイ126に表示させてよい。
以上説明した第2の実施形態によれば、差分画像の各々のヒストグラムに基づいてデノイズ強度の最適値を決定し、決定したデノイズ強度の最適値でのデノイズ処理を行うことで、構造物成分が除去されることなくノイズ成分を最大限除去することができる。これにより、デノイズ処理の精度を高めることができる。
(第1及び第2の実施形態の変形例)
以下、第1及び第2の実施形態の変形例について説明する。上述した第1及び第2の実施形態では、医用画像生成装置100と医用画像処理装置200とが互いに異なる装置であるものとして説明したがこれに限られない。例えば、医用画像処理装置200は、医用画像生成装置100のコンソール装置120の一機能によって実現されてもよい。すなわち、医用画像処理装置200は、医用画像生成装置100のコンソール装置120によって仮想的に実現される仮想マシンであってもよい。この場合、医用画像生成装置100は、「医用画像処理装置」の一例である。
図18は、第1及び第2の実施形態の変形例に係る医用画像生成装置100を示す図である。図18に示すように、コンソール装置120の処理回路130は、上述した取得機能132と、生成機能134と、通信制御機能136と、表示制御機能138と、に加えて、導出機能214と、パラメータ調整機能216と、デノイズ機能218と、差分画像生成機能220と、デノイズ強度決定機能222と、学習機能226とを実行してよい。また、コンソール装置120のメモリ150には、デノイズモデル情報232と、原画像情報234と、デノイズ画像情報236と、差分画像情報238と、が格納されてよい。
以上説明した第1及び第2の実施形態の変形例によれば、医用画像生成装置100単体で、デノイズ処理の精度を高めることができる。
上記説明したいずれかの実施形態は、以下のように表現することができる。
プログラムを格納するストレージと、
プロセッサと、を備え、
前記プロセッサは、前記プログラムを実行することにより、
医用画像からノイズ成分を除去する度合い示す複数のデノイズ強度を設定し、
設定された複数の前記デノイズ強度の各々に基づいて、前記医用画像からノイズ成分を除去し、複数のデノイズ画像を生成し、
前記医用画像と、生成された複数の前記デノイズ画像の各々との差分である複数の差分画像を生成し、
生成された複数の前記差分画像に基づいて、前記デノイズ強度の最適値を決定する、
医用画像処理装置。
以上説明した少なくともひとつの実施形態によれば、処理回路210が、医用画像からノイズ成分を除去する度合い示す複数のデノイズ強度を設定するパラメータ調整機能216と、パラメータ調整機能216によって設定された複数のデノイズ強度の各々に基づいて、医用画像からノイズ成分を除去し、複数のデノイズ画像を生成するデノイズ機能218と、医用画像と、デノイズ機能218によって生成された複数のデノイズ画像の各々との差分である複数の差分画像を生成する差分画像生成機能220と、差分画像生成機能220によって生成された複数の差分画像に基づいて、デノイズ強度の最適値を決定するデノイズ強度決定機能222と、を備えることで、デノイズ処理の精度を高めることができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1…医用画像処理システム、100…医用画像生成装置、101…静磁場磁石、102…傾斜磁場コイル、104…寝台、105…寝台制御回路、106…送信コイル、107…送信回路、108…受信コイル、108a~108h…コイルエレメント、109…受信回路、110…シーケンス制御回路、120…コンソール装置、200…医用画像処理装置、202…通信インターフェース、204…入力インターフェース、206…ディスプレイ、210…処理回路、212…取得機能、214…導出機能、216…パラメータ調整機能、218…デノイズ機能、220…差分画像生成機能、222…デノイズ強度決定機能、224…出力制御機能、226…学習機能、230…メモリ

Claims (10)

  1. 医用画像からノイズ成分を除去する度合い示す複数のデノイズ強度を設定する設定部と、
    前記設定部によって設定された複数の前記デノイズ強度の各々に基づいて、前記医用画像からノイズ成分を除去し、複数のデノイズ画像を生成するデノイズ画像生成部と、
    前記医用画像と、前記デノイズ画像生成部によって生成された複数の前記デノイズ画像の各々との差分である複数の差分画像を生成する差分画像生成部と、
    前記差分画像生成部によって生成された複数の前記差分画像に基づいて、前記デノイズ強度の最適値を決定する決定部と、
    を備え、
    前記デノイズ画像生成部は、画像が入力されたときに該画像からノイズ成分が除去された画像を出力するように学習されたモデルに基づいて、前記医用画像からノイズ成分を除去する、
    医用画像処理装置。
  2. 医用画像からノイズ成分を除去する度合い示す複数のデノイズ強度を設定する設定部と、
    前記設定部によって設定された複数の前記デノイズ強度の各々に基づいて、前記医用画像からノイズ成分を除去し、複数のデノイズ画像を生成するデノイズ画像生成部と、
    前記医用画像と、前記デノイズ画像生成部によって生成された複数の前記デノイズ画像の各々との差分である複数の差分画像を生成する差分画像生成部と、
    前記差分画像生成部によって生成された複数の前記差分画像に基づいて、前記デノイズ強度の最適値を決定する決定部と、
    を備え、
    前記医用画像に含まれるノイズ成分に関する指標値を導出する導出部をさらに備え、
    前記設定部は、前記導出部によって導出された前記指標値に基づいて、複数の前記デノイズ強度を設定する、
    医用画像処理装置。
  3. 前記決定部は、複数の前記差分画像の各々のノイズの分布との相関がある指標値を相互に比較することで、前記デノイズ強度の最適値を決定する、
    請求項1または2に記載の医用画像処理装置。
  4. 前記設定部は、前記モデルの内部パラメータを前記デノイズ強度として設定する、
    請求項1に記載の医用画像処理装置。
  5. 前記内部パラメータは、前記モデルに含まれる少なくとも1つのノードの活性化関数のパラメータである、
    請求項4に記載の医用画像処理装置。
  6. 前記導出部は、前記医用画像の信号対雑音比を前記指標値として導出する、
    請求項2に記載の医用画像処理装置。
  7. コンピュータが、
    医用画像からノイズ成分を除去する度合い示す複数のデノイズ強度を設定し、
    設定された複数の前記デノイズ強度の各々に基づいて、前記医用画像からノイズ成分を除去し、複数のデノイズ画像を生成し、
    前記医用画像と、生成された複数の前記デノイズ画像の各々との差分である複数の差分画像を生成し、
    生成された複数の前記差分画像に基づいて、前記デノイズ強度の最適値を決定する、
    医用画像処理方法であって、
    画像が入力されたときに該画像からノイズ成分が除去された画像を出力するように学習されたモデルに基づいて、前記医用画像からノイズ成分を除去する、
    医用画像処理方法
  8. コンピュータが、
    医用画像からノイズ成分を除去する度合い示す複数のデノイズ強度を設定し、
    設定された複数の前記デノイズ強度の各々に基づいて、前記医用画像からノイズ成分を除去し、複数のデノイズ画像を生成し、
    前記医用画像と、生成された複数の前記デノイズ画像の各々との差分である複数の差分画像を生成し、
    生成された複数の前記差分画像に基づいて、前記デノイズ強度の最適値を決定する、
    医用画像処理方法であって、
    前記医用画像に含まれるノイズ成分に関する指標値を導出し、
    導出された前記指標値に基づいて、複数の前記デノイズ強度を設定する、
    医用画像処理方法
  9. コンピュータに、
    医用画像からノイズ成分を除去する度合い示す複数のデノイズ強度を設定させ、
    設定された複数の前記デノイズ強度の各々に基づいて、前記医用画像からノイズ成分を除去し、複数のデノイズ画像を生成させ、
    前記医用画像と、生成された複数の前記デノイズ画像の各々との差分である複数の差分画像を生成させ、
    生成された複数の前記差分画像に基づいて、前記デノイズ強度の最適値を決定させる、
    プログラムであって、
    画像が入力されたときに該画像からノイズ成分が除去された画像を出力するように学習されたモデルに基づいて、前記医用画像からノイズ成分を除去させる、
    プログラム
  10. コンピュータに、
    医用画像からノイズ成分を除去する度合い示す複数のデノイズ強度を設定させ、
    設定された複数の前記デノイズ強度の各々に基づいて、前記医用画像からノイズ成分を除去し、複数のデノイズ画像を生成させ、
    前記医用画像と、生成された複数の前記デノイズ画像の各々との差分である複数の差分画像を生成させ、
    生成された複数の前記差分画像に基づいて、前記デノイズ強度の最適値を決定させる、
    プログラムであって、
    前記医用画像に含まれるノイズ成分に関する指標値を導出させ、
    導出された前記指標値に基づいて、複数の前記デノイズ強度を設定させる、
    プログラム。
JP2019012168A 2019-01-28 2019-01-28 医用画像処理装置、医用画像処理方法、およびプログラム Active JP7246194B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019012168A JP7246194B2 (ja) 2019-01-28 2019-01-28 医用画像処理装置、医用画像処理方法、およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019012168A JP7246194B2 (ja) 2019-01-28 2019-01-28 医用画像処理装置、医用画像処理方法、およびプログラム

Publications (2)

Publication Number Publication Date
JP2020119429A JP2020119429A (ja) 2020-08-06
JP7246194B2 true JP7246194B2 (ja) 2023-03-27

Family

ID=71890944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019012168A Active JP7246194B2 (ja) 2019-01-28 2019-01-28 医用画像処理装置、医用画像処理方法、およびプログラム

Country Status (1)

Country Link
JP (1) JP7246194B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6997263B1 (ja) 2020-07-10 2022-01-17 イビデン株式会社 熱伝達抑制シート及び組電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262470A (ja) 2009-05-07 2010-11-18 Nippon Telegr & Teleph Corp <Ntt> 画像処理装置、画像処理方法及びプログラム
JP2012174275A (ja) 2011-02-22 2012-09-10 Toshiba Corp 画像処理装置、画像処理方法、及び画像処理プログラム
JP2018206382A (ja) 2017-06-01 2018-12-27 株式会社東芝 画像処理システム及び医用情報処理システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262470A (ja) 2009-05-07 2010-11-18 Nippon Telegr & Teleph Corp <Ntt> 画像処理装置、画像処理方法及びプログラム
JP2012174275A (ja) 2011-02-22 2012-09-10 Toshiba Corp 画像処理装置、画像処理方法、及び画像処理プログラム
JP2018206382A (ja) 2017-06-01 2018-12-27 株式会社東芝 画像処理システム及び医用情報処理システム

Also Published As

Publication number Publication date
JP2020119429A (ja) 2020-08-06

Similar Documents

Publication Publication Date Title
CN111513716B (zh) 使用扩展灵敏度模型和深度神经网络进行磁共振图像重建的方法和系统
KR20210141550A (ko) 공간 주파수 데이터로부터 자기 공명 이미지를 생성하기 위한 딥 러닝 기법
US11341616B2 (en) Methods and system for selective removal of streak artifacts and noise from images using deep neural networks
JP5731373B2 (ja) 患者の安全性、及び走査性能の改良のためのリアルタイム性の局所的及び大域的なsar推定
JP2021532875A (ja) 磁気共鳴画像再構成のための深層学習技術
US11965948B2 (en) Medical information processing apparatus, medical information processing method, and storage medium
JP7346270B2 (ja) 医用情報処理装置、医用情報処理方法、およびプログラム
CN107656224B (zh) 一种磁共振成像方法、装置及系统
US11815581B2 (en) Medical information processing apparatus, magnetic resonance imaging apparatus, and medical information processing method
JP7300811B2 (ja) 医用情報処理装置、医用情報処理方法、およびプログラム
JP7246194B2 (ja) 医用画像処理装置、医用画像処理方法、およびプログラム
JP4975614B2 (ja) 磁気共鳴イメージング装置及び方法
CN114601445A (zh) 生成磁共振图像的方法和系统、计算机可读存储介质
JP2021518228A (ja) 磁気共鳴フィンガープリンティングを用いた異常検出
KR20190117234A (ko) 인공신경망을 이용한 자기 공명 영상의 영상 프로토콜 선택 장치와 방법 및 프로그램이 기록된 컴퓨터 판독 가능한 기록매체
JP7228386B2 (ja) 医用画像処理装置、磁気共鳴イメージング装置、および医用画像処理方法
JP2023004423A (ja) 医用画像処理装置、医用撮像装置、及び、医用画像におけるノイズ低減方法
JP7341913B2 (ja) 医用情報処理装置、磁気共鳴イメージング装置、および医用情報処理方法
JP7213099B2 (ja) 医用画像処理装置、磁気共鳴イメージング装置、医用画像処理方法、およびプログラム
KR101797141B1 (ko) 자기 공명 영상 처리 장치 및 그 영상 처리 방법
JP7186604B2 (ja) 医用画像処理装置、医用画像処理方法、およびプログラム
JP7221067B2 (ja) 医用画像処理装置、磁気共鳴イメージング装置、学習装置、医用画像処理方法、およびプログラム
US20230251338A1 (en) Computer-Implemented Method for Determining Magnetic Resonance Images Showing Different Contrasts, Magnetic Resonance Device, Computer Program and Electronically Readable Storage Medium
WO2023186609A1 (en) Deep learning based denoising of mr images
CN115363559A (zh) 基于深度学习的图像采集医学系统和方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230314

R150 Certificate of patent or registration of utility model

Ref document number: 7246194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150