JP7239428B2 - 水処理システム及び水処理方法 - Google Patents

水処理システム及び水処理方法 Download PDF

Info

Publication number
JP7239428B2
JP7239428B2 JP2019161359A JP2019161359A JP7239428B2 JP 7239428 B2 JP7239428 B2 JP 7239428B2 JP 2019161359 A JP2019161359 A JP 2019161359A JP 2019161359 A JP2019161359 A JP 2019161359A JP 7239428 B2 JP7239428 B2 JP 7239428B2
Authority
JP
Japan
Prior art keywords
membrane device
reverse osmosis
osmosis membrane
water
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019161359A
Other languages
English (en)
Other versions
JP2021037482A (ja
Inventor
勇規 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2019161359A priority Critical patent/JP7239428B2/ja
Priority to CN202080012978.3A priority patent/CN113396130B/zh
Priority to US17/603,613 priority patent/US20220212961A1/en
Priority to PCT/JP2020/029658 priority patent/WO2021044785A1/ja
Priority to TW109127856A priority patent/TW202112432A/zh
Publication of JP2021037482A publication Critical patent/JP2021037482A/ja
Application granted granted Critical
Publication of JP7239428B2 publication Critical patent/JP7239428B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/022Reject series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/025Permeate series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/04Elements in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/06Use of membrane modules of the same kind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/40Automatic control of cleaning processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/006Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

水処理システム及び水処理方法に関する。
逆浸透膜(RO膜)を用いた水処理において、被処理水中の溶存塩等がRO膜の濃縮水側表面に析出することによってRO膜を閉塞させるスケーリングが問題になる。スケーリングを抑制する技術として、被処理水にpH調整剤を添加したり、スケール発生を抑制するスケール分散剤を添加したりすることが広く知られている(例えば特許文献1参照)。
一方、RO膜表面に生じたスケールを、RO膜透過水を利用して洗浄する方法が知られている。例えば、特許文献2には、シリカスケールを抑制するために、RO膜の透過水側から透過水を流して逆洗を実施することが開示されている。また特許文献3には、膜モジュールの被処理水の流れ方向を定期または不定期に変更する方法が開示されている。さらに特許文献4には、多段に設置されたRO膜バンクを有するRO膜装置において、各段のRO膜バンクに濃縮側から透過水を通水して各段のRO膜バンク洗浄することが開示されている。
特開2005-169372号公報 特開平11-290849号公報 特開2004-261724号公報 特開2017-209654号公報
原水(被処理水)にpH調整剤やスケール分散剤を添加しても、薬品の注入不良や原水の性状の変動等によってRO膜表面へのスケーリングを十分に抑制できない場合がある。特許文献3及び4に記載されるように、RO膜装置の透過水のような低TDS(Total Dissolved Solids:総溶解固形物)水をRO膜に通水することにより、RO膜表面に生じたスケールを洗浄・除去することができる。しかし、当該特許文献に記載された方法は、洗浄のためにRO膜装置の通常運転を停止する必要がある。また、洗浄に供したRO膜透過水を系外に排出している。このため、上記特許文献記載の洗浄方法では、洗浄時に通常運転を停止する必要があり、また、洗浄に用いた透過水を系外に排出することを前提としており、RO膜装置の運転効率や回収率が低下してしまう。
そこで本発明は、水処理システムによる原水のRO膜処理を停止することなく、かつ洗浄に供した水を系外に排出することなく、RO膜表面に生じたスケールを洗浄・除去することができる水処理システム及び水処理方法を提供することを課題とする。
本発明の上記課題は、以下の手段によって解決された。
[1]
被処理水を処理する逆浸透膜装置Aと、
前記逆浸透膜装置Aの透過水を処理する逆浸透膜装置Eと、
前記逆浸透膜装置Aの濃縮水又は逆浸透膜装置Eの濃縮水を処理する逆浸透膜装置Bと、
前記逆浸透膜装置Bが前記逆浸透膜装置Aの濃縮水を処理しているときに前記逆浸透膜装置Eの濃縮水を処理し、前記逆浸透膜装置Bが前記逆浸透膜装置Eの濃縮水を処理しているときに前記逆浸透膜装置Aの濃縮水を処理する逆浸透膜装置Cと、
前記逆浸透膜装置Aの濃縮水側と前記逆浸透膜装置Bの供給側とをつなぐ濃縮水通水ラインABと、
前記逆浸透膜装置Aの濃縮水側と前記逆浸透膜装置Cの供給側とをつなぐ濃縮水通水ラインACと、
前記逆浸透膜装置Eの濃縮水側と前記逆浸透膜装置Bの供給側とをつなぐ濃縮水通水ラインEBと、
前記逆浸透膜装置Eの濃縮水側と前記逆浸透膜装置Cの供給側とをつなぐ濃縮水通水ラインECと、
前記逆浸透膜装置Bの濃縮水側及び透過水側と前記被処理水を貯液する原水タンクとをつなぐ原水戻しラインLF1と、
前記逆浸透膜装置Cの濃縮水側及び透過水側と前記被処理水を貯液する原水タンクとをつなぐ原水戻しラインLF2と、
前記逆浸透膜装置Bの透過水側と前記逆浸透膜装置Eの供給側とをつなぐ透過水戻しラインBEと、
前記逆浸透膜装置Cの透過水側と前記逆浸透膜装置Eの供給側とをつなぐ透過水戻しラインCEとを含み、
前記濃縮水通水ラインAB及び前記濃縮水通水ラインECに通水させる第1接続ラインと、前記濃縮水通水ラインAC及び前記濃縮水通水ラインEBに通水させる第2接続ラインとが切り替え可能であり、
前記第1接続ラインの使用時に前記透過水戻しラインBE及び前記原水戻しラインLF2に通水させる第3接続ラインと、前記第2接続ラインの使用時に前記原水戻しラインLF1及び前記透過水戻しラインCEに通水させる第4接続ラインとが、前記第1接続ラインと前記第2接続ラインとの切り替えに対応して切り替え可能である水処理システム。
[2]
被処理水を処理する逆浸透膜装置Aと、
前記逆浸透膜装置Aの透過水を処理する逆浸透膜装置Eと、
前記逆浸透膜装置Aの濃縮水又は逆浸透膜装置Eの濃縮水を処理する逆浸透膜装置Bと、
前記逆浸透膜装置Bが前記逆浸透膜装置Aの濃縮水を処理しているときに前記逆浸透膜装置Eの濃縮水を処理し、前記逆浸透膜装置Bが前記逆浸透膜装置Eの濃縮水を処理しているときに前記逆浸透膜装置Aの濃縮水を処理する逆浸透膜装置Cと、
前記逆浸透膜装置Aの濃縮水側と前記逆浸透膜装置Bの供給側とをつなぐ濃縮水通水ラインABと、
前記逆浸透膜装置Aの濃縮水側と前記逆浸透膜装置Cの供給側とをつなぐ濃縮水通水ラインACと、
前記逆浸透膜装置Eの濃縮水側と前記逆浸透膜装置Bの供給側とをつなぐ濃縮水通水ラインEBと、
前記逆浸透膜装置Eの濃縮水側と前記逆浸透膜装置Cの供給側とをつなぐ濃縮水通水ラインECと、
前記逆浸透膜装置Bの濃縮水側と前記被処理水を貯液する原水タンクとをつなぐ原水戻しラインLF3と、
前記逆浸透膜装置Cの濃縮水側と前記被処理水を貯液する原水タンクとをつなぐ原水戻しラインLF4と、
前記逆浸透膜装置Bの透過水側と前記逆浸透膜装置Eの供給側とをつなぐ透過水戻しラインBEと、
前記逆浸透膜装置Cの透過水側と前記逆浸透膜装置Eの供給側とをつなぐ透過水戻しラインCEとを含み、
前記濃縮水通水ラインAB及び前記濃縮水通水ラインECに通水させる第1接続ラインと、前記濃縮水通水ラインAC及び前記濃縮水通水ラインEBに通水させる第2接続ラインとが切り替え可能であり、
前記第1接続ラインの使用時に前記原水戻しラインLF4に通水させる第5接続ラインと、前記第2接続ラインの使用時に前記原水戻しラインLF3に通水させる第6接続ラインとが、前記第1接続ラインと前記第2接続ラインとの切り替えに対応して切り替え可能である水処理システム。
[3]
前記逆浸透膜装置B及び/又は前記逆浸透膜装置Cの供給水、濃縮水及び透過水のいずれか一つ以上について、圧力、導電率、イオン濃度、pH、及び透過水量のいずれか一つ以上を測定する測定部と、
前記測定部によって測定した値の経時変化及び/又は差分を算出する演算部と、
前記演算部によって算出した数値に基づいて、前記ラインの切り替えを制御する制御部とを有する[1]又は[2]に記載の水処理システム。
[4]
被処理水を処理する逆浸透膜装置Aと、
前記逆浸透膜装置Aの透過水を処理する逆浸透膜装置Eと、
前記逆浸透膜装置Aの濃縮水及び逆浸透膜装置Eの濃縮水を処理するX個の逆浸透膜装置Bと、
前記逆浸透膜装置Aの濃縮水側と前記のX個の逆浸透膜装置Bの供給側とをつなぐ濃縮水通水ラインABと、
前記逆浸透膜装置Eの濃縮水側と前記のX個の逆浸透膜装置Bの供給側とをつなぐ濃縮水通水ラインEBと、
前記X個の逆浸透膜装置Bの濃縮水側と前記被処理水を貯液する原水タンクとをつなぐ原水戻しラインLFと、
前記X個の逆浸透膜装置Bの透過水側と前記逆浸透膜装置Eの供給側とをつなぐ透過水戻しラインBEとを含み、
前記のX個の濃縮水通水ラインEBから選択される濃縮水通水ラインEBと、該濃縮水通水ラインEBが接続される逆浸透膜装置B以外の逆浸透膜装置Bの供給側に接続される前記濃縮水通水ラインABとに通水される、接続ラインIが、順次に切り替え可能であり、
前記逆浸透膜装置Aの濃縮水が供給される前記逆浸透膜装置Bに対しては、前記透過水戻しラインBEに通水させる接続ラインIIが選択され、
前記逆浸透膜装置Eの濃縮水が供給される前記逆浸透膜装置Bに対しては、前記原水戻しラインLFに通水させる接続ラインIIIが選択される水処理システム。
[5]
前記逆浸透膜装置Bの供給水、濃縮水及び透過水のいずれか一つ以上について、圧力、導電率、イオン濃度、pH、及び透過水量のいずれか一つ以上を測定する測定部と、
前記測定部によって測定した値の経時変化及び/又は差分を算出する演算部と、
前記演算部によって算出した数値に基づいて、前記ラインの切り替えを制御する制御部とを有する[4]に記載の水処理システム。
[6]
前記逆浸透膜装置Aの透過水及び/又は逆浸透膜装置Eの濃縮水に洗浄薬品を添加する薬品添加部を有し、
前記制御部は、前記算出した数値に基づいて、前記洗浄薬品の添加量を制御する機能も備える[3]又は[5]に記載の水処理システム。
[7]
下記の水処理(a1)により逆浸透膜装置Bの逆浸透膜表面に生じたスケールを、該水処理(a1)を下記の水処理(b1)へと切り替えることにより除去することを含む、水処理方法:
<水処理(a1)>
被処理水を逆浸透膜装置Aにより処理し、
前記逆浸透膜装置Aの濃縮水を逆浸透膜装置Bにより処理し、
前記逆浸透膜装置Aの透過水を逆浸透膜装置Eにより処理し、
前記逆浸透膜装置Eの濃縮水を逆浸透膜装置Cにより処理する;
<水処理(b1)>
被処理水を逆浸透膜装置Aにより処理し、
前記逆浸透膜装置Aの濃縮水を逆浸透膜装置Cにより処理し、
前記逆浸透膜装置Aの透過水を逆浸透膜装置Eにより処理し、
前記逆浸透膜装置Eの濃縮水を逆浸透膜装置Bにより処理する。
[8]
前記水処理(a1)及び(b1)を交互に繰り返す、[7]に記載の水処理方法。
[9]
下記水処理(a2)を含む水処理により逆浸透膜装置BX2の逆浸透膜表面に生じたスケールを、該水処理(a2)を下記水処理(b2)へと切り替えることにより除去することを含む、水処理方法:
<水処理(a2)>
被処理水を逆浸透膜装置Aにより処理し、
前記逆浸透膜装置Aの透過水を逆浸透膜装置Eにより処理し、
前記逆浸透膜装置Eの濃縮水を、X個の逆浸透膜装置Bから選択される逆浸透膜装置BX1により処理し、
前記逆浸透膜装置Aの濃縮水を、逆浸透膜装置BX1以外の逆浸透膜装置Bにより処理する;
<水処理(b2)>
被処理水を逆浸透膜装置Aにより処理し、
前記逆浸透膜装置Aの透過水を逆浸透膜装置Eにより処理し、
前記逆浸透膜装置Eの濃縮水を、X個の逆浸透膜装置Bから選択され、かつ逆浸透膜装置BX1とは異なる逆浸透膜装置BX2により処理し、
前記逆浸透膜装置Aの濃縮水を、逆浸透膜装置BX2以外の逆浸透膜装置Bにより処理する。
[10]
前記逆浸透膜装置Eの濃縮水が供給される逆浸透膜装置Bを順次に切り替えることにより、前記逆浸透膜装置Aの濃縮水の供給により該逆浸透膜装置Bの逆浸透膜表面に生じたスケールを、該逆浸透膜装置Eの濃縮水の通水により順次に除去する、[9]に記載の水処理方法。
本発明の水処理システム及び水処理方法によれば、原水のRO膜処理を停止することなく、かつ洗浄に供した水を系外に排出することなく、RO膜表面に生じたスケールを洗浄・除去することができる。これによって、効率的に水処理を行うことができる。
本発明に係る水処理システムの好ましい一実施形態(第1実施形態)を示した概略構成図である。 本発明に係る水処理システムの好ましい一実施形態(第2実施形態)を示した概略構成図である。 本発明に係る水処理システムの好ましい一実施形態(第3実施形態)を示した概略構成図である。 本発明に係る水処理システムの好ましい一実施形態(第4実施形態)を示した概略構成図である。
[水処理システム]
本発明に係る水処理システムの好ましい一実施形態(第1実施形態)を、図1を参照して説明する。
図1に示すように、水処理システム1(1A)は、被処理水を処理する逆浸透膜装置A、逆浸透膜装置Aの透過水を処理する逆浸透膜装置E、逆浸透膜装置Aの濃縮水又は逆浸透膜装置Eの濃縮水を処理する複数の逆浸透膜装置(図1に示す形態では逆浸透膜装置B及び逆浸透膜装置C)を備える。以下、「逆浸透膜装置」を「RO膜装置」とも称す。
この水処理システム1Aは、被処理水としての原水が貯液される原水タンク51を備えることが好ましい。原水タンク51には、原水が供給されるタンク供給ライン53が接続され、原水供給ライン55を介してRO膜装置Aの供給側Asが接続されることが好ましい。原水供給ライン55には送液ポンプとして第1ポンプP1が配されることが好ましい。したがって、原水タンク51に貯液されている被処理水(原水)は第1ポンプP1によってRO膜装置Aの各供給側Asに圧力をかけて供給される。本発明における「ライン」とは水が通る流路を意味する。
水処理システム1(1A)は、RO膜装置Aの濃縮水側AcとRO膜装置Bの供給側Bsとをつなぐ濃縮水通水ラインAB(以下ラインABともいう)が配される。またRO膜装置Aの濃縮水側AcとRO膜装置Cの供給側Csとをつなぐ濃縮水通水ラインAC(以下ラインACともいう)が配される。さらにRO膜装置Aの透過水側AtとRO膜装置Eの供給側Esとをつなぐ透過水通水ラインAE(以下ラインAEともいう)が配される。
RO膜装置Eの濃縮水側EcとRO膜装置Bの供給側Bsとをつなぐ濃縮水通水ラインEB(以下ラインEBともいう)が配される。またRO膜装置Eの濃縮水側EcとRO膜装置Cの供給側Csとをつなぐ濃縮水通水ラインEC(以下ラインECともいう)が配される。
図面におけるライン構成では、ラインABの一部とラインACの一部とが共用となっている。またラインABの一部とラインEBの一部とが供給側Bs側にて共用となっており、ラインACの一部とラインECの一部とが供給側Cs側にて共用となっている。さらに、ラインEBの一部とラインECの一部とが濃縮側Ec側にて共用となっている。いずれのラインにおいて、単独ラインとしても一部共用するラインとしてもよい。
またRO膜装置Eの透過水側Etが水処理ラインLAに接続されることが好ましい。
水処理システム1Aは、ラインABに通水させ、かつラインAE及びラインECに通水させる第1接続ラインと、ラインACに通水させ、かつラインAE及びラインEBに通水させる第2接続ラインとを交互に切り替え可能な構成となっている。
「第1接続ラインと第2接続ラインとを交互に切り替える」とは、以下の意味である。すなわち、第1接続ラインのラインABによってRO膜装置Aの濃縮水側AcとRO膜装置Bの供給側Bsとを接続する。このとき、ラインAEによってRO膜装置Aの透過水側AtとRO膜装置Eの供給側Esとを接続し、さらにラインECによってRO膜装置Eの濃縮水側EcとRO膜装置Cの供給側Csとを接続する。
そしてラインを切り替えることによって、第2接続ラインのラインAEによってRO膜装置Aの透過水側AtとRO膜装置Eの供給側Esとを接続し、さらにラインEBによってRO膜装置Eの濃縮水側EcとRO膜装置Bの供給側Bsとを接続する。このとき、ラインACによってRO膜装置Aの濃縮水側AcとRO膜装置Cの供給側Csとを接続する。
そして第2接続ラインを第1接続ラインに切り替えることによって、第1接続ラインの接続に戻すことができる。このように第1接続ラインと第2接続ラインとを交互に切り替えることができる。
上記第1接続ラインと第2接続ラインとの切り替えは、例えば弁操作によって行うことができる。例えば、RO膜装置Bに接続するラインABには仕切弁V1が配され、RO膜装置Cに接続するラインACには仕切弁V2が配されることが好ましい。またRO膜装置Bに接続するラインEBには仕切弁V3が配され、RO膜装置Cに接続するラインECには仕切弁V4が配されることが好ましい。
ラインEB(EC)には、RO膜装置Eの各濃縮水側Ecと各RO膜装置Bに分岐される分岐点B11との間には制御弁VC4が配されることが好ましい。この制御弁VC4によって、RO膜装置Eの濃縮水の流量を制御する。
上記仕切弁V1~V4を適宜開閉することによって、例えばRO膜装置Bに対して、ラインABの第1接続ラインと、ラインAE及びラインEBの第2接続ラインとが切り替え可能となる。同様に、RO膜装置Cに対しても、第1接続ラインと第2接続ラインとの切り替えが可能になる。
一例として、RO膜装置Bに繋がるラインABには、RO膜装置Aの濃縮水側AcとRO膜装置Bの供給側Bsとをつなぐ配管が用いられ、この配管には仕切弁V1が配される。RO膜装置Cに繋がるラインACには、RO膜装置Aの濃縮水側AcとRO膜装置Cの供給側Csとをつなぐ配管が用いられ、この配管には仕切弁V2が配される。RO膜装置Bに繋がるラインEBには、RO膜装置Eの濃縮水側EcとRO膜装置Bの供給側Bsとをつなぐ配管が用いられ、この配管には仕切弁V3が配される。RO膜装置Cに繋がるラインECには、RO膜装置Eの濃縮水側EcとRO膜装置Cの供給側Csとをつなぐ配管が用いられ、この配管には仕切弁V4が配される。
仕切弁V1、V4を開けることで第1接続ラインを開通させることができ、仕切弁V2、V3を閉じることでと第2接続ラインを止めることができる。さらに接続ラインの切り替えによって、仕切弁V1、V4を閉じることで第1接続ラインを止めることができ、仕切弁V2、V3を開けることでと第2接続ラインを開通させることができる。上記弁操作を繰り返し行うことで、第1接続ラインと第2接続ラインとの切り替えを交互に繰り返し行うことが可能となる。
第1接続ラインと第2接続ラインとを切り替えることによって、第1接続ラインの接続によってスケーリングが進行したRO膜装置Bには、第2接続ラインのラインEBが接続される。これによってRO膜装置Bに、RO膜装置Aの透過水を処理したRO膜装置Eの濃縮水(濃縮水ではあるが、RO膜装置Aの透過水を処理した濃縮水であるため、洗浄用水として好適である)が供給される。これによって、RO膜装置BのRO膜表面に生じたスケールがこの濃縮水により徐々に溶解され、RO膜装置Bが洗浄される。一方、RO膜装置CにはRO膜装置Aの濃縮水が供給されるため、RO膜装置Cはスケーリングが進行する。そして、例えば一定時間が経過したところで、さらに第2接続ラインと第1接続ラインとを切り替える。この切り替えは、RO膜装置Bのスケールが濃縮水の作用により所望のレベルまで除去され、かつRO膜装置Cがスケールによって機能しなくなる前に行うことが好ましい。
上記接続ラインの更なる切り替え(2度の切り替え)によって、当初の第1接続ラインの接続に戻る。すなわち、RO膜装置Eの濃縮水によって洗浄されたRO膜装置Bの供給側BsにRO膜装置Aの濃縮水が供給される。一方、RO膜装置Cの供給側CsにはRO膜装置Aの透過水を処理したRO膜装置Eの濃縮水(濃縮水ではあるが、RO膜装置Aの透過水を処理した濃縮水であるため、洗浄用水として好適である)が供給される。これによって、RO膜装置Cのスケールが供給された濃縮水によって徐々に溶解されRO膜装置Cが洗浄される。一方、RO膜装置BによってRO膜装置Aの濃縮水がさらに処理され、RO膜装置Bにおいてはスケーリングが進行する。
このように接続ラインの切り替えを行うことにより、原水のRO膜処理を停止することなく、RO膜表面に生じたスケールを、RO膜装置Aの透過水を処理したRO膜装置Eの濃縮水によりスケールを適時に除去することができる。
上記水処理システム1のより詳細な構成を、図1を参照して説明する。
RO膜装置A、B、C、Eが上記説明したように配される。
RO膜装置Aは、複数本(図示例は5本)の並列に配した逆浸透膜ベッセル(以下、ベッセルという)Va1~Va5によって逆浸透膜バンク(以下バンクという)が構成される。各ベッセルVa1~Va5には、通常は複数本のRO膜エレメント(図示せず、以下、エレメントという)が直列に配される。
RO膜装置Bは、1本又は複数本(図示例は1本)のベッセルVb1によってバンクが構成される。各ベッセルVb1には、複数本のエレメント(図示せず)が直列に配されることが好ましい。
RO膜装置Cは、1本又は複数本(図示例は1本)のベッセルVc1によってバンクが構成される。各ベッセルVc1には、それぞれに複数本のエレメント(図示せず)が直列に配されることが好ましい。
上記エレメントは、スパイラル型、中空糸型、管状型、平板状型等のいかなる型式のものであってもよい。
なお、上記各ベッセル内に配されるエレメントは1本であってもよい。エレメントの本数は、ベッセルに供給される供給水の処理量によって適宜決定される。
図に示す形態において、RO膜装置Bの濃縮水側Bcは、濃縮水側Bcから順に、圧力調整弁である制御弁VC1、仕切弁V11を配した原水戻しラインLF1(以下ラインLF1ともいう)によって、原水タンク51に接続される。RO膜装置Cの濃縮水側Ccは、濃縮水側Ccから順に、圧力調整弁である制御弁VC2、仕切弁V12を配した原水戻しラインLF2(以下ラインLF2ともいう)によって、原水タンク51に接続される。原水戻しラインLF2は、図示したように原水戻しLF1に合流して、原水タンク51に接続されてもよい。または、ラインLF1、ラインLF2は単独でそれぞれ独立して原水タンク51に接続されてもよい。
制御弁VC1と仕切弁V11との間のラインLF1からラインLC1が分岐され、ブローラインLBに接続されることが好ましい。また制御弁VC2と仕切弁V12との間のラインLF2からラインLC2が分岐され、ブローラインLBに接続されることが好ましい。ラインLC1には仕切弁V14が配されることが好ましく、ラインLC2には仕切弁V15が配されることが好ましい。
一方、RO膜装置Bの透過水側Btは、透過水通水ラインBE(以下ラインBEともいう)を介して、RO膜装置Eの供給側Esに接続される。同様に、RO膜装置Cの透過水側Ctは、透過水通水ラインCE(以下ラインCEともいう)を介して、RO膜装置Eの供給側Esに接続される。ラインBE、CEは、単独ラインであってもよいが、図示したように、ラインCEが途中でラインBEに合流してRO膜装置Eの供給側Esに接続されてもよい。
ラインBEには、ラインCEとの合流点C1とRO膜装置Bとの間に仕切弁17が配され、ラインCEには、ラインBEとの合流点C1とRO膜装置Cとの間に仕切弁18が配されることが好ましい。
また、ラインLF1は、RO膜装置Bの透過水側Btが原水タンク51に通じるようにも配される。透過水側BtからのラインLF1は、透過水側Btから仕切弁V17の手前の分岐点B1までラインBEと共用され、分岐点B1から分岐されたラインLF5によって、制御弁VC1と仕切弁V11との間の合流点C2で濃縮水側BcからのラインLF1に繋がることが好ましい。これによって、ラインLF1がRO膜装置Bの透過水側Btにも接続される。このラインLF5には仕切弁V21が配されることが好ましい。またラインLF2は、RO膜装置Cの透過水側Ctが原水タンク51に通じるように配される。
透過水側CtからのラインLF2は、透過水側Ctから仕切弁V18の手前の分岐点B2までラインCEと共用され、分岐点B2から分岐されたラインLF6によって、制御弁VC2と仕切弁V12との間の合流点C3で濃縮水側CcからのラインLF2に繋がることが好ましい。これによって、ラインLF2がRO膜装置Cの透過水側Ctにも接続される。このラインLF6には仕切弁V22が配されることが好ましい。
またラインLF1の制御弁VC1と合流点C2との間及びラインLF2の制御弁VC2と合流点C3との間には、RO膜装置B及びCの濃縮水側Bc及びCcに、RO膜装置B及びCの透過水の流入を防ぐ逆止弁(図示せず)を配してもよい。
さらにラインAEには、ラインBEとの合流点C4とRO膜装置Eの供給側Esとの間に、第2ポンプP2が配されることが好ましい。
上記処理水ラインLAは、例えばRO膜装置を2度透過した一定レベル以上の純度に到達した水を流すラインである。当該水は、使用目的にもよるが、例えば、導電率が20μS/cm以下、イオン濃度が10ppm以下であることが好ましい。
上記ブローラインLBは、RO膜による処理によって得た濃縮水をさらに別のRO膜に供給して得られた濃縮水を供給するラインである。
上記水処理システム1Aの弁操作及び通水について、以下に詳細を説明する。
第1接続ラインの場合、図1に示す形態において、白抜きに描いた仕切弁V1、V4、V12、V14、V17、V22を開けて、黒塗りに描いた仕切弁V2、V3、V11、V15、V18、V21を閉じる。この状態において、原水タンク51内の原水を第1ポンプP1によってRO膜装置A(第1段目のバンク)に供給し、各ベッセルVa1~Va5によって処理する。
RO膜装置Aの各ベッセルVa1~Va5の各濃縮水側Acから濃縮水が得られ、この濃縮水を、ラインABを通してRO膜装置Bの供給側Bsに供給する。そしてRO膜装置Bによって処理し、処理して得た濃縮水をベッセルVb1の濃縮水側BcからラインLF1、ラインLC1を通してブローラインLBに送ることが好ましい。このとき、制御弁VC1は、RO膜装置にかかる圧力を調整するための弁であり、背圧弁として機能する。例えば図1に示した形態において、RO膜装置BにRO膜装置Aの濃縮水が供給され、RO膜装置CにRO膜装置Eの濃縮水が供給される場合、RO膜装置AおよびRO膜装置Bのそれぞれの濃縮側にかかる圧力を制御弁VC1の開度で制御する。それによってRO膜装置AおよびRO膜装置Bの全透過水量が所定の流量になるよう、制御弁VC1の上記の開度によって調整される。上記運転の際には、制御弁VC2を全開にすることが好ましい。
一方、RO膜装置Bの処理によって得た透過水をベッセルVb1の透過水側BtからラインBEを経て第2ポンプP2に送り、さらにRO膜装置Eに供給する。第2ポンプP2では、RO膜装置Eの供給側Esに大気圧より高い圧力がかかるようにすることが好ましい。例えば、RO膜装置EのRO膜種にもよるが、通常は、0.5~4MPa程度の圧力をかけることが好ましい。
またRO膜装置Aの各透過水側Atから透過水を得て、この透過水はラインAEからRO膜装置Eに供給される。RO膜装置Eの処理によって得た濃縮水は濃縮水側Ecに接続されたラインECを介してRO膜装置Cの供給側Csに供給される。
上記ラインAEを通じてRO膜装置Eに供給される透過水の圧力は、ほぼ大気圧である。そこで第2ポンプP2によって透過水の圧力を大気圧より高い圧力にしてラインAEを介して送液することでRO膜装置Eに供給することが好ましい。RO膜装置EのRO膜種にもよるが、前述と同様に通常は、0.5~4MPa程度の圧力となるようにして送液することが好ましい。
一方、RO膜装置Eによって処理された透過水は、透過水側Etに接続された水処理ラインLAに供給される。
上記RO膜装置Eの濃縮水が供給されたRO膜装置Cで処理されて得た濃縮水は、濃縮水側BcからラインLF2、ラインLF1を介して原水タンク51に供給される。またRO膜装置Cの透過水側CtからLF2(ラインCE、ラインLF6を含む)を通じて合流点C5にて上記ラインLF1に合流され、原水タンク51に供給される。この場合、濃縮水の送液圧力を制御弁VC2によって制御して、透過水が濃縮水側CcのラインLF2の濃縮水に合流できるように濃縮水の送液圧力を調整することが好ましい。このようにRO膜装置Eの濃縮水を用いてRO膜装置Cを洗浄した場合、RO膜装置Cの透過水及び濃縮水をともに原水タンク51に戻すことができる。
第2接続ラインの場合、図1に示す形態において、白抜きに描いた仕切弁V1、V4、V12、V14、V17、V22を閉じ、黒塗りに描いた仕切弁V2、V3、V11、V15、V18、V22を開ける。この状態において、原水タンク51内の原水を第1ポンプP1によってRO膜装置Aに供給して、各ベッセルVa1~Va5によって処理する。
RO膜装置Aの透過水側Atから透過水が得られ、この透過水はラインAEからRO膜装置Eに供給される。RO膜装置Eによって処理された濃縮水は濃縮水側Ecに接続されたラインEBを介してRO膜装置Bの供給側Bsに供給される。
具体的にはRO膜装置Aの各透過水側Atから得た透過水は、前述の第1接続ラインの場合と同様に、ラインAEを経てRO膜装置Eに供給される。このとき、透過水の圧力はほぼ大気圧であるため、第2ポンプP2によって、ラインAEを介して透過水を送液して大気圧より高い圧力にしてRO膜装置Eに供給することが好ましい。RO膜装置EのRO膜種にもよるが、前述と同様に通常は、0.5~4MPa程度の圧力となるようにすることが好ましい。
一方、RO膜装置Eによって処理された透過水は、透過水側Etに接続された水処理ラインLAに供給される。
上記RO膜装置Eの濃縮水が供給されたRO膜装置Bで処理されて得た濃縮水は、濃縮水側BcからラインLF1を介して原水タンク51に戻される。またRO膜装置Bで得た透過水は透過水側BtからラインLF1(ラインBE、ラインLF5を含む)を通じて原水タンク51に戻される。このとき、RO膜装置Bの濃縮水の送液圧力を制御弁VC1によって制御して、RO膜装置Bの透過水が濃縮水側BcのラインLF1の濃縮水に合流できるように濃縮水の送液圧力を透過水の送液圧力とほぼ同等になるように調整することが好ましい。このようにRO膜装置Eの濃縮水を用いてRO膜装置Bを洗浄した場合、RO膜装置Bの透過水及び濃縮水はともに原水タンク51に戻すことができる。
水処理システム1Aは、第1接続ラインの使用時に透過水戻しラインBE及び原水戻しラインLF2に通水させる第3接続ラインと、第2接続ラインの使用時に原水戻しラインLF1及び透過水戻しラインCEに通水させる第4接続ラインとが、第1接続ラインと第2接続ラインとの切り替えに対応して切り替え可能となっている。
RO膜装置Aの濃縮水が供給されたRO膜装置Cによって処理されて得た濃縮水は、ラインLC2を介してブローラインLBに供給される。一方、このRO膜装置Cによる処理にて得た透過水は、RO膜装置Eの供給側Esに送られる。具体的には、RO膜装置Cの透過水は、その透過水側CtからラインCE(BE)を介して第2ポンプP2の吸引側に供給され、第2ポンプP2によって送液圧力が高められて、RO膜装置Eに供給される。
したがって、RO膜装置Aの濃縮水を処理したRO膜装置B及びCのそれぞれの濃縮水のみがブローラインLBに排出される。また、RO膜装置Aの濃縮水を処理したRO膜装置B及びCのそれぞれの透過水、RO膜装置Eの濃縮水を処理したRO膜装置B及びCのそれぞれの透過水及び濃縮水は原水タンク51又はRO膜装置Eの供給側Esに戻される。そのため、目的の高純度の水を、高い回収率で得ることができる。
次に、本発明に係る水処理システムの好ましい別の一実施形態(第2実施形態)を、図2を参照して説明する。
図2に示すように、水処理システム1(1B)は、RO膜装置B、RO膜装置Cと原水タンク51とを結ぶライン構成及びRO膜装置B、CとRO膜装置Eの供給側とを結ぶライン構成が異なる以外、水処理システム1Aと同様の構成を有する。すなわち、RO膜装置A、RO膜装置E及び複数のRO膜装置(図2に示す形態ではRO膜装置B及びRO膜装置C)を備える。また、この水処理システム1Bは、原水タンク51を有し、原水タンク51にタンク供給ライン53が接続され、さらにRO膜装置Aの供給側Asに接続される原水供給ライン55が接続されることが好ましい。原水供給ライン55には第1ポンプP1が配されることが好ましい。
第1実施形態の水処理システム1Aと同様に、RO膜装置AからRO膜装置E、RO膜装置AからRO膜装置B及びC、RO膜装置EからRO膜装置B及びCに接続される各ラインには、ラインAE、ラインAB、ラインAC、ラインEB及びラインECが配される。これらラインは、水処理システム1Aと同様に、一部のライン同士が共用されてもよい。
上記のラインABには仕切弁V1、ラインACには仕切弁V2が配され、ラインEBには仕切弁V3、ラインECには仕切弁V4が配されている。さらにラインEB(EC)には制御弁VC4が配されている。制御弁VC4は、RO膜装置Eの圧力を調整する弁である。
また水処理システム1Bは、RO膜装置Eの透過水側Etは水処理ラインLAに接続される。さらに水処理システム1Aと同様に、ラインABに通水させ、かつラインAE及びラインECに通水させる第1接続ラインと、ラインACに通水させ、かつラインAE及びラインEBに通水させる第2接続ラインとが交互に切り替え可能な構成となっている。第1接続ラインと第2接続ラインとの切り替えは、前述の水処理システム1Aと同様に実施することができる。
これによって、水処理システム1Bは、水処理を中断することなく、RO膜装置Aの透過水を処理するRO膜装置Eの濃縮水を用いて、RO膜装置B及びRO膜装置Cのスケールの除去を適時に行うことができる。
水処理システム1BのRO膜装置Bの濃縮水側Bcは、濃縮水側Bcから順に、圧力調整弁である制御弁VC1、仕切弁V11を配した原水戻しラインLF3(以下ラインLF3ともいう)によって、原水タンク51に接続される。RO膜装置Cの濃縮水側Ccは、濃縮水側Ccから順に、圧力調整弁である制御弁VC2、仕切弁V12を配した原水戻しラインLF4(以下ラインLF4ともいう)によって、原水タンク51に接続される。ラインLF4は、図示したように原水戻しラインLF3に合流して、原水タンク51に接続してもよい。またラインLF3、ラインLF4は、単独で、それぞれ独立して原水タンク51に接続されてもよい。
制御弁VC1と仕切弁V11との間のラインLF3からラインLC1が分岐され、ブローラインLBに接続されることが好ましい。制御弁VC2と仕切弁V12との間のラインLF4からラインLC2が分岐され、ブローラインLBに接続されることが好ましい。ラインLC1には仕切弁V14が配されることが好ましく、ラインLC2には仕切弁V15が配されることが好ましい。上記制御弁VC1,VC2は、前述の水処理システム1Aの制御弁VC1、VC2と同様の機能を有し、同様の目的で使用される。
一方、RO膜装置Bの透過水側Btは、透過水通水ラインBE(以下ラインBEともいう)を介して、RO膜装置Eの供給側Esに接続される。同様に、RO膜装置Cの透過水側Ctは、透過水通水ラインCE(以下ラインCEともいう)を介して、RO膜装置Eの供給側Esに接続される。ラインBE、CEは、単独ラインであってもよいが、図示したように、ラインCEが途中でラインBEに合流してRO膜装置Eの供給側Esに接続されてもよい。
そして第1接続ラインの使用時に原水戻しラインLF4に通水させる第5接続ラインと、第2接続ラインの使用時に原水戻しラインLF3に通水させる第6接続ラインとが、第1接続ラインと第2接続ラインとの切り替えに対応して切り替え可能である。
さらにラインAEには、ラインBEとの合流点C4とRO膜装置Eの供給側Esとの間に、第2ポンプP2が配されることが好ましい。
本水処理システム1Bは、第1実施形態の水処理システム1Aと同様に、RO膜装置Aからの透過水の供給とRO膜装置B、Cからの透過水の供給とを1台の第2ポンプP2によって行うことができる。その結果、RO膜装置B、Cの透過水を送液するためのポンプを付帯する必要がなくなる。これによって、該ポンプの消費による電力コストの増大を防ぎ、該ポンプによるフットプリント(占有面積)の増大を抑制することができる。
また、RO膜装置Eの濃縮水が供給されるRO膜装置Bの濃縮水側Bcから送り出される濃縮水には第2ポンプP2の送液圧力がかかっているため、その濃縮水はラインLF3を通じて原水タンク51に送ることができる。RO膜装置Eの濃縮水が供給されるRO膜装置Cの濃縮水側Ccから送り出される濃縮水についても、上記RO膜装置Bと同様に濃縮水には第2ポンプP2の送液圧力がかかっているため、ラインLF4(LF3)を通じて原水タンク51に送ることができる。
よって、水処理システム1Bは、RO膜装置Aの濃縮水をRO膜装置B、Cによって処理して得た濃縮水をブローラインLBに送る以外は、原水タンク51やRO膜装置Eの供給側Esに戻されて、RO膜処理を経て最終的に水処理ラインLAに送られる。これによって、目的の高純度の水を、高い回収率で得ることができる。
次に、本発明に係る水処理システムの好ましい別の一実施形態(第3実施形態)を、図3を参照して説明する。
図3に示すように、水処理システム1(1C)は、被処理水を処理する逆浸透膜装置A、逆浸透膜装置Aの透過水を処理する逆浸透膜装置E、逆浸透膜装置Aの濃縮水及び逆浸透膜装置Eの濃縮水を処理する複数の逆浸透膜装置Bを備える。図示例では、逆浸透膜装置A及びEの各構成は前述の第1実施形態の逆浸透膜装置A及びEの各構成と同様である。逆浸透膜装置Bは、例えば、3個の逆浸透膜装置B1~B3を備える。
水処理システム1Cは、前述の水処理システム1Aの逆浸透膜装置B、Cに代えて複数の逆浸透膜装置B(B1~B3)を設置する形態とし、これら逆浸透膜装置Bに接続する各ラインを一部変更した以外、基本的には水処理システム1Aと同様である。以下、水処理システム1Cにおいても「逆浸透膜装置」を「RO膜装置」とも称す。
水処理システム1Cは、被処理水としての原水が貯液される原水タンク51を備える。原水タンク51には原水が供給されるタンク供給ライン53が接続される。また原水タンク51には原水供給ライン55を介してRO膜装置Aの供給側Asが接続される。原水供給ライン55には第1ポンプP1が配されることが好ましい。したがって、原水タンク51に貯液されている原水は第1ポンプP1によってRO膜装置Aの各供給側Asに圧力をかけて供給されることが好ましい。
水処理システム1Cは、RO膜装置Aの濃縮水側Acと各RO膜装置Bの供給側Bsとをつなぐ濃縮水通水ラインAB(以下ラインABともいう)を含む。また、RO膜装置Aの透過水側AtとRO膜装置Eの供給側Esとをつなぐ透過水通水ラインAE(以下ラインAEともいう)を含む。さらに、RO膜装置Eの濃縮水側Ecと各RO膜装置Bの供給側Bsとをつなぐ濃縮水通水ラインEB(以下ラインEBともいう)を含む。すなわち、複数の濃縮水通水ラインABと複数の濃縮水通水ラインEBとを有する。
ラインEBには、RO膜装置Eの濃縮水側Ecと各RO膜装置Bに分岐される分岐点B11との間には制御弁VC4が配されることが好ましい。この制御弁VC4によって、RO膜装置Eの濃縮水の流量を制御する。
具体的には、RO膜装置Aの濃縮水側Acと複数個(X個、Xは好ましくは2以上最大でRO膜装置Aのベッセル数と同数である)のRO膜装置B(図3に示す形態ではB1、B2、B3の3個のRO膜装置B)のそれぞれの供給側BsとをつなぐラインABが配される。RO膜装置Aの透過水側AtとRO膜装置Eの供給側EsとをつなぐラインAEが配される。さらにRO膜装置Eの濃縮水側EcとそれぞれのRO膜装置Bの供給側BsとをつなぐラインEBが配される。図面におけるライン構成のように、ラインABの一部とラインEBの一部とは、供給側Bs側にて共用となっていてもよい。
未選択の上記ラインEBから一つのラインEBが選択される。また、該選択された一つのラインEBが接続されるRO膜装置B(例えばB2)を除く他のRO膜装置B(例えばB1、B3)の供給側BsにラインABが接続される。ラインEBを1本ずつ選択する場合、ラインEBとなり得るラインはRO膜装置Bの数だけ(すなわちX個)存在する。
一形態では、上記複数(X個)の接続ラインのうち、例えば、接続ラインIが選択される。接続ラインIは、未選択のラインEBから選択された一つのラインEBにRO膜装置Eの濃縮水が通水される。また該ラインEBが接続されるRO膜装置B(例えばB(B2))を除く他のRO膜装置B(例えばB1、B3)の供給側Bsに接続される上記ラインABにRO膜装置Aの濃縮水が通水される。次いで、上記ラインEBの代わりに未選択のラインEBから一つのラインを選択して新たなラインEBとすることにより接続ラインIを更新し、新たな接続ラインIにする。更新した新たな接続ラインIにおけるラインEBにはRO膜装置Eの濃縮水が通水され、当該ラインEBが接続されるRO膜装置B(例えばB3)を除く他のRO膜装置B(例えばB1、B2)の各供給側Bsに接続される上記ラインABにRO膜装置Aの濃縮水が通水される。同様にして、接続ラインIを順次更新して、新たな接続ラインIへと順次に切り替えることを可能とする。
このように、RO膜装置Aの透過水を処理したRO膜装置Eの濃縮水を、RO膜装置Aの濃縮水を処理したRO膜装置Bに、順次に流すことによって、RO膜装置BのRO膜に生じたスケールを当該濃縮水で溶解して除去することができる。
上記の「順次」とは、複数(X個)のラインEBのうち、接続ラインの切り替えごとに、新たに別のラインEBが選択されることを意味する。このラインEBの選択の更新は、EBとして選択されていないラインEBが無くなるまで、順次に行うことが好ましい。また、複数のラインEBの全てを選択した後(ラインEBの選択が1巡した後)も、同様にして、EBの選択を順次に更新して水処理を行うことにより、RO膜に生じたスケールの除去とRO膜装置による水処理とを並行して行うことができる。
なお、EBの選択は複数のEBを同時に選択することも可能である。この場合も接続ラインの切り替えごとに、新たに別のラインEBが選択されることが好ましい。この場合のラインEBの選択の更新は、EBとして選択されていないラインEBが無くなるまで、順次に行うことが好ましい。また、EBの選択の更新の前後において、EBとして選択されるラインの数は同じでも異なってもよい。
接続ラインIの切り替えは、例えば弁操作によって行うことができる。例えば図3に示す形態においては、RO膜装置Aの濃縮水側AcとRO膜装置B(B1、B2、B3)のそれぞれの供給側Bsとをつなぐ各ラインABには、仕切弁V1、V2、V3がそれぞれ配されることが好ましい。またRO膜装置Eの濃縮水側EcとRO膜装置B(B1、B2、B3)のそれぞれの供給側Bsとをつなぐ各ラインEBには、仕切弁V4、V5、V6がそれぞれ配されることが好ましい。
上記仕切弁V1~V6を適宜開閉することによって、接続ラインIを別の接続ラインIへと切り替えることが可能となる。
一例として、仕切弁V1、V2、V6を開けることで接続ラインIを開通させることができ、このとき仕切弁V3、V4、V5は閉じる。また切り替えによって、仕切弁V2、V3、V4を開けることで更新した新たな接続ラインIを開通することができ、このとき仕切弁V1、V5、V6は閉じる。さらに、仕切弁V1、V3、V5を開ける切り替えを行うと更新した新たな接続ラインIを開通することができ、このとき仕切弁V2、V4、V6は閉じる。
上記のようにして、RO膜装置Eの濃縮水側Ecに接続されたラインを各RO膜装置B1~B3に対して一つずつ順次に切り替える。こうしてRO膜装置Aの濃縮水とRO膜装置Eの濃縮水とを通水する接続ラインIを順次に更新する。これによって、RO膜装置B1~B3の全てをRO膜装置Aの透過水を処理したRO膜装置Eの濃縮水によって、順次、洗浄することが可能となる。
さらに、水処理システム1Cは、RO膜装置B(B1~B3)の各濃縮水側Bc及び各透過水側Btと原水タンク51とをつなぐ原水戻しラインLF(以下ラインLFともいう)を含む。濃縮水側Btに繋がるラインLFには、濃縮水側Bcから順に、圧力調整弁である制御弁、仕切弁が配されることが好ましい。例えば、RO膜装置B1の濃縮水側Btに繋がる原水戻しラインLF(LF11(以下ラインLF11ともいう))には、濃縮水側Bcから順に、制御弁VC1、仕切弁V11が配されることが好ましい。RO膜装置B2の濃縮水側Bcに繋がる原水戻しラインLF(LF12(以下ラインLF12ともいう))には、濃縮水側Bcから順に、制御弁VC2、仕切弁V12が配されることが好ましい。RO膜装置B3の濃縮水側Bcに繋がる原水戻しラインLF(LF13(以下ラインLF13ともいう))には、濃縮水側Bcから順に、圧力調整弁である制御弁VC3、仕切弁V13が配されることが好ましい。
上記ラインLF11~13は、例えば、合流点C11でラインLF11とラインLF12とが合流し、合流点C12でラインLF12とラインLF13とが合流してもよく、各ラインLF11~13が単独で原水タンク51に接続してもよい。
制御弁VC1~VC3は、第1実施形態の制御弁と同様の制御弁を用いることができる。
制御弁VC1と仕切弁V11との間のラインLF11からラインLC1が分岐され、ブローラインLBに接続されることが好ましい。また制御弁VC2と仕切弁V12との間のラインLF12からラインLC2が分岐されてブローラインLBに接続され、制御弁VC3と仕切弁V13との間のラインLF13からラインLC3が分岐され、ブローラインLBに接続されることが好ましい。ラインLC1には仕切弁V14が配され、ラインLC2には仕切弁V15が配され、ラインLC3には仕切弁V16が配されることが好ましい。
またラインLF11の制御弁VC1とラインLF17との合流点との間には、RO膜装置B1の濃縮水側Bcに、RO膜装置B1の透過水の流入を防ぐ逆止弁(図示せず)を配してもよい。同様に、ラインLF12の制御弁VC2とラインLF18との合流点との間に、ラインLF13の制御弁VC2とラインLF19との合流点との間に、逆止弁(図示せず)を配してもよい。
一方、RO膜装置B(B1~B3)の各透過水側Btは、透過水通水ラインBE(以下ラインBEともいう)を介して、RO膜装置Eの供給側Esに接続される。例えば、RO膜装置B1の透過水側Btは、透過水通水ラインBE(BE1(以下ラインBE1ともいう))を介して、RO膜装置Eの供給側Esに接続される。RO膜装置B2の透過水側Btは、透過水通水ラインBE(BE2(以下ラインBE2ともいう))を介して、RO膜装置Eの供給側Esに接続される。RO膜装置B3の透過水側Btは、透過水通水ラインBE(BE3(以下ラインBE3ともいう))を介して、RO膜装置Eの供給側Esに接続される。ラインBE1~BE3は、単独ラインであってもよいが、図示したように、ラインBE2、BE3が途中でラインBE1に合流してRO膜装置Eの供給側Esに接続されてもよい。
ラインBE1には、ラインBE2との合流点C13とRO膜装置B1との間に仕切弁17が配されることが好ましい。またラインBE2には、合流点C13とRO膜装置B2との間に仕切弁18が配され、ラインBE3には、ラインBE1との合流点C14とRO膜装置B3との間に仕切弁19が配されることが好ましい。
RO膜装置B(B1)の透過水側Btに繋がるラインLFは、例えば、RO膜装置B1の透過水側Btに繋がるラインBE1、原水タンク51に繋がるラインLF11、ラインBE1とラインLF11を繋ぐラインLF17を含む。例えば、ラインLF17は、RO膜装置B1と仕切弁V17との間のラインBE1から分岐して、制御弁VC1と仕切弁V11との間で濃縮水側BcからのラインLF11に繋がるように配されることが好ましい。ラインLF17には仕切弁V21が配されることが好ましい。
またRO膜装置B(B2)の透過水側Btに繋がるラインLFは、例えば、RO膜装置B2の透過水側Btに繋がるラインBE2、原水タンク51に繋がるラインLF12、ラインBE2とラインLF12を繋ぐラインLF18を含む。例えば、ラインLF18は、RO膜装置B2と仕切弁V18との間のラインBE2から分岐して、制御弁VC2と仕切弁V12との間で濃縮水側BcからのラインLF12に繋がるように配されることが好ましい。ラインLF18には仕切弁V22が配されることが好ましい。
さらにRO膜装置B(B3)の透過水側Btに繋がるラインLFは、例えば、RO膜装置B3の透過水側Btに繋がるラインBE3、原水タンク51に繋がるラインLF13、ラインBE3とラインLF13を繋ぐラインLF19を含む。例えば、ラインLF19は、RO膜装置B3と仕切弁V19との間のラインBE3から分岐して、制御弁VC3と仕切弁V13との間で濃縮水側BcからのラインLF13に繋がるように配されることが好ましい。ラインLF19には仕切弁V23が配されることが好ましい。
上記RO膜装置Eの供給側Esに繋がるラインAEの該供給側Es側には、送液ポンプとして第2ポンプP2が配されることが好ましい。すなわち、RO膜装置Aの透過水側Atに繋がる全てのラインAEが合流した後のラインAEとラインBEとの合流点C15とRO膜装置Eの供給側Esとの間のラインAEに第2ポンプP2が配される。この第2ポンプP2は第1実施形態の第2ポンプと同様のものを用いることができる。
水処理システム1Cでは、RO膜装置Aの濃縮水が処理されるRO膜装置Bに対しては、RO膜装置Bの透過水側BtとRO膜装置Eの供給側EsとをつなぐラインBEに通水させる接続ラインIIが選択される。また、RO膜装置Eの濃縮水が処理されるRO膜装置Bに対しては、RO膜装置Bの濃縮水側Bc及び透過水側Btと、原水タンク51とを繋ぐラインLFに通水させる接続ラインIIIが選択される。
例えば、RO膜装置Aの濃縮水がRO膜装置B1、B2によって処理される場合、RO膜装置B1、B2のそれぞれの透過水側BtとRO膜装置Eの供給側EsとをつなぐラインBE1、BE2に通水させる接続ラインIIが選択される。このとき、RO膜装置Eの濃縮水がRO膜装置B3によって処理される。
また上記接続ラインIIが選択されるとき、RO膜装置B3の透過水側Bt及び濃縮水側Bcと、原水タンク51とを繋ぐラインLF3、LF19、LF13(ラインLF)に通水させる接続ラインIIIが選択される。
このように、複数のRO膜装置Bのうちの一つのRO膜装置Bに対して接続ラインIIIが選択されて、RO膜装置Bが洗浄され、RO膜装置B以外のRO膜装置Bに対しては接続ラインIIが選択されて、RO膜装置Aの濃縮水が処理される。
接続ラインII及び接続ラインIIIの選択は、例えば弁操作によって行うことができる。例えば図3に示す形態においては、弁の配置は上記説明した通りである。
上記仕切弁V11~V19、V21~V23を適宜開閉することによって、接続ラインIIと接続ラインIIIとを切り替えることが可能となる。
一例として、RO膜装置B1、B2にRO膜装置Aの濃縮水が供給され、RO膜装置B3にRO膜装置Eの濃縮水が供給される場合、仕切弁V17、V18を開けることで接続ラインIIを開通させる。これによって、RO膜装置B1、B2でRO膜装置Aの濃縮水を処理して得た透過水をRO膜装置Eの供給側Esに戻すことができる。このとき、仕切弁V19、V21、V22は閉じる。
上記処理時に、仕切弁V13、V23を開けることで接続ラインIIIを開通させることができ、RO膜装置B3の濃縮水及び透過水を原水タンク51に戻すことができる。このとき、RO膜装置B3の濃縮水の送液圧力を制御弁VC3によって制御して、RO膜装置B3の透過水が濃縮水側BcのラインLF13の濃縮水に合流して原水タンク51側に流れるように、濃縮水の送液圧力を透過水の送液圧力とほぼ同等に調整することが好ましい。仕切弁V19は閉じる。
また、RO膜装置B1、B2においては、仕切弁V14、V15を開け、仕切弁V11、V12を閉じて、RO膜装置B1、B2のそれぞれの濃縮水側BcをラインLF11、LF12、ラインLC1、LC2を介して、ブローラインLBに接続する。さらに、RO膜装置B3においては、仕切弁V16は閉じて、濃縮水側BcとブローラインLBとの通水を断つ。
上記の接続ラインI、接続ラインII、接続ラインIIIの設定によってRO膜装置B3の洗浄が終了した場合、弁操作によって上記のように接続ラインIを更新して新たな接続ラインIを開通させて、かつ接続ラインIの更新に対応させて接続ラインII及び接続ラインIIIも切り替える。
そして、RO膜装置B2、B3にRO膜装置Aの濃縮水が供給され、RO膜装置B1にRO膜装置Eの濃縮水が供給される場合、仕切弁V18、V19を開けることで接続ラインIIを開通させる。これによって、RO膜装置B2、B3でRO膜装置Aの濃縮水を処理して得た透過水をRO膜装置Eの供給側Esに戻すことができる。このとき、仕切弁V17、V22、V23は閉じる。該処理時に、仕切弁V11、V21を開けることで接続ラインIIIを開通させて、RO膜装置B1の濃縮水及び透過水を原水タンク51に戻すことができる。このとき、RO膜装置B1の濃縮水の送液圧力を制御弁VC1によって制御して、RO膜装置B1の透過水が濃縮水側BcのラインLF11の濃縮水に合流して原水タンク51側に流れるように、濃縮水の送液圧力を透過水の送液圧力とほぼ同等に調整することが好ましい。仕切弁V17は閉じる。
また、RO膜装置B2、B3においては、仕切弁V15、V16を開け、仕切弁V12、V13を閉じて、濃縮水側BcをラインLF11、LC1を介してブローラインLBに接続する。RO膜装置B1においては、仕切弁V14は閉じて、濃縮水側BcとブローラインLBとの通水を断つ。
この接続ラインII、接続ラインIIIの設定によってRO膜装置B1の洗浄が終了した場合、弁操作によってさらに接続ラインIを更新して新たな接続ラインIを開通させて、接続ラインII及び接続ラインIIIも切り替える。
さらに、RO膜装置B1、B3にRO膜装置Aの濃縮水が供給され、RO膜装置B2にRO膜装置Eの濃縮水が供給される場合、仕切弁V17、V19を開けることで接続ラインIIを開通させる。これによって、RO膜装置B1、B3でRO膜装置Aの濃縮水を処理して得た透過水をRO膜装置Eの供給側Esに戻すことができる。このとき、仕切弁V18、V21、V23は閉じる。該処理時に、仕切弁V12、V22を開けることで接続ラインIIIを開通させて、RO膜装置B2の濃縮水及び透過水を原水タンク51に戻すことができる。このとき、RO膜装置B2の濃縮水の送液圧力を制御弁VC2によって制御して、RO膜装置B2の透過水が濃縮水側BcのラインLF12の濃縮水に合流して原水タンク51側に流れるように、濃縮水の送液圧力を透過水の送液圧力とほぼ同等に調整することが好ましい。仕切弁V18は閉じる。
また、RO膜装置B1、B3においては、仕切弁V14、V16を開け、仕切弁V11、V13を閉じて、それぞれの濃縮水側BcをラインLF11、LC1、LF13、LC3を介してブローラインLBに接続する。RO膜装置B2においては、仕切弁V15を閉じて、RO膜装置B2の濃縮水側BcとブローラインLBとの通水を断つ。
上記接続ラインI、接続ラインII、接続ラインIIIの切り替えによってRO膜装置B2の洗浄が終了した場合、弁操作によってさらに接続ラインIを更新して新たな接続ラインIを開通させて、接続ラインII及び接続ラインIIIも切り替える。本例の場合、RO膜装置Bが3個であるため、最初の状態に戻ることになる。そして、上記同様に処理を行うことで、RO膜装置Aの濃縮水の処理とRO膜装置BのRO膜装置Eの濃縮水による洗浄を連続的に行うことができる。すなわち、RO膜装置Aの濃縮水の処理が途切れることなく、RO膜装置Bの洗浄を順に行うことによって、水処理システムの連続稼働が可能になる。
また、RO膜装置Eは、RO膜装置Aの透過水を処理して、その透過水を処理水ラインLAに供給する。一方、処理して得た濃縮水をRO膜装置Bに供給し、RO膜装置Bの少なくとも透過水を戻して、再び処理する。
水処理システム1Cでは、第2ポンプP2によってRO膜装置Aの透過水をRO膜装置Eの供給側Esに圧送することができる。さらに、第2ポンプP2がRO膜装置Eの供給側Esに配されることによって、第2ポンプP2によって、RO膜装置Bからの透過水を、圧力をかけた状態でRO膜装置Eの供給側Esに供給することができる。このように、RO膜装置Aからの透過水の供給とRO膜装置Bからの透過水の供給とを1台の第2ポンプP2によって行うことができるため、RO膜装置Bの透過水を送液するためのポンプを付帯する必要がなくなる。これによって、該ポンプの消費による電力コストの増大を防ぎ、該ポンプによるフットプリント(占有面積)の増大を抑制することができる。
また、第2ポンプP2によって、RO膜装置Aからの透過水とRO膜装置Bからの透過水とを圧力をかけてRO膜装置Eに送液することができるため、RO膜装置Eの濃縮水が圧送されてRO膜装置Bに送液される。これよって、送液ポンプを用いることなく、RO膜装置Eの濃縮水が圧送された際のRO膜装置Bの濃縮水及び透過水を原水タンク51に戻すことが可能になる。
本発明に係る水処理システムの好ましい更に別の一実施形態(第4実施形態)を、図4を参照して説明する。
図4に示すように、水処理システム1(1D)は、RO膜装置B1~B3と原水タンク51とを結ぶライン構成及びRO膜装置B1~B3とRO膜装置Eの供給側Esとを結ぶライン構成が異なる以外、水処理システム1Cと同様の構成を有する。すなわち、RO膜装置A、RO膜装置E及び複数のRO膜装置(図4に示す形態ではRO膜装置B1、B2及びB3)を備える。また、この水処理システム1Dは、原水タンク51を有し、原水タンク51にタンク供給ライン53が接続され、さらにRO膜装置Aの供給側Asに接続される原水供給ライン55が接続される。原水供給ライン55には第1ポンプP1が配されることが好ましい。したがって、原水タンク51に貯液されている原水は第1ポンプP1によってRO膜装置Aの各供給側Asに圧力をかけて供給されることが好ましい。
RO膜装置AからRO膜装置E、RO膜装置AからRO膜装置B1~B3、RO膜装置EからRO膜装置B1~B3に接続される各ラインには、ラインAE、ラインAB及びラインEBが配される。これらラインは第1実施形態の水処理システム1Aと同様に、一部のライン同士が共用されてもよい。
水処理システム1Dは、RO膜装置Aの濃縮水側Acと各RO膜装置Bの供給側Bsとをつなぐ濃縮水通水ラインAB(以下ラインABともいう)を含む。また、RO膜装置Aの透過水側AtとRO膜装置Eの供給側Esとをつなぐ透過水通水ラインAE(以下ラインAEともいう)を含む。さらに、RO膜装置Eの濃縮水側Ecと各RO膜装置B(例えばB1~B3)の各供給側Bsとをつなぐ濃縮水通水ラインEB(以下ラインEBともいう)を含む。すなわち、複数の濃縮水通水ラインABと複数の濃縮水通水ラインEBとを有する。
具体的には、RO膜装置Aの濃縮水側AcとそれぞれのRO膜装置Bの供給側BsとをつなぐラインABが配される。また、RO膜装置Eの濃縮水側Ecと複数個(X個、Xは好ましくは2以上最大RO膜装置AのベッセルAと同数である)のRO膜装置B(図4に示す形態ではB1、B2、B3の3個のRO膜装置B)のそれぞれの供給側BsとをつなぐラインEBが配される。図面におけるライン構成のように、ラインABの一部とラインEBの一部とは、供給側Bs側にて共用としてもよい。
未選択の上記ラインEBから一つのラインEBが選択される。また、該選択された一つのラインEBが接続されるRO膜装置B(例えばB3)を除く他のRO膜装置B(例えばB1、B2)の供給側BsにラインABが接続される。EBラインを1本ずつ選択する場合、EBとなり得るラインはRO膜装置Bの数だけ(すなわちX個)存在する。
上記複数(X個)の接続ラインのうちから接続ラインIを選択する方法は、前述の第3実施形態の水処理システム1Cと同様である。接続ラインIを選択して、未選択のラインEBから選択された一つのラインEBにRO膜装置Eの濃縮水を通水し、該ラインEBが接続されるRO膜装置B(例えばB2)を除くRO膜装置B(例えばB1、B3)の供給側BsにRO膜装置Aの濃縮水を通水する。次に上記ラインEBの代わりに未選択のラインEBから一つのラインを選択して新たなラインEBとして接続ラインIを更新する。更新した新たな接続ラインIにおけるラインEBにはRO膜装置Aの濃縮水を通水し、当該ラインEBが接続されるRO膜装置B(例えばB3)を除くRO膜装置B(例えばB1、B2)の各供給側Bsに接続される上記ラインABにRO膜装置Aの濃縮水を通水する。同様にして、接続ラインIを順次更新して、新たな接続ラインIへと順次に切り替える。
このように、RO膜装置Aの透過水を処理したRO膜装置Eの濃縮水を、RO膜装置Aの濃縮水を処理したRO膜装置Bに、順次に流すことによって、RO膜装置BのRO膜に生じたスケールを当該濃縮水で溶解して除去することができる。
上記の「順次」とは、前述したとおりであり、複数(X個)のラインEBのうち、接続ラインの切り替えごとに、新たに別のラインEBが選択されることを意味する。
接続ラインIの切り替えは、例えば弁操作によって行うことができる。例えば図4の形態においては、前述の図3の形態と同様に仕切弁V1~V6が配され、前述の図3に示した形態と同様に弁操作が行われることが好ましい。
上記仕切弁V1~V6を適宜開閉することによって、接続ラインIを別の接続ラインIへと切り替えることが可能となる。
さらに、水処理システム1Dは、RO膜装置B(B1~B3)の各濃縮水側Bcと原水タンク51とをつなぐ原水戻しラインLF(以下ラインLFともいう)を含む。
濃縮水側Btに繋がるラインLFには、濃縮水側Bcから順に、圧力調整弁となる制御弁、逆止弁、仕切弁が配されることが好ましい。例えば、RO膜装置B1の濃縮水側Btに繋がる原水戻しラインLF(LF11(以下LF11ともいう))には、濃縮水側Bcから順に、制御弁VC1、仕切弁V11が配されることが好ましい。RO膜装置B2の濃縮水側Bcに繋がる原水戻しラインLF(LF12(以下LF12ともいう))には、濃縮水側Bcから順に、制御弁VC2、仕切弁V12が配されることが好ましい。RO膜装置B3の濃縮水側Bcに繋がる原水戻しラインLF(LF13(以下LF13ともいう))には、濃縮水側Bcから順に、制御弁VC3、仕切弁V13が配されることが好ましい。
制御弁VC1~VC3には、第1実施形態の制御弁と同様の圧力調整弁を用いることができる。
またラインLF11の制御弁VC1と仕切弁V11との間に逆止弁(図示せず)を配してもよい。同様に、ラインLF12の制御弁VC2と仕切弁V12との間、ラインLF13の制御弁VC2と仕切弁V13との間、に逆止弁(図示せず)を配してもよい。
上記制御弁VC1~VC3は、前述の水処理システム1Cの制御弁VC1~VC3と同様の機能を有し、同様の目的で使用される。
上記ラインLF11~13は、例えば、合流点C11でラインLF11とラインLF12とが合流し、合流点C12でラインLF12とラインLF13とが合流してもよく、各ラインLF11~13が単独で原水タンク51に接続してもよい。
制御弁VC1と仕切弁V11との間のラインLF11からラインLC1が分岐され、ブローラインLBに接続されることが好ましい。また制御弁VC2と仕切弁V12との間のラインLF12からラインLC2が分岐されてブローラインLBに接続され、制御弁VC3と仕切弁V13との間のラインLF13からラインLC3が分岐され、ブローラインLBに接続されることが好ましい。ラインLC1には仕切弁V14が配され、ラインLC2には仕切弁V15が配され、ラインLC3には仕切弁V16が配されることが好ましい。
一方、RO膜装置B(B1~B3)の各透過水側Btは、透過水通水ラインBE(以下ラインBEともいう)を介して、RO膜装置Eの供給側Esに接続される。例えば、RO膜装置B1の透過水側Btは、透過水通水ラインBE(BE1(以下ラインBE1ともいう))を介して、RO膜装置Eの供給側Esに接続される。RO膜装置B2の透過水側Btは、透過水通水ラインBE(BE2(以下ラインBE2ともいう))を介して、RO膜装置Eの供給側Esに接続される。RO膜装置B3の透過水側Btは、透過水通水ラインBE(BE3(以下ラインBE3ともいう))を介して、RO膜装置Eの供給側Esに接続される。ラインBE1~3は、単独ラインであってもよいが、図示したように、ラインBE2、BE3が途中でラインBE1に合流してRO膜装置Eの供給側Esに接続されてもよい。
さらにRO膜装置Eの供給側Esに繋がるラインAEの該RO膜装置Eの供給側Es側には、送液ポンプとして第2ポンプP2が配されることが好ましい。すなわち、RO膜装置Aの透過水側Atに繋がる全てのラインAEが合流した後のラインAEとラインBEとの合流点C15とRO膜装置Eの供給側Esとの間のラインAEに第2ポンプP2が配される。この第2ポンプP2は第1実施形態の第2ポンプと同様のものを用いることができる。
水処理システム1Dは、RO膜装置Aの濃縮水が処理されるRO膜装置Bに対しては、RO膜装置Bの透過水側BtとRO膜装置Eの供給側EsとをつなぐラインBEは、常に通水状態になっている。また、RO膜装置Eの濃縮水が処理されるRO膜装置Bに対しては、RO膜装置Bの濃縮水側Bcと原水タンク51とを繋ぐラインLFに通水させる接続ラインIIIが選択される。
例えば、RO膜装置Aの濃縮水がRO膜装置B1、B2によって処理される場合、RO膜装置B1、B2のそれぞれの透過水側BtとRO膜装置Eの供給側Esとは、常時、通水状態になっている。このとき、RO膜装置Eの濃縮水がRO膜装置B3によって処理される。またRO膜装置B3の濃縮水側Bcと原水タンク51とを繋ぐラインLF13、ラインLFに通水させる接続ラインIIIが選択される。
このように、複数のRO膜装置Bのうちの一つのRO膜装置Bに対して接続ラインIIIが選択されて、RO膜装置Bが洗浄される。
接続ラインIIIの選択は、例えば弁操作によって行うことができる。例えば図4に示す形態においては、弁の配置は上記説明した通りである。
上記仕切弁V11~V16を適宜開閉することによって、接続ラインIIIを選択することが可能となる。
一例として、RO膜装置B1、B2にRO膜装置Aの濃縮水が供給され、RO膜装置B3にRO膜装置Eの濃縮水が供給される場合、RO膜装置B1、B2でRO膜装置Aの濃縮水を処理して得た透過水をRO膜装置Eの供給側Esに戻すことができる。上記処理時に、仕切弁V13、を開けることで接続ラインIIIを開通させることができ、RO膜装置B3の濃縮水を原水タンク51に戻すことができる。また、RO膜装置B1、B2においては、濃縮水側BcにラインLF11、LF12を介して接続されるラインLC1、LC2に配された仕切弁V14、V15を開け、仕切弁V11、V12を閉じてブローラインLBに接続する。さらに、RO膜装置B3においては、濃縮水側BcにラインLF13を介してブローラインLBに接続されるラインLC3に配された仕切弁V16は閉じる。
上記の接続ラインIIIの設定によってRO膜装置B3の洗浄が終了した場合、弁操作によって上記のように接続ラインIを更新して新たな接続ラインIを開通させて、接続ラインIIIも切り替える。
そして、常時、ラインBE1~BE3が開通しているため、RO膜装置B2、B3にRO膜装置Aの濃縮水が供給される場合、RO膜装置B2、B3の透過水はRO膜装置Eの供給側Esに戻される。このとき、RO膜装置B1にRO膜装置Eの濃縮水が供給される。該処理時に、仕切弁V11を開けることで接続ラインIIIを開通させることができ、RO膜装置B1の濃縮水を原水タンク51に戻すことができる。また、RO膜装置B2、B3においては、濃縮水側BcにラインLF12、LF13を介して接続されるラインLC2、LC3に配された仕切弁V15、V16を開け、仕切弁V12、V13を閉じてブローラインLBに接続する。さらに、RO膜装置B1においては、濃縮水側BcにラインLF11を介してブローラインLBに接続されるラインLC3に配された仕切弁V14は閉じる。
この接続ラインIIIの設定によってRO膜装置B1の洗浄が終了した場合、弁操作によってさらに接続ラインIを更新して新たな接続ラインIを開通させて、接続ラインIIIも切り替える。
さらに、常時、ラインBE1~BE3が開通しているため、RO膜装置B1、B3にRO膜装置Aの濃縮水が供給される場合、RO膜装置B1、B3の透過水はRO膜装置Eの供給側Esに戻される。このとき、RO膜装置B2にRO膜装置Eの濃縮水が供給される場合、仕切弁V12を開けることで接続ラインIIIを開通させることができ、RO膜装置B2の濃縮水を原水タンク51に戻すことができる。また、RO膜装置B1、B3においては、濃縮水側BcにラインLF11、LF13を介して接続されるラインLC1、LC3に配された仕切弁V14、V16を開け、仕切弁V11、V13を閉じてブローラインLBに接続する。さらに、RO膜装置B2においては、濃縮水側BcにラインLF12を介してブローラインLBに接続されるラインLC2に配された仕切弁V15は閉じる。
この接続ラインIIIの設定によってRO膜装置B2の洗浄が終了した場合、弁操作によってさらに接続ラインIを更新して新たな接続ラインIを開通させて、接続ラインIIIも切り替える。本例の場合、RO膜装置Bが3個であるため、最初の状態に戻ることになる。そして、上記同様に処理を行うことで、RO膜装置Aの濃縮水の処理とRO膜装置BのRO膜装置Eの濃縮水による洗浄を連続的に行うことができる。すなわち、RO膜装置Aの濃縮水の処理が途切れることなく、RO膜装置Bの洗浄を順に行うことによって、水処理システムの連続稼働が可能になる。
なお、上記で説明した水処理システム1C、1Dの形態は一例であり、濃縮水を流すラインEBの本数(RO膜装置Bの個数)、RO膜装置Bの総数等、当業者であれば、本発明の効果を損なわない範囲で上記の例を適宜に変形した形態を実施することができる。例えば、濃縮水を流すラインEBを複数選択する形態や、RO膜装置Bを4個以上に増やした形態も、本発明の規定を満たす範囲で本発明に包含される。
上記水処理システム1A、1Bでは、RO膜装置Eの濃縮水を用いてRO膜装置Bを洗浄している間、別のRO膜装置CがRO膜装置Aの濃縮水を処理している。又はRO膜装置Eの濃縮水を用いてRO膜装置Cを洗浄している間、別のRO膜装置BがRO膜装置Aの濃縮水を処理している。
また、上記水処理システム1C、1Dでは、例えば、RO膜装置Eの濃縮水を用いて複数のRO膜装置Bのうちの一つのRO膜装置Bを洗浄している間、洗浄しているRO膜装置B以外のRO膜装置BがRO膜装置Aの濃縮水を処理している。
このため、RO膜装置Aの濃縮水の処理を停止することなく連続的に処理しながら、RO膜装置Eの濃縮水を用いたRO膜装置B又はCの洗浄をしたり(システム1A、1B)、複数のRO膜装置Bのうちの選択されたRO膜装置Bの洗浄をしたりすることができる(システム1C、1D)。
上記水処理システム1は、二方弁の仕切弁を用いた構成であるが、例えば、三方弁を用いた構成としてもよい。この場合、弁数を削減することができ、弁操作が簡単になる。図示はしていないが、例えば、図1に示した形態では、仕切弁V1、V2の代わりに三方弁を配し、仕切弁V3、V4の代わりに三方弁を配することができる。また、仕切弁V5、V6の代わりに三方弁を配することができ、仕切弁V12、V15の代わりに三方弁を配することができる。さらに仕切弁V21、V17の代わりに三方弁を配することができ、仕切弁V22、V18の代わりに三方弁を配することができる。このように、ラインが分岐されたそれぞれの分岐ラインに仕切弁が配される場合に、ラインの分岐点に三方弁を配することができる。上記三方弁を配する箇所は1箇所であっても、複数個所であってもよい。
上記水処理システム1において、各仕切弁、制御弁等は、図示していない制御部によって開閉を制御することが好ましい。そのため、各仕切弁は、制御部によって開閉可能となる自動弁であることが好ましい。自動弁の中でも動作速度の観点から電磁弁であることが好ましい。各仕切弁の開閉タイミングは、タイマーによって設定することが好ましい。タイマーによって設定された開閉タイミングになった時点で制御部から各仕切弁に開閉動作を指示して、各仕切弁を開閉することができる。また、各制御弁についても、制御部によって開閉状態を制御することが好ましい。
またRO膜装置Aに被処理水を供給する際、急激な圧力変動があると、RO膜が壊れる可能性がある。そのため、仕切弁の開閉をゆっくり行う必要がある。また急激な圧力変動によるRO膜の損傷を避けるために流量制御装置として機能するポンプインバータ(図示せず)を介して、例えば、第1ポンプP1を動作させることが好ましい。例えば、仕切弁操作の前に、第1ポンプP1のインバータ値を一時的に下げることによりRO膜にかかる圧力、流量を低下させておき、その後、仕切弁を操作してインバータ値を戻すことによって、急激な圧力変動を予防することができる。また第2ポンプP2についても第1ポンプP1と同様にポンプインバータによって制御させることが好ましい。
上記水処理システム1Aにおいては、洗浄時に、RO膜装置Bに供給水(RO膜装置Eの濃縮水)を流すラインEB、RO膜装置Bの濃縮水を流すラインLF1及び透過水を流すラインBEのいずれか一つ以上に、測定部(図示せず)を備えることが好ましい。同様に、RO膜装置Cに供給水(RO膜装置Eの濃縮水)を流すラインEC、RO膜装置Cの濃縮水を流すラインLF2及び透過水を流すラインCEのいずれか一つ以上に、測定部(図示せず)を備えることが好ましい。上記水処理システム1Bにおいても、上記同様のことがいえる。すなわち、洗浄時に、RO膜装置Bに供給水(RO膜装置Eの濃縮水)を流すラインEB、RO膜装置Bの濃縮水を流すラインLF3及び透過水を流すラインBEのいずれか一つ以上に、測定部(図示せず)を備えることが好ましい。同様に、RO膜装置Cに供給水(RO膜装置Eの濃縮水)を流すラインEC、RO膜装置Cの濃縮水を流すラインLF4及び透過水を流すラインCEのいずれか一つ以上に、測定部(図示せず)を備えることが好ましい。
また水処理システム1C、1Dにおいては、各RO膜装置Bに供給水(RO膜装置Eの濃縮水)を流すラインEB、RO膜装置Bの濃縮水を流すラインLF及び透過水を流すラインBEのいずれか一つ以上に、測定部(図示せず)を備えることが好ましい。
具体的には、水処理システム1Aでは、各測定部は、ラインEB、EC及びラインLF1、LF2には、導電率、イオン濃度、pHのいずれかの測定部を配することが好ましく、ラインBE、CEには透過水量を測定する測定部を配することが好ましい。
例えば、ラインEB、ECにイオン濃度(例えば、カルシウム(Ca)イオン濃度)又は導電率を測定する測定部を配し、さらにラインLF1、LF2にイオン濃度(例えば、Caイオン濃度)又は導電率を測定する測定部を配することができる。この場合、[供給水濃度]×[濃縮倍率(回収率より推算)]=[濃縮水濃度]になっていれば洗浄完了とすることができる。
「供給水濃度」とはRO膜装置Bに供給される供給水のCaイオン濃度であり、「濃縮水濃度」はRO膜装置Bの濃縮水のCaイオン濃度である。導電率を測定した場合、測定した導電率からCaイオン濃度を推算することができる。
または、水処理システム1AにおいてラインLF1、LF2に、水処理システム1BにおいてラインLF3、LF4に、イオン濃度としてCaイオン濃度又は導電率を測定する測定部を配することができる。この場合、濃縮水濃度が徐々に低下していき、変化幅が好ましくは25%以内、より好ましくは15%以内、さらに好ましくは10%以内になったところで洗浄完了とすることができる。この場合も測定した導電率からCaイオン濃度を推算することができる。
上記Caイオンの測定には、例えば、堀場アドバンスドテクノ社製ポータブル水質計LAQUA(商品名)、エンバイロ・ビジョン社製テストマートECO(商品名)等を用いることができる。また導電率の測定には、例えば、堀場アドバンスドテクノ社製HE-200C(商品名)、横河電機社製導電率計FLXA402(商品名)、等を用いることができる。
水処理システム1A、1Bにおいて、ラインEB、EC、ラインLF1、LF2、ラインBE、CEには圧力を測定する測定部(図示せず)を配することも好ましい。インバータ等により透過水量を一定に調整する運転を行っている場合、膜の閉塞に伴い、RO膜の一次側圧力(供給圧力、濃縮圧力の平均値)や膜間差圧(1次側平均圧力と透過圧力の差)が上昇する。洗浄開始後、1次側圧力もしくは膜間差圧が、RO膜新品の時の圧力に対して、好ましくは120%以内、より好ましくは110%以内、さらに好ましくは105%以内になったところで洗浄完了とすることができる。
水処理システム1A、1Bにおいて、ラインBE、CEには透過水量を測定する測定部(図示せず)を配することも好ましい。この場合、洗浄開始後、透過水量がRO膜新品のときの透過水量に対して、好ましくは80%、より好ましくは90%、さらに好ましくは95%になったところで洗浄完了とすることができる。
上記透過水量の測定には、面積式、超音波式、コリオリ式、渦巻き式など、一般的な流体に用いられる流量計を用いることができる。
水処理システム1A、1Bにおいて、RO膜装置B及びRO膜装置Cの供給側に供給水(RO膜装置Eの濃縮水)を導入するラインEB及びラインECにpHを測定する測定部(図示せず)を配することができる。また、RO膜装置Bの濃縮水を流すラインLF1、RO膜装置Cの濃縮水を流すラインLF2にpHを測定する測定部(図示せず)を配することができる。例えば、RO膜のスケール中に炭酸カルシウムを含む場合、洗浄開始後、供給水のpHに対して濃縮水のpHが好ましくは+2.0以内、より好ましくは+1.5以内、さらに好ましくは+1.0以内になったところで洗浄完了とすることができる。
または、ラインLF1にpHを測定する測定部を配することができる。この場合、洗浄開始後、RO膜装置Bの濃縮水のpHが徐々に変化していき、変化幅が好ましくは10%以内、より好ましくは8%以内、さらに好ましくは5%以内になったところで洗浄完了とすることができる。RO膜装置Cについても、RO膜装置Bと同様である。
上記pHの測定にはpH計を用いる。pH計としては、例えば、堀場アドバンスドテクノ社製HP-200(商品名)、横河電機社製FLXA402(商品名)等を用いることができる。
水処理システム1A、1Bにおいては、RO膜装置Aの濃縮水を通水中のRO膜装置Bの透過水量の流量表示があらかじめ任意に設定された透過水量を下回ること(もしくは、RO膜装置Bの一次側平均圧力や膜間差圧があらかじめ設定された圧力を上回ること)、及び/又は、RO膜装置Eの濃縮水を流して洗浄中のRO膜装置Cが洗浄完了であることを接続ライン切り替えのトリガーとすることができる。このトリガーによって、第1接続ラインと第2接続ラインとを切り替えて、通水、洗浄を切り替えることができる。
また、水処理システム1C、1Dにおいては、例えば、洗浄中のRO膜装置B(例えばB3)が洗浄完了であることを濃縮水通水ラインEBから濃縮水通水ラインECへの切り替えのトリガーとすることができる。このトリガーによって、濃縮水通水ラインEBの濃縮水が給水される対象を次のRO膜装置に切り替えて、通水、洗浄を切り替えることができる。
上記各測定部によって、所定の時間間隔で測定された上記各値は、演算部(図示せず)に入力される。演算部に入力された値によって、イオン濃度、導電率、pH、圧力、透過水量等の少なくとも一つの経時変化及び/又は差分を算出することができる。差分としては、例えば、イオン濃度、導電率、pH等についてRO膜装置Bの供給側と濃縮水側とで測定した測定値の差分が挙げられる。その差分が一定値以下になったところで洗浄完了とすることができる。圧力の場合は、RO膜装置Bの一次側平均圧力や膜間差圧と、あらかじめ設定した一次側平均圧力や膜間差圧との差分が一定値以下になったところで洗浄完了とすることができる。また透過水量の場合は、RO膜装置Bの透過水側の透過水量と、あらかじめ設定した透過水量との差分が一定値以下になったところで洗浄完了とすることができる。上記操作は、RO膜装置Cの洗浄時についても同様に行うことが好ましい。
演算部によって算出された数値に基づいて、洗浄が完了した状態を検出し、洗浄が完了したタイミングにおいて、水処理システム1A、1Bでは、上記制御部から第1接続ライン及び第2接続ラインの切り替えをする弁操作を指示することが好ましい。水処理システム1C、1Dでは、濃縮水通水ラインEBの濃縮水が給水される対象を次のRO膜装置Bへと、RO膜装置Eの濃縮水を供給する切り替えの弁操作を指示することが好ましい。
上記説明では、イオン濃度の測定においてCaイオン濃度を測定したが、イオン濃度に変えてシリカ濃度を測定することもできる。この場合、シリカ濃度測定器としては、例えば、日機装社製シリカ計7028型(商品名)、HACH社製シリカアナライザーPolymetro9610SC(商品名)等を用いることができる。
また、透過水にpH調整剤として酸性薬液を添加することによって、Caの溶解度を上げることができる。また、シリカの溶解度を上げるためには、アルカリ性薬液を添加することも好ましい。RO膜装置Aの透過水にCa濃度、シリカ濃度に応じて、pH調整剤を添加することは、本発明の好ましい実施の形態である。
洗浄中のRO膜装置について、供給水、濃縮水、透過水のいずれか一つ以上について、導電率、イオン濃度、pH、圧力、透過水量のいずれか1つ以上を測定することが好ましい。それらの測定した値の経時変化及び/又は差分を演算部によって算出する。算出した数値に基づいて上記pH調整剤の添加量を決定することができる。例えば、洗浄中のRO膜装置Bへの供給水(RO膜装置Eの濃縮水)およびRO膜装置Bの濃縮水のそれぞれのpHを測定し、その測定値の差分の経時変化を算出する。算出された差分の経時変化からその経時変化速度を算出し、さらに洗浄完了予定時間を算出する。この洗浄完了予定時間と、あらかじめ設定された所定の洗浄完了目標時間との差分から、仮に洗浄完了予定時間が洗浄完了目標時間を超過するようであれば、pH調整剤の添加量を増加させる。このような制御により、あらかじめ決定された洗浄完了目標時間内に洗浄を完了させることででき、水処理システム1を安定運転することができる。上記操作は、水処理システム1AのRO膜装置Cの洗浄時についても同様に行うことが好ましい。
<pHの調整>
RO膜装置Eの濃縮水に薬液としてpH調整剤を添加し、RO膜の洗浄効率を高めることができる。例えばスケールが炭酸カルシウム(CaCO)を含む場合は、上記pH調整剤として、酸性の薬液の、塩酸(HCl)、硫酸(HSO)等を添加することによって、Caの溶解度を高めることができる。例えば、RO膜装置Bの供給水および濃縮水のpHを測定するためのRO膜装置Bの供給側Bs及び濃縮水側BcにpH計(図示せず)を設置し、測定したpHの差分を求める。このpHの差分と、洗浄時間経過ごとの理想的なpH差分との差から、例えばPID制御(Proportional-Integral-Differential 制御)を実施し、塩酸の注入量を制御することが好ましい。PID制御は、制御工学におけるフィードバック制御の一種であり、入力値の制御を出力値と目標値との偏差、その積分、および微分の3つの要素によって制御を行う方法のことである。上記制御はPID制御に限定されず、入力値の制御を出力値と目標値とのP(偏差)制御、I(積分)制御、D(微分)制御、それらの組合せであってもよく、一般的なフィードバック制御を用いることができる。また、スケールがシリカ(二酸化ケイ素)を含む場合は、アルカリ性の薬液として、水酸化ナトリウム(NaOH)水溶液を添加することで、アルカリ性化し、シリカの溶解度を高めることができる。この場合も上記と同様に、透過水のpHを制御することでアルカリ性の薬液の添加量を制御することができる。
<逆浸透膜における被処理水の回収率>
被処理水の回収率(流量%)=[透過水量(流量)/被処理水量(流量)]×100(%)である。以下、回収率の「%」は「流量%」を示す。RO膜装置に供給する被処理水量(流量)に対するRO膜装置を透過した透過水量(流量)の割合(被処理水の回収率)を高めて、より効率的な運転をすることもできる。
回収率は、ポンプインバータ(図示せず)の出力調整および圧力調整バルブの開度調整を実施することによって調整することができる。例えばポンプインバータによって第1ポンプP1の出力を制御することにより、RO透過水、RO濃縮水の流量を制御して回収率を調整することができる。
<RO膜にかかる供給水の供給圧力>
RO膜装置Aに被処理水を供給する際の供給圧力を上昇させる場合には、急激な圧力上昇を避けるために流量制御装置として機能するポンプインバータ(図示せず)を介して、第1ポンプP1を動作させることが好ましい。その際、急激な圧力変化が生じないように、ポンプインバータによって、ポンプを駆動する電動機の出力(例えば、回転数)を制御して被処理水の流量を多くして水圧を高めることができる。第2ポンプP2についても第1ポンプP1と同様にポンプインバータによって制御させることが好ましい。
RO膜装置における被処理水の回収率は、純水製造の場合、コスト低減の観点から、65%以上が好ましく、80%以上がより好ましく、90%以上がさらに好ましい。回収率を「65%以上」とすることによって被処理水に対してより多くの透過水量を得られるという利点がある。また、排水回収の場合、総じて原水中の膜汚染の原因物質が多く、膜洗浄頻度や切り替え回数が増加するという観点から、50%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましい。
上記RO膜装置は特に制限されず、極超低圧型、超低圧型、低圧型、中圧型、高圧型のいずれのRO膜装置であってもよい。RO膜装置に用いるRO膜の一例として、ダウケミカル社製BWシリーズ(BW30XLE-440、BW30HR-440、BW30XFR-400/34i)(商品名)SWシリーズ(SW30HRLE-440i、SW30ULE-440i)、東レ社製TMGシリーズ(TMG20、TMG-20D)、TMLシリーズ(TML20、TML-20D)(商品名)TM800シリーズ(TM820M-440、TM820K-400)、日東電工社製ESシリーズ(ES20‐D8、ES15-D8)(商品名)HYDRANAUTICS製LFCシリーズ(LFC3-LD)、CPAシリーズ(CPA5-LD)、SWCシリーズ(SWC5-LD、SWC4-MAX)等が挙げられる。
上記RO膜装置Aは1段構成であるが、多段構成であってもよい。この場合、RO膜を直列に多段に配することが好ましい。
例えば、上記水処理システム1A、1Bにおいて、図示はしないが、RO膜装置Aが第1段目のバンクと第2段目のバンクとを備えてもよい。
RO膜装置Aは、一例として、第1段目のバンクが5本のベッセルVa1~Va5を備える。第1段目のバンク内のベッセルVa1~Va5の各濃縮水側Acが第2段目のバンクの供給側に接続される。ベッセルVa1~Va5の各透過水側AtがラインAEに接続される。第2段目のバンク内の複数のベッセルの各濃縮水側が合流してラインABに接続され、2段目のバンクの複数のベッセルの各透過水側がラインAEに接続される。その他の接続形態は、水処理システム1A、1Bと同様である。このように、第1段目のバンクの濃縮水側Acは第2段目のバンクの供給側に接続されるが、第2段目のバンクの濃縮水側の全てはラインABに接続される。また第1段目のバンクの透過水側の全てと第2段目のバンクの透過水側の全ては、第1、第2実施形態のRO膜装置Eの供給側Esに接続されるラインAEに接続される。
また、各仕切弁の配置、各仕切弁の開閉操作は、第1、第2実施形態と同様であることが好ましい。
RO膜装置A、B、C、Eに使用されるRO膜は、使用用途や被処理水水質、求められる透過水水質、回収率によって同一銘柄に限らずそれぞれ最適な膜を選定することができる。たとえば、水処理システム1A、1Bの場合、RO膜装置Eに高圧型逆浸透膜を使用し、RO膜装置B及びCには超低圧型逆浸透膜を使用することも可能である。このとき、RO膜装置BとCは切り替えて使用されるので、同一種類(例えば、同一製品同一型番)のRO膜が使用されることが好ましい。
本発明の水処理システムは、目的の純度の純水を得るためのRO膜処理と、RO膜へのスケーリングに対する洗浄とを効率的に行うのに効果的である。スケーリングとは、原水中の難溶解性成分がRO膜処理により膜表面に堆積もしくは析出することで、膜の性能を低下させるものである。膜面にスケーリングする物質に特に制限はないが、スケーリング物質として、カルシウム塩(炭酸カルシウム、硫酸カルシウム、フッ化カルシウムなど)、マグネシウム塩(水酸化マグネシウムなど)、バリウム塩(硫酸バリウム、など)、アルミニウム塩(リン酸アルミニウム、ヘキサフルオロアルミン酸ナトリウムなど)、シリカなどが挙げられる。
[水処理方法]
本発明の水処理方法は、上述した本発明の水処理システムにより実施することができる。すなわち、本発明の水処理方法の一実施形態は、下記水処理(a1)により逆浸透膜装置Bの逆浸透膜表面に生じたスケールを、該水処理(a1)を下記水処理(b1)へと切り替えることにより除去し、次いで、該水処理(b1)により逆浸透膜装置Cの逆浸透膜表面に生じたスケールを、該水処理(b1)を上記水処理(a1)へと切り替えることにより除去することを含む。この実施形態は、例えば図1に示した水処理システム1Aにより実施することができる。
<水処理(a1)>
被処理水を逆浸透膜装置Aにより処理し、
上記逆浸透膜装置Aの濃縮水を逆浸透膜装置Bにより処理し、
上記逆浸透膜装置Aの透過水を逆浸透膜装置Eにより処理し、
上記逆浸透膜装置Eの濃縮水を逆浸透膜装置Cにより処理する;
<水処理(b1)>
被処理水を逆浸透膜装置Aにより処理し、
上記逆浸透膜装置Aの濃縮水を逆浸透膜装置Cにより処理し、
上記逆浸透膜装置Aの透過水を逆浸透膜装置Eにより処理し、
上記逆浸透膜装置Eの濃縮水を逆浸透膜装置Bにより処理する。
上記水処理(a1)では、上記逆浸透膜装置Eの濃縮水の通水により逆浸透膜装置Cの逆浸透膜表面に生じたスケールが除去されることが好ましい。
上記の本発明の水処理方法の形態では、上記水処理(a1)及び(b1)を交互に繰り返すことが好ましい。こうすることにより、水処理(b1)において逆浸透膜装置Cの逆浸透膜表面に生じたスケールを水処理(a1)における上記逆浸透膜装置Eの濃縮水の通水により除去することができ、水処理(a1)において逆浸透膜装置Bの逆浸透膜表面に生じたスケールを水処理(b1)における上記逆浸透膜装置Eの濃縮水の通水により除去することができる。
また、本発明の水処理方法の別の実施形態は、下記水処理(a2)により逆浸透膜装置BX2の逆浸透膜表面に生じたスケールを、該水処理(a2)を下記水処理(b2)へと切り替えることにより除去することを含む。この実施形態は、例えば図3に示した水処理システム1Cにより実施することができる。
<水処理(a2)>
被処理水を逆浸透膜装置Aにより処理し、
前記逆浸透膜装置Aの透過水を逆浸透膜装置Eにより処理し、
上記逆浸透膜装置Eの濃縮水を、X個の逆浸透膜装置Bから選択される逆浸透膜装置BX1により処理し、
上記逆浸透膜装置Aの濃縮水を、逆浸透膜装置BX1以外の逆浸透膜装置Bにより処理する;
<水処理(b2)>
被処理水を逆浸透膜装置Aにより処理し、
前記逆浸透膜装置Aの透過水を逆浸透膜装置Eにより処理し、
上記逆浸透膜装置Eの濃縮水を、X個の逆浸透膜装置Bから選択され、かつ逆浸透膜装置BX1とは異なる逆浸透膜装置BX2により処理し、
上記逆浸透膜装置Aの濃縮水を、逆浸透膜装置BX2以外の逆浸透膜装置Bにより処理する。
上記逆浸透膜装置BX2は、具体的には、逆浸透膜装置Bのうち、すでに選択された逆浸透膜装置BX1を除く逆浸透膜装置Bのうちから選択する。例えば、図3に示した形態において、逆浸透膜装置B2は既に選択されている場合、逆浸透膜装置BX2は、逆浸透膜装置B2以外の逆浸透膜装置B1、B3から選択する。例えば、逆浸透膜装置B3を選択する。
上記水処理(a2)では、前記逆浸透膜装置Eの濃縮水の通水により逆浸透膜装置BX1の逆浸透膜表面に生じたスケールが除去されることが好ましい。
この実施形態においては、上記逆浸透膜装置Eの濃縮水が供給される逆浸透膜装置Bを順次に切り替えることにより(つまり、X個の逆浸透膜装置Bのうち、逆浸透膜装置Eの濃縮水が供給される1つの逆浸透膜装置Bを、順次に別の逆浸透膜装置Bへと切り替えることにより)、上記逆浸透膜装置Aの濃縮水の供給により該逆浸透膜装置Bの逆浸透膜表面に生じたスケールを、順次に除去することができる。
[実施例1]
実施例1は、Ca濃度20ppm、シリカ濃度15ppm、導電率200μS/cm、pH=8.5の原水を、図1に示した水処理システム1Aを用いてRO膜処理した。RO膜は日東電工社製ES20-D8(商品名)を用いた。RO膜装置Aの回収率を50%、RO膜装置Bの回収率を50%、RO膜装置Eの回収率を90%として、システム全体の回収率は73%とした。RO膜装置Aの濃縮水はRO膜装置Bに供給し、RO膜装置Eの濃縮水はRO膜装置Cに供給した。RO膜装置Bの透過水はRO膜装置Eの供給側に通水した。RO膜装置Cの回収率は10%以下とした。RO膜装置Cの透過水及び濃縮水は原水タンク51に通水した。RO膜装置Bの濃縮水のランゲリア指数は1.0であり、スケールが生じやすい条件であった。水処理システム1Aを第1接続ラインにして本条件で200時間(h)運転した。その後、RO膜装置BとRO膜装置Cとのラインを切り替え(第1接続ラインから第2接続ラインに切り替え)、RO膜装置BにRO膜装置Eの濃縮水を供給し、RO膜装置Bを洗浄した。この時のRO膜装置Bの回収率は10%以下、RO膜装置Cの回収率は50%とした。さらに200h経過後、再びラインを切り替え(第2接続ラインから第1接続ラインに切り替え)、RO膜装置Aの濃縮水をRO膜装置Bに通水した際のRO膜装置Bの透過水量Jと、RO膜装置Bの初期(運転開始時)の透過水量J0とを比較した。また、400h経過時の供給水量と得られた透過水量から、システム回収率を算出した。
[実施例2]
実施例2は、図1に示した水処理システム1Aを用い、RO膜装置Eの濃縮水中に塩酸を注入し、濃縮水のpHを5.5に調整した。そして第1接続ラインから第2接続ラインに切り替えた後はこの濃縮水をRO膜装置Bに供給し、RO膜装置Bを洗浄した。それ以外は、実施例1と同様の条件にて通水を実施した。すなわち、RO膜装置Bの洗浄開始から200h経過後、再びラインを切り替え(第2接続ラインから第1接続ラインに切り替え)、RO膜装置Aの濃縮水をRO膜装置Bに通水した際のRO膜装置Bの透過水量Jと、RO膜装置Bの初期(運転開始時)の透過水量J0とを比較した。また、400h経過時の供給水量と得られた透過水量から、システム回収率を算出した。
[実施例3]
RO膜装置Bの供給水および濃縮水にpH計を設置し、pHの差分を測定した。このpHの差分と、洗浄時間経過ごとの理想的なpH差分との差からPID制御を実施し、塩酸の注入量を制御した。それ以外は、実施例2と同様の条件にて通水を実施した。すなわち、RO膜装置Bの洗浄開始から200h経過後、再びラインを切り替え(第2接続ラインから第1接続ラインに切り替え)、RO膜装置Aの濃縮水をRO膜装置Bに通水した際の、RO膜装置Bの透過水量Jと、RO膜装置Bの初期(運転開始時)の透過水量J0とを比較した。また、400h経過時の供給水量と得られた透過水量から、システム回収率を算出した。
[比較例1]
比較例1は、RO膜装置BとCとの切り替えを行わずに第1接続ラインのみ使用して、400hの間、RO膜装置Aの濃縮水をRO膜装置Bに供給した以外は、実施例1と同様の条件で通水を実施した。400h後、RO膜装置Bの透過水量Jと、RO膜装置Bの初期(運転開始時)の透過水量J0とを比較した。また、400h経過時の供給水量と得られた透過水量から、システム回収率を算出した。
[比較例2]
比較例2は、実施例1と同様にして第1接続ラインを使用して200h運転を実施した後に、いったん装置を停止し、RO膜装置Eの濃縮水をRO膜装置Bに1h、100kPaの圧力にて圧送し、RO膜装置Bを洗浄した。本運転を2回繰り返した。その後、第1接続ラインを使用して運転し、RO膜装置Bの透過水量Jと、RO膜装置Bの初期(運転開始時)の透過水量J0とを比較した(便宜上、400h後のJ/J0(%)と称す。)。また、400h経過時の供給水量と得られた透過水量から、システム回収率を算出した。
運転を400h行った後のRO膜装置BのJ/J0(%)及びシステム回収率の測定結果を表1に示す。
Figure 0007239428000001
実施例1~3では、運転時間400h後のJ/J0が十分に回復していた。比較例1は、RO膜装置Eの濃縮水による洗浄を実施していないため透過水量が減少したままであった。比較例2は透過水による洗浄時間が足りず透過水量が十分に回復しておらず、また、洗浄水をブローする必要がありシステム回収率も低下した。
1、1A、1B 水処理システム
51 原水タンク
53 タンク供給ライン
55 原水供給ライン
A、B、B1~B3、C,E 逆浸透膜装置(RO膜装置)
As、Bs、Cs、Es 供給側
Ac、Bc、Cc、Ec 濃縮水側
At、Bt、Ct、Et 透過水側
AB、AC、EB、EC 濃縮水通水ライン(ライン)
AE、BE、BE1~3、CE 透過水通水ライン(ライン)
B1、B1、B11 分岐点
C1~C5,C11~C15 合流点
LA 処理水ライン
LB ブローライン
LF、LF1~LF4,LF11~LF19 原水戻しライン
P1 第1ポンプ
P2 第2ポンプ
V1~V6,V11~V19 仕切弁
VC1~VC4 制御弁
Va1~Va5、Vb1~Vb3、Vc1、Ve1 逆浸透膜ベッセル(ベッセル)

Claims (10)

  1. 被処理水を処理する逆浸透膜装置Aと、
    前記逆浸透膜装置Aの透過水を処理する逆浸透膜装置Eと、
    前記逆浸透膜装置Aの濃縮水又は逆浸透膜装置Eの濃縮水を処理する逆浸透膜装置Bと、
    前記逆浸透膜装置Bが前記逆浸透膜装置Aの濃縮水を処理しているときに前記逆浸透膜装置Eの濃縮水を処理し、前記逆浸透膜装置Bが前記逆浸透膜装置Eの濃縮水を処理しているときに前記逆浸透膜装置Aの濃縮水を処理する逆浸透膜装置Cと、
    前記逆浸透膜装置Aの濃縮水側と前記逆浸透膜装置Bの供給側とをつなぐ濃縮水通水ラインABと、
    前記逆浸透膜装置Aの濃縮水側と前記逆浸透膜装置Cの供給側とをつなぐ濃縮水通水ラインACと、
    前記逆浸透膜装置Eの濃縮水側と前記逆浸透膜装置Bの供給側とをつなぐ濃縮水通水ラインEBと、
    前記逆浸透膜装置Eの濃縮水側と前記逆浸透膜装置Cの供給側とをつなぐ濃縮水通水ラインECと、
    前記逆浸透膜装置Bの濃縮水側及び透過水側と前記被処理水を貯液する原水タンクとをつなぐ原水戻しラインLF1と、
    前記逆浸透膜装置Cの濃縮水側及び透過水側と前記被処理水を貯液する原水タンクとをつなぐ原水戻しラインLF2と、
    前記逆浸透膜装置Bの透過水側と前記逆浸透膜装置Eの供給側とをつなぐ透過水戻しラインBEと、
    前記逆浸透膜装置Cの透過水側と前記逆浸透膜装置Eの供給側とをつなぐ透過水戻しラインCEとを含み、
    前記濃縮水通水ラインAB及び前記濃縮水通水ラインECに通水させる第1接続ラインと、前記濃縮水通水ラインAC及び前記濃縮水通水ラインEBに通水させる第2接続ラインとが切り替え可能であり、
    前記第1接続ラインの使用時に前記透過水戻しラインBE及び前記原水戻しラインLF2に通水させる第3接続ラインと、前記第2接続ラインの使用時に前記原水戻しラインLF1及び前記透過水戻しラインCEに通水させる第4接続ラインとが、前記第1接続ラインと前記第2接続ラインとの切り替えに対応して切り替え可能である水処理システム。
  2. 被処理水を処理する逆浸透膜装置Aと、
    前記逆浸透膜装置Aの透過水を処理する逆浸透膜装置Eと、
    前記逆浸透膜装置Aの濃縮水又は逆浸透膜装置Eの濃縮水を処理する逆浸透膜装置Bと、
    前記逆浸透膜装置Bが前記逆浸透膜装置Aの濃縮水を処理しているときに前記逆浸透膜装置Eの濃縮水を処理し、前記逆浸透膜装置Bが前記逆浸透膜装置Eの濃縮水を処理しているときに前記逆浸透膜装置Aの濃縮水を処理する逆浸透膜装置Cと、
    前記逆浸透膜装置Aの濃縮水側と前記逆浸透膜装置Bの供給側とをつなぐ濃縮水通水ラインABと、
    前記逆浸透膜装置Aの濃縮水側と前記逆浸透膜装置Cの供給側とをつなぐ濃縮水通水ラインACと、
    前記逆浸透膜装置Eの濃縮水側と前記逆浸透膜装置Bの供給側とをつなぐ濃縮水通水ラインEBと、
    前記逆浸透膜装置Eの濃縮水側と前記逆浸透膜装置Cの供給側とをつなぐ濃縮水通水ラインECと、
    前記逆浸透膜装置Bの濃縮水側と前記被処理水を貯液する原水タンクとをつなぐ原水戻しラインLF3と、
    前記逆浸透膜装置Cの濃縮水側と前記被処理水を貯液する原水タンクとをつなぐ原水戻しラインLF4と、
    前記逆浸透膜装置Bの透過水側と前記逆浸透膜装置Eの供給側とをつなぐ透過水戻しラインBEと、
    前記逆浸透膜装置Cの透過水側と前記逆浸透膜装置Eの供給側とをつなぐ透過水戻しラインCEとを含み、
    前記濃縮水通水ラインAB及び前記濃縮水通水ラインECに通水させる第1接続ラインと、前記濃縮水通水ラインAC及び前記濃縮水通水ラインEBに通水させる第2接続ラインとが切り替え可能であり、
    前記第1接続ラインの使用時に前記原水戻しラインLF4に通水させる第5接続ラインと、前記第2接続ラインの使用時に前記原水戻しラインLF3に通水させる第6接続ラインとが、前記第1接続ラインと前記第2接続ラインとの切り替えに対応して切り替え可能である水処理システム。
  3. 前記逆浸透膜装置B及び/又は前記逆浸透膜装置Cの供給水、濃縮水及び透過水のいずれか一つ以上について、圧力、導電率、イオン濃度、pH、及び透過水量のいずれか一つ以上を測定する測定部と、
    前記測定部によって測定した値の経時変化及び/又は差分を算出する演算部と、
    前記演算部によって算出した数値に基づいて、前記ラインの切り替えを制御する制御部とを有する請求項1又は2に記載の水処理システム。
  4. 被処理水を処理する逆浸透膜装置Aと、
    前記逆浸透膜装置Aの透過水を処理する逆浸透膜装置Eと、
    前記逆浸透膜装置Aの濃縮水及び逆浸透膜装置Eの濃縮水を処理するX個の逆浸透膜装置Bと、
    前記逆浸透膜装置Aの濃縮水側と前記のX個の逆浸透膜装置Bの供給側とをつなぐ濃縮水通水ラインABと、
    前記逆浸透膜装置Eの濃縮水側と前記のX個の逆浸透膜装置Bの供給側とをつなぐ濃縮水通水ラインEBと、
    前記X個の逆浸透膜装置Bの濃縮水側と前記被処理水を貯液する原水タンクとをつなぐ原水戻しラインLFと、
    前記X個の逆浸透膜装置Bの透過水側と前記逆浸透膜装置Eの供給側とをつなぐ透過水戻しラインBEとを含み、
    前記のX個の濃縮水通水ラインEBから選択される濃縮水通水ラインEBと、該濃縮水通水ラインEBが接続される逆浸透膜装置B以外の逆浸透膜装置Bの供給側に接続される前記濃縮水通水ラインABとに通水される、接続ラインIが、順次に切り替え可能であり、
    前記逆浸透膜装置Aの濃縮水が供給される前記逆浸透膜装置Bに対しては、前記透過水戻しラインBEに通水させる接続ラインIIが選択され、
    前記逆浸透膜装置Eの濃縮水が供給される前記逆浸透膜装置Bに対しては、前記原水戻しラインLFに通水させる接続ラインIIIが選択される水処理システム。
  5. 前記逆浸透膜装置Bの供給水、濃縮水及び透過水のいずれか一つ以上について、圧力、導電率、イオン濃度、pH、及び透過水量のいずれか一つ以上を測定する測定部と、
    前記測定部によって測定した値の経時変化及び/又は差分を算出する演算部と、
    前記演算部によって算出した数値に基づいて、前記ラインの切り替えを制御する制御部とを有する請求項4に記載の水処理システム。
  6. 前記逆浸透膜装置Aの透過水及び/又は逆浸透膜装置Eの濃縮水に洗浄薬品を添加する薬品添加部を有し、
    前記制御部は、前記算出した数値に基づいて、前記洗浄薬品の添加量を制御する機能も備える請求項3又は5に記載の水処理システム。
  7. 下記の水処理(a1)により逆浸透膜装置Bの逆浸透膜表面に生じたスケールを、該水処理(a1)を下記の水処理(b1)へと切り替えることにより除去することを含む、水処理方法:
    <水処理(a1)>
    被処理水を逆浸透膜装置Aにより処理し、
    前記逆浸透膜装置Aの濃縮水を逆浸透膜装置Bにより処理し、
    前記逆浸透膜装置Aの透過水を逆浸透膜装置Eにより処理し、
    前記逆浸透膜装置Eの濃縮水を逆浸透膜装置Cにより処理する;
    <水処理(b1)>
    被処理水を逆浸透膜装置Aにより処理し、
    前記逆浸透膜装置Aの濃縮水を逆浸透膜装置Cにより処理し、
    前記逆浸透膜装置Aの透過水を逆浸透膜装置Eにより処理し、
    前記逆浸透膜装置Eの濃縮水を逆浸透膜装置Bにより処理する。
  8. 前記水処理(a1)及び(b1)を交互に繰り返す、請求項7に記載の水処理方法。
  9. 下記水処理(a2)を含む水処理により逆浸透膜装置BX2の逆浸透膜表面に生じたスケールを、該水処理(a2)を下記水処理(b2)へと切り替えることにより除去することを含む、水処理方法:
    <水処理(a2)>
    被処理水を逆浸透膜装置Aにより処理し、
    前記逆浸透膜装置Aの透過水を逆浸透膜装置Eにより処理し、
    前記逆浸透膜装置Eの濃縮水を、X個の逆浸透膜装置Bから選択される逆浸透膜装置BX1により処理し、
    前記逆浸透膜装置Aの濃縮水を、逆浸透膜装置BX1以外の逆浸透膜装置Bにより処理する;
    <水処理(b2)>
    被処理水を逆浸透膜装置Aにより処理し、
    前記逆浸透膜装置Aの透過水を逆浸透膜装置Eにより処理し、
    前記逆浸透膜装置Eの濃縮水を、X個の逆浸透膜装置Bから選択され、かつ逆浸透膜装置BX1とは異なる逆浸透膜装置BX2により処理し、
    前記逆浸透膜装置Aの濃縮水を、逆浸透膜装置BX2以外の逆浸透膜装置Bにより処理する。
  10. 前記逆浸透膜装置Eの濃縮水が供給される逆浸透膜装置Bを順次に切り替えることにより、前記逆浸透膜装置Aの濃縮水の供給により該逆浸透膜装置Bの逆浸透膜表面に生じたスケールを、該逆浸透膜装置Eの濃縮水の通水により順次に除去する、請求項9に記載の水処理方法。

JP2019161359A 2019-09-04 2019-09-04 水処理システム及び水処理方法 Active JP7239428B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019161359A JP7239428B2 (ja) 2019-09-04 2019-09-04 水処理システム及び水処理方法
CN202080012978.3A CN113396130B (zh) 2019-09-04 2020-08-03 水处理系统以及水处理方法
US17/603,613 US20220212961A1 (en) 2019-09-04 2020-08-03 Water treatment system and water treatment method
PCT/JP2020/029658 WO2021044785A1 (ja) 2019-09-04 2020-08-03 水処理システム及び水処理方法
TW109127856A TW202112432A (zh) 2019-09-04 2020-08-17 水處理系統及水處理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019161359A JP7239428B2 (ja) 2019-09-04 2019-09-04 水処理システム及び水処理方法

Publications (2)

Publication Number Publication Date
JP2021037482A JP2021037482A (ja) 2021-03-11
JP7239428B2 true JP7239428B2 (ja) 2023-03-14

Family

ID=74849111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019161359A Active JP7239428B2 (ja) 2019-09-04 2019-09-04 水処理システム及び水処理方法

Country Status (5)

Country Link
US (1) US20220212961A1 (ja)
JP (1) JP7239428B2 (ja)
CN (1) CN113396130B (ja)
TW (1) TW202112432A (ja)
WO (1) WO2021044785A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004321869A (ja) 2003-04-22 2004-11-18 Japan Organo Co Ltd インク廃液の処理方法および装置
JP2007014902A (ja) 2005-07-08 2007-01-25 Mitsubishi Heavy Ind Ltd 淡水化装置及び淡水化装置の前処理膜の洗浄方法
WO2013176119A1 (ja) 2012-05-22 2013-11-28 東レ株式会社 膜分離装置および膜分離装置の運転方法
JP2016087500A (ja) 2014-10-30 2016-05-23 株式会社日立製作所 逆浸透処理システムおよび逆浸透処理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5743774B2 (ja) * 2011-07-25 2015-07-01 株式会社クボタ 膜処理装置およびその運転方法
JP6737661B2 (ja) * 2016-08-30 2020-08-12 野村マイクロ・サイエンス株式会社 逆浸透膜処理システム及び逆浸透膜処理システムの運転方法
CN107879524A (zh) * 2017-11-28 2018-04-06 张家港市金马星机械制造有限公司 可在线反冲洗的反渗透水处理系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004321869A (ja) 2003-04-22 2004-11-18 Japan Organo Co Ltd インク廃液の処理方法および装置
JP2007014902A (ja) 2005-07-08 2007-01-25 Mitsubishi Heavy Ind Ltd 淡水化装置及び淡水化装置の前処理膜の洗浄方法
WO2013176119A1 (ja) 2012-05-22 2013-11-28 東レ株式会社 膜分離装置および膜分離装置の運転方法
JP2016087500A (ja) 2014-10-30 2016-05-23 株式会社日立製作所 逆浸透処理システムおよび逆浸透処理方法

Also Published As

Publication number Publication date
US20220212961A1 (en) 2022-07-07
WO2021044785A1 (ja) 2021-03-11
CN113396130B (zh) 2023-06-06
TW202112432A (zh) 2021-04-01
JP2021037482A (ja) 2021-03-11
CN113396130A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
JP5359898B2 (ja) 水処理方法及び水処理システム
KR102180787B1 (ko) 역삼투 또는 나노여과에 의한 수처리 시스템 및 방법
WO2018150980A1 (ja) 逆浸透処理装置及び逆浸透処理方法
KR101334330B1 (ko) 발라스트 수 처리 시스템 및 발라스트 수 처리 방법
US20140360937A1 (en) Reverse osmosis treatment device and method for cleaning reverse osmosis treatment device
KR20190043588A (ko) 역침투막 처리 시스템 및 역침투막 처리 시스템의 운전 방법
EP3844110B1 (en) Process for treating water with a high recovery variable volume reverse osmosis membrane system
KR101752553B1 (ko) 이중 순환형 정삼투-역삼투 복합 수처리 시스템 및 이의 제어방법
JP2016032810A (ja) 水処理システム
JP7239428B2 (ja) 水処理システム及び水処理方法
KR101578470B1 (ko) 통상의 역삼투 시스템들의 향상된 성능을 위한 폐회로 탈염 개량 유닛
JP2021037481A (ja) 水処理システム及び水処理方法
JP2021037480A (ja) 水処理システム及び水処理方法
KR102535939B1 (ko) 순차적 순환공정 역삼투압 탈염 장치
JP2018153790A (ja) 逆浸透膜モジュールの洗浄方法
JP6907745B2 (ja) 膜分離装置
JP6642082B2 (ja) 膜分離装置
US20190209968A1 (en) Method and system for liquid treatment
JP2018153789A (ja) 水処理システム
KR101806144B1 (ko) 제어-삼투 및 역삼투를 이용한 담수화 시스템
CN115461133A (zh) 液体处理装置、纯水制造系统以及液体处理方法
KR101944514B1 (ko) 여과 시스템 및 여과 방법
JP2013132563A (ja) 水処理システム
JP2022041621A (ja) 分離膜の洗浄方法及び水処理システム
JP2022021090A (ja) 逆浸透膜装置の運転方法及び水処理システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230302

R150 Certificate of patent or registration of utility model

Ref document number: 7239428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150