JP7236059B2 - Through electrode substrate, mounting substrate provided with through electrode substrate, and method for manufacturing through electrode substrate - Google Patents

Through electrode substrate, mounting substrate provided with through electrode substrate, and method for manufacturing through electrode substrate Download PDF

Info

Publication number
JP7236059B2
JP7236059B2 JP2021171053A JP2021171053A JP7236059B2 JP 7236059 B2 JP7236059 B2 JP 7236059B2 JP 2021171053 A JP2021171053 A JP 2021171053A JP 2021171053 A JP2021171053 A JP 2021171053A JP 7236059 B2 JP7236059 B2 JP 7236059B2
Authority
JP
Japan
Prior art keywords
layer
electrode
substrate
hole
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021171053A
Other languages
Japanese (ja)
Other versions
JP2022009249A (en
Inventor
美雪 鈴木
貴正 高野
尚平 山田
悟 倉持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017119029A external-priority patent/JP6965589B2/en
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2021171053A priority Critical patent/JP7236059B2/en
Publication of JP2022009249A publication Critical patent/JP2022009249A/en
Application granted granted Critical
Publication of JP7236059B2 publication Critical patent/JP7236059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

本開示の実施形態は、貫通電極を備える貫通電極基板に関する。また、本開示は、貫通電極基板を備える実装基板、及び貫通電極基板の製造方法に関する。 An embodiment of the present disclosure relates to a through electrode substrate including through electrodes. The present disclosure also relates to a mounting substrate including the through electrode substrate and a method for manufacturing the through electrode substrate.

第1面及び第2面を含む基板と、基板に設けられた複数の貫通孔と、貫通孔の内部に位置する貫通電極と、を備える部材、いわゆる貫通電極基板が、様々な用途で利用されている。例えば、貫通電極基板は、LSIの実装密度を高めるために複数のLSIチップを積層させる際に2つのLSIチップの間に介在させるインターポーザとして利用される。また、貫通電極基板は、LSIチップなどの素子とマザーボードなどの実装基板との間に介在されることもある。 A member including a substrate including a first surface and a second surface, a plurality of through holes provided in the substrate, and a through electrode positioned inside the through hole, a so-called through electrode substrate, is used in various applications. ing. For example, a through electrode substrate is used as an interposer interposed between two LSI chips when stacking a plurality of LSI chips in order to increase the mounting density of LSIs. Also, the through electrode substrate may be interposed between an element such as an LSI chip and a mounting substrate such as a motherboard.

貫通電極の例としては、いわゆるフィルドビアやコンフォーマルビアが知られている。フィルドビアの場合、貫通電極は、貫通孔の内部に充填された銅などの導電性材料を含む。コンフォーマルビアの場合、貫通電極は、孔の側壁に沿って広がる側壁導電層を含む。 So-called filled vias and conformal vias are known examples of through electrodes. In the case of filled vias, the through electrode includes a conductive material such as copper that fills the inside of the through hole. For conformal vias, the through electrode includes a sidewall conductive layer extending along the sidewalls of the hole.

貫通電極を形成する方法としては、例えば特許文献1に開示されているように、まず、貫通孔の側壁にシード層を形成し、続いて、電解めっき法によってシード層上にめっき層を形成する方法が知られている。 As a method for forming the through electrode, for example, as disclosed in Patent Document 1, first, a seed layer is formed on the side wall of the through hole, and then a plated layer is formed on the seed layer by electroplating. method is known.

特開平6-89831号公報JP-A-6-89831

スパッタリング法や蒸着法などの物理成膜法によって貫通孔の側壁にシード層を形成する場合、位置によってシード層の厚みがばらつくことが考えられる。例えば、基板の第1面側から物理成膜法を実施する場合、貫通孔の側壁上のシード層の厚みが、第1面から離れるにつれて小さくなることが考えられる。この結果、シード層上のめっき層の厚みが不足する部分が生じ得る。 When the seed layer is formed on the sidewall of the through hole by a physical film forming method such as sputtering or vapor deposition, the thickness of the seed layer may vary depending on the position. For example, when the physical film forming method is performed from the first surface side of the substrate, the thickness of the seed layer on the side wall of the through hole may decrease as the distance from the first surface increases. As a result, there may be a portion where the thickness of the plating layer on the seed layer is insufficient.

本開示の実施形態は、このような課題を効果的に解決し得る貫通電極基板を提供することを目的とする。 An object of the embodiments of the present disclosure is to provide a through electrode substrate that can effectively solve such problems.

本開示の一実施形態は、第1面及び前記第1面の反対側に位置する第2面を含むとともに貫通孔が設けられた基板と、前記基板の前記貫通孔に位置する貫通電極と、を備え、前記貫通電極は、前記貫通孔の側壁に位置し、銅又はニッケルを含む第1層を少なくとも含む中間層と、前記中間層上に位置し、銅を含む本体層と、を有する、貫通電極基板である。
前記貫通電極の厚みは、前記貫通孔の幅よりも小さくてもよい。
An embodiment of the present disclosure includes a substrate including a first surface and a second surface located opposite to the first surface and provided with a through hole; a through electrode located in the through hole of the substrate; wherein the through electrode has an intermediate layer located on the side wall of the through hole and including at least a first layer containing copper or nickel, and a body layer located on the intermediate layer and containing copper; It is a through electrode substrate.
A thickness of the through electrode may be smaller than a width of the through hole.

本開示の一実施形態による貫通電極基板において、前記第1層は、少なくとも部分的に、前記第1面上又は前記第2面上にまで広がっていてもよい。 In the through electrode substrate according to one embodiment of the present disclosure, the first layer may at least partially extend over the first surface or the second surface.

本開示の一実施形態による貫通電極基板において、前記第1層は、80質量%以上の銅を含み、0.01μm以上且つ2.0μm以下の厚みを有していてもよい。 In the through electrode substrate according to one embodiment of the present disclosure, the first layer may contain 80% by mass or more of copper and have a thickness of 0.01 μm or more and 2.0 μm or less.

本開示の一実施形態による貫通電極基板において、前記第1層は、80質量%以上のニッケルを含み、0.01μm以上且つ2.0μm以下の厚みを有していてもよい。 In the through electrode substrate according to one embodiment of the present disclosure, the first layer may contain 80% by mass or more of nickel and have a thickness of 0.01 μm or more and 2.0 μm or less.

本開示の一実施形態による貫通電極基板において、前記中間層は、前記第1層と前記本体層との間に位置し、80質量%以上の銅を含み、0.01μm以上且つ2μm以下の厚みを有する第2層を更に備えていてもよい。 In the through electrode substrate according to one embodiment of the present disclosure, the intermediate layer is located between the first layer and the main layer, contains 80% by mass or more of copper, and has a thickness of 0.01 μm or more and 2 μm or less. You may further comprise a second layer having

本開示の一実施形態による貫通電極基板において、前記第1層は、前記貫通孔の前記側壁に接触していてもよい。 In the through electrode substrate according to one embodiment of the present disclosure, the first layer may be in contact with the sidewall of the through hole.

本開示の一実施形態による貫通電極基板において、前記貫通電極は、前記貫通孔の前記側壁と前記第1層との間に位置し、パラジウムを含む触媒を更に有していてもよい。 In the through electrode substrate according to one embodiment of the present disclosure, the through electrode may further include a catalyst containing palladium, located between the side wall of the through hole and the first layer.

本開示の一実施形態による貫通電極基板において、前記貫通電極は、前記貫通孔の前記側壁と前記第1層との間に位置し、導電性を有する下地層を更に有していてもよい。 In the through electrode substrate according to an embodiment of the present disclosure, the through electrode may further include a conductive base layer located between the side wall of the through hole and the first layer.

本開示の一実施形態による貫通電極基板において、前記貫通電極は、前記下地層と前記第1層との間に位置し、パラジウムを含む触媒を更に有していてもよい。 In the through electrode substrate according to one embodiment of the present disclosure, the through electrode may further include a catalyst containing palladium located between the base layer and the first layer.

本開示の一実施形態による貫通電極基板において、前記貫通孔は、少なくとも部分的に、前記基板の前記第1面から前記第2面に向かうにつれて幅が小さくなる形状を有し、
前記貫通電極のうち、前記基板の前記第1面に対応する部分を第1部分と称し、前記貫通孔の幅が最小となる位置に対応する部分を第2部分と称する場合、下記の関係式(1)及び(2)が成立していてもよい。
(X2/Y2)<(X1/Y1)・・・(1)
(X2/Z2)<(X1/Z1)・・・(2)
X1は、前記第1部分における前記下地層の厚みを表す。
Y1は、前記第1部分における前記中間層の厚みを表す。
Z1は、前記第1部分における前記本体層の厚みを表す。
X2は、前記第2部分における前記下地層の厚みを表す。
Y2は、前記第2部分における前記中間層の厚みを表す。
Z2は、前記第2部分における前記本体層の厚みを表す。
In the through electrode substrate according to one embodiment of the present disclosure, the through hole at least partially has a shape whose width decreases from the first surface toward the second surface of the substrate,
When a portion of the through electrode corresponding to the first surface of the substrate is referred to as a first portion, and a portion corresponding to the position where the width of the through hole is the smallest is referred to as a second portion, the following relational expression (1) and (2) may be established.
(X2/Y2)<(X1/Y1) (1)
(X2/Z2)<(X1/Z1) (2)
X1 represents the thickness of the underlying layer in the first portion.
Y1 represents the thickness of the intermediate layer in the first portion.
Z1 represents the thickness of the body layer in the first portion.
X2 represents the thickness of the underlying layer in the second portion.
Y2 represents the thickness of the intermediate layer in the second portion.
Z2 represents the thickness of the body layer in the second portion.

本開示の一実施形態による貫通電極基板において、前記貫通孔の幅は、前記基板の厚み方向における中央部分で最小になってもよい。 In the through electrode substrate according to one embodiment of the present disclosure, the width of the through hole may be the smallest at the central portion in the thickness direction of the substrate.

本開示の一実施形態による貫通電極基板において、前記貫通孔の幅は、前記基板の前記第2面に対応する部分で最小になってもよい。 In the through electrode substrate according to one embodiment of the present disclosure, the width of the through hole may be minimized at a portion corresponding to the second surface of the substrate.

本開示の一実施形態による貫通電極基板において、前記本体層の厚みは、5μm以上且つ20μm以下であってもよい。 In the through electrode substrate according to an embodiment of the present disclosure, the body layer may have a thickness of 5 μm or more and 20 μm or less.

本開示の一実施形態による貫通電極基板において、前記基板は、ガラスを含んでいてもよい。 In the through electrode substrate according to one embodiment of the present disclosure, the substrate may contain glass.

本開示の一実施形態による貫通電極基板は、前記貫通電極に電気的に接続された第1導電層と、前記第1導電層上に位置し、無機材料を含み、絶縁性を有する第1無機層と、前記第1無機層上に位置する第2導電層と、を有するキャパシタを更に備えていてもよい。 A through electrode substrate according to an embodiment of the present disclosure includes a first conductive layer electrically connected to the through electrode; A capacitor having a layer and a second conductive layer overlying the first inorganic layer may also be included.

本開示の一実施形態による貫通電極基板は、前記貫通電極と、前記貫通電極に電気的に接続されるとともに前記第1面側に位置する導電層と、前記貫通電極に電気的に接続されるとともに前記第2面側に位置する導電層と、を有するインダクタを更に備えていてもよい。 A through electrode substrate according to an embodiment of the present disclosure includes the through electrode, a conductive layer electrically connected to the through electrode and located on the first surface side, and electrically connected to the through electrode. and a conductive layer located on the second surface side.

本開示の一実施形態は、上記記載の貫通電極基板と、前記貫通電極基板に搭載された素子と、を備える、実装基板である。 An embodiment of the present disclosure is a mounting substrate including the through electrode substrate described above and an element mounted on the through electrode substrate.

本開示の一実施形態は、上記記載の貫通電極基板の製造方法であって、前記基板を準備する工程と、前記基板の前記貫通孔に前記貫通電極を形成する貫通電極形成工程と、を備え、前記貫通電極形成工程は、無電解めっき法によって前記第1層を形成する工程と、前記第1層を含む前記中間層上に電解めっき法によって前記本体層を形成する工程と、を有する、貫通電極基板の製造方法である。 An embodiment of the present disclosure is the above-described method for manufacturing a through electrode substrate, comprising: a step of preparing the substrate; and a through electrode forming step of forming the through electrode in the through hole of the substrate. and forming the first layer by electroless plating; and forming the body layer on the intermediate layer including the first layer by electroplating. It is a manufacturing method of a through electrode substrate.

本開示の一実施形態による貫通電極基板の製造方法は、前記第1層上に電解めっき法によって銅を含む第2層を形成する工程を更に備えていてもよい。 The method for manufacturing a through electrode substrate according to an embodiment of the present disclosure may further include forming a second layer containing copper on the first layer by electroplating.

本開示の一実施形態による貫通電極基板の製造方法において、前記基板は、ガラスを含んでいてもよい。 In the method for manufacturing a through electrode substrate according to an embodiment of the present disclosure, the substrate may contain glass.

本開示の実施形態によれば、貫通電極の厚みが不足する部分が生じることを抑制することができる。 According to the embodiments of the present disclosure, it is possible to suppress the occurrence of portions where the thickness of the through electrode is insufficient.

一実施形態に係る貫通電極基板を示す断面図である。1 is a cross-sectional view showing a through electrode substrate according to one embodiment; FIG. 貫通電極基板の貫通電極を拡大して示す断面図である。FIG. 4 is a cross-sectional view showing an enlarged through electrode of the through electrode substrate; 図2の貫通電極を更に拡大して示す断面図である。FIG. 3 is a cross-sectional view showing a further enlarged through electrode of FIG. 2 ; 貫通電極基板の第1面第1導電層を示す平面図である。It is a top view which shows the 1st surface 1st conductive layer of a penetration electrode substrate. 貫通電極基板の第1面第1無機層及び第1面第2導電層を示す平面図である。It is a top view which shows the 1st surface 1st inorganic layer and the 1st surface 2nd conductive layer of a penetration electrode board|substrate. 貫通電極基板の貫通孔の一変形例を示す断面図である。FIG. 5 is a cross-sectional view showing a modified example of a through-hole of a through-electrode substrate; 貫通電極基板の製造工程を示す図である。It is a figure which shows the manufacturing process of a penetration electrode substrate. 貫通電極基板の製造工程を示す図である。It is a figure which shows the manufacturing process of a penetration electrode substrate. 貫通電極基板の製造工程を示す図である。It is a figure which shows the manufacturing process of a penetration electrode substrate. 貫通電極基板の製造工程を示す図である。It is a figure which shows the manufacturing process of a penetration electrode substrate. 貫通電極基板の製造工程を示す図である。It is a figure which shows the manufacturing process of a penetration electrode substrate. 貫通電極基板の製造工程を示す図である。It is a figure which shows the manufacturing process of a penetration electrode substrate. 貫通電極基板の製造工程を示す図である。It is a figure which shows the manufacturing process of a penetration electrode substrate. 貫通電極基板の製造工程を示す図である。It is a figure which shows the manufacturing process of a penetration electrode substrate. 一変形例に係る貫通電極基板を示す断面図である。It is a cross-sectional view showing a through electrode substrate according to a modified example. 貫通電極基板の製造工程の第1変形例を示す図である。It is a figure which shows the 1st modification of the manufacturing process of a penetration electrode substrate. 貫通電極基板の製造工程の第1変形例を示す図である。It is a figure which shows the 1st modification of the manufacturing process of a penetration electrode substrate. 貫通電極基板の製造工程の第1変形例を示す図である。It is a figure which shows the 1st modification of the manufacturing process of a penetration electrode substrate. 貫通電極基板の製造工程の第1変形例を示す図である。It is a figure which shows the 1st modification of the manufacturing process of a penetration electrode substrate. 貫通電極基板の製造工程の第2変形例を示す図である。It is a figure which shows the 2nd modification of the manufacturing process of a penetration electrode substrate. 貫通電極基板の製造工程の第2変形例を示す図である。It is a figure which shows the 2nd modification of the manufacturing process of a penetration electrode substrate. 貫通電極基板の製造工程の第2変形例を示す図である。It is a figure which shows the 2nd modification of the manufacturing process of a penetration electrode substrate. 貫通電極基板の製造工程の第2変形例を示す図である。It is a figure which shows the 2nd modification of the manufacturing process of a penetration electrode substrate. 貫通電極基板の製造工程の第2変形例を示す図である。It is a figure which shows the 2nd modification of the manufacturing process of a penetration electrode substrate. 貫通電極基板及び素子を備える実装基板の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a mounting substrate including a through electrode substrate and an element; 貫通電極基板が搭載される製品の例を示す図である。FIG. 4 is a diagram showing an example of a product on which a through electrode substrate is mounted;

以下、本開示の実施形態に係る貫通電極基板の構成及びその製造方法について、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は本開示の実施形態の一例であって、本開示はこれらの実施形態に限定して解釈されるものではない。また、本明細書において、「基板」、「基材」、「シート」や「フィルム」など用語は、呼称の違いのみに基づいて、互いから区別されるものではない。例えば、「基板」や「基材」は、シートやフィルムと呼ばれ得るような部材も含む概念である。更に、本明細書において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」や「直交」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。また、本実施形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号または類似の符号を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なる場合や、構成の一部が図面から省略される場合がある。 Hereinafter, the configuration of the through electrode substrate and the manufacturing method thereof according to the embodiment of the present disclosure will be described in detail with reference to the drawings. The embodiments shown below are examples of the embodiments of the present disclosure, and the present disclosure should not be construed as being limited to these embodiments. Also, in this specification, terms such as "substrate", "base material", "sheet" and "film" are not to be distinguished from each other based only on the difference in designation. For example, "substrate" and "base material" are concepts that include members that can be called sheets and films. Furthermore, terms used herein to specify shapes and geometric conditions and their degrees, such as terms such as "parallel" and "perpendicular", length and angle values, etc., are bound by strict meanings. However, it is interpreted to include the extent to which similar functions can be expected. In addition, in the drawings referred to in this embodiment, the same reference numerals or similar reference numerals may be assigned to the same portions or portions having similar functions, and repeated description thereof may be omitted. Also, the dimensional ratios in the drawings may differ from the actual ratios for convenience of explanation, and some of the configurations may be omitted from the drawings.

貫通電極基板
以下、本開示の実施の形態について説明する。まず、本実施の形態に係る貫通電極基板10の構成について説明する。図1は、貫通電極基板10を示す断面図である。
Through Silicon Via Substrate An embodiment of the present disclosure will be described below. First, the configuration of the through electrode substrate 10 according to the present embodiment will be described. FIG. 1 is a cross-sectional view showing a through electrode substrate 10. FIG.

貫通電極基板10は、基板12、貫通電極22、第1配線構造部30及び第2配線構造部40を備える。以下、貫通電極基板10の各構成要素について説明する。 The through electrode substrate 10 includes a substrate 12 , a through electrode 22 , a first wiring structure portion 30 and a second wiring structure portion 40 . Each component of the through electrode substrate 10 will be described below.

(基板)
基板12は、第1面13、及び、第1面13の反対側に位置する第2面14を含む。また、基板12には、第1面13から第2面14に至る複数の貫通孔20が設けられている。
(substrate)
Substrate 12 includes a first side 13 and a second side 14 opposite first side 13 . Further, the substrate 12 is provided with a plurality of through holes 20 extending from the first surface 13 to the second surface 14 .

基板12は、一定の絶縁性を有する無機材料を含んでいる。例えば、基板12は、ガラス基板、石英基板、サファイア基板、樹脂基板、シリコン基板、炭化シリコン基板、アルミナ(Al2O3)基板、窒化アルミ(AlN)基板、酸化ジリコニア(ZrO2)基板など、又は、これらの基板が積層されたものである。基板12は、アルミニウム基板、ステンレス基板など、導電性を有する材料から構成された基板を部分的に含んでいてもよい。 Substrate 12 includes an inorganic material having a certain insulating property. For example, the substrate 12 may be a glass substrate, a quartz substrate, a sapphire substrate, a resin substrate, a silicon substrate, a silicon carbide substrate, an alumina (Al 2 O 3 ) substrate, an aluminum nitride (AlN) substrate, a zirconia oxide (ZrO 2 ) substrate, etc. Alternatively, these substrates are laminated. The substrate 12 may partially include a substrate made of a conductive material such as an aluminum substrate or a stainless steel substrate.

基板12で用いるガラスの例としては、無アルカリガラスなどを挙げることができる。無アルカリガラスとは、ナトリウムやカリウムなどのアルカリ成分を含まないガラスである。無アルカリガラスは、例えば、アルカリ成分の代わりにホウ酸を含む。また、無アルカリガラスは、例えば、酸化カルシウムや酸化バリウムなどのアルカリ土類金属酸化物を含む。無アルカリガラスの例としては、旭硝子製のEN-A1や、コーニング製のイーグルXGなどを挙げることができる。基板12がガラスを含む場合、基板12の厚みTは、例えば0.25mm以上且つ0.45mm以下である。基板12がガラスを含むことにより、基板12の絶縁性を高めることができる。これにより、後述するように第1配線構造部30の一部によってキャパシタ15が形成されている場合に、キャパシタ15の耐電圧特性を高めることができる。 Examples of the glass used for the substrate 12 include alkali-free glass. Alkali-free glass is glass that does not contain alkaline components such as sodium and potassium. Alkali-free glass includes, for example, boric acid instead of an alkaline component. Alkali-free glass also contains, for example, alkaline earth metal oxides such as calcium oxide and barium oxide. Examples of alkali-free glass include EN-A1 manufactured by Asahi Glass and Eagle XG manufactured by Corning. When the substrate 12 contains glass, the thickness T of the substrate 12 is, for example, 0.25 mm or more and 0.45 mm or less. By including glass in the substrate 12, the insulating properties of the substrate 12 can be enhanced. As a result, when the capacitor 15 is formed by part of the first wiring structure portion 30 as will be described later, the withstand voltage characteristic of the capacitor 15 can be improved.

図1において、符号S1は、貫通孔20が第1面13と接続される位置における貫通孔20の幅を表す。幅S1は、例えば40μm以上且つ150μm以下である。また、貫通孔20の幅S1に対する貫通孔20の長さの比、すなわち貫通孔20のアスペクト比は、例えば4以上且つ10以下である。 In FIG. 1 , symbol S1 represents the width of through hole 20 at the position where through hole 20 is connected to first surface 13 . The width S1 is, for example, 40 μm or more and 150 μm or less. Also, the ratio of the length of the through-hole 20 to the width S1 of the through-hole 20, that is, the aspect ratio of the through-hole 20 is, for example, 4 or more and 10 or less.

基板12に形成された貫通孔20は、少なくとも部分的に、基板12の第1面13から第2面14に向かうにつれて幅が小さくなる形状を有していてもよい。図1に示す例において、貫通孔20は、基板12の第1面13及び第2面14から基板12の厚み方向における中央部分に向かうにつれて幅が小さくなる形状を有している。この結果、貫通孔20の幅は、図1において符号S2で示すように、基板12の厚み方向における中央部分で最小になる。なお「中央部分」とは、基板12の厚み方向における中間位置、並びに、中間位置から第1面13側へ0.1×Tまでの範囲、及び中間位置から第2面14側へ0.1×Tまでの範囲を含む。符号Tは、上述のように基板12の厚みを表す。 The through hole 20 formed in the substrate 12 may at least partially have a shape whose width decreases from the first surface 13 toward the second surface 14 of the substrate 12 . In the example shown in FIG. 1 , the through-hole 20 has a shape whose width decreases from the first surface 13 and the second surface 14 of the substrate 12 toward the central portion in the thickness direction of the substrate 12 . As a result, the width of the through-hole 20 is minimized at the central portion in the thickness direction of the substrate 12, as indicated by symbol S2 in FIG. Note that the "central portion" refers to an intermediate position in the thickness direction of the substrate 12, a range from the intermediate position to the first surface 13 side of 0.1×T, and 0.1 from the intermediate position to the second surface 14 side. Including the range up to ×T. Symbol T represents the thickness of substrate 12 as described above.

(貫通電極)
貫通電極22は、貫通孔20の内部に位置し、且つ導電性を有する部材である。本実施の形態において、貫通電極22の厚みは、貫通孔20の幅よりも小さく、このため、貫通孔20の内部には、貫通電極22が存在しない空間がある。すなわち、貫通電極22は、いわゆるコンフォーマルビアである。貫通電極22の厚みは、例えば5.1μm以上且つ22μm以下である。
(through electrode)
The through electrode 22 is a member positioned inside the through hole 20 and having conductivity. In the present embodiment, the thickness of the through electrode 22 is smaller than the width of the through hole 20, so that there is a space inside the through hole 20 where the through electrode 22 does not exist. That is, the through electrode 22 is a so-called conformal via. The thickness of the through electrode 22 is, for example, 5.1 μm or more and 22 μm or less.

図2は、貫通孔20に設けられた貫通電極22を拡大して示す断面図である。貫通電極22は、下地層23、中間層24及び本体層25を少なくとも有する。 FIG. 2 is an enlarged sectional view showing the through electrode 22 provided in the through hole 20. As shown in FIG. The through electrode 22 has at least an underlying layer 23 , an intermediate layer 24 and a main layer 25 .

下地層23は、貫通孔20の側壁21上に少なくとも部分的に位置し、導電性を有する層である。下地層23は、スパッタリング法や蒸着法などの物理成膜法や、ゾルゲル法などによって側壁21上に形成される。好ましくは、下地層23は、スパッタリング法によって側壁21上に形成される。これによって、側壁21に対して下地層23を強固に密着させることができる。なお、図示はしないが、側壁21には、下地層23が形成されていない部分が存在していてもよい。例えば、貫通孔20の厚み方向における中央部分において、下地層23が形成されていなくてもよく、あるいは、下地層23を構成する材料が点在していてもよい。下地層23の厚みは、例えば0.05μm以上且つ1.0μm以下である。 The underlying layer 23 is a layer that is at least partially located on the side wall 21 of the through hole 20 and has conductivity. The underlayer 23 is formed on the side wall 21 by a physical film forming method such as a sputtering method or a vapor deposition method, a sol-gel method, or the like. Preferably, the underlayer 23 is formed on the sidewalls 21 by a sputtering method. As a result, the base layer 23 can be firmly adhered to the side wall 21 . Although not shown, the side wall 21 may have a portion where the underlying layer 23 is not formed. For example, the base layer 23 may not be formed in the central portion of the through-hole 20 in the thickness direction, or the material forming the base layer 23 may be scattered. The thickness of the underlying layer 23 is, for example, 0.05 μm or more and 1.0 μm or less.

物理成膜法によって下地層23を形成する場合、下地層23を構成する材料としては、チタン、クロム、銅などの金属又はこれらを用いた合金など、あるいはこれらを積層したものを使用することができる。また、ゾルゲル法によって下地層23を形成する場合、下地層23を構成する材料としては、酸化亜鉛などを用いることができる。なお、下地層23は、ゾルゲル法によって形成されたゾルゲル層に加えて、無電解めっき法によってゾルゲル層上に形成された銅を含む無電解めっき層を更に有していてもよい。 When the underlayer 23 is formed by a physical film forming method, the material constituting the underlayer 23 may be metal such as titanium, chromium, or copper, an alloy using these metals, or a laminate of these. can. Further, when the underlayer 23 is formed by the sol-gel method, zinc oxide or the like can be used as the material constituting the underlayer 23 . In addition to the sol-gel layer formed by the sol-gel method, the underlayer 23 may further have an electroless plated layer containing copper formed on the sol-gel layer by an electroless plating method.

中間層24は、無電解めっき法又は電解めっき法を用いることにより、若しくは、無電解めっき法及び電解めっき法の両方を用いることにより形成される、導電性を有する層である。中間層24は、電解めっき法によって本体層25を形成する際のシード層として機能する。中間層24は、少なくとも第1層241を含む。第1層241は、下地層23上に位置し、導電性を有する層である。第1層241は、主成分としての銅を含む。例えば、第1層241は、80質量%以上の銅を含む。第1層241は、無電解めっき法によって下地層23上に形成される。第1層241の組成を分析する方法としては、例えばTEM(透過型電子顕微鏡)またはEDS(エネルギー分散型X線分光器)を採用することができる。第1層241が80質量%以上の銅を含む場合、第1層241の厚みは、例えば0.01μm以上且つ2μm以下である。 The intermediate layer 24 is a conductive layer formed by using an electroless plating method, an electrolytic plating method, or by using both an electroless plating method and an electrolytic plating method. The intermediate layer 24 functions as a seed layer when forming the body layer 25 by electroplating. Intermediate layer 24 includes at least first layer 241 . The first layer 241 is located on the underlying layer 23 and is a conductive layer. The first layer 241 contains copper as a main component. For example, the first layer 241 contains 80% by mass or more of copper. The first layer 241 is formed on the underlying layer 23 by electroless plating. As a method for analyzing the composition of the first layer 241, for example, TEM (transmission electron microscope) or EDS (energy dispersive X-ray spectroscope) can be adopted. When the first layer 241 contains 80% by mass or more of copper, the thickness of the first layer 241 is, for example, 0.01 μm or more and 2 μm or less.

図示はしないが、第1層241の一部が、貫通孔20の側壁21に直接的に接触していてもよい。例えば、下地層23が物理成膜法によって形成される場合、貫通孔20の側壁21の一部には、下地層23を構成する導電性物質が到達できず、このため下地層23が存在しない部分が生じ得る。この場合、側壁21のうち下地層23が存在しない部分において、第1層241の一部が貫通孔20の側壁21に接触し得る。 Although not shown, part of the first layer 241 may be in direct contact with the sidewall 21 of the through hole 20 . For example, when the underlying layer 23 is formed by a physical film forming method, the conductive material constituting the underlying layer 23 cannot reach a part of the side wall 21 of the through hole 20, so the underlying layer 23 does not exist. parts can occur. In this case, part of the first layer 241 may contact the sidewall 21 of the through-hole 20 in a portion of the sidewall 21 where the underlying layer 23 does not exist.

また、図示はしないが、貫通電極22は、下地層23と第1層241との間に位置する触媒を有していてもよい。触媒は、下地層23への第1層241の析出を促進するためのものである。触媒は、例えばパラジウムを含む。 Although not shown, the through electrode 22 may have a catalyst positioned between the base layer 23 and the first layer 241 . The catalyst is for promoting deposition of the first layer 241 onto the underlying layer 23 . Catalysts include, for example, palladium.

本体層25は、中間層24上に位置する、導電性を有する層である。本体層25は、例えば主成分としての銅を含み、より具体的には80質量%以上の銅を含む。本体層25は、電解めっき法によって中間層24上に形成される。本体層25の組成を分析する方法としては、例えばTEM(透過型電子顕微鏡)またはEDS(エネルギー分散型X線分光器)を採用することができる。本体層25の厚みは、例えば5μm以上且つ20μm以下である。なお、中間層24と本体層25との間に、後述するシード層27などの他の導電層が設けられていてもよい。 Body layer 25 is an electrically conductive layer located on intermediate layer 24 . The body layer 25 contains, for example, copper as a main component, and more specifically contains 80% by mass or more of copper. The body layer 25 is formed on the intermediate layer 24 by electroplating. As a method for analyzing the composition of the body layer 25, for example, TEM (transmission electron microscope) or EDS (energy dispersive X-ray spectrometer) can be adopted. The thickness of the body layer 25 is, for example, 5 μm or more and 20 μm or less. Note that another conductive layer such as a seed layer 27 to be described later may be provided between the intermediate layer 24 and the main layer 25 .

次に、貫通電極22を構成する各導電層の厚みについて更に詳細に説明する。図3は、図2の貫通電極22を更に拡大して示す図である。 Next, the thickness of each conductive layer forming the through electrode 22 will be described in more detail. FIG. 3 is a further enlarged view of the through electrode 22 of FIG.

図3において、符号R1は、貫通電極22のうち基板12の第1面13に対応する第1部分を表す。第1部分R1は、基板12の厚み方向において第1面13から第2面14側へ0.2×Tまでの範囲に位置する、貫通電極22の一部分である。また、図3において、符号R2は、貫通電極22のうち貫通孔20の幅が最小となる位置に対応する第2部分R2を表す。第2部分R2は、貫通孔20の幅が最小の幅S2になる最小幅位置、並びに、最小幅位置から第1面13側へ0.2×Tまでの範囲、及び最小幅位置から第2面14側へ0.2×Tまでの範囲に位置する、貫通電極22の一部分である。 In FIG. 3 , reference R1 denotes a first portion of the through electrode 22 corresponding to the first surface 13 of the substrate 12 . The first portion R<b>1 is a portion of the through electrode 22 located within a range of 0.2×T from the first surface 13 toward the second surface 14 in the thickness direction of the substrate 12 . Further, in FIG. 3 , reference symbol R2 represents a second portion R2 corresponding to a position of the through-electrode 22 where the width of the through-hole 20 is the smallest. The second portion R2 extends from the minimum width position where the width of the through hole 20 is the minimum width S2, the range from the minimum width position to the first surface 13 side to 0.2×T, and the range from the minimum width position to the second It is a portion of the through electrode 22 located in the range up to 0.2×T toward the surface 14 side.

第1面13側からの物理成膜法によって貫通孔20の側壁21に下地層23を形成する場合、貫通孔20の側壁21に形成される下地層23の厚みは、第1面13から遠ざかるにつれて小さくなる。例えば、第2部分R2における下地層23の厚みX2は、第1部分R1における下地層23の厚みX1よりも小さくなる。この場合、下地層23上に電解めっき法によって本体層25を形成すると、第2部分R2の下地層23上に形成される本体層25の厚みも小さくなり、第2部分R2における導電性が不適切なものとなる可能性がある。言い換えると、第2部分R2において、本体層25の厚みや貫通電極22全体の厚みが不足する可能性がある。中間層24を設けることにより、このような下地層23の厚み不足によって生じ得る課題を解決することができる。 When the base layer 23 is formed on the side wall 21 of the through hole 20 by the physical film forming method from the first surface 13 side, the thickness of the base layer 23 formed on the side wall 21 of the through hole 20 is farther from the first surface 13. becomes smaller as For example, the thickness X2 of the base layer 23 in the second portion R2 is smaller than the thickness X1 of the base layer 23 in the first portion R1. In this case, if the body layer 25 is formed on the underlying layer 23 by electroplating, the thickness of the body layer 25 formed on the underlying layer 23 of the second portion R2 is also reduced, and the conductivity of the second portion R2 becomes non-conductive. may be suitable. In other words, the thickness of the main body layer 25 and the thickness of the entire through electrode 22 may be insufficient in the second portion R2. By providing the intermediate layer 24, it is possible to solve the problems that may arise due to the insufficient thickness of the underlying layer 23 as described above.

図3において、符号Y1は、第1部分R1における中間層24の厚みを表し、符号Z1は、第1部分R1における本体層25の厚みを表す。また、符号Y2は、第2部分R2における中間層24の厚みを表し、符号Z2は、第2部分R2における本体層25の厚みを表す。本実施の形態において、中間層24の厚みは、第1層241の厚みに等しい。好ましくは、第1部分R1と第2部分R2との間で、下記の関係式(1)が成立する。
(X2/Y2)<(X1/Y1)・・・(1)
関係式(1)は、Y2>(X2/X1)*Y1に書き換えられ得る。関係式(1)が成立するように中間層24を形成することにより、第2部分R2における下地層23の厚みの不足を、中間層24によって補償することができる。これにより、下記の関係式(2)が成立するように本体層25を形成することができる。
(X2/Z2)<(X1/Z1)・・・(2)
関係式(2)は、Z2>(X2/X1)*Z1に書き換えられ得る。
In FIG. 3, symbol Y1 represents the thickness of the intermediate layer 24 in the first portion R1, and symbol Z1 represents the thickness of the main layer 25 in the first portion R1. Reference Y2 represents the thickness of the intermediate layer 24 in the second portion R2, and reference Z2 represents the thickness of the main layer 25 in the second portion R2. In this embodiment, the thickness of intermediate layer 24 is equal to the thickness of first layer 241 . Preferably, the following relational expression (1) holds between the first portion R1 and the second portion R2.
(X2/Y2)<(X1/Y1) (1)
Relational expression (1) can be rewritten as Y2>(X2/X1)*Y1. By forming the intermediate layer 24 so that the relational expression (1) holds, the intermediate layer 24 can compensate for the insufficient thickness of the underlying layer 23 in the second portion R2. Thereby, the main body layer 25 can be formed so that the following relational expression (2) is established.
(X2/Z2)<(X1/Z1) (2)
Relational expression (2) can be rewritten as Z2>(X2/X1)*Z1.

(第1配線構造部)
次に、第1配線構造部30について説明する。第1配線構造部30は、基板12の第1面13側に電気的な回路を構成するよう第1面13側に設けられた導電層や絶縁層などの層を有する。後述するように、第1配線構造部30の一部によって、キャパシタ15が構成されている。また、第1配線構造部30の一部によって、インダクタ16の一部が構成されている。本実施の形態において、第1配線構造部30は、第1面第1導電層31、第1面第1無機層32、第1面第2導電層33、第1面第1有機層34、第1面第3導電層35及び第1面第2有機層36を有する。
(First wiring structure part)
Next, the first wiring structure portion 30 will be described. The first wiring structure portion 30 has layers such as a conductive layer and an insulating layer provided on the first surface 13 side of the substrate 12 so as to configure an electrical circuit on the first surface 13 side of the substrate 12 . As will be described later, part of the first wiring structure portion 30 constitutes the capacitor 15 . A part of the first wiring structure 30 constitutes a part of the inductor 16 . In the present embodiment, the first wiring structure portion 30 includes a first surface first conductive layer 31, a first surface first inorganic layer 32, a first surface second conductive layer 33, a first surface first organic layer 34, It has a first surface third conductive layer 35 and a first surface second organic layer 36 .

〔第1面第1導電層〕
第1面第1導電層31は、基板12の第1面13上に位置する、導電性を有する層である。第1面第1導電層31は、貫通電極22に電気的に接続されていてもよい。また、第1面第1導電層31は、導電性を有する単一の層から構成されていてもよく、若しくは、導電性を有する複数の層を含んでいてもよい。例えば、第1面第1導電層31は、貫通電極22と同様に、基板12の第1面13上に順に積層された下地層23、中間層24及び本体層25を含んでいてもよい。また、第1面第1導電層31は、下地層23、中間層24及び本体層25のうちの一部の導電層のみを含んでいてもよい。これらの場合、下地層23、中間層24の第1層241及び本体層25などは、少なくとも部分的に、貫通孔20の側壁21上から第1面13上にまで連続的に広がっていてもよい。第1面第1導電層31を構成する材料は、貫通電極22を構成する材料と同様である。第1面第1導電層31の厚みは、例えば100nm以上且つ20μm以下である。
[First surface first conductive layer]
The first surface first conductive layer 31 is a conductive layer located on the first surface 13 of the substrate 12 . The first surface first conductive layer 31 may be electrically connected to the through electrode 22 . In addition, the first surface first conductive layer 31 may be composed of a single layer having conductivity, or may include a plurality of layers having conductivity. For example, the first-surface first conductive layer 31 may include an underlying layer 23 , an intermediate layer 24 and a body layer 25 that are sequentially laminated on the first surface 13 of the substrate 12 , like the through-electrodes 22 . Also, the first surface first conductive layer 31 may include only a part of the conductive layers among the underlying layer 23 , the intermediate layer 24 and the main layer 25 . In these cases, the underlying layer 23, the first layer 241 of the intermediate layer 24, the body layer 25, etc. may at least partially extend continuously from the sidewall 21 of the through-hole 20 to the first surface 13. good. The material forming the first surface first conductive layer 31 is the same as the material forming the through electrode 22 . The thickness of the first surface first conductive layer 31 is, for example, 100 nm or more and 20 μm or less.

下地層23が少なくとも第1面13及び第1部分R1に形成されていることにより、第1面13及び第1部分R1に対する第1面第1導電層31の密着性が向上する。これにより、例えば、下地層23の不要部分を除去するためのエッチングにおいて、貫通孔20の中央部分に位置する下地層23に比べてエッチャントに強く曝される、第1面13及び第1部分R1に位置する下地層23が剥離してしまうことを抑制できる。 By forming the base layer 23 on at least the first surface 13 and the first portion R1, the adhesion of the first surface first conductive layer 31 to the first surface 13 and the first portion R1 is improved. As a result, for example, in etching for removing an unnecessary portion of the underlying layer 23, the first surface 13 and the first portion R1 are more strongly exposed to the etchant than the underlying layer 23 located in the central portion of the through-hole 20. It is possible to suppress peeling of the base layer 23 located at .

図4は、貫通電極基板10の貫通電極22及び後述する第1面第1導電層31を第1面13側から見た場合を示す平面図である。第1面第1導電層31は、後述するキャパシタ15及びインダクタ16を少なくとも構成するように基板12の第1面13側に設けられている。なお、図4においては、第1面第1導電層31上に積層される後述する第1面第1無機層32などの層が省略されている。また、図1は、図4や後述する図5に示す貫通電極基板10を線A-Aに沿って切断した場合の断面図に相当する。 FIG. 4 is a plan view showing the penetrating electrode 22 of the penetrating electrode substrate 10 and a first surface first conductive layer 31, which will be described later, viewed from the first surface 13 side. The first surface first conductive layer 31 is provided on the first surface 13 side of the substrate 12 so as to constitute at least a capacitor 15 and an inductor 16 which will be described later. In FIG. 4, layers such as a first surface first inorganic layer 32, which will be described later, laminated on the first surface first conductive layer 31 are omitted. Also, FIG. 1 corresponds to a cross-sectional view of the through electrode substrate 10 shown in FIG. 4 and FIG. 5, which will be described later, cut along the line AA.

〔第1面第1無機層〕
第1面第1無機層32は、少なくとも部分的に第1面第1導電層31上及び基板12の第1面13上に位置し、無機材料を含み、且つ絶縁性を有する層である。第1面第1無機層32の無機材料としては、SiNなどの珪素窒化物を用いることができる。その他にも、第1面第1無機層32の無機材料の例として、酸化シリコン、酸化アルミ、五酸化タンタルなどを挙げることができる。第1面第1無機層32の無機材料の比誘電率は、例えば3以上且つ50以下である。また、第1面第1無機層32の厚みは、例えば50nm以上且つ400nm以下である。第1面第1無機層32は、単一の層から構成されていてもよく、複数の層を含んでいてもよい。
[First surface first inorganic layer]
The first surface first inorganic layer 32 is a layer that is located at least partially on the first surface first conductive layer 31 and the first surface 13 of the substrate 12, contains an inorganic material, and has insulating properties. Silicon nitride such as SiN can be used as the inorganic material for the first surface first inorganic layer 32 . In addition, examples of inorganic materials for the first surface first inorganic layer 32 include silicon oxide, aluminum oxide, and tantalum pentoxide. The dielectric constant of the inorganic material of the first surface first inorganic layer 32 is, for example, 3 or more and 50 or less. Also, the thickness of the first surface first inorganic layer 32 is, for example, 50 nm or more and 400 nm or less. The first surface first inorganic layer 32 may be composed of a single layer or may include a plurality of layers.

第1面第1無機層32は、第1面第1導電層31を部分的に覆っていてもよい。例えば、第1面第1無機層32は、キャパシタ15を構成する第1面第1導電層31の端部31eを覆っていてもよい。これによって、第1面第2導電層33、第1面第1有機層34などを形成する工程において用いる薬液によって第1面第1導電層31が損傷してしまうことを抑制することができる。なお「覆う」とは、図1に示すように、基板12の第1面13の法線方向に沿って貫通電極基板10を見た場合に、第1面第1導電層31の端部31eと第1面第1無機層32とが重なっていることを意味する。 The first surface first inorganic layer 32 may partially cover the first surface first conductive layer 31 . For example, the first surface first inorganic layer 32 may cover the end portion 31 e of the first surface first conductive layer 31 constituting the capacitor 15 . As a result, it is possible to prevent the first surface first conductive layer 31 from being damaged by the chemical used in the step of forming the first surface second conductive layer 33, the first surface first organic layer 34, and the like. Note that "covering" means that when the through electrode substrate 10 is viewed along the normal direction of the first surface 13 of the substrate 12 as shown in FIG. and the first surface first inorganic layer 32 overlap each other.

〔第1面第2導電層〕
第1面第2導電層33は、第1面第1無機層32上に位置する、導電性を有する層である。図1に示すように、第1面第2導電層33の端部33eは、第1面第1無機層32上に位置する。上述の第1面第1導電層31と、第1面第1導電層31上に位置する上述の第1面第1無機層32と、第1面第1無機層32上に位置する第1面第2導電層33とによって、キャパシタ15が構成されている。
[First surface second conductive layer]
The first surface second conductive layer 33 is a conductive layer located on the first surface first inorganic layer 32 . As shown in FIG. 1 , the end portion 33 e of the first surface second conductive layer 33 is located on the first surface first inorganic layer 32 . The above-described first surface first conductive layer 31, the above-described first surface first inorganic layer 32 located on the first surface first conductive layer 31, and the first surface first inorganic layer 32 located on the first surface first inorganic layer 32 A capacitor 15 is configured by the surface second conductive layer 33 .

第1面第2導電層33は、貫通電極22や第1面第1導電層31と同様に、第1面第1無機層32上に順に積層された複数の導電層を含んでいてもよい。第1面第2導電層33を構成する材料は、貫通電極22や第1面第1導電層31を構成する材料と同様である。第1面第2導電層33の厚みは、例えば100nm以上且つ20μm以下である。 The first-surface second conductive layer 33 may include a plurality of conductive layers stacked in order on the first-surface first inorganic layer 32, similar to the through electrodes 22 and the first-surface first conductive layer 31. . The material forming the first surface second conductive layer 33 is the same as the material forming the through electrode 22 and the first surface first conductive layer 31 . The thickness of the first surface second conductive layer 33 is, for example, 100 nm or more and 20 μm or less.

図5は、貫通電極基板10の第1面第1導電層31、第1面第1無機層32及び第1面第2導電層33を第1面13側から見た場合を示す平面図である。図5においては、第1面第2導電層33上に積層される後述する第1面第1有機層34,第1面第3導電層35などの層が省略されている。また、図5においては、第1面第1無機層32によって覆われている構成要素が点線で表されている。 FIG. 5 is a plan view showing the first surface first conductive layer 31, the first surface first inorganic layer 32, and the first surface second conductive layer 33 of the through electrode substrate 10 as viewed from the first surface 13 side. be. In FIG. 5, layers such as a first surface first organic layer 34 and a first surface third conductive layer 35, which are laminated on the first surface second conductive layer 33, are omitted. In addition, in FIG. 5, the components covered with the first surface first inorganic layer 32 are represented by dotted lines.

図5に示すように、第1面第1無機層32は、基板12の第1面13及び第1面第1導電層31を広域にわたって覆っている。例えば、第1面第1無機層32は、キャパシタ15を構成する第1面第1導電層31の少なくとも端部31eを覆っている。第1面第1無機層32が基板12の第1面13及び第1面第1導電層31を広域にわたって覆うことにより、貫通電極基板10の製造工程において基板12の第1面13や第1面第1導電層31が損傷することを抑制することができる。 As shown in FIG. 5, the first surface first inorganic layer 32 covers a wide area of the first surface 13 of the substrate 12 and the first surface first conductive layer 31 . For example, the first surface first inorganic layer 32 covers at least the end portion 31 e of the first surface first conductive layer 31 constituting the capacitor 15 . Since the first surface first inorganic layer 32 covers the first surface 13 of the substrate 12 and the first surface first conductive layer 31 over a wide area, the first surface 13 and the first surface of the substrate 12 can be Damage to the surface first conductive layer 31 can be suppressed.

図5に示すように、第1面第1無機層32には開口部32aが形成されている。開口部32aは、貫通孔20の位置及び第1面第1導電層31と第1面第3導電層35の接続位置などの限られた位置に形成されている。 As shown in FIG. 5, openings 32a are formed in the first inorganic layer 32 on the first surface. The openings 32 a are formed at limited positions such as the position of the through hole 20 and the connection position between the first surface first conductive layer 31 and the first surface third conductive layer 35 .

〔第1面第1有機層〕
第1面第1有機層34は、第1面第1無機層32上及び第1面第2導電層33に位置し、有機材料を含み、且つ絶縁性を有する層である。第1面第1有機層34の有機材料としては、ポリイミド、エポキシなどを用いることができる。第1面第1有機層34の有機材料は、好ましくは0.03以下、より好ましくは0.02以下、更に好ましくは0.01以下の誘電正接を有する。誘電正接の小さい有機材料を用いて第1面第1有機層34を構成することにより、キャパシタ15やインダクタ16を通るべき電気信号が第1面第1有機層34を通ってしまうことを抑制することができる。これにより、キャパシタ15やインダクタ16を備える貫通電極基板10の帯域を高周波側に広げることができる。
[First surface first organic layer]
The first surface first organic layer 34 is a layer that is located on the first surface first inorganic layer 32 and on the first surface second conductive layer 33, contains an organic material, and has insulating properties. As the organic material of the first surface first organic layer 34, polyimide, epoxy, or the like can be used. The organic material of the first surface first organic layer 34 preferably has a dielectric loss tangent of 0.03 or less, more preferably 0.02 or less, and even more preferably 0.01 or less. By forming the first surface first organic layer 34 using an organic material having a small dielectric loss tangent, it is possible to suppress the electric signal that should pass through the capacitor 15 and the inductor 16 from passing through the first surface first organic layer 34. be able to. As a result, the band of the through electrode substrate 10 including the capacitor 15 and the inductor 16 can be widened to the high frequency side.

〔第1面第3導電層〕
第1面第3導電層35は、第1面第1導電層31上、又は第1面第2導電層33上に位置する、導電性を有する層である。図1に示す例において、第1面第3導電層35は、キャパシタ15の一方の電極である第1面第1導電層31に接続された部分、及び、キャパシタ15の他方の電極である第1面第2導電層33に接続された部分を含む。
[First surface, third conductive layer]
The first surface third conductive layer 35 is a conductive layer located on the first surface first conductive layer 31 or the first surface second conductive layer 33 . In the example shown in FIG. 1, the first-surface third conductive layer 35 includes a portion connected to the first-surface first conductive layer 31, which is one electrode of the capacitor 15, and a portion connected to the first-surface first conductive layer 31, which is the other electrode of the capacitor 15. One surface includes a portion connected to the second conductive layer 33 .

第1面第3導電層35は、貫通電極22や第1面第1導電層31と同様に、順に積層された複数の導電層を含んでいてもよい。第1面第3導電層35を構成する材料は、貫通電極22や第1面第1導電層31を構成する材料と同様である。 The first surface third conductive layer 35 may include a plurality of sequentially laminated conductive layers, similar to the through electrodes 22 and the first surface first conductive layer 31 . The material forming the first surface third conductive layer 35 is the same as the material forming the through electrode 22 and the first surface first conductive layer 31 .

〔第1面第2有機層〕
第1面第2有機層36は、第1面第1有機層34上及び第1面第3導電層35上に位置し、有機材料を含み、且つ絶縁性を有する層である。第1面第2有機層36は、第1面第1有機層34と同様に、好ましくは0.03以下、より好ましくは0.02以下、更に好ましくは0.01以下の誘電正接を有する有機材料を含む。第1面第2有機層36の有機材料としては、第1面第1有機層34と同様に、ポリイミド、エポキシなどを用いることができる。
[First surface second organic layer]
The first surface second organic layer 36 is located on the first surface first organic layer 34 and the first surface third conductive layer 35, and is a layer containing an organic material and having insulating properties. Like the first surface first organic layer 34, the first surface second organic layer 36 preferably has a dielectric loss tangent of 0.03 or less, more preferably 0.02 or less, and still more preferably 0.01 or less. Including materials. As the organic material for the first surface second organic layer 36, polyimide, epoxy, or the like can be used similarly to the first surface first organic layer 34. FIG.

(第2配線構造部)
次に、第2配線構造部40について説明する。第2配線構造部40は、基板12の第2面14側に電気的な回路を構成するよう第2面14側に設けられた導電層や絶縁層などの層を有する。第2配線構造部40の一部と、上述の第1配線構造部30の一部及び貫通電極22とによって、インダクタ16が構成されている。本実施の形態において、第2配線構造部40は、第2面第1導電層41及び第2面第1有機層43を有する。
(Second wiring structure part)
Next, the second wiring structure portion 40 will be described. The second wiring structure portion 40 has layers such as a conductive layer and an insulating layer provided on the second surface 14 side of the substrate 12 so as to form an electrical circuit on the second surface 14 side. The inductor 16 is configured by part of the second wiring structure 40 , part of the first wiring structure 30 and the through electrode 22 . In the present embodiment, the second wiring structure portion 40 has a second surface first conductive layer 41 and a second surface first organic layer 43 .

〔第2面第1導電層〕
第2面第1導電層41は、基板12の第2面14上に位置する、導電性を有する層である。第2面第1導電層41は、貫通電極22に電気的に接続されていてもよい。
[Second surface first conductive layer]
The second surface first conductive layer 41 is a conductive layer located on the second surface 14 of the substrate 12 . The second surface first conductive layer 41 may be electrically connected to the through electrode 22 .

第2面第1導電層41は、貫通電極22や第1面第1導電層31と同様に、基板12の第2面14上に順に積層された下地層23、中間層24及び本体層25を含んでいてもよい。また、第2面第1導電層41は、下地層23、中間層24及び本体層25のうちの一部の導電層のみを含んでいてもよい。これらの場合、下地層23、中間層24の第1層241及び本体層25などは、少なくとも部分的に、貫通孔20の側壁21上から第2面14上にまで連続的に広がっていてもよい。第2面第1導電層41を構成する材料は、貫通電極22を構成する材料と同様である。第2面第1導電層41の厚みは、例えば100nm以上且つ20μm以下である。 The second-surface first conductive layer 41 includes the base layer 23, the intermediate layer 24, and the main layer 25, which are laminated in order on the second surface 14 of the substrate 12, like the through electrodes 22 and the first-surface first conductive layer 31. may contain Further, the second surface first conductive layer 41 may include only a part of the conductive layers among the underlying layer 23 , the intermediate layer 24 and the main layer 25 . In these cases, the underlying layer 23, the first layer 241 of the intermediate layer 24, the body layer 25, etc. may at least partially extend continuously from the side wall 21 of the through-hole 20 to the second surface 14. good. The material forming the second surface first conductive layer 41 is the same as the material forming the through electrode 22 . The thickness of the second surface first conductive layer 41 is, for example, 100 nm or more and 20 μm or less.

〔第2面第1有機層〕
第2面第1有機層43は、第2面第1導電層41上及び基板12の第2面14上に位置し、有機材料を含み、且つ絶縁性を有する層である。第2面第1有機層43は、第1面第1有機層34や第1面第2有機層36と同様に、好ましくは0.03以下、より好ましくは0.02以下、更に好ましくは0.01以下の誘電正接を有する有機材料を含む。第2面第1有機層43の有機材料としては、第1面第1有機層34や第1面第2有機層36と同様に、ポリイミド、エポキシなどを用いることができる。
[Second surface first organic layer]
The second surface first organic layer 43 is a layer that is located on the second surface first conductive layer 41 and the second surface 14 of the substrate 12, contains an organic material, and has insulating properties. Like the first surface first organic layer 34 and the first surface second organic layer 36, the second surface first organic layer 43 is preferably 0.03 or less, more preferably 0.02 or less, and still more preferably 0. Contains organic materials with a loss tangent of less than 0.01. As the organic material for the second surface first organic layer 43, polyimide, epoxy, or the like can be used similarly to the first surface first organic layer 34 and the first surface second organic layer 36. FIG.

(貫通孔の変形例)
図6は、貫通孔20の一変形例を示す断面図である。図6に示すように、貫通電極基板10は、貫通電極22よりも貫通孔20の中心側に位置する有機層26を備えていてもよい。なお、「中心側」とは、貫通孔20の内部において、有機層26と側壁21との間の距離が貫通電極22と側壁21との間の距離よりも大きいことを意味する。有機層26は、好ましくは0.03以下、より好ましくは0.02以下、更に好ましくは0.01以下の誘電正接を有する有機材料を含む。有機層26の有機材料としては、ポリイミド、エポキシなどを用いることができる。誘電正接の小さい有機材料を用いて有機層26を構成することにより、キャパシタ15やインダクタ16を通るべき電気信号の一部が有機層26を通ってしまうことを抑制することができる。これにより、キャパシタ15やインダクタ16を備える貫通電極基板10の帯域を高周波側に広げることができる。
(Modified example of through hole)
FIG. 6 is a cross-sectional view showing a modified example of the through hole 20. As shown in FIG. As shown in FIG. 6 , the through electrode substrate 10 may include an organic layer 26 located closer to the center of the through hole 20 than the through electrode 22 is. The “center side” means that the distance between the organic layer 26 and the side wall 21 is greater than the distance between the through electrode 22 and the side wall 21 inside the through hole 20 . Organic layer 26 preferably comprises an organic material having a dielectric loss tangent of 0.03 or less, more preferably 0.02 or less, and even more preferably 0.01 or less. As an organic material for the organic layer 26, polyimide, epoxy, or the like can be used. By configuring the organic layer 26 using an organic material with a small dielectric loss tangent, it is possible to suppress part of the electrical signal that should pass through the capacitor 15 and the inductor 16 from passing through the organic layer 26 . As a result, the band of the through electrode substrate 10 including the capacitor 15 and the inductor 16 can be widened to the high frequency side.

また、図示はしないが、貫通電極22は、貫通孔20に充填されたフィルドビアであってもよい。この場合、貫通電極22は、第1面13の面方向において少なくとも部分的に貫通孔20の中心点にまで広がっている。 Also, although not shown, the through electrode 22 may be a filled via filled in the through hole 20 . In this case, the through electrode 22 extends at least partially to the center point of the through hole 20 in the surface direction of the first surface 13 .

貫通電極基板の製造方法
以下、貫通電極基板10の製造方法の一例について、図7乃至図14を参照して説明する。
Method for Manufacturing Through Electrode Substrate An example of a method for manufacturing the through electrode substrate 10 will be described below with reference to FIGS. 7 to 14. FIG.

(貫通孔形成工程)
まず、基板12を準備する。次に、第1面13又は第2面14の少なくともいずれかにレジスト層を設ける。その後、レジスト層のうち貫通孔20に対応する位置に開口を設ける。次に、レジスト層の開口において基板12を加工することにより、図7に示すように、基板12に貫通孔20を形成することができる。基板12を加工する方法としては、反応性イオンエッチング法、深掘り反応性イオンエッチング法などのドライエッチング法や、ウェットエッチング法などを用いることができる。
(Through hole forming step)
First, the substrate 12 is prepared. Next, a resist layer is provided on at least one of the first surface 13 and the second surface 14 . After that, openings are provided in the resist layer at positions corresponding to the through holes 20 . Next, by processing the substrate 12 in the openings of the resist layer, through holes 20 can be formed in the substrate 12 as shown in FIG. As a method for processing the substrate 12, a dry etching method such as a reactive ion etching method or a deep reactive ion etching method, a wet etching method, or the like can be used.

なお、基板12にレーザを照射することによって基板12に貫通孔20を形成してもよい。この場合、レジスト層は設けられていなくてもよい。レーザ加工のためのレーザとしては、エキシマレーザ、Nd:YAGレーザ、フェムト秒レーザ等を用いることができる。Nd:YAGレーザを採用する場合、波長が1064nmの基本波、波長が532nmの第2高調波、波長が355nmの第3高調波等を用いることができる。 The through holes 20 may be formed in the substrate 12 by irradiating the substrate 12 with a laser. In this case, the resist layer may not be provided. As a laser for laser processing, an excimer laser, Nd:YAG laser, femtosecond laser, or the like can be used. When an Nd:YAG laser is employed, a fundamental wave with a wavelength of 1064 nm, a second harmonic with a wavelength of 532 nm, a third harmonic with a wavelength of 355 nm, or the like can be used.

また、レーザ照射とウェットエッチングを適宜組み合わせることもできる。具体的には、まず、レーザ照射によって基板12のうち貫通孔20が形成されるべき領域に変質層を形成する。続いて、基板12をフッ化水素などに浸漬して、変質層をエッチングする。これによって、基板12に貫通孔20を形成することができる。その他にも、基板12に研磨材を吹き付けるブラスト処理によって基板12に貫通孔20を形成してもよい。 Alternatively, laser irradiation and wet etching can be combined as appropriate. Specifically, first, an altered layer is formed in a region of the substrate 12 where the through hole 20 is to be formed by laser irradiation. Subsequently, the substrate 12 is immersed in hydrogen fluoride or the like to etch the altered layer. Through holes 20 can thus be formed in the substrate 12 . Alternatively, the through holes 20 may be formed in the substrate 12 by blasting the substrate 12 with an abrasive.

第1面13側及び第2面14側の両方から基板12を加工することにより、図7に示す、基板12の厚み方向の中央部分に向かうにつれて幅が小さくなる形状を有する貫通孔20を形成することができる。 By processing the substrate 12 from both the first surface 13 side and the second surface 14 side, a through hole 20 having a shape whose width decreases toward the central portion in the thickness direction of the substrate 12 as shown in FIG. 7 is formed. can do.

(貫通電極形成工程)
次に、貫通孔20の側壁21に貫通電極22を形成する。本実施の形態においては、貫通電極22と同時に、基板12の第1面13の一部分上に第1面第1導電層31を形成し、基板12の第2面14の一部分上に第2面第1導電層41を形成する例について説明する。
(Through electrode forming step)
Next, the through electrodes 22 are formed on the sidewalls 21 of the through holes 20 . In this embodiment, simultaneously with the through electrode 22, the first surface first conductive layer 31 is formed on part of the first surface 13 of the substrate 12, and the second surface conductive layer 31 is formed on part of the second surface 14 of the substrate 12. An example of forming the first conductive layer 41 will be described.

まず、図8に示すように、基板12の第1面13、第2面14及び側壁21に、物理成膜法又はゾルゲル法によって下地層23を形成する。好ましくは物理成膜法によって、特に好ましくはスパッタリング法によって、下地層23を形成する。これによって、基板12の第1面13、第2面14及び側壁21に下地層23を強固に密着させることができる。スパッタリング法や蒸着法などの物理成膜法は、好ましくは、第1面13側及び第2面14側の両方から実施される。この場合、貫通孔20の側壁21には、第1面13側から飛来する導電性物質、及び第2面14側から飛来する導電性物質が付着する。 First, as shown in FIG. 8, the base layer 23 is formed on the first surface 13, the second surface 14 and the sidewalls 21 of the substrate 12 by a physical film forming method or a sol-gel method. The base layer 23 is formed preferably by a physical film forming method, particularly preferably by a sputtering method. As a result, the underlying layer 23 can be firmly adhered to the first surface 13 , the second surface 14 and the sidewalls 21 of the substrate 12 . A physical film forming method such as a sputtering method or a vapor deposition method is preferably performed from both the first surface 13 side and the second surface 14 side. In this case, the side wall 21 of the through-hole 20 is adhered with the conductive substance flying from the first surface 13 side and the conductive substance flying from the second surface 14 side.

続いて、下地層23の表面に触媒を付着させる触媒付着工程を実施する。触媒付着工程は、例えば、パラジウムなどの触媒を含む触媒溶液の中に、下地層23が設けられた基板12を浸漬させる工程を含む。 Subsequently, a catalyst attaching step is performed to attach a catalyst to the surface of the underlying layer 23 . The catalyst adhesion step includes, for example, a step of immersing the substrate 12 provided with the underlying layer 23 in a catalyst solution containing a catalyst such as palladium.

触媒溶液は、例えば、塩化パラジウムを塩酸に溶解させた溶液を水で希釈することによって得られる。触媒溶液は、塩化第一錫を更に含んでいてもよい。 The catalyst solution is obtained, for example, by diluting a solution of palladium chloride in hydrochloric acid with water. The catalyst solution may further contain stannous chloride.

触媒溶液が塩化第一錫を含む場合、触媒付着工程の後、基板12から錫を除去する錫除去工程を実施してもよい。錫除去工程においては、例えば、硫酸、有機酸及び水、並びに必要に応じて添加される添加剤を含む処理液を用いる。 If the catalyst solution contains stannous chloride, a tin removal step to remove tin from the substrate 12 may be performed after the catalyst deposition step. In the tin removal step, for example, a treatment liquid containing sulfuric acid, an organic acid, water, and additives added as necessary is used.

触媒付着工程を実施する前に、基板12を洗浄する洗浄工程を実施してもよい。洗浄工程においては、例えば、アルカリ性の洗浄液を用いて基板12の脱脂処理を行う。アルカリ性の洗浄液は、例えば、炭酸ナトリウム、水酸化ナトリウム、モノエタノールアミン及び水、並びに必要に応じて添加される添加剤を含む。 A cleaning step for cleaning the substrate 12 may be performed before performing the catalyst adhering step. In the cleaning process, for example, the substrate 12 is degreased using an alkaline cleaning liquid. Alkaline cleaning liquids include, for example, sodium carbonate, sodium hydroxide, monoethanolamine and water, and optional additives.

続いて、図9に示すように、下地層23上に部分的にレジスト層37を形成する。レジスト層37の材料としては、アクリル樹脂を含むドライフィルムレジストなど、感光性を有する材料が用いられ得る。 Subsequently, as shown in FIG. 9, a resist layer 37 is partially formed on the underlying layer 23 . As a material for the resist layer 37, a photosensitive material such as a dry film resist containing acrylic resin can be used.

続いて、図10に示すように、下地層23上に無電解めっき法によって第1層241を形成する。例えば、銅を含む無電解めっき液の中に基板12を浸漬させる。これによって、レジスト層37によって覆われていない下地層23上に第1層241を析出させることができる。 Subsequently, as shown in FIG. 10, a first layer 241 is formed on the underlying layer 23 by electroless plating. For example, the substrate 12 is immersed in an electroless plating solution containing copper. This allows the first layer 241 to be deposited on the underlying layer 23 not covered by the resist layer 37 .

無電解めっき液は、例えば、硫酸銅及び水、並びに必要に応じて添加される添加剤を含む。添加剤としては、例えば、蟻酸、酢酸、プロピオン酸、コハク酸などのカルボン酸類を含む錯化剤を用いることができる。錯化剤を無電解めっき液に添加することにより、一般的な無電解めっき処理の後に実施される、フッ化物を用いたエッチング処理を不要にすることができる。 The electroless plating solution contains, for example, copper sulfate and water, and additives added as necessary. As the additive, for example, a complexing agent containing carboxylic acids such as formic acid, acetic acid, propionic acid, and succinic acid can be used. By adding a complexing agent to the electroless plating solution, it is possible to eliminate the need for etching treatment using fluoride, which is generally performed after electroless plating treatment.

無電解めっき液の組成の具体例を下記に示す。
・硫酸銅 0.02mol/dm3
・EDTA 0.1mol/dm3
・ポリエチレングリコール1000 0.1mol/dm3
このような組成の無電解めっき液に基板12を1分間浸漬させることにより、約0.1μmの厚みを有する第1層241を下地層23上に析出させることができる。
A specific example of the composition of the electroless plating solution is shown below.
・Copper sulfate 0.02mol/ dm3
・EDTA 0.1 mol/ dm3
・Polyethylene glycol 1000 0.1mol/ dm3
A first layer 241 having a thickness of about 0.1 μm can be deposited on the underlying layer 23 by immersing the substrate 12 in the electroless plating solution having such a composition for one minute.

続いて、図11に示すように、第1層241を含む中間層24上に電解めっき法によって本体層25を形成する。例えば、銅を含む電解めっき液の中に基板12を浸漬させる。また、下地層23及び中間層24に電流を流す。これによって、中間層24上に本体層25を析出させることができる。 Subsequently, as shown in FIG. 11, the body layer 25 is formed on the intermediate layer 24 including the first layer 241 by electroplating. For example, the substrate 12 is immersed in an electrolytic plating solution containing copper. Also, a current is passed through the underlying layer 23 and the intermediate layer 24 . This allows the body layer 25 to be deposited on the intermediate layer 24 .

(レジスト及び導電層除去工程)
その後、図12に示すように、レジスト層37を除去する。また、下地層23のうちレジスト層37によって覆われていた部分を、例えばウェットエッチングにより除去する。このようにして、下地層23、中間層24及び本体層25を含む貫通電極22、第1面第1導電層31及び第2面第1導電層41を形成することができる。これにより、第2面第1導電層41と、第2面第1導電層41に電気的に接続された貫通電極22と、貫通電極22に電気的に接続された第1面第1導電層31とを備えるインダクタ16を構成することができる。なお、本体層25などの導電層をアニールする工程を実施してもよい。
(Resist and conductive layer removal step)
After that, as shown in FIG. 12, the resist layer 37 is removed. Also, the portion of the underlying layer 23 covered with the resist layer 37 is removed by wet etching, for example. In this manner, the through electrode 22 including the base layer 23, the intermediate layer 24 and the main layer 25, the first surface first conductive layer 31 and the second surface first conductive layer 41 can be formed. As a result, the second surface first conductive layer 41, the through electrode 22 electrically connected to the second surface first conductive layer 41, and the first surface first conductive layer electrically connected to the through electrode 22 31 can be constructed. A step of annealing the conductive layer such as the body layer 25 may be performed.

(表面処理工程)
次に、第1面第1導電層31の表面をNHプラズマなどのプラズマに晒す表面処理工程を実施してもよい。これにより、第1面第1導電層31の表面の酸化物を除去することができる。例えば、第1面第1導電層31が銅を含む場合、第1面第1導電層31の表面の酸化銅を除去することができる。このことにより、第1面第1導電層31と、第1面第1導電層31上に形成される第1面第1無機層32との間の密着性を高めることができる。
(Surface treatment process)
Next, a surface treatment step of exposing the surface of the first surface first conductive layer 31 to plasma such as NH 3 plasma may be performed. Thereby, the oxide on the surface of the first surface first conductive layer 31 can be removed. For example, when the first surface first conductive layer 31 contains copper, the copper oxide on the surface of the first surface first conductive layer 31 can be removed. As a result, the adhesion between the first surface first conductive layer 31 and the first surface first inorganic layer 32 formed on the first surface first conductive layer 31 can be enhanced.

(第1面第1無機層及び第1面第2導電層の形成工程)
次に、図13に示すように、第1面第1導電層31上、及び基板12の第1面13上に第1面第1無機層32を形成する。第1面第1無機層32を形成する方法としては、例えば、プラズマCVD、スパッタリングなどを採用することができる。好ましくは、第1面第1無機層32を形成する工程は、第1面第1導電層31を形成する工程及び表面処理工程の場合と同一の装置において連続的に実施される。これらの工程は、好ましくは、第1面第1導電層31が酸化することが抑制された雰囲気下で、例えばアンモニアガスなどの還元ガスの雰囲気下で実施される。また、図13に示すように、第1面第1無機層32の一部分上に第1面第2導電層33を形成する。これにより、第1面第1導電層31と、第1面第1導電層31上の第1面第1無機層32と、第1面第1無機層32上の第1面第2導電層33と、を備えるキャパシタ15を構成することができる。第1面第2導電層33を形成する工程は、第1面第1導電層31を形成する工程と同様であるので、説明を省略する。
(Step of forming first inorganic layer on first surface and second conductive layer on first surface)
Next, as shown in FIG. 13 , a first surface first inorganic layer 32 is formed on the first surface first conductive layer 31 and on the first surface 13 of the substrate 12 . As a method for forming the first surface first inorganic layer 32, for example, plasma CVD, sputtering, or the like can be adopted. Preferably, the step of forming the first surface first inorganic layer 32 is performed continuously in the same apparatus as the step of forming the first surface first conductive layer 31 and the surface treatment step. These steps are preferably performed under an atmosphere in which oxidation of the first surface first conductive layer 31 is suppressed, for example, under an atmosphere of reducing gas such as ammonia gas. Further, as shown in FIG. 13, a first surface second conductive layer 33 is formed on a portion of the first surface first inorganic layer 32 . As a result, the first surface first conductive layer 31, the first surface first inorganic layer 32 on the first surface first conductive layer 31, and the first surface second conductive layer on the first surface first inorganic layer 32 33 can be configured. The process of forming the first surface second conductive layer 33 is the same as the process of forming the first surface first conductive layer 31, so the description thereof is omitted.

なお、第1面第1無機層32が図13に示す形状となるように第1面第1無機層32をパターニングするタイミングは任意である。例えば、第1面第1無機層32上に第1面第2導電層33を形成する前に第1面第1無機層32をパターニングしてもよく、第1面第2導電層33を形成した後に第1面第1無機層32をパターニングしてもよい。また、図示はしないが、第1面第2導電層33上に後述する図14に示す第1面第1有機層34を形成した後、第1面第1有機層34をマスクとして第1面第1無機層32をパターニングしてもよい。 The timing of patterning the first surface first inorganic layer 32 so that the first surface first inorganic layer 32 has the shape shown in FIG. 13 is arbitrary. For example, the first surface first inorganic layer 32 may be patterned before forming the first surface second conductive layer 33 on the first surface first inorganic layer 32, and the first surface second conductive layer 33 may be formed. After that, the first surface first inorganic layer 32 may be patterned. Also, although not shown, after forming a first surface first organic layer 34 shown in FIG. The first inorganic layer 32 may be patterned.

(第1面第1有機層の形成工程)
次に、図14に示すように、第1面第2導電層33の一部分上及び第1面第1無機層32の一部分上に第1面第1有機層34を形成する。例えば、まず、有機材料を含む感光層と、基材とを有する、図示しない第1面側フィルムを、基板12の第1面13側に貼り付ける。続いて、第1面側フィルムに露光処理及び現像処理を施す。これによって、第1面側フィルムの感光層からなり、開口部34aが形成された第1面第1有機層34を、基板12の第1面13側に形成することができる。この際、第1面第1有機層34の場合と同様にして、図15に示すように、基板12の第2面14の一部分上及び第2面第1導電層41の一部分上に第2面第1有機層43を形成してもよい。
(Step of forming first organic layer on first surface)
Next, as shown in FIG. 14, a first surface first organic layer 34 is formed on a portion of the first surface second conductive layer 33 and a portion of the first surface first inorganic layer 32 . For example, first, a first surface film (not shown) having a photosensitive layer containing an organic material and a substrate is attached to the first surface 13 side of the substrate 12 . Subsequently, the first surface side film is subjected to exposure processing and development processing. As a result, the first surface first organic layer 34 made of the photosensitive layer of the first surface side film and having the openings 34 a formed therein can be formed on the first surface 13 side of the substrate 12 . At this time, as in the case of the first surface first organic layer 34, as shown in FIG. A surface first organic layer 43 may be formed.

第1面第1有機層34の開口部34aは、第1面第3導電層35と第1面第1導電層31とが接続される位置、第1面第3導電層35と第1面第2導電層33とが接続される位置などにおいて、第1面第1無機層32上に形成される。 The opening 34a of the first surface first organic layer 34 is located at the position where the first surface third conductive layer 35 and the first surface first conductive layer 31 are connected, and the first surface third conductive layer 35 and the first surface It is formed on the first surface first inorganic layer 32 at the position where it is connected to the second conductive layer 33 .

なお、第1面第1有機層34や第2面第1有機層43の形成方法が、フィルムを用いる方法に限られることはない。例えば、まず、ポリイミドなどの有機材料を含む液を、スピンコート法などによって塗布し、乾燥させることによって有機層を形成する。続いて、有機層に露光処理及び現像処理を施すことにより、第1面第1有機層34や第2面第1有機層43を形成することもできる。 The method of forming the first surface first organic layer 34 and the second surface first organic layer 43 is not limited to the method using a film. For example, first, a liquid containing an organic material such as polyimide is applied by spin coating or the like and dried to form an organic layer. Subsequently, the first surface first organic layer 34 and the second surface first organic layer 43 can be formed by subjecting the organic layer to exposure processing and development processing.

また、第1面第1有機層34の一部や第2面第1有機層43の一部を貫通孔20の内部にまで到達させることにより、図14に示すように、貫通孔20の内部に有機層26を形成してもよい。なお、第1面第1有機層34や第2面第1有機層43とは別の工程で貫通孔20の内部に有機層26を形成してもよい。 In addition, by causing part of the first surface first organic layer 34 and part of the second surface first organic layer 43 to reach the inside of the through hole 20, as shown in FIG. You may form the organic layer 26 in . Note that the organic layer 26 may be formed inside the through-hole 20 in a process different from that of the first surface first organic layer 34 and the second surface first organic layer 43 .

その後、図示はしないが、第1面第1有機層34の開口部34aを介して第1面第1導電層31又は第1面第2導電層33に接続される上述の第1面第3導電層35を形成してもよい。また、第1面第1有機層34の一部分上及び第1面第3導電層35の一部分上に上述の第1面第2有機層36を形成してもよい。 After that, although not shown, the first surface third conductive layer 31 is connected to the first surface first conductive layer 31 or the first surface second conductive layer 33 through the opening 34 a of the first surface first organic layer 34 . A conductive layer 35 may be formed. Also, the first surface second organic layer 36 may be formed on a portion of the first surface first organic layer 34 and a portion of the first surface third conductive layer 35 .

以下、本実施の形態によってもたらされる作用について説明する。 The effects brought about by this embodiment will be described below.

本実施の形態においては、上述のように、貫通孔20の側壁21に下地層23を形成した後、下地層23に無電解めっき法によって第1層241を形成する。このため、側壁21のうち下地層23を構成する導電性物質が到達し難い部分、例えば基板12の厚み方向における中央部分に、第1層241を形成することができる。これにより、貫通孔20の中央部分における下地層23の厚みの不足を、第1層241によって補償することができる。従って、その後の電解めっき処理において、貫通孔20の中央部分に十分な厚みを有する本体層25を形成することができる。このことにより、貫通孔20の中央部分において貫通電極22の厚みが不足することを抑制することができる。従って、第1面13側から第2面14側に至る貫通電極22の電気抵抗を十分に低減することができる。このことにより、キャパシタ15やインダクタ16などの部品の電気特性を向上させることができる。 In the present embodiment, as described above, after forming base layer 23 on side wall 21 of through hole 20, first layer 241 is formed on base layer 23 by electroless plating. Therefore, the first layer 241 can be formed in a portion of the side wall 21 that is difficult for the conductive material forming the base layer 23 to reach, for example, the central portion in the thickness direction of the substrate 12 . As a result, the first layer 241 can compensate for the insufficient thickness of the underlying layer 23 in the central portion of the through-hole 20 . Therefore, in the subsequent electroplating process, the main body layer 25 having a sufficient thickness can be formed in the central portion of the through-hole 20 . As a result, it is possible to prevent the thickness of the through-electrode 22 from becoming insufficient in the central portion of the through-hole 20 . Therefore, the electric resistance of the through electrode 22 extending from the first surface 13 side to the second surface 14 side can be sufficiently reduced. As a result, electrical characteristics of parts such as the capacitor 15 and the inductor 16 can be improved.

また、本実施の形態においては、貫通孔20の側壁21と第1層241との間に、少なくとも部分的に下地層23が存在する。下地層23は、第1層241に比べて側壁21に対する高い密着性を有する。このため、貫通電極22が下地層23を含まない場合に比べて、側壁21に対する貫通電極22の密着性を高めることができる。 Further, in the present embodiment, underlying layer 23 exists at least partially between side wall 21 of through hole 20 and first layer 241 . The underlying layer 23 has higher adhesion to the sidewalls 21 than the first layer 241 does. Therefore, the adhesion of the through electrode 22 to the side wall 21 can be improved as compared with the case where the through electrode 22 does not include the underlying layer 23 .

また、本実施の形態においては、無電解めっき法によって第1層241を形成するためのめっき液として、銅を含むめっき液を用いる。すなわち、電解めっき法によって形成される本体層25と同一の材料を用いて、第1層241を構成する。このため、第1層241を構成する材料と本体層25を構成する材料とが異なる場合に比べて、第1層241に対する本体層25の密着性を高めることができる。 Further, in the present embodiment, a plating solution containing copper is used as the plating solution for forming the first layer 241 by electroless plating. That is, the first layer 241 is formed using the same material as the body layer 25 formed by electroplating. Therefore, the adhesion of the main body layer 25 to the first layer 241 can be improved compared to the case where the material forming the first layer 241 and the material forming the main body layer 25 are different.

なお、上述した実施の形態に対して様々な変更を加えることが可能である。以下、必要に応じて図面を参照しながら、変形例について説明する。以下の説明および以下の説明で用いる図面では、上述の実施の形態と同様に構成され得る部分について、上述の実施の形態における対応する部分に対して用いた符号と同一の符号を用いることとし、重複する説明を省略する。また、上述の実施の形態において得られる作用効果が変形例においても得られることが明らかである場合、その説明を省略することもある。 Various modifications can be made to the above-described embodiment. Modifications will be described below with reference to the drawings as necessary. In the following description and the drawings used in the following description, the same reference numerals as those used for the corresponding portions in the above-described embodiment are used for the parts that can be configured in the same manner as in the above-described embodiment, Duplicate explanations are omitted. Further, when it is clear that the effects obtained in the above-described embodiment can also be obtained in the modified example, the explanation thereof may be omitted.

(貫通電極基板の第1の変形例)
上述の実施の形態においては、基板12の面方向における貫通孔20の幅が、基板12の第1面13及び第2面14から基板12の厚み方向における中央部分に向かうにつれて小さくなる例を示した。しかしながら、これに限られることはなく、図15に示すように、貫通孔20の幅が、第1面13側から第2面14側に向かうにつれて小さくなっていてもよい。図15に示す例において、貫通孔20の幅は、基板12の第2面14に対応する部分で最小になる。なお、「第2面14に対応する部分」とは、基板12の厚み方向において第2面14から第1面13側へ0.2×Tまでの範囲内の部分である。
(First Modification of Through Silicon Via Substrate)
In the above-described embodiment, an example is shown in which the width of the through hole 20 in the surface direction of the substrate 12 decreases from the first surface 13 and the second surface 14 of the substrate 12 toward the central portion in the thickness direction of the substrate 12. rice field. However, it is not limited to this, and as shown in FIG. 15, the width of the through hole 20 may decrease from the first surface 13 side toward the second surface 14 side. In the example shown in FIG. 15, the width of the through-hole 20 is the smallest at the portion corresponding to the second surface 14 of the substrate 12 . The “portion corresponding to the second surface 14 ” is a portion within a range of 0.2×T from the second surface 14 toward the first surface 13 in the thickness direction of the substrate 12 .

本変形例においても、上述の実施の形態と同様に、貫通電極22の第1部分R1と第2部分R2との間で、下地層23、中間層24及び本体層25に関する上述の関係式(1)、(2)が成立していてもよい。なお、図15に示す例において、第2部分R2は、基板12の厚み方向において第2面14から第1面13側へ0.2×Tまでの範囲に位置する、貫通電極22の一部分である。貫通電極22の第1部分R1の定義は、上述の実施の形態の場合と同一である。 Also in this modification, similarly to the above-described embodiment, the above-described relational expression ( 1) and (2) may be established. In the example shown in FIG. 15, the second portion R2 is a portion of the through-hole electrode 22 located within a range of 0.2×T from the second surface 14 toward the first surface 13 in the thickness direction of the substrate 12. be. The definition of the first portion R1 of the through electrode 22 is the same as in the above embodiment.

(貫通電極基板の第2の変形例)
上述の実施の形態においては、貫通電極22の第2部分R2を、貫通電極22のうち貫通孔20の幅が最小となる位置に対応する部分として定義した。一方、物理成膜法によって貫通孔20の側壁21に下地層23を形成する場合、貫通孔20の形状に依らず一般に、基板12の厚み方向における貫通孔20の中間位置において、下地層23が形成され難くなると考えられる。例えば、基板12の第1面13側及び第2面14側の両方から物理成膜法を行う場合、基板12の厚み方向における貫通孔20の中間位置において、下地層23の厚みが最小になる確率が高い。このような点を考慮し、貫通電極22の第2部分R2を、基板12の厚み方向における貫通孔20の中間位置に対応する部分として定義してもよい。例えば、第2部分R2を、基板12の厚み方向における中間位置、並びに、中間位置から第1面13側へ0.2×Tまでの範囲、及び中間位置から第2面14側へ0.2×Tまでの範囲に位置する、貫通電極22の一部分として定義してもよい。この場合にも、好ましくは、第1部分R1と第2部分R2との間で、下地層23、第1層241及び本体層25に関する上述の関係式(1)、(2)が成立している。
(Second Modification of Through Silicon Via Substrate)
In the above-described embodiment, the second portion R2 of the through electrode 22 is defined as the portion of the through electrode 22 corresponding to the position where the width of the through hole 20 is the smallest. On the other hand, when the base layer 23 is formed on the side wall 21 of the through hole 20 by the physical film forming method, the base layer 23 is generally formed at an intermediate position of the through hole 20 in the thickness direction of the substrate 12 regardless of the shape of the through hole 20. It is thought that it will become difficult to form. For example, when the physical film forming method is performed from both the first surface 13 side and the second surface 14 side of the substrate 12, the thickness of the underlying layer 23 is minimized at the intermediate position of the through hole 20 in the thickness direction of the substrate 12. High probability. In consideration of such points, the second portion R2 of the through electrode 22 may be defined as a portion corresponding to the intermediate position of the through hole 20 in the thickness direction of the substrate 12 . For example, the second portion R2 is set to the intermediate position in the thickness direction of the substrate 12, the range from the intermediate position to the first surface 13 side to 0.2×T, and the range from the intermediate position to the second surface 14 side to 0.2. It may be defined as a portion of the through electrode 22 located in the range up to ×T. Also in this case, preferably, the above-described relational expressions (1) and (2) regarding the base layer 23, the first layer 241, and the main layer 25 are established between the first portion R1 and the second portion R2. there is

(貫通電極基板の製造方法の第1変形例)
上述の実施の形態においては、レジスト層37を形成した後に中間層24を形成する例を示した。本変形例及び後述する第2変形例においては、レジスト層37を形成する前に中間層24を形成する例について説明する。
(First Modification of Manufacturing Method of Through Silicon Via Substrate)
In the embodiment described above, an example in which the intermediate layer 24 is formed after forming the resist layer 37 is shown. In this modified example and a second modified example described later, an example in which the intermediate layer 24 is formed before forming the resist layer 37 will be described.

まず、上述の実施の形態の場合と同様にして、上述の図8に示す、貫通孔20の側壁21に下地層23が形成された基板12を準備する。続いて、下地層23上に触媒を付着させ、その後、銅を含むめっき液の中に基板12を浸漬させる。これによって、図16に示すように、下地層23の全域上に無電解めっき法によって第1層241を形成する。 First, the substrate 12 having the base layer 23 formed on the side wall 21 of the through-hole 20 shown in FIG. 8 is prepared in the same manner as in the above-described embodiment. Subsequently, a catalyst is deposited on the underlying layer 23, and then the substrate 12 is immersed in a plating solution containing copper. As a result, as shown in FIG. 16, a first layer 241 is formed on the entire underlying layer 23 by electroless plating.

続いて、図16に示すように、第1層241上に電解めっき法によって、導電性を有する第2層242を形成してもよい。第2層242は、例えば主成分としての銅を含み、より具体的には80質量%以上の銅を含む。第1層241上に更に第2層242を形成することにより、貫通孔20の側壁21を全域にわたってより確実に覆うことができる。言い換えると、側壁21が中間層24から部分的に露出してしまうことを抑制することができる。 Subsequently, as shown in FIG. 16, a conductive second layer 242 may be formed on the first layer 241 by electroplating. The second layer 242 contains, for example, copper as a main component, and more specifically contains 80% by mass or more of copper. By further forming the second layer 242 on the first layer 241, the sidewall 21 of the through-hole 20 can be covered over the entire area more reliably. In other words, it is possible to prevent the sidewalls 21 from being partially exposed from the intermediate layer 24 .

中間層24が第1層241及び第2層242を含む場合、第1層241の厚みは、例えば0.01μm以上且つ2μm以下であり、0.1μm以上且つ2μm以下であってもよい。また、第2層242の厚みは、例えば0.01μm以上且つ2μm以下であり、0.1μm以上且つ2μm以下であってもよい。 When the intermediate layer 24 includes the first layer 241 and the second layer 242, the thickness of the first layer 241 is, for example, 0.01 μm or more and 2 μm or less, and may be 0.1 μm or more and 2 μm or less. Also, the thickness of the second layer 242 is, for example, 0.01 μm or more and 2 μm or less, and may be 0.1 μm or more and 2 μm or less.

続いて、図17に示すように、中間層24上に部分的にレジスト層37を形成する。その後、図17に示すように、中間層24上に電解めっき法によって本体層25を形成する。その後、図示はしないが、レジスト層37を除去する。また、下地層23及び中間層24のうちレジスト層37によって覆われていた部分を、例えばウェットエッチングにより除去する。このようにして、図12に示す上述の実施の形態の場合と同様に、下地層23、中間層24及び本体層25を含む貫通電極22、第1面第1導電層31及び第2面第1導電層41を形成することができる。 Subsequently, as shown in FIG. 17, a resist layer 37 is partially formed on the intermediate layer 24 . After that, as shown in FIG. 17, the body layer 25 is formed on the intermediate layer 24 by electroplating. After that, although not shown, the resist layer 37 is removed. Also, the portions of the underlying layer 23 and the intermediate layer 24 covered with the resist layer 37 are removed by wet etching, for example. In this manner, as in the case of the above-described embodiment shown in FIG. 1 conductive layer 41 can be formed.

その後、上述の実施の形態の場合と同様にして、第1面第1無機層32、第1面第2導電層33、第1面第1有機層34、第1面第3導電層35、第1面第2有機層36、第2面第1有機層43などを形成する。 Thereafter, in the same manner as in the above embodiment, the first surface first inorganic layer 32, the first surface second conductive layer 33, the first surface first organic layer 34, the first surface third conductive layer 35, A first surface second organic layer 36, a second surface first organic layer 43, and the like are formed.

本変形例においても、貫通孔20の側壁21に下地層23を形成した後、下地層23に中間層24を形成することにより、特定の位置において貫通電極22の厚みが不足することを抑制することができる。また、側壁21に対する貫通電極22の密着性を高めることができる。 Also in this modification, by forming the intermediate layer 24 on the underlying layer 23 after forming the underlying layer 23 on the side wall 21 of the through hole 20, it is possible to prevent the thickness of the through electrode 22 from becoming insufficient at a specific position. be able to. Also, the adhesion of the through electrode 22 to the side wall 21 can be enhanced.

(貫通電極基板の製造方法の第2変形例)
上述の実施の形態においては、貫通電極22が、側壁21と中間層24との間に位置する下地層23を有する例を示した。しかしながら、これに限られることはなく、側壁21と中間層24との間に下地層23が設けられていなくてもよい。例えば、図18に示すように、中間層24の第1層241が側壁21に接触していてもよい。この場合、パラジウムを含む触媒は、貫通孔20の側壁21と第1層241との間に位置する。
(Second Modified Example of Manufacturing Method of Through Silicon Via Substrate)
In the above-described embodiments, the through electrode 22 has the base layer 23 located between the side wall 21 and the intermediate layer 24 . However, the present invention is not limited to this, and the underlying layer 23 may not be provided between the side wall 21 and the intermediate layer 24 . For example, the first layer 241 of the intermediate layer 24 may contact the sidewalls 21, as shown in FIG. In this case, the palladium-containing catalyst is located between the sidewall 21 of the through hole 20 and the first layer 241 .

無電解めっき法を用いて側壁21上に第1層241を形成した後、図18に示すように、電解めっき法を用いて第1層241上に第2層242を形成することが好ましい。これにより、下地層23が存在しない場合であっても、側壁21が中間層24から部分的に露出してしまうことを抑制することができる。 After forming the first layer 241 on the sidewalls 21 using an electroless plating method, it is preferable to form a second layer 242 on the first layer 241 using an electrolytic plating method, as shown in FIG. Thereby, even if the underlying layer 23 does not exist, it is possible to prevent the side wall 21 from being partially exposed from the intermediate layer 24 .

続いて、図19に示すように、中間層24上に部分的にレジスト層37を形成する。その後、図19に示すように、中間層24上に電解めっき法によって本体層25を形成する。その後、図示はしないが、レジスト層37を除去する。また、下地層23及び中間層24のうちレジスト層37によって覆われていた部分を、例えばウェットエッチングにより除去する。このようにして、中間層24及び本体層25を含む貫通電極22、第1面第1導電層31及び第2面第1導電層41を形成することができる。 Subsequently, as shown in FIG. 19, a resist layer 37 is partially formed on the intermediate layer 24 . Thereafter, as shown in FIG. 19, the body layer 25 is formed on the intermediate layer 24 by electroplating. After that, although not shown, the resist layer 37 is removed. Also, the portions of the underlying layer 23 and the intermediate layer 24 covered with the resist layer 37 are removed by wet etching, for example. In this manner, the through electrode 22 including the intermediate layer 24 and the main body layer 25, the first surface first conductive layer 31 and the second surface first conductive layer 41 can be formed.

(貫通電極基板の製造方法の第3変形例)
以下、図20乃至図24を参照して、貫通電極基板の製造方法の第3変形例について説明する。
(Third Modification of Method for Manufacturing Through Silicon Via Substrate)
A third modification of the method for manufacturing a through electrode substrate will be described below with reference to FIGS. 20 to 24 .

まず、上述の第1変形例の場合と同様にして、上述の図16に示す、貫通孔20の側壁21に下地層23及び中間層24が形成された基板12を準備する。続いて、図20に示すように、貫通孔20を覆うレジスト層38を第1面13上及び第2面14上に形成する。その後、図21に示すように、第1面13上の下地層23及び中間層24のうちレジスト層38によって覆われていない部分、並びに、第2面14上の下地層23及び中間層24のうちレジスト層38によって覆われていない部分を、例えばウェットエッチングにより除去する。その後、図21に示すように、レジスト層38を除去する。 First, in the same manner as in the first modification described above, the substrate 12 having the base layer 23 and the intermediate layer 24 formed on the side wall 21 of the through hole 20 shown in FIG. 16 is prepared. Subsequently, as shown in FIG. 20, a resist layer 38 covering the through holes 20 is formed on the first surface 13 and the second surface 14 . After that, as shown in FIG. 21, portions of the underlying layer 23 and the intermediate layer 24 on the first surface 13 that are not covered with the resist layer 38 and portions of the underlying layer 23 and the intermediate layer 24 on the second surface 14 are removed. The portion not covered with the resist layer 38 is removed by wet etching, for example. After that, as shown in FIG. 21, the resist layer 38 is removed.

続いて、図22に示すように、基板12の第1面13上、第2面14上及び第1層241上にシード層27を形成する。シード層27を形成する方法としては、スパッタリング法や蒸着法などの物理成膜法や、ゾルゲル法などを採用することができる。シード層27を構成する材料や層構成としても、下地層23の場合と同様の材料や層構成を採用することができる。 Subsequently, as shown in FIG. 22, a seed layer 27 is formed on the first surface 13, the second surface 14, and the first layer 241 of the substrate 12. Next, as shown in FIG. As a method for forming the seed layer 27, a physical film forming method such as a sputtering method or a vapor deposition method, a sol-gel method, or the like can be employed. As the material and layer structure of the seed layer 27, the same material and layer structure as those of the underlying layer 23 can be employed.

続いて、図23に示すように、第1面13及び第2面14のシード層27上に部分的にレジスト層37を形成する。その後、図23に示すように、レジスト層37によって覆われていないシード層27上に、電解めっき法によって本体層25を形成する。 Subsequently, as shown in FIG. 23, a resist layer 37 is partially formed on the seed layer 27 on the first surface 13 and the second surface 14 . Thereafter, as shown in FIG. 23, the body layer 25 is formed by electroplating on the seed layer 27 not covered with the resist layer 37 .

その後、図24に示すように、レジスト層37を除去する。また、シード層27のうちレジスト層37によって覆われていた部分を、例えばウェットエッチングにより除去する。この場合、貫通電極22は、図24に示すように、貫通孔20の側壁21に少なくとも部分的に位置する下地層23と、下地層23上に位置する中間層24と、第1層241上に位置するシード層27と、シード層27上に位置する本体層25と、を有する。一方、第1面第1導電層31及び第2面第1導電層41は、シード層27と、シード層27上に位置する本体層25と、を有する。 After that, as shown in FIG. 24, the resist layer 37 is removed. Also, the portion of the seed layer 27 covered with the resist layer 37 is removed by wet etching, for example. In this case, as shown in FIG. 24, the through-electrode 22 is composed of the underlying layer 23 located at least partially on the side wall 21 of the through-hole 20, the intermediate layer 24 located on the underlying layer 23, and the first layer 241 on the first layer 241. and a body layer 25 located on the seed layer 27 . On the other hand, the first surface first conductive layer 31 and the second surface first conductive layer 41 have a seed layer 27 and a body layer 25 located on the seed layer 27 .

その後、上述の実施の形態の場合と同様にして、第1面第1無機層32、第1面第2導電層33、第1面第1有機層34、第1面第3導電層35、第1面第2有機層36、第2面第1有機層43などを形成する。 Thereafter, in the same manner as in the above embodiment, the first surface first inorganic layer 32, the first surface second conductive layer 33, the first surface first organic layer 34, the first surface third conductive layer 35, A first surface second organic layer 36, a second surface first organic layer 43, and the like are formed.

本変形例においても、貫通孔20の側壁21に下地層23を形成した後、下地層23上に中間層24を形成することにより、特定の位置において貫通電極22の厚みが不足することを抑制することができる。また、側壁21に対する貫通電極22の密着性を高めることができる。 Also in this modification, by forming the intermediate layer 24 on the underlying layer 23 after forming the underlying layer 23 on the side wall 21 of the through hole 20, it is possible to prevent the thickness of the through electrode 22 from becoming insufficient at a specific position. can do. Also, the adhesion of the through electrode 22 to the side wall 21 can be enhanced.

(貫通電極基板の貫通電極の材料の変形例)
上述の実施の形態においては、中間層24の第1層241が、主成分としての銅を含む例を示した。しかしながら、これに限られることはなく、中間層24の第1層241は、主成分としてのニッケルを含んでいてもよい。例えば、第1層241は、80質量%以上のニッケルを含んでいてもよい。ニッケルを含む第1層241の厚みは、例えば0.01μm以上且つ1.0μm以下である。
(Modified Example of Through Electrode Material of Through Electrode Substrate)
In the above-described embodiment, the example in which the first layer 241 of the intermediate layer 24 contains copper as a main component is shown. However, the material is not limited to this, and the first layer 241 of the intermediate layer 24 may contain nickel as a main component. For example, the first layer 241 may contain 80% by mass or more of nickel. The thickness of the first layer 241 containing nickel is, for example, 0.01 μm or more and 1.0 μm or less.

中間層24の第1層241は、上述の実施の形態の場合と同様に、無電解めっき法により形成される。無電解めっき液は、例えば、硫酸ニッケル6水和物及び水、並びに必要に応じて添加される添加剤を含む。添加剤としては、例えば、蟻酸、酢酸、プロピオン酸、コハク酸などのカルボン酸類を含む錯化剤を用いることができる。錯化剤を無電解めっき液に添加することにより、一般的な無電解めっき処理の後に実施される、フッ化物を用いたエッチング処理を不要にすることができる。 The first layer 241 of the intermediate layer 24 is formed by electroless plating, as in the above-described embodiments. The electroless plating solution contains, for example, nickel sulfate hexahydrate and water, and additives added as necessary. As the additive, for example, a complexing agent containing carboxylic acids such as formic acid, acetic acid, propionic acid, and succinic acid can be used. By adding a complexing agent to the electroless plating solution, it is possible to eliminate the need for etching treatment using fluoride, which is generally performed after electroless plating treatment.

無電解めっき液の組成の具体例を下記に示す。
・ニッケルイオン 6g/L
・ジ亜リン酸ナトリウム 25g/L
・酢酸 40g/L
実装基板
図25は、貫通電極基板10と、貫通電極基板10に搭載された素子50と、を備える実装基板60の一例を示す断面図である。素子50は、ロジックICやメモリICなどのLSIチップである。また、素子50は、MEMS(Micro Electro Mechanical Systems)チップであってもよい。MEMSチップとは、機械要素部品、センサ、アクチュエータ、電子回路などが1つの基板上に集積化された電子デバイスである。図23に示すように、素子50は、貫通電極基板10の第1面第3導電層35などの導電層に電気的に接続された端子51を有する。
A specific example of the composition of the electroless plating solution is shown below.
・Nickel ion 6g/L
・Sodium diphosphite 25g/L
・Acetic acid 40g/L
Mounting board
FIG. 25 is a cross-sectional view showing an example of a mounting substrate 60 including a through electrode substrate 10 and elements 50 mounted on the through electrode substrate 10. As shown in FIG. The element 50 is an LSI chip such as a logic IC or memory IC. Also, the element 50 may be a MEMS (Micro Electro Mechanical Systems) chip. A MEMS chip is an electronic device in which mechanical elements, sensors, actuators, electronic circuits, etc. are integrated on one substrate. As shown in FIG. 23, the element 50 has a terminal 51 electrically connected to a conductive layer such as the first surface third conductive layer 35 of the through electrode substrate 10 .

通電極基板が搭載される製品の例
図26は、本開示の実施形態に係る貫通電極基板10が搭載されることができる製品の例を示す図である。本開示の実施形態に係る貫通電極基板10は、様々な製品において利用され得る。例えば、ノート型パーソナルコンピュータ110、タブレット端末120、携帯電話130、スマートフォン140、デジタルビデオカメラ150、デジタルカメラ160、デジタル時計170、サーバ180等に搭載される。
Examples of Products Mounted with Conducting Electrode Substrate FIG. 26 is a diagram showing an example of a product on which the through electrode substrate 10 according to the embodiment of the present disclosure can be mounted. The through electrode substrate 10 according to the embodiment of the present disclosure can be used in various products. For example, it is installed in a notebook personal computer 110, a tablet terminal 120, a mobile phone 130, a smart phone 140, a digital video camera 150, a digital camera 160, a digital clock 170, a server 180, and the like.

10 貫通電極基板
12 基板
13 第1面
14 第2面
15 キャパシタ
16 インダクタ
17 第1配線
18 第1端子
20 貫通孔
21 側壁
22 貫通電極
23 下地層
24 中間層
241 第1層
242 第2層
25 本体層
26 有機層
27 シード層
30 第1配線構造部
31 第1面第1導電層
32 第1面第1無機層
33 第1面第2導電層
34 第1面第1有機層
35 第1面第3導電層
36 第1面第2有機層
37 レジスト層
38 レジスト層
40 第2配線構造部
41 第2面第1導電層
43 第2面第1有機層
50 素子
51 端子
60 実装基板
10 Through electrode substrate 12 Substrate 13 First surface 14 Second surface 15 Capacitor 16 Inductor 17 First wiring 18 First terminal 20 Through hole 21 Side wall 22 Through electrode 23 Base layer 24 Intermediate layer 241 First layer 242 Second layer 25 Main body Layer 26 Organic layer 27 Seed layer 30 First wiring structure portion 31 First surface first conductive layer 32 First surface first inorganic layer 33 First surface second conductive layer 34 First surface first organic layer 35 First surface second 3 conductive layer 36 first surface second organic layer 37 resist layer 38 resist layer 40 second wiring structure portion 41 second surface first conductive layer 43 second surface first organic layer 50 element 51 terminal 60 mounting board

Claims (15)

第1面及び前記第1面の反対側に位置する第2面を含むとともに貫通孔が設けられた基板と、
前記基板の前記貫通孔に位置する貫通電極と、を備え、
前記貫通電極の厚みは、前記貫通孔の幅よりも小さく、
前記貫通電極は、
前記貫通孔の側壁に位置し、銅又はニッケルを含む第1層を少なくとも含む中間層と、
前記中間層上に位置し、銅を含む本体層と、を有し、
前記貫通電極は、前記貫通孔の前記側壁と前記第1層との間に位置し、導電性を有する下地層を更に有し、
前記貫通孔は、少なくとも部分的に、前記基板の前記第1面から前記第2面に向かうにつれて幅が小さくなる形状を有し、
前記貫通電極のうち、前記基板の前記第1面に対応する部分を第1部分と称し、前記貫通孔の幅が最小となる位置に対応する部分を第2部分と称する場合、下記の関係式(1)及び(2)が成立し、
(X2/Y2)<(X1/Y1)・・・(1)
(X2/Z2)<(X1/Z1)・・・(2)
X1は、前記第1部分における前記下地層の厚みを表し、
Y1は、前記第1部分における前記中間層の厚みを表し、
Z1は、前記第1部分における前記本体層の厚みを表し、
X2は、前記第2部分における前記下地層の厚みを表し、
Y2は、前記第2部分における前記中間層の厚みを表し、
Z2は、前記第2部分における前記本体層の厚みを表す、貫通電極基板。
a substrate including a first surface and a second surface opposite to the first surface and provided with a through hole;
a through electrode positioned in the through hole of the substrate,
the thickness of the through electrode is smaller than the width of the through hole,
The through electrodes are
an intermediate layer located on the side wall of the through hole and including at least a first layer containing copper or nickel;
a body layer located on the intermediate layer and comprising copper;
the through electrode further includes a conductive base layer positioned between the side wall of the through hole and the first layer;
the through hole at least partially has a shape that decreases in width from the first surface toward the second surface of the substrate;
When a portion of the through electrode corresponding to the first surface of the substrate is referred to as a first portion, and a portion corresponding to the position where the width of the through hole is the smallest is referred to as a second portion, the following relational expression (1) and (2) are established,
(X2/Y2)<(X1/Y1) (1)
(X2/Z2)<(X1/Z1) (2)
X1 represents the thickness of the underlying layer in the first portion,
Y1 represents the thickness of the intermediate layer in the first portion,
Z1 represents the thickness of the body layer in the first portion,
X2 represents the thickness of the underlying layer in the second portion,
Y2 represents the thickness of the intermediate layer in the second portion,
Z2 represents the thickness of the main body layer in the second portion of the through electrode substrate.
前記第1層は、少なくとも部分的に、前記第1面上又は前記第2面上にまで広がっている、請求項1に記載の貫通電極基板。 2. The through electrode substrate according to claim 1, wherein said first layer extends at least partially onto said first surface or onto said second surface. 前記第1層は、80質量%以上の銅を含み、0.01μm以上且つ2.0μm以下の厚みを有する、請求項1又は2に記載の貫通電極基板。 The through electrode substrate according to claim 1 or 2 , wherein the first layer contains 80% by mass or more of copper and has a thickness of 0.01 µm or more and 2.0 µm or less. 前記第1層は、80質量%以上のニッケルを含み、0.01μm以上且つ2.0μm以下の厚みを有する、請求項1又は2に記載の貫通電極基板。 The through electrode substrate according to claim 1 or 2 , wherein the first layer contains 80% by mass or more of nickel and has a thickness of 0.01 µm or more and 2.0 µm or less. 前記中間層は、前記第1層と前記本体層との間に位置し、80質量%以上の銅を含み、0.01μm以上且つ2μm以下の厚みを有する第2層を更に備える、請求項1乃至のいずれか一項に記載の貫通電極基板。 2. The intermediate layer further comprises a second layer located between the first layer and the main layer, containing 80% by mass or more of copper, and having a thickness of 0.01 μm or more and 2 μm or less. 5. The through electrode substrate according to any one of items 1 to 4 . 前記貫通電極は、前記下地層と前記第1層との間に位置し、パラジウムを含む触媒を更に有する、請求項に記載の貫通電極基板。 2. The through electrode substrate according to claim 1 , wherein said through electrode is positioned between said base layer and said first layer, and further comprises a catalyst containing palladium. 前記貫通孔の幅は、前記基板の前記第2面に対応する部分で最小になる、請求項又はに記載の貫通電極基板。 The through electrode substrate according to claim 1 or 6 , wherein the through hole has a minimum width at a portion corresponding to the second surface of the substrate. 前記本体層の厚みは、5μm以上且つ20μm以下である、請求項1乃至のいずれか一項に記載の貫通電極基板。 The through electrode substrate according to any one of claims 1 to 7 , wherein the body layer has a thickness of 5 µm or more and 20 µm or less. 前記基板は、ガラスを含む、請求項1乃至のいずれか一項に記載の貫通電極基板。 The through electrode substrate according to any one of claims 1 to 8 , wherein the substrate contains glass. 前記貫通電極に電気的に接続された第1導電層と、前記第1導電層上に位置し、無機材料を含み、絶縁性を有する第1無機層と、前記第1無機層上に位置する第2導電層と、を有するキャパシタを更に備える、請求項1乃至のいずれか一項に記載の貫通電極基板。 a first conductive layer electrically connected to the through electrode; a first inorganic layer located on the first conductive layer, containing an inorganic material and having insulating properties; and located on the first inorganic layer. The through electrode substrate according to any one of claims 1 to 9 , further comprising a capacitor having a second conductive layer. 前記貫通電極と、前記貫通電極に電気的に接続されるとともに前記第1面側に位置する導電層と、前記貫通電極に電気的に接続されるとともに前記第2面側に位置する導電層と、を有するインダクタを更に備える、請求項1乃至10のいずれか一項に記載の貫通電極基板。 The through electrode, a conductive layer electrically connected to the through electrode and located on the first surface side, and a conductive layer electrically connected to the through electrode and located on the second surface side. 11. The through electrode substrate according to any one of claims 1 to 10 , further comprising an inductor having . 請求項1乃至11のいずれか一項に記載の貫通電極基板と、
前記貫通電極基板に搭載された素子と、を備える、実装基板。
The through electrode substrate according to any one of claims 1 to 11 ;
and an element mounted on the through electrode substrate.
請求項1に記載の貫通電極基板の製造方法であって、
前記基板を準備する工程と、
前記基板の前記貫通孔に前記貫通電極を形成する貫通電極形成工程と、を備え、
前記貫通電極形成工程は、
無電解めっき法によって前記第1層を形成する工程と、
前記第1層を含む前記中間層上に電解めっき法によって前記本体層を形成する工程と、を有する、貫通電極基板の製造方法。
A method for manufacturing a through electrode substrate according to claim 1 ,
providing the substrate;
a through electrode forming step of forming the through electrode in the through hole of the substrate;
The through electrode forming step includes:
forming the first layer by an electroless plating method;
and forming the body layer on the intermediate layer including the first layer by electroplating.
前記第1層上に電解めっき法によって銅を含む第2層を形成する工程を更に備える、請求項13に記載の貫通電極基板の製造方法。 14. The method for manufacturing a through electrode substrate according to claim 13 , further comprising the step of forming a second layer containing copper on said first layer by electroplating. 前記基板は、ガラスを含む、請求項13又は14に記載の貫通電極基板の製造方法。 The method for manufacturing a through electrode substrate according to claim 13 or 14 , wherein the substrate contains glass.
JP2021171053A 2017-06-16 2021-10-19 Through electrode substrate, mounting substrate provided with through electrode substrate, and method for manufacturing through electrode substrate Active JP7236059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021171053A JP7236059B2 (en) 2017-06-16 2021-10-19 Through electrode substrate, mounting substrate provided with through electrode substrate, and method for manufacturing through electrode substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017119029A JP6965589B2 (en) 2017-06-16 2017-06-16 Manufacturing method of mounting substrate and through electrode substrate including through electrode substrate and through electrode substrate
JP2021171053A JP7236059B2 (en) 2017-06-16 2021-10-19 Through electrode substrate, mounting substrate provided with through electrode substrate, and method for manufacturing through electrode substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017119029A Division JP6965589B2 (en) 2017-06-16 2017-06-16 Manufacturing method of mounting substrate and through electrode substrate including through electrode substrate and through electrode substrate

Publications (2)

Publication Number Publication Date
JP2022009249A JP2022009249A (en) 2022-01-14
JP7236059B2 true JP7236059B2 (en) 2023-03-09

Family

ID=87888288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021171053A Active JP7236059B2 (en) 2017-06-16 2021-10-19 Through electrode substrate, mounting substrate provided with through electrode substrate, and method for manufacturing through electrode substrate

Country Status (1)

Country Link
JP (1) JP7236059B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150940A1 (en) 2012-04-05 2013-10-10 旭硝子株式会社 Glass substrate with through electrode and method for producing glass substrate with through electrode
JP2015082598A (en) 2013-10-23 2015-04-27 富士電機株式会社 Semiconductor substrate and semiconductor substrate manufacturing method
JP2015095590A (en) 2013-11-13 2015-05-18 大日本印刷株式会社 Method of manufacturing through electrode substrate, through electrode substrate, and semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150940A1 (en) 2012-04-05 2013-10-10 旭硝子株式会社 Glass substrate with through electrode and method for producing glass substrate with through electrode
JP2015082598A (en) 2013-10-23 2015-04-27 富士電機株式会社 Semiconductor substrate and semiconductor substrate manufacturing method
JP2015095590A (en) 2013-11-13 2015-05-18 大日本印刷株式会社 Method of manufacturing through electrode substrate, through electrode substrate, and semiconductor device

Also Published As

Publication number Publication date
JP2022009249A (en) 2022-01-14

Similar Documents

Publication Publication Date Title
JP7447982B2 (en) Through-electrode substrate, mounting board including through-electrode substrate, and method for manufacturing the through-electrode substrate
JP2010171377A (en) Through-hole electrode substrate and method of manufacturing the same
US20110283535A1 (en) Wiring board and method of manufacturing the same
JP7279769B2 (en) Perforated substrate and mounting substrate
JP2018195766A (en) Wiring board and mounting board
JP4819150B2 (en) Method for forming electrode pattern on ceramic substrate
JP2024073602A (en) Mounting board and manufacturing method thereof
JP2018160607A (en) Through-electrode substrate, mounting board with through-electrode substrate, and method for manufacturing through-electrode substrate
JP2023120327A (en) Capacitor built-in component, mounting board including capacitor built-in component, and manufacturing method of capacitor built-in component
JP6852415B2 (en) Manufacturing method of mounting substrate and through electrode substrate including through electrode substrate and through electrode substrate
JP7236059B2 (en) Through electrode substrate, mounting substrate provided with through electrode substrate, and method for manufacturing through electrode substrate
JP2011082531A (en) Through-hole electrode substrate, and method of manufacturing the same
JP2023040125A (en) Electronic component mounting substrate and manufacturing method thereof
JP6965589B2 (en) Manufacturing method of mounting substrate and through electrode substrate including through electrode substrate and through electrode substrate
JP7405183B2 (en) Wiring board, mounting board including wiring board, and method for manufacturing wiring board
JP2018110157A (en) Through electrode substrate, mounting substrate including through electrode substrate, and manufacturing method of through electrode substrate
JP2018170440A (en) Through electrode substrate, mounting substrate including the same, and manufacturing method of through electrode substrate
JP2018148086A (en) Manufacturing method for through electrode substrate and through electrode substrate
JP7182084B2 (en) Penetration electrode substrate and manufacturing method thereof
JP2021145125A (en) Electronic component and manufacturing method of the same
WO2023085366A1 (en) Through-via substrate, mounting substrate, and method for manufacturing through-via substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230209

R150 Certificate of patent or registration of utility model

Ref document number: 7236059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150