JP7238979B2 - 設備状態解析装置、設備状態解析方法、及びプログラム - Google Patents

設備状態解析装置、設備状態解析方法、及びプログラム Download PDF

Info

Publication number
JP7238979B2
JP7238979B2 JP2021524523A JP2021524523A JP7238979B2 JP 7238979 B2 JP7238979 B2 JP 7238979B2 JP 2021524523 A JP2021524523 A JP 2021524523A JP 2021524523 A JP2021524523 A JP 2021524523A JP 7238979 B2 JP7238979 B2 JP 7238979B2
Authority
JP
Japan
Prior art keywords
pole
ground
tension
disturbance
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021524523A
Other languages
English (en)
Other versions
JPWO2020245892A1 (ja
Inventor
正樹 和氣
和也 安藤
玄 小林
亮一 金子
裕明 谷岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Publication of JPWO2020245892A1 publication Critical patent/JPWO2020245892A1/ja
Application granted granted Critical
Publication of JP7238979B2 publication Critical patent/JP7238979B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/16Cables, cable trees or wire harnesses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本開示は、屋外に存在する設備の状態を有限要素法で解析する設備状態解析装置、設備状態解析方法、及びプログラムに関する。
従来、野外設備としての電柱や信号柱等のポールは、ポール毎に許容できる設計荷重が設定されており、設計者は布設する予定のケーブル及びその他付属物における荷重の最大値を推定し、当該推定した荷重に見合う設計荷重を有するポールを選定する。特に、布設したポール群の両端等には支線が布設され、当該ポール群に掛かる荷重について均衡を保っている。この様な荷重設計は、ポールの新設時は元より、ケーブル等が追加される場合にも従来の設計データに、新たに追加される荷重を加えることで布設可能か否かを推定している。
特開2018-195240号公報
現状、新たにポールやケーブル等の設備を布設する場合、当該設備に発生し得る荷重の最大値を基にした使用設計張力の考え方にて設計が実施される。一例として、使用するケーブルの荷重、布設場所が住宅地、山間部等であれば最大風速を鑑みた風速荷重等にて、計算され、当該最大荷重に耐え得る設計荷重のポールが使用される。
しかしながら、当該手法によって布設されたポール及びケーブル等の設備群では、無風時等にどの程度の張力が発生しているか、いわゆる実効張力は分からない。また、近年では温暖化により日本近海での海水面の温度が高いため、台風等が勢力を保ったまま上陸することで、過去に想定していた最大風速を超える風速が発生するケースが増えている。これに対応するために全ての布設済み設備について再計算し、一律に設計荷重の高いポールに建て替えすることは大変なコストが必要となる。
加えて、図1に示した通り、使用設計張力を鑑みてポール群の両端に支線を設置する必要があっても、実際の工事を実施する際に民地であったり、障害物があって設置できない場合があったりする等、その場合は当該設備群では張力等からポールに不平衡な荷重が生じている。この様な状況を長期間放置すると、ポールは設計寿命よりも短い期間で更改する必要があるため、コストが余計に必要となる。これを防ぐために支線が不要な自立柱と呼ばれる設計荷重が大きく、単体で設備系の不平衡荷重を耐えられるポールを用いてきたが、通常のポールに比べて価格が高く布設にかかるコストも高いという課題があった。
また、特許文献1のように既存技術では3次元点群データから3Dモデルを作成し、実際のポールに発生しているたわみ・傾きを計測する機能はあるものの、当該たわみ・傾きの発生原因である不平衡荷重及び張力等を計算する、技術は存在していない。つまり、設備系全体で不平衡荷重や風速等を加味して、どの程度の荷重や風速に耐えられるのか、所謂設備系の残存耐力を算定する方法が存在せず、設備系全体でのコストを低減することが困難という課題があった。
そこで、本発明は、上記課題を解決するために、点検者が現場へ赴かなくても危険性の高いポールを抽出できる設備状態解析装置、設備状態解析方法、及びプログラムを提供することを目的とする。
上記目的を達成するために、本発明に係る設備状態解析装置は、ポールの材料特性、寸法、構造モデルから、ポールモデルを作成し、当該モデルに別途作成したケーブルモデルによる張力を付荷した際のたわみや傾き等の設備状態について、有限要素法を用いて高精度に推定し、設備系に残存する耐力を可視化することとした。
具体的には、本発明に係る設備状態解析装置は、
一部が地中にある円錐台状のポールのうち、地中にない部分を離散化して前記ポールを要素で表現すること、及び前記ポールのうち、地中の部分を地盤に水平な方向の水平バネと地盤に鉛直な鉛直バネの地盤要素で表現することを行うモデル作成部と、
外乱による、前記ポールが受ける力と前記ポールに布設されたケーブルから受ける張力の変動を前記要素と前記地盤要素に与え、有限要素法で前記ポールの状態変化を解析する演算部と、
を備える。
また、本発明に係る設備状態解析方法は、
一部が地中にある円錐台状のポールのうち、地中にない部分を離散化して前記ポールを要素で表現すること、及び前記ポールのうち、地中の部分を地盤に水平な方向の水平バネと地盤に鉛直な鉛直バネの地盤要素で表現することを行うポールモデル作成工程と、
外乱による、前記ポールが受ける力と前記ポールに布設されたケーブルから受ける張力の変動を前記要素と前記地盤要素に与え、有限要素法で前記ポールの状態変化を解析する演算工程と、
を行う。
本設備状態解析装置及び方法は、ポール及びケーブルをモデル化し、ポールにかかる実効張力を推定し、当該実効張力によってポールがどの様に変形するかについて有限要素法で推定する。例えば、本設備状態解析装置及び方法は、固有の材料特性(コンクリートや金属における応力-ひずみ曲線等)を持つポールに対して、当該ポールの特定箇所に任意の荷重があった場合、有限要素法を用いたシミュレーションにてポール全体の変形を計算する。さらに、本設備状態解析装置及び方法は、複数のポール及びケーブルにて推定された荷重・変形量を基に、ポール群が耐えられる荷重(設計荷重)と比較してどの程度の余力があるか、いわゆる残存耐力を推定することができる。
このため、本設備状態解析装置及び方法により、熟練度の高い点検者が全てのポールについて点検を実施せずに、危険性の高い(不平衡荷重の大きいないしは残存耐力の少ない)ポール群を抽出することが可能となる。従って、本発明は、点検者が現場へ赴かなくても危険性の高いポールを抽出できる設備状態解析装置、及び設備状態解析方法を提供することができる。
前記外乱が風である場合、本発明に係る設備状態解析装置の前記演算部は、空間を三軸で表し、それぞれの成分毎に風向及び風速から前記張力を計算し、成分毎の前記張力を合成することを特徴とする。
前記ポールに支線又は支柱が布設される場合、本発明に係る設備状態解析装置の前記モデル作成部は、前記支線又は前記支柱を、前記ポールと前記支線又は前記支柱が敷設される前記ポールの取付点と地中にある不動点とを結ぶバネとするバネ要素で表現し、前記演算部は、前記バネ要素も含めて有限要素法で前記ポールの状態変化を解析することを特徴とする。
前記ポールに付属物が取り付けられている場合、本発明に係る設備状態解析装置の前記モデル作成部は、前記付属物を離散化して前記付属物を付属物要素で表現し、前記演算部は、前記付属物要素も含めて有限要素法で前記ポールの状態変化を解析することを特徴とする。
また、本発明に係るプログラムは、一部が地中にある円錐台状のポールのうち、地中にない部分を離散化して前記ポールを要素で表現すること、及び前記ポールのうち、地中の部分を地盤に水平な方向の水平バネと地盤に鉛直な鉛直バネの地盤要素で表現することを行うポールモデル作成ステップと、外乱による、前記ポールが受ける力と前記ポールに布設されたケーブルから受ける張力の変動を前記要素と前記地盤要素に与え、有限要素法で前記ポールの状態変化を解析する演算ステップと、をコンピュータに実行させるためのプログラムである。本発明に係る設備状態解析装置は、コンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
なお、上記各発明は、可能な限り組み合わせることができる。
本発明は、点検者が現場へ赴かなくても危険性の高いポールを抽出できる設備状態解析装置、設備状態解析方法、及びプログラムを提供することができる。
不平衡な荷重が発生する状況とその状況を改善する手法を説明する図である。 本発明に係る設備状態解析装置を説明する図である。 本発明に係る設備状態解析方法を説明するフローチャートである。 解析対象の設備系モデルを説明する図である。 本発明に係る設備状態解析装置において、風向き及び風速から張力を算出する手法を説明する図である。 コンクリートポールの材料特性を説明する図である。 ポールの解析モデル(要素)を説明する図である。 地盤要素を説明する図である。 支線ないし支柱の要素を説明する図である。 本発明に係る設備状態解析装置が設備系モデルを解析した結果を説明する図である。 本発明に係る設備状態解析装置を説明する図である。
図2は、本実施形態の設備状態解析装置10を説明する図である。設備状態解析装置10は、
一部が地中にある円錐台状のポールのうち、地中にない部分を離散化して前記ポールを要素で表現すること、及び前記ポールのうち、地中の部分を地盤に水平な方向の水平バネと地盤に鉛直な鉛直バネの地盤要素で表現することを行うモデル作成部11と、
外乱による、前記ポールが受ける力と前記ポールに布設されたケーブルから受ける張力の変動を前記要素と前記地盤要素に与え、有限要素法で前記ポールの状態変化を解析する演算部12と、
を備える。
設備データベース20は、ポールの材質及び規格値毎に、製造メーカの構造データをポールデータとして格納する。ここで、ポールの材質とはコンクリート製及び鋼管製か等を表し、規格値とは高さ、太さ、当該ポールが耐え得る荷重である設計荷重等を示す。製造メーカにより、前記規格値に適合した配筋・鋼材厚さ等を独自に有しているため、解析には各製造メーカ毎の構造データが必要となる。
また、設備データベース20は、ポールに布設しているケーブル、支線・支柱の材質データ、規格値データ及びポールのどの位置に布設されているかのつながりデータも同様に格納する。さらに、設備データベース20は、電力の変圧器等の付属物における材質、規格値、設置位置データも同様に格納する。
設備状態解析装置10は、設備データベース20に格納されたデータを基に各種モデルを作成し有限要素法による解析を実行する。図3は、当該解析方法を説明するフローチャートである。当該解析方法は、
一部が地中にある円錐台状のポールのうち、地中にない部分を離散化して前記ポールを要素で表現すること、及び前記ポールのうち、地中の部分を地盤に水平な方向の水平バネと地盤に鉛直な鉛直バネの地盤要素で表現することを行うポールモデル作成工程SK01と、
外乱による、前記ポールが受ける力と前記ポールに布設されたケーブルから受ける張力の変動を前記要素と前記地盤要素に与え、有限要素法で前記ポールの状態変化を解析する演算工程SK02と、
を行う。
図4の設備モデルで当該解析方法を説明する。当該解析方法は、ポール41、それらに布設されたケーブル42、支線や支柱(不図示)、及び付属物44のモデル化を実施し、設備群における実効張力の推定及び残存耐力を算定する方法である。ポール41、それらに布設されたケーブル42、支線や支柱(不図示)、及び付属物44をまとめて「設備系」と記載する。
[ステップS01]
本ステップでは解析の設定を行う。
初めに、図4に示す様に、解析する設備系に3軸の座標情報(x,y,z座標)を与える。次に、ポール41及びケーブル42が受ける風の方向及び風速、並びに気温の設定を行う。ここで、風の有無、その方向、及び風速は、ポール41自体に応力を発生させるともに、ケーブル42がポールに与える張力にも影響を及ぼす。風によりケーブル42に発生する荷重は次の通り表される。
Figure 0007238979000001
ここで、Pはケーブルに発生する荷重、Kは風圧荷重種別による係数、Σdはケーブルの外径和、Sは平均ポール間距離である。
風がポール41及びケーブル42に吹く方向について、3軸方向のベクトルに変換して風圧による荷重を換算する。図4に示す様に、設備系はx,y,z座標を持つが、風はそれらの座標面とは無関係な方向(α、β、γ座標)から吹くことを考慮する必要がある。そのため、演算部12は、x,y,z平面の3平面をそれぞれ分割し、風向き及び風速から張力(Tix、Tiy、Tiz)を計算した後、これらを合成して風向き、風速及び張力Tiの関係性を解析する。例えば、図5の(A)、(B)及び(C)に示す通り、予めx軸、y軸及びz軸における単一方向から風が吹いた場合の風向きと張力の関係性を計算し、これらを合成して図5(D)に示す設備系における風向きと張力の関係性を取得する。
風以外に気温も考慮する。気温が低くなるにつれてケーブル42が縮むために張力が増大する。気温による影響も加味して張力を算出する。ここで、温度及び風速が変化した場合の張力等の関係式は次の通りである。
Figure 0007238979000002
ここで、dは無風時の弛度、dは有風時の弛度、Sはポール間距離、Tは無風時の張力、Eはケーブルのヤング率、Aはケーブルの断面積、αケーブルの熱膨張率、θは無風時の温度、θは有風時の温度、Wは単位長さのケーブル重量と風圧荷重の合成荷重である。
[ステップS02]
本ステップではモデル作成部11が材料特性の設定を行う。
モデル作成部11は設備データベース20からポールデータを取得する。ポールの材料としてはコンクリートや鋼材があり、それぞれに材料特性が異なる。コンクリートポール(CP)は図6に示す様に、内部に応力を付与された緊張筋と応力が付与されていない非緊張筋を持つ構造となっているため、コンクリートの圧縮/引張強度、及びヤング係数等の材料特性の他に、緊張筋及び非緊張筋の材料特性が必要となる。また、ステンレスポール(SP)は鋼材のみで構成されているため、鋼材固有の降伏/引張強度、及びヤング係数等の材料特性が必要である。
[ステップS03]
本ステップではモデル作成部11がポールモデルの作成を行う。
実際のポールは円柱状やテーパ状等、様々な形状を持つため、図7(A)に示す様に長手方向に分割し、それぞれの部位で直径(D1及びD2)を設定する。そして、分割部分で直径Dの円筒とみなしてポールの解析モデルを作成する。縦方向の分割が多ければ多い程、精緻な解析が可能となる。さらに当該円筒の断面をモデル化するために、円周方向及び肉厚をメッシュ状に分割する(離散化)。上記、分割した領域は“要素”と呼ばれる。後述する解析では、これらすべての要素について材料特性や外部からの荷重等を考慮して有限要素法の計算を実施する。
[ステップS04]
本ステップではモデル作成部11が地盤要素の作成を行う。
地中にあるポール41aは、図8(B)のように長手方向に分割し、それぞれの部位で直径Diと分割間隔Liを設定する。そして、図8(A)に示す様に、それぞれの部位において地盤43に対して水平方向の水平バネ(Kxi、Kzi)と鉛直バネ(Kv)が付されているとみなして地盤要素とする。後述する解析では、地盤要素について下記の関係式にて解析する。
Figure 0007238979000003
ここで、KxiとKziは地盤に対して水平方向(x方向とz方向)の水平バネのバネ定数、Kは地盤に対して鉛直方向(y方向)の鉛直バネのバネ定数、Kは地盤反力係数、Aはポール部材の水平投影面積(図8(B)のハッチング部)、Aはポール底面の断面積である。
[ステップS05]
本ステップではモデル作成部11がケーブル42による張力の設定を行う。
ケーブルによる張力の設定は下式で表すことができる。
Figure 0007238979000004
ここで、Tはケーブル張力、Wは単位長さ辺りのケーブル重量、Sはポール間距離、dはケーブル弛度である。
つまり、無風時の張力Tと有風時並びに気温が変動した時の張力T
Figure 0007238979000005
となる。これらをdとdについて変形して数4に代入することで、有風時並びに気温が変動した場合の張力Tの関係式は、下式で表すことができる。
Figure 0007238979000006
後述するステップS08にて、演算部12はこの関係式を用いて解析を行う。
[ステップS06]
本ステップではモデル作成部11がポール41に布設されている支線又は支柱の要素を作成する。なお、ポール41に支線又は支柱が付されていなければ本ステップは不要である。
支線又は支柱は、図9のように長手方向の地中にバネが存在するとみなしてバネ要素46のモデルを形成する。図9(A)は支線のモデル、図9(B)は支柱のモデル、図9(C)はバネ部分を拡大した図である。当該モデルは荷重に対して変異が一切ない不動点53、バネ要素46が発生する基部52、及びポール41への取り付け点51で構成される。
[ステップS07]
本ステップではモデル作成部11がポール41に布設されている付属物44の荷重及び布設位置を設定する。付属物44は、例えば、電力の変圧器等である。なお、ポール41に付属物が取り付けられていなければ本ステップは不要である。
なお、ステップS02からステップS07までが前述のモデル作成工程SK01である。
[ステップS08]
本ステップでは演算部12がステップS05で設定した無風時の張力T、ないし風及び気温変化による張力Tの変動をステップS03で作成した要素及びステップS04で作成した地盤要素に与え、有限要素法でポール41の状態変化を解析する。ポールによっては支線又は支柱が布設されたり、付属物が取り付けられている場合があるので、その場合にはステップS06で作成したバネ要素や付属物44の荷重も考慮する。ステップS08が前述の演算工程SK02である。
(発明の効果)
上述のように、ポールのモデルの作成、要素の作成、及び様々な設定を実施し、有限要素法を用いて設備群に作用する荷重及び実効張力の推定が可能となる。図10は、無風時のポールモデルと任意の風向及び風速の場合のポールモデルを比較した図である(気温は同一とした)。図10よりケーブルからの張力変動でポールがどの様に変形するかを知ることができる。
また、ポールには設計荷重と呼ばれる、許容できる荷重及び張力が存在する。本設備状態解析方法で、ポールのそれぞれに付加される荷重及び張力を知ることができるため、現在の状態に対して、さらにどの程度までの荷重及び張力に耐えられるか、いわゆる残存耐力についても算定することができる。
本設備状態解析方法で、熟練度の高い点検者が全てのポールについて点検を実施せずに、危険性の高い(不平衡荷重の大きいないし残存耐力の少ない)ポール群を抽出することができる。このため、点検を実施する際の優先順位付けが可能であり、加えて実際の設備に作業者が赴く時間を削減することもできる。
さらに、残存耐力を風速による荷重及び張力に変換することで、倒壊の危険性のある風速を算定することが可能である。さらに、解析結果を参照し、ポール間に存在するケーブル群の弛度を適度に調整する、あるいはポール間距離を短くするといった設計変更も容易になる。また、コストが大きい自立柱等を用いるのではなく、設備系での残存耐力を加味して最適な設計荷重を持つポールへランクアップする等を任意に解析することもできる。
このため、本設備状態解析方法を用いることで、設備系での残存耐力を加味して最適な設計荷重を持つポールへランクアップする等により不平衡荷重の解消が可能であることから、安全性を犠牲とすることなく、ポール等の使用期間を大きく伸ばすことや低コストの設備を使用することができる。つまり、本設備状態解析方法を用いることで、全体のコストを大きく下げることができる。
(実施例)
図11は、システム100のブロック図を示している。システム100は、ネットワーク135へと接続されたコンピュータ105を含む。
ネットワーク135は、データ通信ネットワークである。ネットワーク135は、プライベートネットワーク又はパブリックネットワークであってよく、(a)例えば或る部屋をカバーするパーソナル・エリア・ネットワーク、(b)例えば或る建物をカバーするローカル・エリア・ネットワーク、(c)例えば或るキャンパスをカバーするキャンパス・エリア・ネットワーク、(d)例えば或る都市をカバーするメトロポリタン・エリア・ネットワーク、(e)例えば都市、地方、又は国家の境界をまたいでつながる領域をカバーするワイド・エリア・ネットワーク、又は(f)インターネット、のいずれか又はすべてを含むことができる。通信は、ネットワーク135を介して電子信号及び光信号によって行われる。
コンピュータ105は、プロセッサ110、及びプロセッサ110に接続されたメモリ115を含む。コンピュータ105が、本明細書においてはスタンドアロンのデバイスとして表されているが、そのように限定されるわけではなく、むしろ分散処理システムにおいて図示されていない他のデバイスへと接続されてよい。
プロセッサ110は、命令に応答し且つ命令を実行する論理回路で構成される電子デバイスである。
メモリ115は、コンピュータプログラムがエンコードされた有形のコンピュータにとって読み取り可能な記憶媒体である。この点に関し、メモリ115は、プロセッサ110の動作を制御するためにプロセッサ110によって読み取り可能及び実行可能なデータ及び命令、すなわちプログラムコードを記憶する。メモリ115を、ランダムアクセスメモリ(RAM)、ハードドライブ、読み出し専用メモリ(ROM)、又はこれらの組み合わせにて実現することができる。メモリ115の構成要素の1つは、プログラムモジュール120である。
プログラムモジュール120は、本明細書に記載のプロセスを実行するようにプロセッサ110を制御するための命令を含む。本明細書において、動作がコンピュータ105或いは方法又はプロセス若しくはその下位プロセスによって実行されると説明されるが、それらの動作は、実際にはプロセッサ110によって実行される。
用語「モジュール」は、本明細書において、スタンドアロンの構成要素又は複数の下位の構成要素からなる統合された構成のいずれかとして具現化され得る機能的動作を指して使用される。したがって、プログラムモジュール120は、単一のモジュールとして、或いは互いに協調して動作する複数のモジュールとして実現され得る。さらに、プログラムモジュール120は、本明細書において、メモリ115にインストールされ、したがってソフトウェアにて実現されるものとして説明されるが、ハードウェア(例えば、電子回路)、ファームウェア、ソフトウェア、又はこれらの組み合わせのいずれかにて実現することが可能である。
プログラムモジュール120は、すでにメモリ115へとロードされているものとして示されているが、メモリ115へと後にロードされるように記憶装置140上に位置するように構成されてもよい。記憶装置140は、プログラムモジュール120を記憶する有形のコンピュータにとって読み取り可能な記憶媒体である。記憶装置140の例として、コンパクトディスク、磁気テープ、読み出し専用メモリ、光記憶媒体、ハードドライブ又は複数の並列なハードドライブで構成されるメモリユニット、並びにユニバーサル・シリアル・バス(USB)フラッシュドライブが挙げられる。あるいは、記憶装置140は、ランダムアクセスメモリ、或いは図示されていない遠隔のストレージシステムに位置し、且つネットワーク135を介してコンピュータ105へと接続される他の種類の電子記憶デバイスであってよい。
システム100は、本明細書においてまとめてデータソース150と称され、且つネットワーク135へと通信可能に接続されるデータソース150A及びデータソース150Bを更に含む。実際には、データソース150は、任意の数のデータソース、すなわち1つ以上のデータソースを含むことができる。データソース150は、体系化されていないデータを含み、ソーシャルメディアを含むことができる。
システム100は、ユーザ101によって操作され、且つネットワーク135を介してコンピュータ105へと接続されるユーザデバイス130を更に含む。ユーザデバイス130として、ユーザ101が情報及びコマンドの選択をプロセッサ110へと伝えることを可能にするためのキーボード又は音声認識サブシステムなどの入力デバイスが挙げられる。ユーザデバイス130は、表示装置又はプリンタ或いは音声合成装置などの出力デバイスを更に含む。マウス、トラックボール、又はタッチ感応式画面などのカーソル制御部が、さらなる情報及びコマンドの選択をプロセッサ110へと伝えるために表示装置上でカーソルを操作することをユーザ101にとって可能にする。
プロセッサ110は、プログラムモジュール120の実行の結果122をユーザデバイス130へと出力する。あるいは、プロセッサ110は、出力を例えばデータベース又はメモリなどの記憶装置125へともたらすことができ、或いはネットワーク135を介して図示されていない遠隔のデバイスへともたらすことができる。
例えば、図3のフローチャートを行うプログラムをプログラムモジュール120としてもよい。また、図2で説明した設備データベースを記憶装置125あるいは140とすることができる。システム100を設備状態解析装置10として動作させることができる。
用語「・・・を備える」又は「・・・を備えている」は、そこで述べられている特徴、完全体、工程、又は構成要素が存在することを指定しているが、1つ以上の他の特徴、完全体、工程、又は構成要素、或いはそれらのグループの存在を排除してはいないと、解釈されるべきである。用語「a」及び「an」は、不定冠詞であり、したがって、それを複数有する実施形態を排除するものではない。
[付記]
本発明は、電柱や信号柱等のポール、当該ポールに布設されている、電力線や電話線等のケーブル、支線等の、主として屋外に存在する設備の状態を、当該設備の材料特性等から設備群に加わる張力やモーメント計算を実施することで推定する技術に関する。
本発明は、有限要素法を用いてポール単体ないしポール群を材質や規格値等から荷重及び張力を解析し、その設備状態を解析する手法及びプログラムである。
本発明は、有限要素法を用いて設備群を材質や規格値等から荷重及び張力を解析し、当該設備群の残存耐力を解析する手法及びプログラムである。
本発明は、前記により作成した設備群における残存耐力から、設備群が耐え得る風速を算定し、倒壊等の危険性を推定する手法及びプログラムである。
本発明は、有限要素法を用いて設備群を材質や規格値等から荷重及び張力を解析し、当該設備群において不平衡荷重の大きいポール及びケーブルを解析する手法及びプログラムである。
本発明は、前記作成した不平衡荷重の大きいポール及びケーブルにおいて、不平衡を解消するためにケーブル張力の適正化や支線又は支柱の配置を推定する手法及びプログラムである。
10:設備状態解析装置
11:モデル作成部
12:演算部
20:設備データベース
100:システム
101:ユーザ
105:コンピュータ
110:プロセッサ
115:メモリ
120:プログラムモジュール
122:結果
125:記憶装置
130:ユーザデバイス
135:ネットワーク
140:記憶装置
150:データソース

Claims (6)

  1. 一部が地中にある円錐台状のポールのうち、地中にない部分を離散化して前記ポールを要素で表現すること、及び前記ポールのうち、地中の部分を地盤に水平な方向の水平バネと地盤に鉛直な鉛直バネの地盤要素で表現することを行うモデル作成部と、
    外乱による、前記ポールが受ける力と前記ポールに布設されたケーブルから受ける張力の変動を前記要素と前記地盤要素に与え、有限要素法で前記ポールの状態変化を解析すること、及び前記外乱のないときの、前記ポールが受けている力及び前記ポールに布設されたケーブルから受けている張力から解析される前記ポールの状態と、前記ポールに与えられている設計荷重とを比較して残存耐力を推定することを行う演算部と、
    を備える設備状態解析装置。
  2. 前記外乱が風であり、
    前記演算部は、空間を三軸で表し、それぞれの成分毎に風向及び風速から前記張力を計算し、成分毎の前記張力を合成することを特徴とする請求項1に記載の設備状態解析装置。
  3. 前記ポールに支線又は支柱が布設される場合、
    前記モデル作成部は、前記支線又は前記支柱を、前記ポールと前記支線又は前記支柱が敷設される前記ポールの取付点と地中にある不動点とを結ぶバネとするバネ要素で表現し、
    前記演算部は、前記バネ要素も含めて有限要素法で前記ポールの状態変化を解析する
    ことを特徴とする請求項1又は2に記載の設備状態解析装置。
  4. 前記ポールに付属物が取り付けられている場合、
    前記モデル作成部は、前記付属物を離散化して前記付属物を付属物要素で表現し、
    前記演算部は、前記付属物要素も含めて有限要素法で前記ポールの状態変化を解析する
    ことを特徴とする請求項1から3のいずれかに記載の設備状態解析装置。
  5. 一部が地中にある円錐台状のポールのうち、地中にない部分を離散化して前記ポールを要素で表現すること、及び前記ポールのうち、地中の部分を地盤に水平な方向の水平バネと地盤に鉛直な鉛直バネの地盤要素で表現することを行うポールモデル作成工程と、
    外乱による、前記ポールが受ける力と前記ポールに布設されたケーブルから受ける張力の変動を前記要素と前記地盤要素に与え、有限要素法で前記ポールの状態変化を解析すること、及び前記外乱のないときの、前記ポールが受けている力及び前記ポールに布設されたケーブルから受けている張力から解析される前記ポールの状態と、前記ポールに与えられている設計荷重とを比較して残存耐力を推定することを行う演算工程と、
    コンピュータを用いて行う設備状態解析方法。
  6. 一部が地中にある円錐台状のポールのうち、地中にない部分を離散化して前記ポールを要素で表現すること、及び前記ポールのうち、地中の部分を地盤に水平な方向の水平バネと地盤に鉛直な鉛直バネの地盤要素で表現することを行うポールモデル作成ステップと、
    外乱による、前記ポールが受ける力と前記ポールに布設されたケーブルから受ける張力の変動を前記要素と前記地盤要素に与え、有限要素法で前記ポールの状態変化を解析すること、及び前記外乱のないときの、前記ポールが受けている力及び前記ポールに布設されたケーブルから受けている張力から解析される前記ポールの状態と、前記ポールに与えられている設計荷重とを比較して残存耐力を推定することを行う演算ステップと、
    をコンピュータに実行させるためのプログラム。
JP2021524523A 2019-06-03 2019-06-03 設備状態解析装置、設備状態解析方法、及びプログラム Active JP7238979B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/022049 WO2020245892A1 (ja) 2019-06-03 2019-06-03 設備状態解析装置、設備状態解析方法、及びプログラム

Publications (2)

Publication Number Publication Date
JPWO2020245892A1 JPWO2020245892A1 (ja) 2020-12-10
JP7238979B2 true JP7238979B2 (ja) 2023-03-14

Family

ID=73652484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021524523A Active JP7238979B2 (ja) 2019-06-03 2019-06-03 設備状態解析装置、設備状態解析方法、及びプログラム

Country Status (3)

Country Link
US (1) US20220237335A1 (ja)
JP (1) JP7238979B2 (ja)
WO (1) WO2020245892A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023286253A1 (ja) * 2021-07-15 2023-01-19
WO2023168647A1 (zh) * 2022-03-10 2023-09-14 大连理工大学 一种输电线路侧向不平衡力的拟静力计算方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004353255A (ja) 2003-05-28 2004-12-16 Taisei Corp 橋梁の構造
JP2006353031A (ja) 2005-06-17 2006-12-28 Nippon Telegr & Teleph Corp <Ntt> 電柱設計方法および電柱設計装置
JP2009211452A (ja) 2008-03-05 2009-09-17 Tokyo Electric Power Co Inc:The コンクリート柱強度計算装置
US20120073382A1 (en) 2009-05-05 2012-03-29 Axel Meyer Method and device for testing the stability of a pole

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6205229B2 (ja) * 2013-10-01 2017-09-27 株式会社Ihiインフラシステム 免震建物の制振方法及び装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004353255A (ja) 2003-05-28 2004-12-16 Taisei Corp 橋梁の構造
JP2006353031A (ja) 2005-06-17 2006-12-28 Nippon Telegr & Teleph Corp <Ntt> 電柱設計方法および電柱設計装置
JP2009211452A (ja) 2008-03-05 2009-09-17 Tokyo Electric Power Co Inc:The コンクリート柱強度計算装置
US20120073382A1 (en) 2009-05-05 2012-03-29 Axel Meyer Method and device for testing the stability of a pole

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
畠山昭ほか,配電柱の地震時挙動に及ぼす架線の影響,土木学会論文集,日本,1991年09月,No.435,103~110ページ

Also Published As

Publication number Publication date
WO2020245892A1 (ja) 2020-12-10
US20220237335A1 (en) 2022-07-28
JPWO2020245892A1 (ja) 2020-12-10

Similar Documents

Publication Publication Date Title
Wang et al. Structure–soil–structure interaction between underground structure and ground structure
Keyhan et al. Dynamic analysis of an overhead transmission line subject to gusty wind loading predicted by wind–conductor interaction
JP7238979B2 (ja) 設備状態解析装置、設備状態解析方法、及びプログラム
Martin et al. Fragility surfaces for multi-hazard analysis of suspension bridges under earthquakes and microbursts
Chen et al. Dynamic Responses and Vibration Control of the Transmission Tower‐Line System: A State‐of‐the‐Art Review
CA3089317C (en) Utility structure modeling and design
Zhang et al. Modal parameters of a transmission tower considering the coupling effects between the tower and lines
Kusano et al. Reliability based design optimization for bridge girder shape and plate thicknesses of long-span suspension bridges considering aeroelastic constraint
WO2018230339A1 (ja) 情報処理装置、情報処理方法、及びプログラム
Gim et al. Fluid-structure interaction in a U-tube with surface roughness and pressure drop
Grosse Monitoring and inspection techniques supporting a digital twin concept in civil engineering
KR102041515B1 (ko) 교량의 지진 안전성 평가를 위한 해석모델 구축 방법 및 해석모델 구축 시스템
Iliopoulos et al. Continuous fatigue assessment of offshore wind turbines using a stress prediction technique
CN110309622B (zh) 一种输电塔结构倒塌分析方法
Fu et al. Gust response factor of a transmission tower under typhoon
Moni et al. Real-time aeroelastic hybrid simulation of a base-pivoting building model in a wind tunnel
Stengel et al. Finite element modelling of electrical overhead line cables under turbulent wind load
Tran et al. A modal analysis for computation of stress intensity factors under dynamic loading conditions at low frequency using extended finite element method
Davila Delgado et al. Modelling, management, and visualisation of structural performance monitoring data on BIM
WO2023286253A1 (ja) 演算装置、設備解析方法及びプログラム
KR101792702B1 (ko) 작업 순위 결정 장치
JP2023107210A (ja) 試験データの前処理を行う際の臨界点
JP7184207B2 (ja) 演算装置、設備管理方法、及びプログラム
Wu et al. Characteristics of multi-span transmission lines following ice-shedding
Ashraf et al. Sway of semi-rigid steel frames: Part 1: Regular frames

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7238979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150