JP7238279B2 - 機械学習装置及び燃焼状態判定装置 - Google Patents

機械学習装置及び燃焼状態判定装置 Download PDF

Info

Publication number
JP7238279B2
JP7238279B2 JP2018119168A JP2018119168A JP7238279B2 JP 7238279 B2 JP7238279 B2 JP 7238279B2 JP 2018119168 A JP2018119168 A JP 2018119168A JP 2018119168 A JP2018119168 A JP 2018119168A JP 7238279 B2 JP7238279 B2 JP 7238279B2
Authority
JP
Japan
Prior art keywords
coal
combustion state
burner
machine learning
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018119168A
Other languages
English (en)
Other versions
JP2019219147A (ja
Inventor
明博 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2018119168A priority Critical patent/JP7238279B2/ja
Publication of JP2019219147A publication Critical patent/JP2019219147A/ja
Application granted granted Critical
Publication of JP7238279B2 publication Critical patent/JP7238279B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feeding And Controlling Fuel (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

本発明は、機械学習装置及び燃焼状態判定装置に関する。
現状、火力発電所の燃焼炉内に設置されているバーナの燃焼状態を確認するために、作業者が感覚的に燃焼状態を判断するという方法が用いられている。この方法では、判断基準が感覚的なものであり、作業者ごとに判断内容が異なる可能性があった。
この解決手法として、特許文献1は、自走式検査装置により、バーナの燃焼火炎の発光スペクトル及び定量的情報を収集し、それを基に、燃焼状態の健全性を判定する技術を開示している。また、特許文献2は、監視カメラにより監視対象物を撮影して原画像として取り込み、正常時の基準画像を用いることなく、多種多様な外乱や、あいまいな情報を含む原画像から異常判断を行う方法及び装置を開示している。
特開2016-109421号公報 特開平6-119454号公報
しかし、特許文献1に係る技術においては、数値により火炎の健全性を把握することができるものの、熟練作業者が目視で健全性を判断する際には、例えば火炎の揺らぎ具合に関して、数値には表れない経験による感覚的な判断をしており、このような感覚的な判断を反映することができなかった。
また、特許文献2に係る技術においては、正常時の基準画像を用いることがないため、ある現場において火炎の燃焼状態が定常的に健全でなかった場合には、健全でない燃焼状態を正常であると判断する可能性がある。
そこで、本発明は、火力発電システムに備わるボイラ内のバーナの燃焼に関する、熟練作業者の感覚的な経験知に基づいて、従来技術よりも正確にバーナの燃焼状態を判定することが可能な学習モデルを構築する機械学習装置を提供することを目的とする。
(1) 本発明に係る機械学習装置は、火力発電システムに備わるボイラ内のバーナの燃焼状態を判定するための学習モデルを構築する機械学習装置であって、前記バーナの火炎の映像から、前記火炎の特徴量を抽出する特徴量抽出手段と、前記火炎の映像の取得時点から事前に設定された期間における、前記燃焼状態を調整する作業者の作業内容をラベルとして取得するラベル取得手段と、前記特徴量と前記ラベルとの組を教師データとして教師あり学習を行うことにより、前記燃焼状態の判定を行う学習モデルを構築する学習手段と、を備える。
(2) (1)に記載の機械学習装置において、前記火炎の映像は、前記火炎のサーモグラフィ映像であってよい。
(3) (1)又は(2)に記載の機械学習装置において、前記火力発電システムは、前記バーナでの燃焼に用いられる石炭を貯留するサイロと、前記サイロに貯留された前記石炭を粉砕前に一時貯蔵する石炭バンカと、前記石炭バンカに貯蔵された石炭を微粉炭に粉砕する微粉炭機と、前記石炭バンカから前記微粉炭機に前記石炭を供給する給炭機と、前記ボイラの出口付近に設置され、前記ボイラの給水を予熱する節炭器と、前記微粉炭機を通じて前記バーナに燃焼用空気を供給する空気供給機と、前記バーナに導入される燃焼用空気の温度を調整する温度調整器とを備え、前記作業内容は、前記作業者による、前記給炭機、前記節炭器、前記温度調整器のいずれか1以上の制御に係る作業内容であってよい。
(4) 本発明に係る燃焼状態判定装置は、(1)~(3)の機械学習装置で構築した前記学習モデルを用いた燃焼状態判定装置であって、前記バーナの火炎の映像を取得する映像取得部と、前記映像から特徴量を抽出し、前記特徴量と前記学習モデルとに基づいて、前記燃焼状態の判定を行う判定部と、前記判定に基づいて、前記燃焼が異常状態にある場合には警報を発報する警報部と、を備える。
(5) 本発明に係る燃焼状態判定装置は、(3)の機械学習装置で構築した前記学習モデルを用いた燃焼状態調整装置であって、前記バーナの火炎の映像を取得する映像取得部と、前記映像から特徴量を抽出し、前記特徴量と前記学習モデルとに基づいて、前記燃焼状態の判定を行う判定部と、前記判定に基づいて、前記燃焼が異常状態にある場合には、前記給炭機、前記節炭器、前記温度調整器のうち、いずれか1以上の装置の制御の必要性と共に、警報を発報する警報部と、を備える。
(6) 本発明に係る機械学習装置は、火力発電システムに備わるボイラ内のバーナの燃焼状態に応じて、前記火力発電システムの制御装置での制御における調整量を算出するための学習モデルを構築する機械学習装置であって、前記バーナの火炎の映像から、前記火炎の特徴量を抽出する特徴量抽出手段と、前記火炎の映像の取得時点から事前に設定された期間における、前記燃焼状態を調整する作業者の作業内容をラベルとして取得するラベル取得手段と、前記特徴量と前記ラベルとの組を教師データとして教師あり学習を行うことにより、前記特徴量に応じた前記調整量を推定する学習モデルを構築する学習手段と、を備える。
本発明によれば、火力発電システムに備わるボイラ内のバーナの燃焼に関する、熟練作業者の感覚的な経験知に基づいて、従来技術よりも正確にバーナの燃焼状態を判定することが可能となる。
本発明の第1実施形態に係る燃焼状態調整システムの全体構成図である。 本発明の第1実施形態に係る火力発電システムの全体構成図である。 本発明の第1実施形態に係る火炉とその周辺の構成を示す図である。 本発明の第1実施形態に係る制御装置の機能ブロック図である。 本発明の第1実施形態に係る機械学習装置及び燃焼状態判定装置の機能ブロック図である。 本発明の第1実施形態に係る機械学習装置の動作を示すフローチャートである。 本発明の第1実施形態に係る燃焼状態判定装置の動作を示すフローチャートである。 本発明の第2実施形態に係る燃焼状態調整システムの全体構成図である。 本発明の第2実施形態に係る制御装置の機能ブロック図である。 本発明の第2実施形態に係る機械学習装置及び制御装置の機能ブロック図である。 本発明の第2実施形態に係る機械学習装置の動作を示すフローチャートである。 本発明の第2実施形態に係る制御装置の動作を示すフローチャートである。
〔1 第1実施形態〕
以下、本発明の第1実施形態について、図1~図7を参照することにより説明する。第1実施形態に係る燃焼状態調整システムは、バーナの燃焼状態が正常状態か異常状態か判定し、異常状態である場合には警報を発するものである。
〔1.1 全体構成〕
図1は、第1実施形態に係る燃焼状態調整システム1の全体構成を示す。燃焼状態調整システム1は、図1に示すように、機械学習装置10、燃焼状態判定装置20、制御装置30、火力発電システム35、及びネットワーク40を備える。
機械学習装置10は、火力発電システム35に備わるボイラ内のバーナの燃焼状態を判定するための学習モデルを構築する装置である。
燃焼状態判定装置20は、機械学習装置10により構築された学習モデルを用いて、火力発電システム35に備わるボイラ内のバーナの燃焼状態を判定する。
制御装置30は、火力発電システム35を制御するための装置であり、本実施形態においては、とりわけ、火力発電システム35に備わる、コンベア、微粉炭機、空気供給機を制御する装置である。
火力発電システム35は、公知技術によって火力発電を実施することが可能な発電システムである。
なお、機械学習装置10、燃焼状態判定装置20、及び制御装置30は、ネットワーク40を介して互いに通信することが可能であるが、ネットワーク40を介さず直接通信してもよい。また、燃焼状態判定装置20と制御装置30とは、一体化されていてもよい。また、図1においては、燃焼状態調整システム1は、機械学習装置10、燃焼状態判定装置20、制御装置30及び火力発電システム35を1台ずつ備える態様が記載されているが、各々が複数台備わっていてもよく、例えば、1台の制御装置30で複数台の火力発電システム35を制御したり、1台の燃焼状態判定装置20で複数台の火力発電システム35における燃焼状態を判定したりしてもよい。
〔1.2 火力発電システム〕
図2は、火力発電システム35を示す概略構成例である。
火力発電システム35は、図2に示す各構成要素のほか、不図示の蒸気タービン、発電機等を備える。後述する微粉炭燃焼部38において、微粉炭の燃焼時に発生した熱は、蒸気に変換される。この蒸気により蒸気タービンが回されることにより、発電機で発電が行われる。微粉炭燃焼部38において、微粉炭の燃焼時に発生する窒素酸化物(NOx)、煤塵、硫黄酸化物(SOx)等は、後段の脱硝装置391、集塵機392及び脱硫装置(不図示)で除去され、煙突から排出される。
図2に示すように、火力発電システム35は、石炭供給部36と、微粉炭生成部37と、微粉炭燃焼部(燃焼ボイラ)38と、石炭灰処理部39を備える。
石炭供給部36は、微粉炭生成部37へ石炭を供給する。微粉炭生成部37は、石炭供給部36から供給された石炭を微粉炭にする。微粉炭燃焼部38は、微粉炭を燃焼させる。石炭灰処理部39は、微粉炭の燃焼により生成された石炭灰を処理する。
〔1.2.1 石炭供給部〕
石炭供給部36は、サイロ361と、コンベア362と、石炭バンカ363と、給炭機364とを備える。サイロ361は、微粉炭燃焼部38での燃焼に用いられる微粉炭の原料となる石炭を貯留する。コンベア362は、サイロ361から石炭バンカ363に石炭を搬送する。石炭バンカ363は、給炭機364へ供給する石炭を貯蔵する。給炭機364は、石炭バンカ363から供給された石炭を連続して微粉炭機371(後述)へ供給する。給炭機364は、石炭の供給量を調整する装置(不図示)を備える。給炭機364は、微粉炭機371に供給される石炭の炭種と石炭量を調整できる。また、石炭供給部36は、石炭バンカ363と給炭機364との境界に石炭ゲート(不図示)を備える。この石炭ゲートは、給炭機364からの空気が石炭バンカ363へ流入することを防止する。
〔1.2.2 微粉炭生成部〕
微粉炭生成部37は、微粉炭機(ミル)371と、微粉炭機371に空気を供給する空気供給機372とを備える。
微粉炭機371は、給炭機364から給炭管を介して供給された石炭を、微細な粒度に粉砕して微粉炭を製造する。また、微粉炭機371は、微粉炭と、空気供給機372から供給された空気とを混合する。微粉炭は、空気との混合により、予熱及び乾燥されるため、火炉381(後述)において容易に燃焼する。微粉炭は、エアーの吹き付けにより、微粉炭燃焼部38へ供給される。
微粉炭機371の種類としては、ローラミル、チューブミル、ボールミル、ビータミル、インペラーミル等が挙げられるが、これらに限定されるものではなく微粉炭燃焼で用いられるミルであればよい。
〔1.2.3 微粉炭燃焼部〕
微粉炭燃焼部38は、火炉381と、加熱機382(熱交換ユニット)と、空気供給機383と、を備える。
火炉381は、微粉炭機371から供給された微粉炭を、空気供給機372から供給された空気及び排ガスと共に燃焼させる。加熱機382(熱交換ユニット)は、火炉381に送られる空気と排ガスとの間で熱交換を行い、空気を予熱する。空気供給機383は、火炉161に燃焼用空気(一次空気及び二次空気)を供給する。
微粉炭燃焼部38は、後述するように、微粉炭を完全燃焼させるのに必要な空気を、バーナ561とバーナの上部に設けられた空気供給口562の2箇所に分けて供給する、いわゆる二段燃焼方式で構成されている。バーナ561には、微粉炭が、一次空気と共に供給される。空気供給口562には、二次空気が供給される。なお、バーナ561に供給される燃焼用空気としての一次空気は、空気供給機372から微粉炭機371を通じてバーナ561に供給されるものである。
火炉381において微粉炭を燃焼させると、石炭灰が生成される。また、石炭灰と共に、二酸化硫黄(SO)、三酸化硫黄(SO)等の硫黄酸化物(SOx)及び窒素酸化物(NOx)等の排ガスが発生する。これら石炭灰及び排ガスは、石炭灰処理部39に排出される。
〔1.2.4 石炭灰処理部〕
石炭灰処理部39は、脱硝装置391と、集塵機392と、石炭灰回収サイロ393と、を備える。
脱硝装置391は、微粉炭燃焼部38から排出された排ガス中の窒素酸化物を除去する。脱硝装置391としては、比較的高温(300~400℃)の排ガス中に還元剤としてアンモニアガスを注入し、脱硝触媒との作用により排ガス中の窒素酸化物を無害な窒素と水蒸気に分解する、いわゆる乾式アンモニア接触還元法が好適に用いられる。
集塵機392は、排ガス中の石炭灰(煤塵)を電極で収集する。集塵機392は、複数段設けられていることが好ましい。集塵機392により捕集された石炭灰は、石炭灰回収サイロ393において一時貯蔵される。石炭灰が除去された排ガスは、脱硫装置(不図示)で硫黄酸化物が除去された後、煙突から排出される。
石炭灰回収サイロ393は、集塵機392により捕集された石炭灰を一時貯蔵する。
〔1.2.5 バーナ〕
図3は、微粉炭燃焼部38における火炉381とその周辺の構成例を示す図である。
図3に示すように、火炉381の下方には、バーナ561が設けられている。バーナ561には、微粉炭機371(図2参照)から供給された微粉炭500、空気供給機372から微粉炭機371を介して供給された一次空気501が供給される。なお、一次空気501は、温度調整器625によって温度が調整された後、バーナ561に供給される。微粉炭500は、火炉381において、主にバーナゾーン381aで燃焼する。
バーナ561の上部には、空気供給口562が設けられている。空気供給口562には、空気供給機383から供給された二次空気502が供給される。空気供給口562から二次空気502を供給することにより、バーナゾーン381a付近で未燃焼であった微粉炭の燃焼反応が促進され、微粉炭を完全燃焼させることができる。火炉381において、微粉炭の燃焼により生じた排ガス503(燃焼ガス)は、石炭灰と共に火炉出口381bから後段の脱硝装置391(石炭灰処理部39)へ排出される。上述のように、排出された排ガス503の一部は再循環され、火炉下部381cに供給される。
また、火炉381には、火炉出口381b付近に節炭器(エコノマイザ)385が設けられる。節炭器385は、熱効率の向上等のため、燃焼ガスが保有する熱を利用して微粉炭燃焼部(燃焼ボイラ)38の給水を予熱する。
なお、図示していないが、火炉381において、バーナ561の上部付近には、過熱器、再熱器等の熱交換ユニットが設けられている。
微粉炭燃焼部38は、図3に示すように、排ガス503の一部を再循環させて火炉下部381cに供給するための設備として、ガス再循環通風機563と、集塵機392と、排ガス通路600と、を備える。
ガス再循環通風機563は、火炉出口381bから排出された排ガス503の一部を取り込み、火炉下部381cに送り込む送風ファンである。
集塵機392は、排ガス503に含まれる石炭灰(煤塵)を収集する装置である。集塵機392として、例えば、機械式の集塵機を用いることができる。
排ガス通路600は、火炉出口381bから排出された排ガス503の一部を火炉下部381cに導くための送風ダクトである。排ガス通路600は、第1排ガス通路610と、第2排ガス通路620と、を備える。
第1排ガス通路610は、排ガス503を火炉出口381b側から取り出す通路である。第1排ガス通路610には、ガス再循環通風機563及び集塵機392が接続されている。第1排ガス通路610の上流側の端部は、火炉出口381b側に接続されている。第1排ガス通路610の下流側の端部は、集塵機392の排ガス入口側に接続されている。
第2排ガス通路620は、排ガス503を火炉下部381cに導く通路である。第2排ガス通路620の上流側の端部は、集塵機392の排ガス出口側に接続されている。第2排ガス通路620の下流側の端部は、火炉下部381cの排ガス導入部(不図示)に接続されている。
なお、排ガス通路600において、第2排ガス通路620の途中に、排ガス503を下流側に押し込む送風ファンを設けてもよい。
図3に示すように、火炉出口381b側から取り出された排ガス503の一部は、第1排ガス通路610によりガス再循環通風機563を通じて集塵機392に導かれる。そして、排ガス503は、集塵機392の排ガス出口側で第2排ガス通路620により、火炉下部381cにそれぞれ導かれる。
なお、図2に示す構成例は、火力発電システム35の構成のあくまで一例であって、これには限定されない。同様に、図3に示す構成例は、火炉381とその周辺の構成のあくまで一例であって、これには限定されない。
バーナ561における燃焼状態は、一次空気501の空気量、二次空気502の空気量、微粉炭機371内の篩やローラの回転数等が自動制御されることにより調整されるが、これらに加えて、後述のように、作業者が、給炭機364で給炭する石炭の炭種と石炭量、節炭器385の出口における酸素ガス濃度、温度調整器625で調整される一次空気501の温度等を制御することにより、バーナ561における燃焼状態を調整する。
〔1.3 制御装置〕
図4は、制御装置30の機能ブロック図である。制御装置30は、映像取得部31と、給炭機制御部32と、節炭器制御部33と、温度調整器制御部34とを備える。
映像取得部31は、バーナ561における火炎の映像を取得する構成要素であり、例えば赤外線サーモグラフィカメラにより実現することが可能である。また、火炎の映像は、所定の間隔をおいて連続的に撮像される静止画であってもよく、動画であってもよい。更に、映像取得部31は、記憶装置を備え、現時点から所定期間遡った時点から、現時点までの火炎の映像を記憶してもよい。
給炭機制御部32は、給炭機364を制御する装置であり、とりわけ給炭機364で給炭される石炭の炭種を変更することが可能である。給炭機制御部32が、給炭機364で給炭される石炭の炭種を変更することにより、ひいては、バーナ561での燃焼に用いられる微粉炭の炭種を変更することが可能となる。
節炭器制御部33は、節炭器385を制御する装置であり、とりわけ節炭器385の出口における酸素ガス濃度を調整することが可能である。
温度調整器制御部34は、温度調整器625を制御する装置であり、とりわけ、微粉炭機371の出口付近における一次空気501の温度を調整することが可能である。
制御装置30は、給炭機制御部32により給炭される石炭の炭種、節炭器制御部33により節炭器出口付近の酸素ガス濃度、及び温度調整器制御部34により微粉炭機371出口の排ガス温度を制御することにより、バーナ561における燃焼状態を調整することが可能である。
〔1.4 機械学習装置〕
図5は、機械学習装置10及び燃焼状態判定装置20の機能ブロック図である。
機械学習装置10は、教師あり機械学習により、燃焼状態判定装置20が燃焼状態を判定するために用いる学習モデルを構築する。そのため、機械学習装置10は、図5に示すように、特徴量抽出部11と、ラベル取得部12と、学習部13と、記憶部14とを備える。
特徴量抽出部11は、制御装置30の映像取得部31により取得された、バーナ561の火炎の映像から、火炎の映像に係る特徴量を抽出する。特徴量抽出部11は、例えば、火炎の温度分布、火炎の長さ、火炎の形状の時間的変化を、特徴量として取得することが可能である。なお、特徴量抽出部11が取得する特徴量は、これら火炎の温度分布、火炎の長さ、火炎の形状の時間的変化には限定されない。例えば、特徴量抽出部11は、これらの特徴量間の相関を示す数値を更なる特徴量として取得してもよい。
ラベル取得部12は、ラベルとして、作業者によって制御装置30が動作されることにより、給炭機364、節炭器385、及び温度調整器625のいずれか1つ以上が制御されたか否かを二値化したラベルを取得する。具体的には、制御装置30の映像取得部31がバーナ561の火炎の映像を取得して以降、事前に設定された期間内に、作業者が、給炭機364、節炭器385、及び温度調整器625のいずれかを制御した場合を「異常状態」、いずれも制御しなかった場合を「正常状態」として二値化したラベルを、ラベル取得部12は取得する。すなわち、本発明の実施形態は、バーナ561の火炎が正常状態にある場合には、作業者は、給炭機364、節炭器385、及び温度調整器625のいずれも制御することはなく、逆に、バーナ561の火炎が異常状態にある場合には、作業者は、バーナ561の火炎が異常状態にあることを示してから所定の期間内に、給炭機364、節炭器385、及び温度調整器625のうち少なくとも1つを制御することを前提としている。
学習部13は、特徴量抽出部11によって抽出された特徴量と、ラベル取得部12によって取得された、特徴量に対応するラベルとの組を教師データとして教師あり学習を行うことにより学習モデルを構築する。更に、学習部13は学習モデルを、後述の燃焼状態判定装置20の判定部22に送信する。なお、この教師あり学習は、例えば、サポートベクターマシン(Support Vector Machine)により実現することが可能である。
記憶部14は、特徴量とラベルとの組を教師データとして記憶する。記憶部14が記憶する教師データに基づいて、学習部13は学習モデルを構築する。
〔1.5 燃焼状態判定装置〕
燃焼状態判定装置20は、機械学習装置10により構築された学習モデルを用いて、バーナ561における燃焼状態を判定し、燃焼状態が異常である場合には、警報を発報する。そのため、燃焼状態判定装置20は、図5に示すように、映像取得部21と、判定部22と、警報部23とを備える。
映像取得部21は、バーナ561における火炎の映像を取得する構成要素であり、例えば赤外線サーモグラフィカメラにより実現することが可能である。また、火炎の映像は所定の間隔をおいて連続的に撮像される静止画であってもよく、動画であってもよい。なお、上述のように、燃焼状態判定装置20と制御装置30とは一体化されていてもよいが、その場合、燃焼状態判定装置20の映像取得部21と、制御装置30の映像取得部31とは、同一の映像取得部により実現されていてもよい。
判定部22は、映像取得部21から、バーナ561における火炎の映像を取得後、この映像から特徴量を抽出すると共に、機械学習装置10の学習部13から学習モデルを受信し、特徴量と学習モデルとに基づいて、バーナ561における燃焼状態が正常か異常かを判定する。更に、バーナ561における燃焼状態を異常であると判定した場合には、判定部22は、異常通知信号を警報部23に送信する。
警報部23は、判定部22から異常通知信号を受信すると、バーナ561における燃焼状態が異常であることを通知する警報を発報する。これにより、作業者は、コンベア362、微粉炭機371、及び空気供給機372のいずれかを調整する必要性が発生したことを認識することが可能となる。
機械学習装置10及び燃焼状態判定装置20が上記の構成を有することにより、作業者は、作業者の感覚的な経験知に基づいた学習モデルを用いて、バーナ561における燃焼状態を判定することが可能となる。
〔1.6 機械学習時の動作〕
次に、機械学習装置10の動作を主として、燃焼状態調整システム1における機械学習時の動作について説明する。図6は、機械学習装置10の動作を示すフローチャートである。
ステップS11において、機械学習装置10の特徴量抽出部11は、制御装置30から受信したバーナ561の火炎の映像から、特徴量を抽出する。
ステップS12において、機械学習装置10のラベル取得部12は、制御装置30から作業者の作業内容、具体的には、作業者が、給炭機364、節炭器385、及び温度調整器625のいずれかを調整したか否かを二値化したラベルを取得する。
ステップS13において、機械学習装置10の学習部13は、特徴量とラベルとの組を教師データとする。
ステップS14において、機械学習装置10の学習部13は、上述の教師データを用いて機械学習を行う。
ステップS15において、機械学習装置10の学習部13が、機械学習を終了する場合(S15:YES)には、処理はステップS16に移行する。機械学習を繰り返す場合(S15:NO)には、処理はステップS11に戻る。
ステップS16において、機械学習装置10の学習部13は、機械学習の結果構築した学習モデルを、ネットワーク40を介して、燃焼状態判定装置20の判定部22に送信する。
〔1.7 燃焼状態判定時の動作〕
次に、燃焼状態判定装置20の動作を主として、燃焼状態調整システム1における燃焼状態判定時の動作について説明する。図7は、燃焼状態判定装置20の動作を示すフローチャートである。
ステップS21において、燃焼状態判定装置20の映像取得部21は、バーナ561における火炎の映像を取得する。
ステップS22において、燃焼状態判定装置20の判定部22は、映像取得部21により取得されたバーナ561における火炎の映像から、特徴量を抽出する。
ステップS23において、燃焼状態判定装置20の判定部22は、機械学習装置10の学習部13から、ネットワーク40を介して、学習モデルを受信する。
ステップS24において、燃焼状態判定装置20の判定部22は、特徴量と学習モデルから燃焼状態を判定する。
ステップS25において、燃焼状態が正常状態にある場合(S25:NO)には、処理を終了する。燃焼状態が異常状態にある場合(S25:YES)には、処理はステップS26に移行する。
ステップS26において、警報部23は、バーナ561における燃焼状態が異常状態にあることを作業者に知らせる警報を発報する。
〔1.8 効果〕
本発明の第1実施形態に係る機械学習装置は、火力発電システムのバーナの火炎の映像から抽出した特徴量と、火炎の映像の取得時点から事前に設定された期間における、燃焼状態を調整する作業者の作業内容との組を教師データとして教師あり学習を行うことにより、燃焼状態の判定を行う学習モデルを構築する。
これにより、熟練作業者の感覚的な経験知に基づいて、火力発電システム内のバーナの燃焼状態を判定することが可能となる。とりわけ、本発明の実施形態は、通常運転時のバーナの燃焼状態のみならず、燃焼開始時のバーナの燃焼状態の監視にとって有用である。
また、本発明の実施形態に係る機械学習装置において、火炎の映像は、火炎のサーモグラフィ映像であってもよい。
これにより、機械学習の際に用いる特徴量を、火炎の温度に係る特徴量に絞り込むことが可能となり、機械学習により構築される学習モデルを単純化することが可能となる。
また、本発明の実施形態に係る機械学習装置において、作業者の作業内容とは、火力発電システムに備わる微粉炭機、コンベア、空気供給機のいずれか1以上の制御に係る作業内容であってよい。
これにより、機械学習の際に用いるラベルのバリエーションを絞り込むことが可能となり、ラベルの生成を簡略化することが可能となる。
また、本発明の実施形態に係る燃焼状態判定装置は、火炎の映像から抽出した特徴量と学習モデルとに基づいて、火力発電システムのバーナにおける燃焼状態を判定し、燃焼状態が異常状態にある場合には、警報を発報することが可能となる。
これにより、経験の乏しい作業者でも、熟練作業者の感覚的な経験知に基づいて、燃焼状態が異常状態にあることを認識することが可能となる。
〔2 第2実施形態〕
以下、本発明の第2実施形態について、図8~図12を参照することにより説明する。第2実施形態に係る燃焼状態調整システムにおいては、機械学習装置が、バーナにおける火炎の映像から抽出された特徴量と、作業者が制御装置を用いた制御における調整量との関係を規定する計算式を学習し、バーナにおける火炎がある状態の時に、この計算式から推定される調整量分だけ、制御装置が給炭機、節炭器、温度調整器を自動制御するものである。
なお、以降の第2実施形態に係る燃焼状態調整システム1Aに係る説明において、第1実施形態に係る燃焼状態調整システム1と同一の構成要素については、同一の符号を用いると共にその説明を省略し、主として異なる構成要素について説明する。
〔2.1 全体構成〕
図8は、第2実施形態に係る燃焼状態調整システム1Aの全体構成を示す。第2実施形態に係る燃焼状態調整システム1Aは、第1実施形態に係る燃焼状態調整システム1における機械学習装置10の代わりに機械学習装置10Aを、制御装置30の代わりに制御装置30Aを備える。更に、燃焼状態調整システム1Aは、第1実施形態に係る燃焼状態調整システム1と異なり、燃焼状態判定装置20を必須の構成要素とはしない。
〔2.2 制御装置〕
図9は、制御装置30Aの機能ブロック図である。制御装置30Aは、第1実施形態に係る制御装置30が備える給炭機制御部32の代わりに給炭機制御部32Aを、節炭器制御部33の代わりに節炭器制御部33Aを、温度調整器制御部34の代わりに温度調整器制御部34Aを備える。
給炭機制御部32Aは、第1実施形態に係る給炭機制御部32が有する機能に加え、自動制御時には、後述のように機械学習装置10Aにより設定された計算式を用いて、給炭機364を制御する際の調整量を算出し、この調整量に基づいて給炭機364を制御する機能を有する。
すなわち、マニュアルでの制御時には、作業員が給炭機制御部32Aを用いることにより給炭機364を制御し、自動制御時には、給炭機制御部32Aが機械学習装置10Aにより設定された計算式を用いて、給炭機364を制御する。
節炭器制御部33Aは、第1実施形態に係る節炭器制御部33が有する機能に加え、自動制御時には、後述のように機械学習装置10Aにより設定された計算式を用いて、節炭器385を制御する際の調整量を算出し、この調整量に基づいて、節炭器385を制御する機能を有する。
すなわち、マニュアルでの制御時には、作業員が節炭器制御部33Aを用いることにより節炭器385を制御し、自動制御時には、節炭器制御部33Aが機械学習装置10Aにより設定された計算式を用いて、節炭器385を制御する。
温度調整器制御部34Aは、第1実施形態に係る温度調整器制御部34が有する機能に加え、自動制御時には、後述のように機械学習装置10Aにより設定された計算式を用いて、温度調整器625を制御する際の制御量を算出し、この制御量に基づいて、温度調整器625を制御する機能を有する。
すなわち、マニュアルでの制御時には、作業員が温度調整器制御部34Aを用いることにより温度調整器625を制御し、自動制御時には、温度調整器制御部34Aが機械学習装置10Aにより設定された計算式を用いて、温度調整器625を制御する。
〔2.3 機械学習装置〕
図10は、機械学習装置10Aの機能ブロック図である。機械学習装置10Aは、第1実施形態に係る機械学習装置10が備えるラベル取得部12の代わりにラベル取得部12Aを、学習部13の代わりに学習部13Aを備える。
ラベル取得部12Aは、ラベルとして、作業者が制御装置30Aを用いて、給炭機364、節炭器385、及び温度調整器625を制御する際の調整量を取得する。具体的には、制御装置30の映像取得部31がバーナ561の火炎の映像を取得して以降、事前に設定された期間内に、作業者が制御装置30の給炭機制御部32Aを用いることにより、給炭機によって給炭される石炭において、どの炭種がどれだけ増減されたかを示すデータを、ラベル取得部12Aはラベルとして取得する。また、同期間内に、作業者が制御装置30の節炭器制御部33Aを用いることにより、節炭器385の出口における酸素ガス濃度をどの程度増減させたかを示すデータを、ラベル取得部12Aはラベルとして取得する。更に、同期間内に、作業者が制御装置30の温度調整器制御部34Aを用いることにより、微粉炭機371の出口付近における一次空気501の温度をどれだけ上昇/下降させたかを示すデータを、ラベル取得部12Aはラベルとして取得する。
学習部13Aは、特徴量抽出部11によって抽出されたバーナ561における火炎の特徴量と、ラベルとしての調整量とに基づいて機械学習を行うことで、制御装置30Aを用いた制御における調整量の推定値を、火炎の特徴量に基づいて算出する調整量推定計算式を設定する。具体的には、火炎の特徴量データ(入力データ)をX,X,・・・Xとし、調整量の推定値をf(X,X,・・・,X)(nは自然数)、作業者による実際の調整量をYとした際、f(X,X,・・・,X)とYとの差異が最小となるような調整量推定計算式を設定する。
より具体的には、学習部13Aは、火炎の特徴量と、作業者が給炭機制御部32Aを用いて給炭機364を制御した際の実際の調整量とから、第1の調整量推定計算式を設定する。また、火炎の特徴量と、作業者が節炭器制御部33Aを用いて節炭器385を制御した際の実際の調整量とから、第2の調整量推定計算式を設定する。更に、火炎の特徴量と、作業者が温度調整器制御部34Aを用いて温度調整器625を制御した際の実際の調整量とから、第3の調整量推定計算式を設定する。
とりわけ、学習部13Aは、求めるべき調整量推定計算式に火炎の特徴量を代入して算出される調整量の推定値と、記憶部14にラベルとして記憶された実際の調整量との差異が最小となるように、例えば最小二乗法により調整量推定計算式を設定する。
更に、学習部16は、設定した調整量推定計算式を制御装置30Aに送信する。より具体的には、学習部16は、第1の調整量推定計算式を給炭機制御部32Aに送信し、第2の調整量推定計算式を節炭器制御部33Aに送信し、第3の調整量推定計算式を温度調整器制御部34Aに送信する。
〔2.4 機械学習時の動作〕
次に、機械学習装置10Aの動作を主として、燃焼状態調整システム1Aにおける機械学習時の動作について説明する。図11は、機械学習装置10Aの動作を示すフローチャートである。
ステップS31において、機械学習装置10Aの特徴量抽出部11は、制御装置30Aから受信したバーナ561の火炎の映像から、特徴量を抽出する。
ステップS32において、機械学習装置10Aのラベル取得部12Aは、制御装置30Aから作業者の作業内容、具体的には、作業者が、給炭機364、節炭器385、及び温度調整器625のいずれかを制御した際の調整量をラベルとして取得する。
ステップS33において、機械学習装置10Aの学習部13Aは、特徴量とラベルとしての調整量との組を教師データとする。
ステップS34において、機械学習装置10Aの学習部13Aは、上述の教師データを用いて機械学習を行う。
ステップS35において、機械学習装置10Aの学習部13Aが、機械学習を終了する場合(S35:YES)には、処理はステップS36に移行する。機械学習を繰り返す場合(S35:NO)には、処理はステップS31に戻る。
ステップS36において、機械学習装置10Aの学習部13Aは、機械学習の結果構築した調整量推定計算式を、ネットワーク40を介して、制御装置30Aに送信する。
なお、上記のフローは、調整量推定計算式ごとに実行される。すなわち、上記のフローは、第1の調整量推定計算式、第2の調整量推定計算式、第3の調整量推定計算式の各々を設定する度に実行される。このため、機械学習装置10Aは、設定する調整量推定計算式の数だけ、学習部13Aを備えてもよい。
〔2.5 自動制御時の動作〕
次に、制御装置30Aの動作を主として、燃焼状態調整システム1Aにおける自動制御時の動作について説明する。図12は、制御装置30Aの動作を示すフローチャートである。なお、以下の説明では例として、給炭機制御部32A、節炭器制御部33A、温度調整器制御部34Aのうち、給炭機制御部32Aの動作について取り上げる。
ステップS41において、制御装置30Aの映像取得部31は、バーナ561における火炎の映像を取得する。
ステップS42において、制御装置30Aの給炭機制御部32は、映像取得部21により取得されたバーナ561における火炎の映像から、特徴量を抽出する。
ステップS43において、制御装置30Aの給炭機制御部32は、機械学習装置10Aの学習部13から、ネットワーク40を介して、第1の調整量推定計算式を受信する。
ステップS44において、制御装置30Aの給炭機制御部32は、特徴量と第1の調整量推定計算式から、推定される調整量を算出する。
ステップS45において、制御装置30Aの給炭機制御部32は、算出した調整量分だけ、給炭機364を制御する。
なお、ステップS41~S45と同様のフローで、節炭器制御部33Aは節炭器385を制御し、温度調整器制御部34Aは温度調整器625を制御する。
〔2.6 効果〕
本発明の第2実施形態に係る機械学習装置は、火力発電システムのバーナの火炎の映像から抽出した特徴量と、火炎の映像の取得時点から事前に設定された期間における、燃焼状態を調整する作業者の作業内容との組を教師データとして教師あり学習を行うことにより、火炎の燃焼状態を調整するための、給炭機、節炭器、及び温度調整器での調整量を算出する計算式を設定する。
これにより、熟練作業者の感覚的な経験知に基づいて、火力発電システム内のバーナの燃焼状態を調整することが可能となる。
〔3 変形例〕
上述した実施形態は、本発明の好適な実施形態ではあるが、上記実施形態に本発明の範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において、種々の変更を施した形態での実施が可能である。
〔3.1 変形例1〕
第1実施形態におけるラベルとして、作業者が、制御装置30の給炭機制御部32、節炭器制御部33、及び温度調整器制御部34のいずれかを動作させることにより、給炭機364、節炭器385、及び温度調整器625のいずれか1つでも制御したか否かを二値化したラベルを用いるとしたが、これには限定されない。ラベルの生成にあたり、作業者が、火力発電システム35のその他の構成要素を制御したか否かを含めて、ラベルを生成してもよい。
〔3.2 変形例2〕
また、第1実施形態において、作業者が、給炭機364を制御したか否かを第1のラベル、節炭器385を制御したか否かを第2のラベル、温度調整器625を制御したか否かを第3のラベルとし、バーナ561の火炎の映像の特徴量と第1のラベルとから第1の学習モデルを、当該特徴量と第2のラベルとから第2の学習モデルを、当該特徴量と第3のラベルとから第3の学習モデルを構築してもよい。この場合、燃焼状態判定装置20の判定部22は、第1の学習モデルを用いることにより、燃焼状態が正常か異常かの判定に、給炭機364の制御の必要性を付随することが可能となる。なぜならば、第1の学習モデルにおいて、燃焼状態が異常であることと、給炭機364を制御したこととは同値だからである。同様に、燃焼状態判定装置20の判定部22は、第2の学習モデルを用いることにより、燃焼状態が正常か異常かの判定に、節炭器385の制御の必要性を付随することが可能となる。また、燃焼状態判定装置20の判定部22は、第3の学習モデルを用いることにより、燃焼状態が正常か異常かの判定に、温度調整器625の制御の必要性を付随することが可能となる。
〔3.3 変形例3〕
第2実施形態においては、制御装置30Aが、給炭機364、節炭器385、及び温度調整器625を自動制御するとしたが、これには限定されない。例えば、給炭機制御部32Aが第1の調整量推定計算式を用いて推定した調整量に基づいて、作業者が給炭機364をマニュアル制御してもよい。同様に、節炭器制御部33Aが第2の調整量推定計算式を用いて推定した調整量に基づいて、作業者が節炭器385をマニュアル制御してもよい。同様に、温度調整器制御部34Aが第3の調整量推定計算式を用いて推定した調整量に基づいて、作業者が温度調整器625をマニュアル制御してもよい。
〔3.4 変形例4〕
燃焼状態判定装置20の映像取得部21、及び、制御装置30及び30Aの映像取得部31は、赤外線サーモグラフィカメラにより実現するとしたが、これには限定されない。例えば、映像取得部21及び映像取得部31は、汎用のデジタルカメラやハイパースペクトルカメラにより実現されてもよい。また、バーナ561の火炎の映像はサーモグラフィ映像に限定されず、例えば、マルチスペクトル画像であってもよい。
なお、上記の燃焼状態調整システム1及び1Aに含まれる各装置は、ハードウェア、ソフトウェア又はこれらの組み合わせによりそれぞれ実現することができる。また、上記の燃焼状態調整システム1及び1Aに含まれる各装置により行なわれる燃焼状態判定方法及び制御方法も、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。
プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、フレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
1 1A 燃焼状態調整システム
10 10A 機械学習装置
11 特徴量抽出部
12 12A ラベル取得部
13 13A 学習部
14 記憶部
20 燃焼状態判定装置
21 映像取得部
22 判定部
23 警報部
30 制御装置
31 映像取得部
32 32A 給炭機制御部
33 33A 節炭器制御部
34 34A 温度調整器制御部
35 火力発電システム
40 ネットワーク
364 給炭機
385 節炭器
561 バーナ
625 温度調整器

Claims (5)

  1. 火力発電システムに備わるボイラ内のバーナの燃焼状態を判定するための学習モデルを構築する機械学習装置であって、
    前記バーナの火炎の映像から、前記火炎の特徴量を抽出する特徴量抽出手段と、
    前記火炎の映像を取得して以降、取得時点から事前に設定された期間における、前記火炎の状態による、前記燃焼状態を調整する作業者の作業内容をラベルとして取得し、前記ラベルは、少なくとも給炭、節炭及び温度調整を含む要素のうちで、少なくとも1つの要素を制御したか否かによる、二値化されたラベルである、ラベル取得手段と、
    前記特徴量と前記ラベルとの組を教師データとして教師あり学習を行うことにより、前記燃焼状態の判定を行う学習モデルを構築する学習手段と、
    を備える機械学習装置。
  2. 前記火炎の映像は、前記火炎のサーモグラフィ映像である、請求項1に記載の機械学習装置。
  3. 前記火力発電システムは、
    前記バーナでの燃焼に用いられる石炭を貯留するサイロと、
    前記サイロに貯留された前記石炭を粉砕前に一時貯蔵する石炭バンカと、
    前記石炭バンカに貯蔵された前記石炭を微粉炭に粉砕する微粉炭機と、
    前記石炭バンカから前記微粉炭機に前記石炭を供給する給炭機と、
    前記ボイラの出口付近に設置され、前記ボイラの給水を予熱する節炭器と、
    前記微粉炭機を通じて前記バーナに燃焼用空気を供給する空気供給機と、
    前記バーナに導入される燃焼用空気の温度を調整する温度調整器とを備え、
    前記作業内容は、前記作業者による、前記給炭機、前記節炭器、前記温度調整器のいずれか1以上の制御に係る作業内容である、請求項1又は2に記載の機械学習装置。
  4. 請求項1~3までのいずれか1項に記載の機械学習装置で構築した前記学習モデルを用いた燃焼状態判定装置であって、
    前記バーナの火炎の映像を取得する映像取得部と、
    前記映像から特徴量を抽出し、前記特徴量と前記学習モデルとに基づいて、前記燃焼状態の判定を行う判定部と、
    前記判定に基づいて、前記燃焼状態が異常状態にある場合には警報を発報する警報部と、
    を備える燃焼状態判定装置。
  5. 請求項3に記載の機械学習装置で構築した前記学習モデルを用いた燃焼状態判定装置であって、
    前記バーナの火炎の映像を取得する映像取得部と、
    前記映像から特徴量を抽出し、前記特徴量と前記学習モデルとに基づいて、前記燃焼状態の判定を行う判定部と、
    前記判定に基づいて、前記燃焼が異常状態にある場合には、前記給炭機、前記節炭器、前記温度調整器のうち、いずれか1以上の装置の制御の必要性と共に、警報を発報する警報部と、
    を備える燃焼状態判定装置。
JP2018119168A 2018-06-22 2018-06-22 機械学習装置及び燃焼状態判定装置 Active JP7238279B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018119168A JP7238279B2 (ja) 2018-06-22 2018-06-22 機械学習装置及び燃焼状態判定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018119168A JP7238279B2 (ja) 2018-06-22 2018-06-22 機械学習装置及び燃焼状態判定装置

Publications (2)

Publication Number Publication Date
JP2019219147A JP2019219147A (ja) 2019-12-26
JP7238279B2 true JP7238279B2 (ja) 2023-03-14

Family

ID=69096265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018119168A Active JP7238279B2 (ja) 2018-06-22 2018-06-22 機械学習装置及び燃焼状態判定装置

Country Status (1)

Country Link
JP (1) JP7238279B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102430963B1 (ko) * 2020-06-19 2022-08-09 인천대학교 산학협력단 인공신경망의 딥러닝을 이용하는 영상 시퀀스 분류 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2620245B2 (ja) 1987-07-09 1997-06-11 バブコツク日立株式会社 学習機能を有する自動バーナ制御装置
JP2001159915A (ja) 1999-12-03 2001-06-12 Nkk Corp 運転支援装置
JP2017032213A (ja) 2015-07-31 2017-02-09 中国電力株式会社 石炭火力発電設備
JP2017187228A (ja) 2016-04-06 2017-10-12 日立造船株式会社 ストーカ式焼却炉
JP2018072029A (ja) 2016-10-25 2018-05-10 ファナック株式会社 学習モデル構築装置、故障予測システム、学習モデル構築方法及び学習モデル構築プログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637974B2 (ja) * 1984-09-05 1994-05-18 株式会社日立製作所 燃焼診断装置
JPH0627577B2 (ja) * 1985-10-11 1994-04-13 株式会社日立製作所 燃焼状態診断装置および燃焼状態制御装置
JPH0690080B2 (ja) * 1987-05-29 1994-11-14 日本ファ−ネス工業株式会社 バ−ナ燃焼状態解析装置
JP2928630B2 (ja) * 1990-11-30 1999-08-03 株式会社日立製作所 燃焼制御装置
JPH05187265A (ja) * 1992-01-13 1993-07-27 Hitachi Ltd ガスタービン燃焼診断装置
JPH06119454A (ja) * 1992-10-08 1994-04-28 Babcock Hitachi Kk 異常検出方法および装置
JPH07208733A (ja) * 1994-01-18 1995-08-11 Mitsubishi Heavy Ind Ltd ボイラプラントの燃焼監視装置
JPH0814551A (ja) * 1994-06-29 1996-01-19 Mitsubishi Heavy Ind Ltd ボイラの火炎燃焼状態予測装置
JP2963009B2 (ja) * 1994-08-04 1999-10-12 川崎重工業株式会社 カラー画像を利用した燃焼判定・制御方法および判定・制御装置
JP3383773B2 (ja) * 1998-10-16 2003-03-04 株式会社山武 炎診断装置
EP1391655A1 (de) * 2002-08-16 2004-02-25 Powitec Intelligent Technologies GmbH Verfahren zur Überwachung eines thermodynamischen Prozesses
JP6172249B2 (ja) * 2014-12-03 2017-08-02 Jfeスチール株式会社 熱処理設備の燃焼管理システム
JP2018063545A (ja) * 2016-10-12 2018-04-19 横河電機株式会社 情報処理装置、情報処理方法、情報処理プログラム及び記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2620245B2 (ja) 1987-07-09 1997-06-11 バブコツク日立株式会社 学習機能を有する自動バーナ制御装置
JP2001159915A (ja) 1999-12-03 2001-06-12 Nkk Corp 運転支援装置
JP2017032213A (ja) 2015-07-31 2017-02-09 中国電力株式会社 石炭火力発電設備
JP2017187228A (ja) 2016-04-06 2017-10-12 日立造船株式会社 ストーカ式焼却炉
JP2018072029A (ja) 2016-10-25 2018-05-10 ファナック株式会社 学習モデル構築装置、故障予測システム、学習モデル構築方法及び学習モデル構築プログラム

Also Published As

Publication number Publication date
JP2019219147A (ja) 2019-12-26

Similar Documents

Publication Publication Date Title
US8601960B2 (en) Method and apparatus of controlling exhaust gas in oxyfuel combustion boiler
US20110011315A1 (en) Oxyfuel Boiler and Control Method for Oxyfuel Boiler
US10954854B2 (en) Power plant methods and apparatus
US9186625B2 (en) Method and apparatus for pre-heating recirculated flue gas to a dry scrubber during periods of low temperature
US10302301B2 (en) Method and apparatus for controlling inlet temperature of dedusting apparatus in oxygen combustion boiler equipment
CN106662417B (zh) 热交换器的监视装置及热交换器的监视方法
KR101394113B1 (ko) Oxy-PC 연소시스템 운전장치 및 운전방법
CN103381340B (zh) 增强的烟道气阻尼器混合装置
JP7238279B2 (ja) 機械学習装置及び燃焼状態判定装置
JP2016053953A (ja) プラントの少なくとも1つの動作パラメータを制御するための装置及び方法
JP2018103067A (ja) 粉砕プラントにおける処理装置、方法、およびプログラム
EP3755947B1 (en) Method for operating a combustion chamber
KR102386243B1 (ko) 산화제 농도 및 열량을 제어하여 승온 속도를 증가시키는 순환유동층 반응기 제어 방법 및 이를 이용하는 순환유동층 연소 시스템
JP7259963B2 (ja) 制御システム
EP3473927B1 (en) Method for operating a steam generation system
JP6492478B2 (ja) 粉砕プラントにおける給炭量の演算方法、装置及びプログラム
JP6347100B2 (ja) 排ガス循環系粉砕プラントのミル出口温度制御方法、装置及びプログラム
TW202417781A (zh) 煤氨混燒鍋爐控制裝置、煤氨混燒鍋爐控制方法、煤氨混燒鍋爐控制程式
TW202417782A (zh) 鍋爐控制裝置、鍋爐控制方法、及鍋爐控制程式
JP6525759B2 (ja) コークス乾式消火装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7238279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150