JP7226446B2 - sintered body - Google Patents
sintered body Download PDFInfo
- Publication number
- JP7226446B2 JP7226446B2 JP2020530935A JP2020530935A JP7226446B2 JP 7226446 B2 JP7226446 B2 JP 7226446B2 JP 2020530935 A JP2020530935 A JP 2020530935A JP 2020530935 A JP2020530935 A JP 2020530935A JP 7226446 B2 JP7226446 B2 JP 7226446B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- sintered body
- group
- elements
- nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000843 powder Substances 0.000 claims description 181
- 229910052751 metal Inorganic materials 0.000 claims description 127
- 239000000463 material Substances 0.000 claims description 56
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 50
- 239000011230 binding agent Substances 0.000 claims description 47
- 239000002184 metal Substances 0.000 claims description 46
- 150000001875 compounds Chemical class 0.000 claims description 42
- 229910052757 nitrogen Inorganic materials 0.000 claims description 26
- 239000013078 crystal Substances 0.000 claims description 19
- 230000000737 periodic effect Effects 0.000 claims description 18
- 229910021476 group 6 element Inorganic materials 0.000 claims description 16
- 229910052582 BN Inorganic materials 0.000 claims description 15
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 229910021480 group 4 element Inorganic materials 0.000 claims description 15
- 229910021478 group 5 element Inorganic materials 0.000 claims description 15
- 150000004767 nitrides Chemical class 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 229910052715 tantalum Inorganic materials 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims 1
- 239000002245 particle Substances 0.000 description 117
- 238000005520 cutting process Methods 0.000 description 40
- 238000004519 manufacturing process Methods 0.000 description 24
- 238000000034 method Methods 0.000 description 16
- 239000002775 capsule Substances 0.000 description 15
- 239000011651 chromium Substances 0.000 description 14
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 11
- 125000004429 atom Chemical group 0.000 description 11
- -1 hafnium nitride Chemical class 0.000 description 11
- 239000010936 titanium Substances 0.000 description 11
- 229910052735 hafnium Inorganic materials 0.000 description 9
- 238000005245 sintering Methods 0.000 description 9
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 description 9
- 238000013329 compounding Methods 0.000 description 8
- 230000006835 compression Effects 0.000 description 8
- 238000007906 compression Methods 0.000 description 8
- 239000010955 niobium Substances 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 229910052804 chromium Inorganic materials 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 description 6
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 6
- 229910052758 niobium Inorganic materials 0.000 description 6
- 239000012299 nitrogen atmosphere Substances 0.000 description 6
- 229910003468 tantalcarbide Inorganic materials 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- 229910026551 ZrC Inorganic materials 0.000 description 5
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 description 5
- CFJRGWXELQQLSA-UHFFFAOYSA-N azanylidyneniobium Chemical compound [Nb]#N CFJRGWXELQQLSA-UHFFFAOYSA-N 0.000 description 5
- SKKMWRVAJNPLFY-UHFFFAOYSA-N azanylidynevanadium Chemical compound [V]#N SKKMWRVAJNPLFY-UHFFFAOYSA-N 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 5
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 5
- 229910052726 zirconium Inorganic materials 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 238000004868 gas analysis Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 238000004993 emission spectroscopy Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- DOTMOQHOJINYBL-UHFFFAOYSA-N molecular nitrogen;molecular oxygen Chemical compound N#N.O=O DOTMOQHOJINYBL-UHFFFAOYSA-N 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- GPBUGPUPKAGMDK-UHFFFAOYSA-N azanylidynemolybdenum Chemical compound [Mo]#N GPBUGPUPKAGMDK-UHFFFAOYSA-N 0.000 description 2
- IVHJCRXBQPGLOV-UHFFFAOYSA-N azanylidynetungsten Chemical compound [W]#N IVHJCRXBQPGLOV-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- VNTLIPZTSJSULJ-UHFFFAOYSA-N chromium molybdenum Chemical compound [Cr].[Mo] VNTLIPZTSJSULJ-UHFFFAOYSA-N 0.000 description 2
- 239000003721 gunpowder Substances 0.000 description 2
- WHJFNYXPKGDKBB-UHFFFAOYSA-N hafnium;methane Chemical compound C.[Hf] WHJFNYXPKGDKBB-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 235000002639 sodium chloride Nutrition 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910003470 tongbaite Inorganic materials 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 101100008044 Caenorhabditis elegans cut-1 gene Proteins 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- HAWOWGSQUYVHKC-UHFFFAOYSA-N [Hf].[Mo] Chemical compound [Hf].[Mo] HAWOWGSQUYVHKC-UHFFFAOYSA-N 0.000 description 1
- AUTWRGZQAIMMQA-UHFFFAOYSA-N [Hf].[Nb] Chemical compound [Hf].[Nb] AUTWRGZQAIMMQA-UHFFFAOYSA-N 0.000 description 1
- OLBVUFHMDRJKTK-UHFFFAOYSA-N [N].[O] Chemical compound [N].[O] OLBVUFHMDRJKTK-UHFFFAOYSA-N 0.000 description 1
- WFISYBKOIKMYLZ-UHFFFAOYSA-N [V].[Cr] Chemical compound [V].[Cr] WFISYBKOIKMYLZ-UHFFFAOYSA-N 0.000 description 1
- GNBSAMIOGXVJIJ-UHFFFAOYSA-N [V].[Ta] Chemical compound [V].[Ta] GNBSAMIOGXVJIJ-UHFFFAOYSA-N 0.000 description 1
- DIVGJYVPMOCBKD-UHFFFAOYSA-N [V].[Zr] Chemical compound [V].[Zr] DIVGJYVPMOCBKD-UHFFFAOYSA-N 0.000 description 1
- SWCGXFPZSCXOFO-UHFFFAOYSA-N [Zr].[Mo] Chemical compound [Zr].[Mo] SWCGXFPZSCXOFO-UHFFFAOYSA-N 0.000 description 1
- QBXVTOWCLDDBIC-UHFFFAOYSA-N [Zr].[Ta] Chemical compound [Zr].[Ta] QBXVTOWCLDDBIC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- RYXHOMYVWAEKHL-UHFFFAOYSA-N astatine atom Chemical compound [At] RYXHOMYVWAEKHL-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 1
- SEGDSKBQYPCVFK-UHFFFAOYSA-N chromium hafnium Chemical compound [Cr][Hf] SEGDSKBQYPCVFK-UHFFFAOYSA-N 0.000 description 1
- QVZNQFNKKMMPFH-UHFFFAOYSA-N chromium niobium Chemical compound [Cr].[Nb] QVZNQFNKKMMPFH-UHFFFAOYSA-N 0.000 description 1
- HBCZDZWFGVSUDJ-UHFFFAOYSA-N chromium tantalum Chemical compound [Cr].[Ta] HBCZDZWFGVSUDJ-UHFFFAOYSA-N 0.000 description 1
- UMUXBDSQTCDPJZ-UHFFFAOYSA-N chromium titanium Chemical compound [Ti].[Cr] UMUXBDSQTCDPJZ-UHFFFAOYSA-N 0.000 description 1
- JUVGUSVNTPYZJL-UHFFFAOYSA-N chromium zirconium Chemical compound [Cr].[Zr] JUVGUSVNTPYZJL-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- QKQUUVZIDLJZIJ-UHFFFAOYSA-N hafnium tantalum Chemical compound [Hf].[Ta] QKQUUVZIDLJZIJ-UHFFFAOYSA-N 0.000 description 1
- UHOTUEJTVWSSKI-UHFFFAOYSA-N hafnium vanadium Chemical compound [V].[V].[Hf] UHOTUEJTVWSSKI-UHFFFAOYSA-N 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- CNEOGBIICRAWOH-UHFFFAOYSA-N methane;molybdenum Chemical compound C.[Mo] CNEOGBIICRAWOH-UHFFFAOYSA-N 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- DTSBBUTWIOVIBV-UHFFFAOYSA-N molybdenum niobium Chemical compound [Nb].[Mo] DTSBBUTWIOVIBV-UHFFFAOYSA-N 0.000 description 1
- JZLMRQMUNCKZTP-UHFFFAOYSA-N molybdenum tantalum Chemical compound [Mo].[Ta] JZLMRQMUNCKZTP-UHFFFAOYSA-N 0.000 description 1
- ZPZCREMGFMRIRR-UHFFFAOYSA-N molybdenum titanium Chemical compound [Ti].[Mo] ZPZCREMGFMRIRR-UHFFFAOYSA-N 0.000 description 1
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 1
- WUJISAYEUPRJOG-UHFFFAOYSA-N molybdenum vanadium Chemical compound [V].[Mo] WUJISAYEUPRJOG-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- RHDUVDHGVHBHCL-UHFFFAOYSA-N niobium tantalum Chemical compound [Nb].[Ta] RHDUVDHGVHBHCL-UHFFFAOYSA-N 0.000 description 1
- RJSRQTFBFAJJIL-UHFFFAOYSA-N niobium titanium Chemical compound [Ti].[Nb] RJSRQTFBFAJJIL-UHFFFAOYSA-N 0.000 description 1
- ABLLXXOPOBEPIU-UHFFFAOYSA-N niobium vanadium Chemical compound [V].[Nb] ABLLXXOPOBEPIU-UHFFFAOYSA-N 0.000 description 1
- GFUGMBIZUXZOAF-UHFFFAOYSA-N niobium zirconium Chemical compound [Zr].[Nb] GFUGMBIZUXZOAF-UHFFFAOYSA-N 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 229910052704 radon Inorganic materials 0.000 description 1
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- VSSLEOGOUUKTNN-UHFFFAOYSA-N tantalum titanium Chemical compound [Ti].[Ta] VSSLEOGOUUKTNN-UHFFFAOYSA-N 0.000 description 1
- XGZGDYQRJKMWNM-UHFFFAOYSA-N tantalum tungsten Chemical compound [Ta][W][Ta] XGZGDYQRJKMWNM-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- GFNGCDBZVSLSFT-UHFFFAOYSA-N titanium vanadium Chemical compound [Ti].[V] GFNGCDBZVSLSFT-UHFFFAOYSA-N 0.000 description 1
- PMTRSEDNJGMXLN-UHFFFAOYSA-N titanium zirconium Chemical compound [Ti].[Zr] PMTRSEDNJGMXLN-UHFFFAOYSA-N 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
- B23B27/18—Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
- C04B35/111—Fine ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/5607—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/5607—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
- C04B35/5611—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
- C04B35/5615—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium silicon carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/58007—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
- C04B35/58014—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/58007—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
- C04B35/58028—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/583—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
- C04B35/5831—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1409—Abrasive particles per se
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/386—Boron nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3865—Aluminium nitrides
- C04B2235/3869—Aluminium oxynitrides, e.g. AlON, sialon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3873—Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3886—Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3895—Non-oxides with a defined oxygen content, e.g. SiOC, TiON
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/762—Cubic symmetry, e.g. beta-SiC
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/16—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Powder Metallurgy (AREA)
- Ceramic Products (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Description
本開示は、焼結体、粉末及び粉末の製造方法に関する。本出願は、2018年7月17日に出願した日本特許出願である特願2018-134072号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present disclosure relates to sintered bodies, powders, and methods of making powders. This application claims priority based on Japanese Patent Application No. 2018-134072 filed on July 17, 2018. All the contents described in the Japanese patent application are incorporated herein by reference.
切削工具の重要な要求特性の一つとして、耐摩耗性が挙げられる。したがって、優れた耐摩耗性を有する切削工具用の材料の開発が行われている。 One of the important properties required for cutting tools is wear resistance. Therefore, efforts are being made to develop materials for cutting tools that have superior wear resistance.
特開2016-037648号公報(特許文献1)には、焼結体の材料として用いた場合に、優れた耐摩耗性を有する焼結体を得ることのできる硬質材料として、アルミニウムと、窒素と、チタン、クロムおよび珪素からなる群より選択される少なくとも1種とを含み、立方晶岩塩型構造を有する硬質材料が開示されている。 Japanese Patent Application Laid-Open No. 2016-037648 (Patent Document 1) describes aluminum and nitrogen as hard materials capable of obtaining a sintered body having excellent wear resistance when used as a material for the sintered body. , at least one selected from the group consisting of titanium, chromium and silicon, and having a cubic rocksalt structure.
本開示の一態様に係る焼結体は、
周期律表の第4族元素、第5族元素及び第6族元素からなる群より選択される少なくとも1種の第1金属元素の窒化物及び酸窒化物のいずれか一方又は両方を含む粉末由来材料を備え、
前記粉末由来材料において、金属元素の原子比率x1と非金属元素の原子比率y1との比y1/x1の値が1より大きく、
前記粉末由来材料は、立方晶構造を有する、焼結体である。A sintered body according to an aspect of the present disclosure is
Derived from a powder containing either or both of a nitride and an oxynitride of at least one first metal element selected from the group consisting of Group 4 elements, Group 5 elements and Group 6 elements of the periodic table equipped with materials,
In the powder-derived material, the value of the ratio y1/x1 between the atomic ratio x1 of the metallic element and the atomic ratio y1 of the nonmetallic element is greater than 1,
The powder-derived material is a sintered body having a cubic crystal structure.
本開示の一態様に係る粉末は、
周期律表の第4族元素、第5族元素及び第6族元素からなる群より選択される少なくとも1種の第1金属元素の窒化物及び酸窒化物のいずれか一方又は両方を含み、
金属元素の原子比率x1と非金属元素の原子比率y1との比y1/x1の値が1より大きく、
立方晶構造を有する材料からなる粉末である。The powder according to one aspect of the present disclosure is
containing either or both nitrides and oxynitrides of at least one first metal element selected from the group consisting of Group 4 elements, Group 5 elements and Group 6 elements of the periodic table;
The value of the ratio y1/x1 between the atomic ratio x1 of the metallic element and the atomic ratio y1 of the nonmetallic element is greater than 1,
It is a powder made of a material with a cubic crystal structure.
本開示の一態様に係る粉末の製造方法は、
上記に記載の粉末の製造方法であって、
周期律表の第4族元素、第5族元素及び第6族元素からなる群より選択される少なくとも1種の第1金属元素の粒子を含む第1粒子群を準備する工程と、
前記第1粒子群を窒素雰囲気下で衝撃圧縮法で処理して前記粉末を作製する工程とを備える、粉末の製造方法である。A method for producing a powder according to one aspect of the present disclosure includes:
A method for producing the powder described above,
Preparing a first particle group containing particles of at least one first metal element selected from the group consisting of Group 4 elements, Group 5 elements and Group 6 elements of the periodic table;
and processing the first particle group by an impact compression method in a nitrogen atmosphere to produce the powder.
[本開示が解決しようとする課題]
特許文献1の硬質材料を用いて作製された焼結体は、耐摩耗性が良好であるものの、更なる耐摩耗性の向上が求められている。[Problems to be Solved by the Present Disclosure]
Although the sintered body produced using the hard material of Patent Document 1 has good wear resistance, further improvement in wear resistance is required.
そこで、本目的は、優れた耐摩耗性を有する焼結体、焼結体の材料として用いた場合に、優れた耐摩耗性を有する焼結体を得ることのできる粉末、及び、該粉末の製造方法を提供することを目的とする。
[本開示の効果]
上記態様によれば、優れた耐摩耗性を有する焼結体、焼結体の材料として用いた場合に、優れた耐摩耗性を有する焼結体を得ることのできる該粉末、及び、粉末の製造方法を提供することが可能となる。Therefore, the object of the present invention is to provide a sintered body having excellent wear resistance, a powder capable of obtaining a sintered body having excellent wear resistance when used as a material for the sintered body, and a powder containing the powder. The object is to provide a manufacturing method.
[Effect of the present disclosure]
According to the above aspect, the sintered body having excellent wear resistance, the powder capable of obtaining the sintered body having excellent wear resistance when used as a material for the sintered body, and the powder It becomes possible to provide a manufacturing method.
[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。[Description of Embodiments of the Present Disclosure]
First, the embodiments of the present disclosure are listed and described.
(1)本開示の一態様に係る焼結体は、周期律表の第4族元素、第5族元素及び第6族元素からなる群より選択される少なくとも1種の第1金属元素の窒化物及び酸窒化物のいずれか一方又は両方を含む粉末由来材料を備え、
前記粉末由来材料において、金属元素の原子比率x1と非金属元素の原子比率y1との比y1/x1の値が1より大きく、
前記粉末由来材料は、立方晶構造を有する、焼結体である。(1) A sintered body according to an aspect of the present disclosure includes nitriding of at least one first metal element selected from the group consisting of Group 4 elements, Group 5 elements, and Group 6 elements of the periodic table. A powder-derived material containing either or both of a substance and an oxynitride,
In the powder-derived material, the value of the ratio y1/x1 between the atomic ratio x1 of the metallic element and the atomic ratio y1 of the nonmetallic element is greater than 1,
The powder-derived material is a sintered body having a cubic crystal structure.
本開示の一態様に係る焼結体は、優れた耐摩耗性を有することができる。
(2)前記y1/x1の値が1.1以上1.3以下であることが好ましい。これによると、焼結体の耐摩耗性がさらに向上する。A sintered body according to an aspect of the present disclosure can have excellent wear resistance.
(2) The value of y1/x1 is preferably 1.1 or more and 1.3 or less. According to this, the wear resistance of the sintered body is further improved.
(3)前記焼結体は、さらにAl及びSiのいずれか一方又は両方を含むことが好ましい。これによると、焼結体の耐摩耗性がさらに向上する。 (3) Preferably, the sintered body further contains one or both of Al and Si. According to this, the wear resistance of the sintered body is further improved.
(4)前記焼結体は、さらに少なくとも1種の結合材化合物を、合計で0.5体積%以上50体積%以下含み、
前記結合材化合物は、周期律表の第4族元素、第5族元素及び第6族元素からなる群より選択される少なくとも1種の第2金属元素と、炭素、窒素及び酸素の少なくともいずれかとからなり、
前記結合材化合物において、金属元素の原子比率x2と非金属元素の原子比率y2との比x2/y2の値が1以上であることが好ましい。(4) The sintered body further contains at least one binder compound in a total of 0.5% by volume or more and 50% by volume or less,
The binder compound contains at least one second metal element selected from the group consisting of Group 4 elements, Group 5 elements and Group 6 elements of the periodic table, and at least one of carbon, nitrogen and oxygen. consists of
In the binder compound, it is preferable that the value of the ratio x2/y2 of the atomic ratio x2 of the metallic element and the atomic ratio y2 of the nonmetallic element is 1 or more.
結合材化合物は焼結体中で結合相の役割を果たす。したがって、結合材化合物を含む焼結体は強度が向上するため、焼結体はさらに優れた耐摩耗性を有することができる。 The binder compound acts as a binder phase in the sintered body. Therefore, since the strength of the sintered body containing the binder compound is improved, the sintered body can have even better wear resistance.
(5)前記比x2/y2の値が1.04以上1.06以下であることが好ましい。これによると、焼結体はさらに優れた耐摩耗性を有することができる。 (5) The value of the ratio x2/y2 is preferably 1.04 or more and 1.06 or less. According to this, the sintered body can have even better wear resistance.
(6)前記焼結体は、さらに立方晶窒化硼素を10体積%以上97体積%以下含むことが好ましい。立方晶窒化硼素は極めて高い硬度を有するため、焼結体が立方晶窒化硼素を含むと、焼結体の硬度が高くなり、焼結体の耐摩耗性が向上する。 (6) The sintered body preferably further contains cubic boron nitride in an amount of 10% by volume or more and 97% by volume or less. Since cubic boron nitride has extremely high hardness, when the sintered body contains cubic boron nitride, the hardness of the sintered body increases and the abrasion resistance of the sintered body improves.
(7)本開示の一態様に係る粉末は、周期律表の第4族元素、第5族元素及び第6族元素からなる群より選択される少なくとも1種の第1金属元素の窒化物及び酸窒化物のいずれか一方又は両方を含み、
金属元素の原子比率x1と非金属元素の原子比率y1との比y1/x1の値が1より大きく、立方晶構造を有する材料からなる粉末である。(7) The powder according to one aspect of the present disclosure is a nitride of at least one first metal element selected from the group consisting of Group 4 elements, Group 5 elements, and Group 6 elements of the periodic table, and containing either or both of the oxynitrides,
The powder is made of a material having a cubic crystal structure in which the ratio y1/x1 of the atomic ratio x1 of the metallic element to the atomic ratio y1 of the nonmetallic element is greater than 1.
本開示の一態様に係る粉末は、焼結体の材料として用いた場合に、優れた耐摩耗性を有する焼結体を得ることができる。 When the powder according to one aspect of the present disclosure is used as a material for a sintered body, a sintered body having excellent wear resistance can be obtained.
(8)前記y1/x1の値が1.1以上1.3以下であることが好ましい。このような粉末は、焼結体の材料として用いた場合に、優れた耐摩耗性を有する焼結体を得ることができる。 (8) The value of y1/x1 is preferably 1.1 or more and 1.3 or less. When such a powder is used as a material for a sintered body, a sintered body having excellent wear resistance can be obtained.
(9)本開示の一態様に係る粉末の製造方法は、上記(7)又は(8)に記載の粉末の製造方法であって、
周期律表の第4族元素、第5族元素及び第6族元素からなる群より選択される少なくとも1種の第1金属元素の粒子を含む第1粒子群を準備する工程と、
前記第1粒子群を窒素雰囲気下で衝撃圧縮法で処理して前記粉末を作製する工程とを備える、粉末の製造方法である。(9) A method for producing a powder according to an aspect of the present disclosure is the method for producing a powder according to (7) or (8) above,
Preparing a first particle group containing particles of at least one first metal element selected from the group consisting of Group 4 elements, Group 5 elements and Group 6 elements of the periodic table;
and processing the first particle group by an impact compression method in a nitrogen atmosphere to produce the powder.
本開示の一態様に係る粉末の製造方法によれば、立方晶構造を有する粉末を得ることができる。 According to the powder manufacturing method according to one aspect of the present disclosure, powder having a cubic crystal structure can be obtained.
[本開示の実施形態の詳細]
本開示の一実施形態に係る焼結体、粉末及び該粉末の製造方法の具体例を、以下に説明する。本明細書において化合物を化学式で表わす場合、原子比を特に限定しない場合は従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるものではない。たとえば単に「TiN」と記す場合も「Ti」と「N」の原子比は50:50の場合のみに限られず、従来公知のあらゆる原子比が含まれるものとする。[Details of the embodiment of the present disclosure]
Specific examples of the sintered body, the powder, and the method for producing the powder according to an embodiment of the present disclosure are described below. In the present specification, when a compound is represented by a chemical formula, if the atomic ratio is not particularly limited, it includes any conventionally known atomic ratio, and is not necessarily limited only to the stoichiometric range. For example, even if it is simply described as "TiN", the atomic ratio of "Ti" and "N" is not limited to 50:50, but includes all conventionally known atomic ratios.
<実施の形態1:粉末>
本開示の一実施の形態に係る粉末は、周期律表の第4族元素、第5族元素及び第6族元素からなる群より選択される少なくとも1種の第1金属元素の窒化物及び酸窒化物のいずれか一方又は両方を含み、金属元素の原子比率x1と非金属元素の原子比率y1との比y1/x1の値が1より大きく、立方晶構造を有する材料からなる。<Embodiment 1: Powder>
The powder according to one embodiment of the present disclosure is a nitride and acid of at least one first metal element selected from the group consisting of Group 4 elements, Group 5 elements and Group 6 elements of the periodic table. It is made of a material containing either one or both of nitrides, having a ratio y1/x1 of the atomic ratio x1 of the metallic element to the atomic ratio y1 of the nonmetallic element greater than 1, and having a cubic crystal structure.
本実施形態において、第1金属元素に含まれる周期律表の第4族元素は、例えば、チタン(Ti)、ジルコニウム(Zr)およびハフニウム(Hf)を含み、第5族元素は、例えば、バナジウム(V)、ニオブ(Nb)およびタンタル(Ta)を含み、第6族元素は、例えば、クロム(Cr)、モリブデン(Mo)およびタングステン(W)を含む。 In the present embodiment, Group 4 elements of the periodic table included in the first metal element include, for example, titanium (Ti), zirconium (Zr), and hafnium (Hf), and Group 5 elements include, for example, vanadium. (V), niobium (Nb) and tantalum (Ta), and Group 6 elements include, for example, chromium (Cr), molybdenum (Mo) and tungsten (W).
第1金属元素の窒化物としては、例えば、窒化チタン(TiN)、窒化ジルコニウム(ZrN)、窒化ハフニウム(HfN)、窒化バナジウム(VN)、窒化ニオブ(NbN)、窒化タンタル(TaN)、窒化クロム(Cr2N)、窒化モリブデン(MoN)、窒化タングステン(WN)を挙げることができる。Examples of nitrides of the first metal element include titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN), vanadium nitride (VN), niobium nitride (NbN), tantalum nitride (TaN), and chromium nitride. (Cr 2 N), molybdenum nitride (MoN), tungsten nitride (WN).
第1金属元素の酸窒化物としては、例えば、酸窒化チタン(TiON)、酸窒化ジルコニウム(ZrON)、酸窒化ハフニウム(HfON)、酸窒化バナジウム(VON)、酸窒化ニオブ(NbON)、酸窒化タンタル(TaON)、酸窒化クロム(CrON)、酸窒化モリブデン(MoON)、酸窒化タングステン(WON)を挙げることができる。 Examples of the oxynitride of the first metal element include titanium oxynitride (TiON), zirconium oxynitride (ZrON), hafnium oxynitride (HfON), vanadium oxynitride (VON), niobium oxynitride (NbON), and oxynitride. Tantalum (TaON), chromium oxynitride (CrON), molybdenum oxynitride (MoON), and tungsten oxynitride (WON) can be mentioned.
粉末は、上記の第1金属元素の窒化物及び酸窒化物のうち、1種類から構成されていてもよいし、2種類以上が組み合わされて構成されていてもよい。粉末中の上記の第1金属元素の窒化物及び酸窒化物の合計の含有量は、粉末の全質量に対して90質量%以上が好ましく、95質量%以上がより好ましく、100質量%であることがもっとも好ましい。 The powder may be composed of one of the nitride and oxynitride of the first metal element, or may be composed of a combination of two or more. The total content of the nitride and oxynitride of the first metal element in the powder is preferably 90% by mass or more, more preferably 95% by mass or more, and 100% by mass with respect to the total mass of the powder. is most preferred.
粉末は、Al及びSiのいずれか一方又は両方を含むことができる。Al及びSiは粉末中に固溶していることが好ましい。粉末中のAlの含有量は1原子%以上25原子%以下が好ましく、3原子%以上15原子%以下がより好ましい。粉末中のSiの含有量は1原子%以上25原子%以下が好ましく、3原子%以上15原子%以下がより好ましい。 The powder can contain either one or both of Al and Si. Al and Si are preferably dissolved in the powder. The content of Al in the powder is preferably 1 atomic % or more and 25 atomic % or less, more preferably 3 atomic % or more and 15 atomic % or less. The content of Si in the powder is preferably 1 atomic % or more and 25 atomic % or less, more preferably 3 atomic % or more and 15 atomic % or less.
粉末は、不可避不純物を含んでいてもよい。不可避不純物の含有割合は、粉末の全質量に対して0質量%以上10質量%未満であることが好ましく、0質量%以上5質量%未満であることがより好ましい。 The powder may contain unavoidable impurities. The content of inevitable impurities is preferably 0% by mass or more and less than 10% by mass, more preferably 0% by mass or more and less than 5% by mass, relative to the total mass of the powder.
粉末中の金属元素の含有量は、粉末をICP分析することにより測定することができる。粉末中の非金属元素(窒素及び酸素)の含有量は、粉末をガス分析することにより測定することができる。粉末が焼結体中に粉末由来材料として存在する場合は、焼結体を粉砕機(例えば、振動ディスクミル、レッチェ製の「RS200」)にて粉末化し、その粉末についてICP分析及びガス分析を行う。 The content of metal elements in the powder can be measured by ICP analysis of the powder. The content of nonmetallic elements (nitrogen and oxygen) in the powder can be measured by gas analysis of the powder. When the powder is present as a powder-derived material in the sintered body, the sintered body is pulverized with a pulverizer (eg, vibrating disc mill, "RS200" manufactured by Retsch), and the powder is subjected to ICP analysis and gas analysis. conduct.
ICP発光分光分析装置としては、例えば、島津製作所製「ICPS-8100」が挙げられる。ガス分析装置としては、例えば、堀場製作所製「EMG950」が挙げられる。 As an ICP emission spectrometer, for example, "ICPS-8100" manufactured by Shimadzu Corporation can be mentioned. As a gas analyzer, for example, "EMG950" manufactured by Horiba, Ltd. can be cited.
粉末において、金属元素の原子比率x1と非金属元素の原子比率y1との比y1/x1の値が1より大きい。ここで金属元素の原子比率x1とは、粉末を構成する全原子数に対する金属元素の合計原子数の割合を意味し、単位は原子%で表すことができる。又、非金属元素の原子比率y1とは、粉末を構成する全原子数に対する非金属元素の合計原子数の割合を意味し、単位は原子%で表すことができる。よって、本実施形態の粉末においては、非金属元素の原子数が、金属元素の原子数より多い。なお、本明細書中、「非金属元素」とは、水素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン、フッ素、塩素、臭素、ヨウ素、アスタチン、酸素、硫黄、セレン、テルル、窒素、リン、ヒ素、アンチモンおよび炭素のことをいう。また、「金属元素」とは、前述の「非金属元素」以外の元素のことをいう。 In the powder, the value of the ratio y1/x1 between the atomic ratio x1 of the metallic element and the atomic ratio y1 of the nonmetallic element is greater than one. Here, the atomic ratio x1 of the metal elements means the ratio of the total number of atoms of the metal elements to the total number of atoms composing the powder, and the unit can be expressed in atomic %. Further, the atomic ratio y1 of the non-metallic elements means the ratio of the total number of atoms of the non-metallic elements to the total number of atoms constituting the powder, and the unit can be expressed in atomic %. Therefore, in the powder of the present embodiment, the number of atoms of the nonmetallic element is larger than the number of atoms of the metal element. In this specification, the term "nonmetallic element" refers to hydrogen, helium, neon, argon, krypton, xenon, radon, fluorine, chlorine, bromine, iodine, astatine, oxygen, sulfur, selenium, tellurium, nitrogen, phosphorus. , arsenic, antimony and carbon. In addition, the term “metallic element” refers to elements other than the aforementioned “nonmetallic element”.
粉末において、非金属元素の原子比率y1が、金属元素の原子比率x1より大きいと、粉末の硬度が高くなり、該粉末を焼結体の材料として用いると、優れた耐摩耗性を有する焼結体を得ることができる。この理由は明らかではないが、粉末において、非金属元素の原子比率y1が、金属元素の原子比率x1より大きいと、粉末中に、2つの窒素原子間の共有結合、窒素原子と酸素原子と間の共有結合、及び、2つの酸素原子間の共有結合という、非金属原子間の共有結合が増加する。このため、粉末の硬度が高くなると推察される。 In the powder, when the atomic ratio y1 of the non-metallic element is greater than the atomic ratio x1 of the metallic element, the hardness of the powder increases, and when the powder is used as a material for the sintered body, sintering with excellent wear resistance is achieved. you can get a body Although the reason for this is not clear, if the atomic ratio y1 of the non-metallic element in the powder is greater than the atomic ratio x1 of the metallic element, the covalent bond between the two nitrogen atoms and the bond between the nitrogen atom and the oxygen atom are formed in the powder. and the covalent bond between two oxygen atoms. For this reason, it is inferred that the hardness of the powder increases.
粉末中の金属元素の原子比率x1はICP発光分光分析法を用いて分析することにより測定することができる。具体的には、粉末を粉砕した測定用粉末から任意の1gを選び、これを分析する金属元素の数で分割し、各分割粉末において、分析する金属元素のうち、1種の金属元素の原子比率を測定する。例えば、2種の金属元素を測定する場合、測定用粉末1gを2つに分割する。2つの分割粉末を、分割粉末A、分割粉末Bとした場合、分割粉末Aでは1種の金属元素の原子比率を求め、分割粉末Bでは他の1種の金属元素の原子比率を求める。 The atomic ratio x1 of the metal element in the powder can be measured by analysis using ICP emission spectrometry. Specifically, an arbitrary 1 g is selected from the powder for measurement pulverized, and this is divided by the number of metal elements to be analyzed. In each divided powder, among the metal elements to be analyzed, atoms of one metal element Measure the ratio. For example, when measuring two kinds of metal elements, 1 g of the powder for measurement is divided into two. When the two divided powders are divided powder A and divided powder B, the atomic ratio of one metal element in divided powder A is obtained, and the atomic ratio of another metallic element in divided powder B is obtained.
上記の測定作業を1元素につき10回行い、10回の値の平均値を粉末中の1種の金属元素の原子比率とする。分析した全ての金属元素の原子比率の合計を算出し、この値を粉末中の金属元素の原子比率とする。ICP発光分光分析装置としては、例えば、島津製作所製「ICPS-8100」(商品名)が挙げられる。 The above measurement operation is performed 10 times for each element, and the average value of the values obtained 10 times is taken as the atomic ratio of one kind of metal element in the powder. The sum of the atomic ratios of all the analyzed metal elements is calculated, and this value is taken as the atomic ratio of the metal elements in the powder. As an ICP emission spectrometer, for example, "ICPS-8100" (trade name) manufactured by Shimadzu Corporation can be used.
粉末中の金属元素の原子比率x1は、43.48原子%以上48.39原子%以下が好ましく、44.12原子%以上46.88原子%以下がより好ましい。 The atomic ratio x1 of the metal element in the powder is preferably 43.48 atomic % or more and 48.39 atomic % or less, more preferably 44.12 atomic % or more and 46.88 atomic % or less.
粉末中の非金属元素の原子比率y1はガス分析測定法を用いて分析することにより測定することができる。具体的には、粉末を粉砕した粉末から任意の1gを選び、これを分析する非金属元素の数で分割し、各分割粉末において、分析する非金属元素のうち、1種の非金属元素の原子比率を測定する。例えば、2種の非金属元素を測定する場合、測定用粉末1gを2つに分割する。2つの分割粉末を、分割粉末1、分割粉末2とした場合、分割粉末1では1種の非金属元素の原子比率を求め、分割粉末2では他の1種の非金属元素の原子比率を求める。 The atomic ratio y1 of the non-metallic elements in the powder can be measured by analysis using a gas analysis measurement method. Specifically, an arbitrary 1 g of powder is selected from the pulverized powder, divided by the number of non-metallic elements to be analyzed, and in each divided powder, among the non-metallic elements to be analyzed, Measure the atomic ratio. For example, when measuring two kinds of nonmetallic elements, 1 g of the powder for measurement is divided into two. When the two divided powders are divided powder 1 and divided powder 2, the atomic ratio of one non-metallic element is obtained for divided powder 1, and the atomic ratio of another non-metallic element is obtained for divided powder 2. .
上記の測定作業を1元素につき10回行い、10回の値の平均値を粉末中の1種の非金属元素の原子比率とする。分析した全ての非金属元素の原子比率の合計を算出し、この値を粉末中の非金属元素の原子比率とする。ガス分析測定装置としては、例えば、堀場製作所製「EMG950」が挙げられる。 The above measurement operation is performed 10 times for each element, and the average value of the values obtained 10 times is taken as the atomic ratio of one kind of non-metallic element in the powder. The sum of the atomic ratios of all analyzed non-metallic elements is calculated, and this value is taken as the atomic ratio of the non-metallic elements in the powder. As a gas analyzer, for example, "EMG950" manufactured by Horiba, Ltd. can be used.
粉末中の非金属元素の原子比率y1は、56.52原子%以上51.61原子%以下が好ましく、55.88原子%以上53.13原子%以下がより好ましい。 The atomic ratio y1 of the nonmetallic elements in the powder is preferably 56.52 atomic % or more and 51.61 atomic % or less, more preferably 55.88 atomic % or more and 53.13 atomic % or less.
金属元素の原子比率x1と非金属元素の原子比率y1との比y1/x1の値は、1より大きく1.33以下が好ましく、1.1以上1.3以下がより好ましく、1.13以上1.27以下がさらに好ましい。 The ratio y1/x1 between the atomic ratio x1 of the metallic element and the atomic ratio y1 of the nonmetallic element is preferably greater than 1 and 1.33 or less, more preferably 1.1 or more and 1.3 or less, and 1.13 or more. 1.27 or less is more preferable.
粉末は、立方晶構造を有する。立方晶構造とは、岩塩(塩化ナトリウム)に代表される結晶構造であり、2種類の異なる面心立方格子が、単位の立方格子のリョウ(稜)の方向にリョウ(稜)長の半分ずれて互いに組み合わされた構造である。立方晶構造は高硬度であるため、立方晶構造を有する粉末を焼結体の材料として用いると、優れた耐摩耗性を有する焼結体を得ることができる。 The powder has a cubic crystal structure. The cubic crystal structure is a crystal structure represented by rock salt (sodium chloride), and two different types of face-centered cubic lattices are shifted by half the length of the cubic lattice in the direction of the cubic lattice of the unit. It is a structure that is combined with each other. Since the cubic crystal structure has high hardness, the use of a powder having a cubic crystal structure as a material for the sintered body makes it possible to obtain a sintered body having excellent wear resistance.
粉末が立方晶構造を含むことは、XRDの回折パターンからICDDデータベースと照らし合わせて定性分析を行い解析することで確認が可能である。X線回折装置としては、例えば、RIGAKU製の「miniflex 600」等が挙げられる。 It is possible to confirm that the powder contains a cubic crystal structure by performing qualitative analysis by comparing the XRD diffraction pattern with the ICDD database. Examples of the X-ray diffraction device include "miniflex 600" manufactured by RIGAKU.
粉末は、90体積%以上が立方晶構造を有する材料からなることが好ましく、100体積%、すなわち、全ての粉末が立方晶構造を有する材料からなることがより好ましい。 Preferably, 90% by volume or more of the powder consists of a material having a cubic crystal structure, and more preferably 100% by volume, that is, all of the powder consists of a material having a cubic crystal structure.
<実施の形態2:焼結体>
本開示の一実施の形態に係る焼結体は、実施の形態1に係る粉末に由来する粉末由来材料を含む焼結体である。該焼結体は硬度の高い粉末に由来する粉末由来材料を含むため、耐摩耗性が優れている。<Embodiment 2: Sintered body>
A sintered body according to an embodiment of the present disclosure is a sintered body containing a powder-derived material derived from the powder according to the first embodiment. Since the sintered body contains a powder-derived material derived from powder with high hardness, it has excellent wear resistance.
本明細書中、粉末由来材料とは、実施の形態1の粉末を用いて焼結体を作製した場合に、該焼結体中に存在する実施の形態1の粉末に由来する成分を意味する。粉末の構成成分及び各構成成分の比率は、焼結後も維持される。従って、粉末と、これを焼結して得られる焼結体中の粉末由来材料とは、それぞれの構成成分及び各構成成分の比率は同一である。 In this specification, the powder-derived material means a component derived from the powder of Embodiment 1 that is present in the sintered body when the powder of Embodiment 1 is used to produce the sintered body. . The constituents of the powder and the proportions of each constituent are maintained after sintering. Therefore, the powder and the powder-derived material in the sintered body obtained by sintering the powder have the same constituents and the same ratio of the constituents.
焼結体は、粉末由来材料のみから構成されることができる。すなわち、焼結体中の粉末由来材料の含有量を100体積%とすることができる。また、焼結体は、粉末由来材料の含有量を、例えば、3体積%以上99.5体積%以下とすることができる。この場合は、粉末由来材料に加えて、結合材化合物、立方晶窒化硼素等の他の成分を含むこともできる。これらの他の成分の焼結体中の含有量は、例えば、0.5体積%以上97体積%以下とすることができる。 The sintered body can be composed only of powder-derived materials. That is, the content of the powder-derived material in the sintered body can be 100% by volume. In addition, the sintered body can have a powder-derived material content of, for example, 3% by volume or more and 99.5% by volume or less. In this case, in addition to the powder-derived material, other ingredients such as binder compounds, cubic boron nitride, etc. may also be included. The content of these other components in the sintered body can be, for example, 0.5% by volume or more and 97% by volume or less.
焼結体は、さらにAl及びSiのいずれか一方又は両方を含むことが好ましい。Al及びSiは焼結体中に固溶していることが好ましい。Al及びSiは粉末由来材料中に固溶していることが好ましい。これによると、焼結体の耐摩耗性がさらに向上する。焼結体中のAlの含有量は1原子%以上25原子%以下が好ましく、3原子%以上15原子%以下がより好ましい。焼結体中のSiの含有量は1原子%以上25原子%以下が好ましく、3原子%以上15原子%以下がより好ましい。 Preferably, the sintered body further contains either one or both of Al and Si. Al and Si are preferably dissolved in the sintered body. Al and Si are preferably dissolved in the powder-derived material. According to this, the wear resistance of the sintered body is further improved. The content of Al in the sintered body is preferably 1 atomic % or more and 25 atomic % or less, more preferably 3 atomic % or more and 15 atomic % or less. The content of Si in the sintered body is preferably 1 atomic % or more and 25 atomic % or less, more preferably 3 atomic % or more and 15 atomic % or less.
焼結体中のAl及びSiのそれぞれの含有量は、ICP発光分光分析法を用いて分析することにより測定することができる。具体的な測定方法は、実施の形態1の粉末中の金属元素の原子比率の測定方法と同一である。 The respective contents of Al and Si in the sintered body can be measured by analysis using ICP emission spectrometry. A specific measuring method is the same as the method for measuring the atomic ratio of metal elements in the powder in the first embodiment.
焼結体は、さらに周期律表の第4族元素、第5族元素及び第6族元素からなる群より選択される少なくとも1種の第2金属元素と、炭素、窒素及び酸素の少なくともいずれかとからなる少なくとも1種の結合材化合物を含むことが好ましい。ここで、第2金属元素に含まれる周期律表の第4族元素、第5族元素及び第6族元素は、例えば、チタン(Ti)、ジルコニウム(Zr)およびハフニウム(Hf)を含み、第5族元素は、例えば、バナジウム(V)、ニオブ(Nb)およびタンタル(Ta)を含み、第6族元素は、例えば、クロム(Cr)、モリブデン(Mo)およびタングステン(W)を含む。 The sintered body further contains at least one second metal element selected from the group consisting of Group 4 elements, Group 5 elements and Group 6 elements of the periodic table, and at least one of carbon, nitrogen and oxygen. It is preferred to include at least one binder compound consisting of Here, the elements of Group 4, Group 5, and Group 6 of the periodic table included in the second metal element include, for example, titanium (Ti), zirconium (Zr), and hafnium (Hf). Group 5 elements include, for example, vanadium (V), niobium (Nb) and tantalum (Ta), and group 6 elements include, for example, chromium (Cr), molybdenum (Mo) and tungsten (W).
焼結体中の結合材化合物は、隣り合う粉末由来材料同士の界面に存在し、結合相の役割を果たす。結合相は、粉末由来材料同士を強固に結合することができるため、焼結体の強度が向上し、焼結体はさらに優れた耐摩耗性を有することができる。 The binder compound in the sintered body exists at the interface between adjacent powder-derived materials and plays the role of a binder phase. Since the binder phase can firmly bind the powder-derived materials together, the strength of the sintered body can be improved, and the sintered body can have even better wear resistance.
また、焼結体に結合相が含まれることにより、焼結体は粉末由来材料の特性に起因する特性に加え、さらに結合相に起因する特性を有することができる。したがって、結合相の組成を適宜調整することにより、焼結体は、様々な切削条件に必要とされる各ニーズに柔軟に対応することができる。 In addition, since the sintered body contains the binder phase, the sintered body can have properties due to the binder phase in addition to the properties of the powder-derived material. Therefore, by appropriately adjusting the composition of the binder phase, the sintered body can flexibly meet various needs for various cutting conditions.
第2金属元素と炭素とからなる結合材化合物(炭化物)としては、例えば、炭化チタン(TiC)、炭化ジルコニウム(ZrC)、炭化ハフニウム(HfC)、炭化バナジウム(VC)、炭化ニオブ(NbC)、炭化タンタル(TaC)、炭化クロム(Cr3C2)、炭化モリブデン(MoC)、炭化タングステン(WC)を挙げることができる。Examples of binder compounds (carbides) composed of the second metal element and carbon include titanium carbide (TiC), zirconium carbide (ZrC), hafnium carbide (HfC), vanadium carbide (VC), niobium carbide (NbC), Mention may be made of tantalum carbide (TaC), chromium carbide ( Cr3C2 ), molybdenum carbide ( MoC ), tungsten carbide (WC).
第2金属元素と窒素とからなる結合材化合物(窒化物)としては、例えば、窒化チタン(TiN)、窒化ジルコニウム(ZrN)、窒化ハフニウム(HfN)、窒化バナジウム(VN)、窒化ニオブ(NbN)、窒化タンタル(TaN)、窒化クロム(Cr2N)、窒化モリブデン(MoN)、窒化タングステン(WN)、窒化チタンジルコニウム(TiZrN)、窒化チタンハフニウム(TiHfN)、窒化チタンバナジウム(TiVN)、窒化チタンニオブ(TiNbN)、窒化チタンタンタル(TiTaN)、窒化チタンクロム(TiCrN)、窒化チタンモリブデン(TiMoN)、窒化チタンタングステン(TiWN)、窒化ジルコニウムハフニウム(ZrHfN)、窒化ジルコニウムバナジウム(ZrVN)、窒化ジルコニウムニオブ(ZrNbN)、窒化ジルコニウムタンタル(ZrTaN)、窒化ジルコニウムクロム(ZrCrN)、窒化ジルコニウムモリブデン(ZrMoN)、窒化ジルコニウムタングステン(ZrWN)、窒化ハフニウムバナジウム(HfVN)、窒化ハフニウムニオブ(HfNbN)、窒化ハフニウムタンタル(HfTaN)、窒化ハフニウムクロム(HfCrN)、窒化ハフニウムモリブデン(HfMoN)、窒化ハフニウムタングステン(HfWN)、窒化バナジウムニオブ(VNbN)、窒化バナジウムタンタル(VTaN)、窒化バナジウムクロム(VCrN)、窒化バナジウムモリブデン(VMoN)、窒化バナジウムタングステン(VWN)、窒化ニオブタンタル(NbTaN)、窒化ニオブクロム(NbCrN)、窒化ニオブモリブデン(NbMoN)、窒化ニオブタングステン(NbWN)、窒化タンタルクロム(TaCrN)、窒化タンタルモリブデン(TaMoN)、窒化タンタルタングステン(TaWN)、窒化クロムモリブデン(CrMoN)、窒化クロムタングステン(CrWN)、窒化モリブデンクロム(MoWN)を挙げることができる。Examples of binder compounds (nitrides) composed of the second metal element and nitrogen include titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN), vanadium nitride (VN), and niobium nitride (NbN). , tantalum nitride (TaN), chromium nitride ( Cr2N ), molybdenum nitride (MoN), tungsten nitride (WN), titanium zirconium nitride (TiZrN), titanium hafnium nitride (TiHfN), titanium vanadium nitride (TiVN), titanium niobium nitride (TiNbN), titanium tantalum nitride (TiTaN), titanium chromium nitride (TiCrN), titanium molybdenum nitride (TiMoN), titanium tungsten nitride (TiWN), zirconium hafnium nitride (ZrHfN), zirconium vanadium nitride (ZrVN), zirconium niobium nitride ( ZrNbN), zirconium tantalum nitride (ZrTaN), zirconium chromium nitride (ZrCrN), zirconium molybdenum nitride (ZrMoN), zirconium tungsten nitride (ZrWN), hafnium vanadium nitride (HfVN), hafnium niobium nitride (HfNbN), hafnium tantalum nitride (HfTaN) ), hafnium chromium nitride (HfCrN), hafnium molybdenum nitride (HfMoN), hafnium tungsten nitride (HfWN), vanadium niobium nitride (VNbN), vanadium tantalum nitride (VTaN), vanadium chromium nitride (VCrN), vanadium molybdenum nitride (VMoN) , vanadium tungsten nitride (VWN), niobium tantalum nitride (NbTaN), niobium chromium nitride (NbCrN), niobium molybdenum nitride (NbMoN), niobium tungsten nitride (NbWN), tantalum chromium nitride (TaCrN), tantalum molybdenum nitride (TaMoN), nitriding Mention may be made of tantalum tungsten (TaWN), chromium molybdenum nitride (CrMoN), chromium tungsten nitride (CrWN), molybdenum chromium nitride (MoWN).
第2金属元素と酸素とからなる結合材化合物(酸化物)としては、例えば、酸化チタン(TiO2)、酸化ジルコニウム(ZrO2)、酸化ハフニウム(HfO2)、酸化バナジウム(V2O5)、酸化ニオブ(Nb2O5)、酸化タンタル(Ta2O5)、酸化クロム(Cr2O3)、酸化モリブデン(MoO3)、酸化タングステン(WO3)を挙げることができる。Examples of binder compounds (oxides) composed of the second metal element and oxygen include titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ), and vanadium oxide (V 2 O 5 ). , niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), chromium oxide (Cr 2 O 3 ), molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ).
第2金属元素と炭素と窒素とからなる結合材化合物(炭窒化物)としては、例えば、炭窒化チタン(TiCN)、炭窒化ジルコニウム(ZrCN)、炭窒化ハフニウム(HfCN)を挙げることができる。 Examples of binder compounds (carbonitrides) composed of the second metal element, carbon, and nitrogen include titanium carbonitride (TiCN), zirconium carbonitride (ZrCN), and hafnium carbonitride (HfCN).
第2金属元素と酸素と窒素とからなる結合材化合物(酸窒化物)としては、例えば、酸窒化チタン(TiON)、酸窒化ジルコニウム(ZrON)、酸窒化ハフニウム(HfON)、酸窒化バナジウム(VON)、酸窒化ニオブ(NbON)、酸窒化タンタル(TaON)、酸窒化クロム(CrON)、酸窒化モリブデン(MoON)、酸窒化タングステン(WON)を挙げることができる。 Examples of the binder compound (oxynitride) composed of the second metal element, oxygen, and nitrogen include titanium oxynitride (TiON), zirconium oxynitride (ZrON), hafnium oxynitride (HfON), vanadium oxynitride (VON), ), niobium oxynitride (NbON), tantalum oxynitride (TaON), chromium oxynitride (CrON), molybdenum oxynitride (MoON), and tungsten oxynitride (WON).
結合材化合物は、1種類を用いてもよいし、2種類以上を組み合わせて用いてもよい。
焼結体中の結合材化合物の含有量は、0.5体積%以上50体積%以下が好ましく、15体積%以上45体積%以下がより好ましく、30体積%以上40体積%以下がさらに好ましい。One type of binder compound may be used, or two or more types may be used in combination.
The content of the binder compound in the sintered body is preferably 0.5% by volume or more and 50% by volume or less, more preferably 15% by volume or more and 45% by volume or less, and even more preferably 30% by volume or more and 40% by volume or less.
結合材化合物において、金属元素の原子比率x2と非金属元素の原子比率y2との比x2/y2の値は1以上であることが好ましい。ここで金属元素の原子比率x2とは、結合材化合物を構成する全原子数に対する金属元素の合計原子数の割合を意味する。又、非金属元素の原子比率y2とは、結合材化合物を構成する全原子数に対する非金属元素の合計原子数の割合を意味する。すなわち、本実施形態の結合材化合物においては、金属元素の原子比率が、非金属元素の原子比率と同じか、又は、大きいことが好ましい。なお、「金属元素」、及び、「非金属元素」とは、実施の形態1において説明した通りである。 In the binder compound, the value of the ratio x2/y2 between the atomic ratio x2 of the metallic element and the atomic ratio y2 of the nonmetallic element is preferably 1 or more. Here, the atomic ratio x2 of the metal elements means the ratio of the total number of atoms of the metal elements to the total number of atoms constituting the binder compound. Further, the atomic ratio y2 of the nonmetallic elements means the ratio of the total number of atoms of the nonmetallic elements to the total number of atoms constituting the binder compound. That is, in the binder compound of the present embodiment, the atomic ratio of the metallic element is preferably the same as or greater than the atomic ratio of the non-metallic element. The “metallic element” and the “nonmetallic element” are as described in the first embodiment.
結合材化合物において、金属元素の原子比率が、非金属元素の原子比率と同じか、又は、大きいと、過剰である金属元素と上記粉末由来材料中の過剰な非金属元素とが反応することにより、結合が強固になり耐欠損性が向上する。 In the binder compound, if the atomic ratio of the metallic element is the same as or greater than the atomic ratio of the non-metallic element, the excessive metallic element reacts with the excessive non-metallic element in the powder-derived material. , the bond is strengthened and the chipping resistance is improved.
結合材化合物中の金属元素及び非金属元素の原子比率x2及びy2は、下記の方法で測定することができる。STEM観察により粉末由来材料と結合材化合物を元素マッピングにより分離する。粉末由来材料と結合材化合物とが同様の元素を用いている場合は、電子回折パターンから結晶構造を同定し、結合材化合物部分を特定する。結合材化合物部分をポイント分析することで定量分析を行う。ポイント分析を20点測定し平均値をそれぞれx2、y2の値とする。STEMとしては、例えば、JOEL製「JEM-ARM300F」が挙げられる。 The atomic ratios x2 and y2 of the metallic element and the non-metallic element in the binder compound can be measured by the following method. By STEM observation, the powder-derived material and the binder compound are separated by elemental mapping. When the powder-derived material and the binder compound use the same elements, the crystal structure is identified from the electron diffraction pattern to identify the binder compound portion. Quantitative analysis is performed by point analysis of the binder compound portion. Twenty points are measured by point analysis, and the average values are defined as x2 and y2, respectively. Examples of STEM include "JEM-ARM300F" manufactured by JOEL.
結合材化合物中の金属元素の原子比率x2は、50原子%以上53原子%以下が好ましく、51原子%以上52原子%以下がより好ましい。 The atomic ratio x2 of the metal element in the binder compound is preferably 50 atomic % or more and 53 atomic % or less, more preferably 51 atomic % or more and 52 atomic % or less.
結合材化合物中の非金属元素の原子比率y2は、47原子%以上50原子%以下が好ましく、48原子%以上49原子%以下がより好ましい。 The atomic ratio y2 of the nonmetallic element in the binder compound is preferably 47 atomic % or more and 50 atomic % or less, more preferably 48 atomic % or more and 49 atomic % or less.
金属元素の原子比率x2と非金属元素の原子比率y2との比x2/y2の値は、1以上1.13以下が好ましく、1.02以上1.10以下がより好ましく、1.04以上1.06以下がさらに好ましい。 The value of the ratio x2/y2 between the atomic ratio x2 of the metallic element and the atomic ratio y2 of the nonmetallic element is preferably 1 or more and 1.13 or less, more preferably 1.02 or more and 1.10 or less, and 1.04 or more and 1.04 or more. 0.06 or less is more preferable.
焼結体は、さらに立方晶窒化硼素を10体積%以上97体積%以下含むことが好ましく、30体積%以上65積%以下含むことがより好ましく、45体積%以上55体積%以下含むことがさらに好ましい。 The sintered body preferably further contains cubic boron nitride in an amount of 10% to 97% by volume, more preferably 30% to 65% by volume, and more preferably 45% to 55% by volume. preferable.
立方晶窒化硼素は極めて高い硬度を有するため、焼結体が立方晶窒化硼素を含むと、焼結体の硬度が高くなり、焼結体の耐摩耗性が向上する。 Since cubic boron nitride has extremely high hardness, when the sintered body contains cubic boron nitride, the hardness of the sintered body increases and the abrasion resistance of the sintered body improves.
本実施の形態の焼結体は、工具の材料として用いることができる。上記焼結体は、耐摩耗性に優れるため、これを用いた工具もまた、耐摩耗性に優れることとなる。 The sintered body of this embodiment can be used as a material for tools. Since the sintered body is excellent in wear resistance, a tool using the sintered body is also excellent in wear resistance.
工具としては、切削工具、研削工具、耐摩工具、摩擦撹拌接合用工具等を挙げることができる。切削工具としては、ドリル、エンドミル、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切り工具、リーマまたはタップを例示することができる。切削工具は、その全体が本実施の形態の焼結体により構成されていてもよく、その一部(たとえば、刃先部分)が本実施の形態の焼結体により構成されていてもよい。 Examples of tools include cutting tools, grinding tools, wear-resistant tools, tools for friction stir welding, and the like. Examples of cutting tools include drills, end mills, indexable cutting inserts for milling, indexable cutting inserts for turning, metal saws, gear cutting tools, reamers, and taps. The cutting tool may be entirely composed of the sintered body of the present embodiment, or part thereof (for example, a cutting edge portion) may be composed of the sintered body of the present embodiment.
切削工具の全体が本実施の形態の焼結体からなる場合、焼結体を所望の形状に加工することにより、切削工具を作製することができる。焼結体の加工は、たとえば、レーザーまたはワイヤー放電によって行うことができる。また、切削工具の一部が本実施の形態の焼結体からなる場合、工具を構成する基体の所望の位置に焼結体を接合することにより、切削工具を作製することができる。なお、焼結体の接合方法は特に制限されないが、基体から焼結体が離脱することを抑制する観点から、基体と焼結体との間に、基体と焼結とを強固に結合させるための接合層を介在させることが好ましい。 When the entire cutting tool is made of the sintered body of the present embodiment, the cutting tool can be produced by processing the sintered body into a desired shape. Processing of the sintered body can be performed, for example, by laser or wire discharge. Further, when a part of the cutting tool is made of the sintered body of the present embodiment, the cutting tool can be manufactured by bonding the sintered body to a desired position of the base body constituting the tool. The method for joining the sintered body is not particularly limited, but from the viewpoint of suppressing the separation of the sintered body from the base, it is necessary to firmly bond the base and the sintered body between the base and the sintered body. It is preferable to interpose a bonding layer of
<実施の形態3:粉末の製造方法>
本開示の一実施の形態に係る粉末の製造方法は、周期律表の第4族元素、第5族元素及び第6族元素からなる群より選択される少なくとも1種の第1金属元素の粒子を含む第1粒子群を準備する工程(以下、「第1粒子群準備工程」ともいう)と、前記第1粒子群を窒素雰囲気下で衝撃圧縮法で処理して前記粉末を作製する工程(以下、「粉末作製工程」)とを備える。<Embodiment 3: Method for producing powder>
A powder manufacturing method according to an embodiment of the present disclosure includes particles of at least one first metal element selected from the group consisting of Group 4 elements, Group 5 elements, and Group 6 elements of the periodic table A step of preparing a first particle group containing hereinafter, “powder preparation step”).
(第1粒子群準備工程)
第1粒子群準備工程において、周期律表の第4族元素、第5族元素及び第6族元素からなる群より選択される少なくとも1種の第1金属元素の粒子を含む第1粒子群を準備する。これらの粒子は、いずれも平均粒径が2μm以下であることが好ましく、さらに1μm以下であることが好ましい。本明細書において「平均粒径」とは、マイクロトラックなどの粒度分布測定機により測定した値を意味する。(First particle group preparation step)
In the first particle group preparation step, a first particle group containing particles of at least one first metal element selected from the group consisting of elements of Group 4, Group 5 and Group 6 of the periodic table prepare. These particles preferably have an average particle size of 2 μm or less, more preferably 1 μm or less. As used herein, "average particle size" means a value measured by a particle size distribution analyzer such as Microtrac.
第1粒子群は、粉末の原料となる。粉末を構成する金属元素は、第1粒子群のみから供給される。このため、第1粒子群中の各金属元素の含有比率は、目的とする粉末中の各金属元素の含有比率と同一とする必要がある。一方、粉末中の窒素は、雰囲気(窒素雰囲気)から供給される。このため、第1粒子群中の窒素の含有比率は、粉末中の窒素の含有比率と同一である必要はない。また、粉末中の酸素は、窒素と同様に雰囲気(酸素窒素混合ガス)から供給される。このため、第1粒子群中の酸素の含有比率は、粉末中の酸素の含有比率と同一である必要はない。 The first particle group serves as a powder raw material. A metal element forming the powder is supplied only from the first particle group. Therefore, the content ratio of each metal element in the first particle group must be the same as the content ratio of each metal element in the target powder. On the other hand, nitrogen in the powder is supplied from the atmosphere (nitrogen atmosphere). Therefore, the nitrogen content ratio in the first particle group does not need to be the same as the nitrogen content ratio in the powder. In addition, oxygen in the powder is supplied from the atmosphere (oxygen-nitrogen mixed gas) like nitrogen. Therefore, the oxygen content ratio in the first particle group does not need to be the same as the oxygen content ratio in the powder.
第1粒子群は、周期律表の第4族元素、第5族元素及び第6族元素からなる群より選択される少なくとも1種の第1金属元素の粒子をエタノールなどの有機溶媒中で超音波分散するか、またはビーズミルで粉砕、混合して、得られたスラリーをドライヤーなどで乾燥して得ることができる。 The first particle group comprises particles of at least one first metal element selected from the group consisting of elements of Group 4, Group 5, and Group 6 of the periodic table in an organic solvent such as ethanol. It can be obtained by sonicating or pulverizing and mixing with a bead mill and drying the obtained slurry with a dryer or the like.
(粉末作製工程)
次に、粉末作製工程において、第1粒子群を窒素雰囲気下で衝撃圧縮法で処理して粉末を作製する。(Powder production process)
Next, in the powder production step, the first particle group is processed by an impact compression method in a nitrogen atmosphere to produce powder.
まず、第1粒子群をPt製カプセルに充填する。かしめたカプセル上部に銀ろう材を塗布し、0.1MPa以上0.6MPa以下の圧力で窒素又は窒素酸素混合ガス雰囲気中で熱処理を行い、Pt製カプセルに窒素又は窒素酸素混合ガスを封入する。 First, a Pt capsule is filled with the first particle group. A silver brazing material is applied to the upper part of the crimped capsule, heat treatment is performed in a nitrogen or nitrogen-oxygen mixed gas atmosphere at a pressure of 0.1 MPa or more and 0.6 MPa or less, and the nitrogen or nitrogen-oxygen mixed gas is enclosed in the Pt capsule.
次に、窒素又は窒素酸素を封入したPt製カプセルをSUS製カプセル内に配置し、一般的な1段式火薬銃衝撃圧縮装置にて、15GPa以上の圧力、及び、1500℃以上の温度で加圧加温する。これにより、第1粒子群から立方晶構造を有する粉末を合成することができる。衝撃圧縮法における圧力は、15GPa以上50GPa以下が好ましく、20GPa以上40GPa以下がさらに好ましい。衝撃圧縮法における温度は、1500℃以上3000℃以下が好ましく、2000℃以上2500℃以下がさらに好ましい。 Next, the Pt capsule containing nitrogen or nitrogen oxygen is placed in the SUS capsule, and is heated at a pressure of 15 GPa or more and a temperature of 1500 ° C. or more with a general single-stage gunpowder gun impact compression device. Heat under pressure. Thereby, a powder having a cubic crystal structure can be synthesized from the first particle group. The pressure in the impact compression method is preferably 15 GPa or more and 50 GPa or less, more preferably 20 GPa or more and 40 GPa or less. The temperature in the impact compression method is preferably 1500° C. or higher and 3000° C. or lower, more preferably 2000° C. or higher and 2500° C. or lower.
得られた粉末は、ボールミル装置やビーズミル装置などで、平均粒径0.1μm以上10μm以下に粉砕することが好ましい。粉末は、焼結体の原料として用いることができる。 The obtained powder is preferably pulverized to an average particle size of 0.1 μm or more and 10 μm or less using a ball mill or bead mill. A powder can be used as a raw material for a sintered body.
<実施の形態4:焼結体の製造方法>
本開示の一実施の形態に係る焼結体の製造方法は、実施の形態3の粉末の製造方法によって、粉末を作製する工程(以下、「粉末作製工程」ともいう)と、前記粉末を含む第2粒子群を準備する工程(以下、「第2粒子群準備工程」ともいう)と、前記第2粒子群を焼結して焼結体を得る工程(「焼結体作製工程」ともいう)とを備える。<Embodiment 4: Manufacturing method of sintered body>
A method for producing a sintered body according to an embodiment of the present disclosure includes a step of producing a powder (hereinafter also referred to as a “powder production step”) by the powder production method of Embodiment 3, and the powder A step of preparing the second particle group (hereinafter also referred to as a “second particle group preparation step”) and a step of sintering the second particle group to obtain a sintered body (also referred to as a “sintered body preparation step”) ).
(粉末作製工程)
粉末作製工程において、上記の粉末の製造方法を用いて粉末を作製する。具体的な方法は、実施の形態3の粉末の製造方法と同一である。(Powder production process)
In the powder production step, powder is produced using the powder production method described above. A specific method is the same as the powder manufacturing method of the third embodiment.
(第2粒子群準備工程)
次に、粉末作製工程で得られた粉末を含む第2粒子群を準備する。(Second particle group preparation step)
Next, a second particle group containing the powder obtained in the powder preparation step is prepared.
第2粒子群は、粉末のみを含む、すなわち、粉末を100体積%含むことができる。又、粉末とともに、結合材化合物粒子及び立方晶窒化硼素粒子の一方又は両方の粒子を含んでいてもよい。 The second particle group can contain only powder, ie, 100% by volume of powder. The powder may also contain particles of one or both of binder compound particles and cubic boron nitride particles.
第2粒子群が結合材化合物粒子を含む場合は、第2粒子群中の結合材化合物粒子の含有量は、0.5体積%以上50体積%以下が好ましく、15体積%以上45体積%以下がより好ましく、30体積%以上40体積%以下がさらに好ましい。これによると、第2粒子群を焼結して得られた焼結体の耐摩耗性が向上する。 When the second particle group contains the binder compound particles, the content of the binder compound particles in the second particle group is preferably 0.5% by volume or more and 50% by volume or less, and 15% by volume or more and 45% by volume or less. is more preferable, and 30% by volume or more and 40% by volume or less is even more preferable. According to this, the wear resistance of the sintered body obtained by sintering the second particle group is improved.
第2粒子群が立方晶窒化硼素粒子を含む場合は、第2粒子群中の立方晶窒化硼素粒子の含有量は、10体積%以上97体積%以下が好ましく、30体積%以上65体積%以下がより好ましく、45体積%以上55体積%以下がさらに好ましい。これによると、第2粒子群を焼結して得られた焼結体の耐摩耗性が向上する。 When the second particle group contains cubic boron nitride particles, the content of the cubic boron nitride particles in the second particle group is preferably 10% by volume or more and 97% by volume or less, and 30% by volume or more and 65% by volume or less. is more preferable, and 45% by volume or more and 55% by volume or less is even more preferable. According to this, the wear resistance of the sintered body obtained by sintering the second particle group is improved.
第2粒子群が結合材化合物粒子及び立方晶窒化硼素粒子の一方又は両方を含む場合は、第2粒子群をボールミルやジェットミルを用いて混合することが好ましい。第2粒子群の平均粒径は、0.1μm以上10μm以下であることが好ましい。 When the second particle group contains one or both of the binder compound particles and the cubic boron nitride particles, it is preferable to mix the second particle group using a ball mill or a jet mill. The average particle size of the second particle group is preferably 0.1 μm or more and 10 μm or less.
(焼結体作製工程)
前記第2粒子群を10GPa以上15GPa以下の圧力および800℃以上1900℃以下の温度で処理して、焼結体を作製する。焼結体作製工程は、非酸化雰囲気下で行うことが好ましく、特に真空中、または窒素雰囲気下で行うことが好ましい。焼結方法は特に限定されないが、放電プラズマ焼結(SPS)、ホットプレス、超高圧プレスなどを用いることができる。(Sintered compact production process)
The second particle group is treated at a pressure of 10 GPa or more and 15 GPa or less and a temperature of 800° C. or more and 1900° C. or less to produce a sintered body. The sintered body preparation step is preferably performed in a non-oxidizing atmosphere, and particularly preferably in a vacuum or a nitrogen atmosphere. The sintering method is not particularly limited, but discharge plasma sintering (SPS), hot press, ultra-high pressure press, etc. can be used.
得られた焼結体は、第2粒子群中の各元素の配合比を維持したものとなる。 The obtained sintered body maintains the compounding ratio of each element in the second particle group.
本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。 EXAMPLES This embodiment will be described in more detail with reference to Examples. However, this embodiment is not limited by these examples.
[実施例1]
(試料No.102~104、106、107、109~123)
<第1粒子群の準備>
市販の窒化チタン粒子(日本新金属株式会社製「TiN-01」)、窒化ジルコニウム粒子(日本新金属株式会社製「ZrN-01」)、窒化ハフニウム粒子(日本新金属株式会社製「HfN-O」)、窒化バナジウム粒子(日本新金属株式会社製「VN-O」)、窒化ニオブ粒子(日本新金属株式会社製「NbN-O」)、窒化タンタル粒子(日本新金属株式会社製「TaN-O」)、窒化クロム粒子(日本新金属株式会社製「Cr2N-O」)、アルミニウム粒子(ミナルコ製「#700F」、表1中「Al」と示す。)、珪素粒子(山石金属株式会社製「No.700」、表1中「Si」と示す。)を、表1の「第1粒子群原料粒子の種類」の欄に記載の量で準備し、Pt製カプセルに充填する。かしめたカプセル上部に銀ろう材を塗布し、表1の「窒素熱処理の窒素圧」の欄に記載の圧力(0.1MPa~0.6MPa)で窒素熱処理を行い、Pt製カプセルに窒素を封入する。[Example 1]
(Sample No. 102-104, 106, 107, 109-123)
<Preparation of first particle group>
Commercially available titanium nitride particles ("TiN-01" manufactured by Nippon New Metal Co., Ltd.), zirconium nitride particles ("ZrN-01" manufactured by Nippon New Metal Co., Ltd.), hafnium nitride particles (manufactured by Nippon New Metal Co., Ltd. "HfN-O ”), vanadium nitride particles (manufactured by Nippon New Metal Co., Ltd. “VN-O”), niobium nitride particles (manufactured by Nippon New Metal Co., Ltd. “NbN-O”), tantalum nitride particles (manufactured by Nippon New Metal Co., Ltd. “TaN- O”), chromium nitride particles (“Cr NO ” manufactured by Nippon New Metal Co., Ltd.), aluminum particles (“#700F” manufactured by Minalco, indicated as “Al” in Table 1), silicon particles (Yamaishi Metal Co., Ltd. "No. 700" (manufactured by the company, indicated as "Si" in Table 1) is prepared in the amount described in the column "Type of first particle group raw material particles" in Table 1, and filled into a Pt capsule. A silver brazing material is applied to the upper part of the crimped capsule, and nitrogen heat treatment is performed at the pressure (0.1 MPa to 0.6 MPa) described in the column "Nitrogen pressure of nitrogen heat treatment" in Table 1, and nitrogen is enclosed in the Pt capsule. do.
<粉末作製工程>
次に、上記で準備した窒素を封入したPt製カプセルをSUS製カプセル内に配置し、一般的な1段式火薬銃衝撃圧縮装置にて、狙い圧力30GPa、狙い温度1500℃にて衝撃圧縮処理を行い、粉末を得る。<Powder preparation process>
Next, the nitrogen-encapsulated Pt capsule prepared above is placed in a SUS capsule, and subjected to impact compression at a target pressure of 30 GPa and a target temperature of 1500 ° C. with a general single-stage gunpowder gun impact compression device. to obtain a powder.
<焼結体作製工程>
上記のPt製カプセルから粉末を回収し、別のPt製カプセルに充填する。これをベルト型高圧発生装置にて7GPa、1500℃の条件下で、30分維持して焼結して焼結体を得る。<Sintered compact manufacturing process>
The powder is recovered from the above Pt capsule and filled into another Pt capsule. This is sintered for 30 minutes under conditions of 7 GPa and 1500° C. in a belt type high pressure generator to obtain a sintered body.
(試料No.101)
試料No.101では、市販のチタンナイトライド粉(日本新金属株式会社製「TiN-01」)を表1の「第1粒子群原料粒子の種類」の欄に記載の量で準備し、これをPt製カプセルに充填し、ベルト型高圧発生装置にて7GPa、1500℃の条件下で、30分維持して焼結して焼結体を得る。(Sample No. 101)
Sample no. In 101, commercially available titanium nitride powder ("TiN-01" manufactured by Nippon New Metal Co., Ltd.) is prepared in the amount described in the column "Type of raw material particles of the first particle group" in Table 1, and this is made of Pt. A capsule is filled and sintered for 30 minutes under conditions of 7 GPa and 1500° C. in a belt type high pressure generator to obtain a sintered body.
(試料No.105、108)
試料No.105及び108では、それぞれ市販のチタンナイドライド粉(日本新金属株式会社製「TiN-01」)又はジルコニウムナイトライド粉(日本新金属株式会社製「ZrN-01」)を、表1の「第1粒子群原料粒子の種類」の欄に記載の量で準備し、ダイヤモンドアンビルを用いて、窒素雰囲気下で、18GPa、3073℃の条件で、15分維持して焼結して焼結体を得る。(Sample Nos. 105 and 108)
Sample no. In 105 and 108, commercially available titanium nitride powder (“TiN-01” manufactured by Nippon New Metal Co., Ltd.) or zirconium nitride powder (“ZrN-01” manufactured by Nippon New Metal Co., Ltd.) was used. Prepared in the amount described in the column "Type of raw material particles in 1 particle group", using a diamond anvil, under the conditions of 18 GPa and 3073 ° C. in a nitrogen atmosphere, sintering for 15 minutes to obtain a sintered body. obtain.
<分析評価>
上記で得られた粉末(試料No.101及び試料No.105では、市販のチタンナイトライド粉、試料No.108では、ジルコニウムナイトライド粉)及び焼結体をX線回折装置で測定したところ、全ての粉末及び焼結体は立方晶構造であることが確認された。また、上記で得られた粉末及び焼結体をX線回折装置で測定した。各相のピーク強度比は、粉末と焼結体とで一致していた。すなわち、焼結体中の各元素の組成比は、粉末中の各元素の配合比を維持していることが確認された。<Analysis evaluation>
The powders obtained above (Sample No. 101 and No. 105 are commercially available titanium nitride powders, Sample No. 108 is zirconium nitride powder) and the sintered bodies were measured with an X-ray diffractometer. All powders and sintered bodies were confirmed to have a cubic crystal structure. Moreover, the powder and sintered body obtained above were measured with an X-ray diffractometer. The peak intensity ratio of each phase was consistent between the powder and the sintered body. That is, it was confirmed that the composition ratio of each element in the sintered body maintained the compounding ratio of each element in the powder.
上記で得られた焼結体を粉砕して得られた粉末について、ICP発光分光分析法(使用装置:島津製作所製「ICPS-8100」)により各金属元素の原子比率を分析し、ガス分析測定法(使用装置:堀場製作所製「EMG950」)により各非金属元素の原子比率を分析した。具体的な測定方法は、実施の形態1の粉末中の金属元素の原子比率、及び、粉末中の非金属元素の原子比率の測定方法と同一であるため、その説明は繰り返さない。本実施例では、第1粒子群は粉末のみを含むため、焼結体を粉砕して得られた粉末は、粉末由来材料のみを含む。結果を表1の「焼結体(粉末由来材料)分析値」の欄に示す。なお、上記の粉末及び焼結体のX線回折装置での測定結果から、焼結体中の各金属元素の原子比率及び各非金属元素の原子比率は、それぞれ粉末中の各金属元素の原子比率及び各非金属元素の原子比率と同一であることが確認された。 For the powder obtained by pulverizing the sintered body obtained above, the atomic ratio of each metal element is analyzed by ICP emission spectrometry (device used: "ICPS-8100" manufactured by Shimadzu Corporation), and gas analysis measurement The atomic ratio of each non-metallic element was analyzed by the method (equipment used: "EMG950" manufactured by Horiba, Ltd.). A specific measuring method is the same as the method for measuring the atomic ratio of the metallic element in the powder and the atomic ratio of the non-metallic element in the powder in Embodiment 1, so the description thereof will not be repeated. In this example, since the first particle group contains only powder, the powder obtained by pulverizing the sintered body contains only the powder-derived material. The results are shown in the column of "sintered body (powder-derived material) analysis value" in Table 1. In addition, from the measurement results of the above powder and sintered body with an X-ray diffraction device, the atomic ratio of each metal element and the atomic ratio of each non-metal element in the sintered body are It was confirmed that the ratio and the atomic ratio of each non-metallic element were the same.
各金属元素の原子比率及び各非金属元素の原子比率を用いて、それぞれ、金属元素の原子比率x1及び非金属元素の原子比率y1を算出し、これらを用いて、金属元素の原子比率x1と非金属元素の原子比率y1との比y1/x1の値を算出した。結果を表1の「y1/x1」の欄に示す。 Using the atomic ratio of each metallic element and the atomic ratio of each nonmetallic element, the atomic ratio x1 of the metallic element and the atomic ratio y1 of the nonmetallic element are calculated, respectively, and using these, the atomic ratio x1 of the metallic element and A value of the ratio y1/x1 to the atomic ratio y1 of the nonmetallic element was calculated. The results are shown in the "y1/x1" column of Table 1.
<切削評価>
得られた焼結体を、レーザーにより切断して仕上げ加工し、工具型番DNGA150408の切削工具を作製した。得られた切削工具を用いて、以下の切削条件で浸炭焼入鋼(SCM415H、硬度HRC60)の切削試験を行い、耐摩耗性を評価した。
切削速度:300m/min.
切込み量:0.15mm
送り量:0.15mm/rev
切削油:なし
切削工具の耐摩耗性は、以下の方法で評価した。上記の切削条件で1km切削し、刃先の逃げ面側を光学顕微鏡で観察し、逃げ面摩耗幅を測定する。逃げ面摩耗幅が0.2mmに到達するまでは、このサイクルを繰り返し、0.2mmとなった時点での切削距離を工具寿命と判定する。実際には、横軸を切削距離、縦軸を逃げ面摩耗幅とした直線グラフを描き、縦軸の0.2mmのラインと直線グラフとの交点を切削距離として判断する。切削距離が長いほど、耐摩耗性に優れていることを示す。<Cutting evaluation>
The resulting sintered body was cut with a laser for finish processing to prepare a cutting tool with tool model number DNGA150408. Using the obtained cutting tool, a cutting test of carburized hardened steel (SCM415H, hardness HRC60) was performed under the following cutting conditions to evaluate wear resistance.
Cutting speed: 300m/min.
Cutting depth: 0.15mm
Feed rate: 0.15mm/rev
Cutting oil: none The wear resistance of the cutting tool was evaluated by the following method. Cut 1 km under the above cutting conditions, observe the flank side of the cutting edge with an optical microscope, and measure the flank wear width. This cycle is repeated until the flank wear width reaches 0.2 mm, and the cutting distance at which the flank wear width reaches 0.2 mm is determined as the tool life. In practice, a straight line graph is drawn with the cutting distance on the horizontal axis and the flank wear width on the vertical axis, and the intersection of the 0.2 mm line on the vertical axis and the straight line graph is determined as the cutting distance. A longer cutting distance indicates better wear resistance.
結果を表1の「切削距離」の欄に示す。 The results are shown in the "cutting distance" column of Table 1.
<結果>
試料No.1の焼結体は、TiNからなる粉末由来材料を含み、該粉末由来材料中の金属元素の原子比率x1と非金属元素の原子比率y1との比y1/x1の値が1であり、比較例に該当する。<Results>
Sample no. The sintered body of No. 1 contains a powder-derived material made of TiN, and the value of the ratio y1/x1 between the atomic ratio x1 of the metallic element and the atomic ratio y1 of the non-metallic element in the powder-derived material is 1, and the comparison corresponds to the example.
試料No.102~123の焼結体は、Ti、Zr、Hf、V、Nb、Ta又はCrの窒化物又は酸窒化物からなる粉末由来材料を含み、該粉末由来材料中の「y1/x1」の値が1より大きく、実施例に該当する。 Sample no. The sintered bodies of 102 to 123 contain a powder-derived material made of a nitride or oxynitride of Ti, Zr, Hf, V, Nb, Ta or Cr, and the value of "y1/x1" in the powder-derived material is greater than 1 and corresponds to the example.
試料No.102~123の焼結体を用いて作製された工具は、試料No.101の焼結体を用いて作製された工具よりも、切削距離が長く、耐摩耗性に優れていることが確認された。 Sample no. The tools manufactured using the sintered bodies of 102 to 123 are sample Nos. It was confirmed that the cutting distance was longer and the wear resistance was superior to that of the tool manufactured using the sintered body of No. 101.
[実施例2]
(試料No.201~245)
<第2粒子群の準備>
実施例1で得られた試料No.103、106、109の粉末、及び、市販の窒化チタン(TiN)粒子(日本新金属株式会社製「TiN-01」)、窒化ジルコニウム(ZrN)粒子(日本新金属株式会社製「ZrN-01」)、窒化バナジウム(VN)粒子(日本新金属株式会社製「VN-O」)、窒化ニオブ(NbN)粒子(日本新金属株式会社製「NbN-O」)、窒化タンタル(TaN)粒子(日本新金属株式会社製「TaN-O」)、窒化クロム(Cr2N)粒子(日本新金属株式会社製「Cr2N-O」)、炭化タンタル(TaC)粒子(日本新金属株式会社製「TaC」)、炭化チタン(TiC)粒子(日本新金属株式会社製「TiC-01」)、炭化ジルコニウム(ZrC)粒子(日本新金属株式会社製「ZrC-O」)、炭化ニオブ(NbC)粒子(日本新金属株式会社製「NbC」)、炭化バナジウム(VC)粒子(日本新金属株式会社製「VC」)、Al2O3粒子(大明化学製「TM-DAR」)を、表2の「第2粒子群配合比率」の欄に記載の配合比率で準備し、遊星ミルにより混合して第2粒子群(焼結体原料粒子)を得る。これらの粒子のうち、粉末以外は、結合材化合物の原料に該当する。[Example 2]
(Sample Nos. 201 to 245)
<Preparation of second particle group>
Sample No. obtained in Example 1; 103, 106, 109 powders, and commercially available titanium nitride (TiN) particles (“TiN-01” manufactured by Nippon New Metal Co., Ltd.), zirconium nitride (ZrN) particles (“ZrN-01” manufactured by Nippon New Metal Co., Ltd. ), vanadium nitride (VN) particles (“VN-O” manufactured by Nippon New Metal Co., Ltd.), niobium nitride (NbN) particles (“NbN-O” manufactured by Nippon New Metal Co., Ltd.), tantalum nitride (TaN) particles (Japan "TaN-O" manufactured by New Metals Co., Ltd.), chromium nitride (Cr N ) particles ("Cr N -O" manufactured by Nippon New Metals Co., Ltd.), tantalum carbide (TaC) particles (manufactured by Nippon New Metals Co., Ltd. " TaC”), titanium carbide (TiC) particles (“TiC-01” manufactured by Nippon New Metal Co., Ltd.), zirconium carbide (ZrC) particles (“ZrC-O” manufactured by Nippon New Metal Co., Ltd.), niobium carbide (NbC) particles (“NbC” manufactured by Nippon New Metal Co., Ltd.), vanadium carbide (VC) particles (“VC” manufactured by Nippon New Metal Co., Ltd.), and Al 2 O 3 particles (“TM-DAR” manufactured by Taimei Chemical Co., Ltd.). The second particle group (raw material particles for sintered body) is obtained by preparing at the mixing ratio described in the column of "Second particle group mixing ratio" and mixing with a planetary mill. Among these particles, particles other than powder correspond to raw materials of the binder compound.
<焼結体作製工程>
上記の第2粒子群(Pt製カプセルに充填する。これをベルト型高圧発生装置にて7GPa、1500℃の条件下で、30分維持して焼結して焼結体を得る。<Sintered compact manufacturing process>
The above second particle group (Pt capsule is filled. This is sintered by a belt type high pressure generator under conditions of 7 GPa and 1500° C. for 30 minutes to obtain a sintered body.
<分析評価>
上記で得られた第2粒子群及び焼結体をX線回折装置で測定した。各相のピーク強度比は、第2粒子群と焼結体とで一致していた。すなわち、焼結体中の各元素の組成比は、第2粒子群中の各元素の配合比を維持していることが確認された。<Analysis evaluation>
The second particle group and the sintered body obtained above were measured with an X-ray diffractometer. The peak intensity ratio of each phase was consistent between the second particle group and the sintered body. That is, it was confirmed that the composition ratio of each element in the sintered body maintained the compounding ratio of each element in the second particle group.
第2粒子群中の各元素の配合比から、結合材化合物中の金属元素の原子比率x2及び非金属元素の原子比率y2を算出し、これらを用いて、金属元素の原子比率x2と非金属元素の原子比率y2との比x2/y2の値を算出した。結果を表2の「x2/y2」の欄に示す。 From the compounding ratio of each element in the second particle group, the atomic ratio x2 of the metallic element and the atomic ratio y2 of the nonmetallic element in the binder compound are calculated, and using these, the atomic ratio x2 of the metallic element and the atomic ratio of the nonmetallic element A value of the ratio x2/y2 to the atomic ratio y2 of the element was calculated. The results are shown in the "x2/y2" column of Table 2.
<切削評価>
得られた焼結体を用いて、実施例1と同様の切削工具を作製し、実施例1と同様の切削条件で、耐摩耗性を評価した。結果を表2の「切削距離」の欄に示す。<Cutting evaluation>
Using the obtained sintered body, the same cutting tool as in Example 1 was produced, and under the same cutting conditions as in Example 1, the wear resistance was evaluated. The results are shown in the "cutting distance" column of Table 2.
<結果>
試料No.201~203の焼結体は、TiN、ZrN又はHfNを含む粉末((y1/x1)>1)、並びに、Ti、Zr、V、Nb、Ta又はCrの窒化物又は炭化物、もしくはAl2O3からなる結合材化合物を備え、y1/x1及びx2/y2の値が1より大きく、実施例に該当する。試料No.201~203の焼結体を用いて作製された工具は、実施例1の試料No.101(比較例に該当)の焼結体を用いて作製された工具よりも、切削距離が長く、耐摩耗性に優れていることが確認された。<Results>
Sample no. The sintered bodies of 201 to 203 are powders containing TiN, ZrN or HfN ((y1/x1)>1), and nitrides or carbides of Ti, Zr, V, Nb, Ta or Cr, or Al 2 O 3 , with values of y1/x1 and x2/y2 greater than 1, corresponding to the examples. Sample no. The tools manufactured using the sintered bodies of 201 to 203 are sample No. 1 of Example 1. It was confirmed that the cutting distance was longer and the wear resistance was superior to that of the tool manufactured using the sintered body of No. 101 (corresponding to the comparative example).
[実施例3]
(試料No.301~323)
<第2粒子群の準備>
実施例1で得られた試料No.103、106、109の粉末、実施例2で用いた市販のTiN粒子、ZrN粒子、VN粒子、NbN粒子、TaN粒子、Cr2N粒子、TaC粒子、TiC粒子、ZrC粒子、NbC粒子、VC粒子、Al2O3粒子、及び、立方晶窒化硼素(グローバルダイヤ社製「FBN-AM 0-2」)を、表3の「第2粒子群配合比率」の欄に記載の配合比率で準備し、遊星ミルにより混合して第2粒子群を得る。これらの粒子のうち、粉末及び立方晶窒化硼素粒子以外は、結合材化合物の原料粒子である。[Example 3]
(Sample Nos. 301 to 323)
<Preparation of second particle group>
Sample No. obtained in Example 1; 103, 106, 109 powders, commercially available TiN particles, ZrN particles, VN particles, NbN particles, TaN particles, Cr 2 N particles, TaC particles, TiC particles, ZrC particles, NbC particles, VC particles used in Example 2 , Al 2 O 3 particles, and cubic boron nitride (“FBN-AM 0-2” manufactured by Global Dia Co., Ltd.) were prepared at the compounding ratio described in the “2nd particle group compounding ratio” column of Table 3. , and mixed by a planetary mill to obtain a second particle group. Among these particles, particles other than powder and cubic boron nitride particles are raw material particles of the binder compound.
<焼結体の作製>
上記の第2粒子群をPt製カプセルに充填する。これをベルト型高圧発生装置にて7GPa、1500℃の条件下で、30分維持して焼結して焼結体を得る。<Production of sintered body>
A capsule made of Pt is filled with the second particle group. This is sintered for 30 minutes under conditions of 7 GPa and 1500° C. in a belt type high pressure generator to obtain a sintered body.
<分析評価>
上記で得られた第2粒子群及び焼結体をX線回折装置で測定した。各相のピーク強度比は、第2粒子群と焼結体とで一致していた。すなわち、焼結体中の各元素の組成比は、第2粒子群中の各元素の配合比を維持していることが確認された。<Analysis evaluation>
The second particle group and the sintered body obtained above were measured with an X-ray diffractometer. The peak intensity ratio of each phase was consistent between the second particle group and the sintered body. That is, it was confirmed that the composition ratio of each element in the sintered body maintained the compounding ratio of each element in the second particle group.
第2粒子群中の各元素の配合比から、結合材化合物中の金属元素の原子比率x2及び非金属元素の原子比率y2を算出し、これらを用いて、金属元素の原子比率x2と非金属元素の原子比率y2との比x2/y2の値を算出した。結果を表3の「x2/y2」の欄に示す。 From the compounding ratio of each element in the second particle group, the atomic ratio x2 of the metallic element and the atomic ratio y2 of the nonmetallic element in the binder compound are calculated, and using these, the atomic ratio x2 of the metallic element and the atomic ratio of the nonmetallic element A value of the ratio x2/y2 to the atomic ratio y2 of the element was calculated. The results are shown in the "x2/y2" column of Table 3.
<切削評価>
得られた焼結体を用いて、実施例1と同様の切削工具を作製し、実施例1と同様の切削条件で、耐摩耗性を評価した。結果を表3の「切削距離」の欄に示す。<Cutting evaluation>
Using the obtained sintered body, the same cutting tool as in Example 1 was produced, and under the same cutting conditions as in Example 1, the wear resistance was evaluated. The results are shown in the "cutting distance" column of Table 3.
<結果>
試料No.301~323の焼結体は、TiN、ZrN又はHfNを含む粉末(y1/x1>1)及び立方晶窒化硼素を備え、y1/x1の値が1より大きく実施例に該当する。試料No.301~323の焼結体を用いて作製された工具は、実施例1の試料No.101の焼結体を用いて作製された工具よりも、切削距離が長く、耐摩耗性に優れていることが確認された。
<Results>
Sample no. Sintered bodies 301 to 323 comprise powders containing TiN, ZrN or HfN (y1/x1>1) and cubic boron nitride , and the value of y1/x1 is greater than 1 and correspond to examples. Sample no. The tools manufactured using the sintered bodies of 301 to 323 are sample No. 1 of Example 1. It was confirmed that the cutting distance was longer and the wear resistance was superior to that of the tool manufactured using the sintered body of No. 101.
以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。 Although the embodiments and examples of the present invention have been described as above, it is planned from the beginning that the configurations of the above-described embodiments and examples will be appropriately combined and variously modified.
今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed this time are illustrative in all respects and should not be considered restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above-described embodiments and examples, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.
Claims (7)
前記粉末由来材料の前記第1金属元素の窒化物及び酸窒化物の合計の含有量は、90質量%以上であり、
前記粉末由来材料の含有量は、1体積%以上であり、
前記粉末由来材料において、前記第1金属元素、アルミニウムおよび珪素の合計の原子比率x1と窒素及び酸素の合計の原子比率y1との比y1/x1の値が1より大きく、
前記粉末由来材料は、立方晶構造を有する、焼結体。 A powder-derived material containing either or both of a nitride and an oxynitride of at least one first metal element selected from the group consisting of Group 4 elements, vanadium, tantalum and Group 6 elements of the periodic table with
The total content of the nitride and oxynitride of the first metal element in the powder-derived material is 90% by mass or more,
The content of the powder-derived material is 1% by volume or more,
In the powder-derived material, the ratio y1/x1 of the total atomic ratio x1 of the first metal element , aluminum and silicon to the total atomic ratio y1 of nitrogen and oxygen is greater than 1,
A sintered body, wherein the powder-derived material has a cubic crystal structure.
前記粉末由来材料の前記第1金属元素の窒化物及び酸窒化物の合計の含有量は、90質量%以上であり、The total content of the nitride and oxynitride of the first metal element in the powder-derived material is 90% by mass or more,
前記粉末由来材料の含有量は、1体積%以上であり、 The content of the powder-derived material is 1% by volume or more,
前記粉末由来材料において、前記第1金属元素、アルミニウムおよび珪素の合計の原子比率x1と窒素及び酸素の合計の原子比率y1との比y1/x1の値が1より大きく、 In the powder-derived material, the ratio y1/x1 of the total atomic ratio x1 of the first metal element, aluminum and silicon to the total atomic ratio y1 of nitrogen and oxygen is greater than 1,
前記粉末由来材料は、立方晶構造を有し、 The powder-derived material has a cubic crystal structure,
さらに少なくとも1種の結合材化合物を、合計で0.5体積%以上50体積%以下含み、 Furthermore, at least one binder compound is contained in a total of 0.5% by volume or more and 50% by volume or less,
前記結合材化合物は、周期律表の第4族元素、第5族元素及び第6族元素からなる群より選択される少なくとも1種の第2金属元素と、炭素、窒素及び酸素の少なくともいずれかとからなり、 The binder compound contains at least one second metal element selected from the group consisting of Group 4 elements, Group 5 elements and Group 6 elements of the periodic table, and at least one of carbon, nitrogen and oxygen. consists of
前記結合材化合物において、前記第2金属元素およびアルミニウムの合計の原子比率x2と炭素、窒素及び酸素の合計の原子比率y2との比x2/y2の値が1以上である、焼結体。 A sintered body, wherein the ratio x2/y2 of the total atomic ratio x2 of the second metal element and aluminum to the total atomic ratio y2 of carbon, nitrogen and oxygen in the binder compound is 1 or more.
前記結合材化合物は、周期律表の第4族元素、第5族元素及び第6族元素からなる群より選択される少なくとも1種の第2金属元素と、炭素、窒素及び酸素の少なくともいずれかとからなり、
前記結合材化合物において、前記第2金属元素およびアルミニウムの合計の原子比率x2と炭素、窒素及び酸素の合計の原子比率y2との比x2/y2の値が1以上である、請求項1に記載の焼結体。 The sintered body further contains at least one binder compound in a total of 0.5% by volume or more and 50% by volume or less,
The binder compound contains at least one second metal element selected from the group consisting of Group 4 elements, Group 5 elements and Group 6 elements of the periodic table, and at least one of carbon, nitrogen and oxygen. consists of
2. The binder compound according to claim 1 , wherein the ratio x2/y2 of the total atomic ratio x2 of the second metal element and aluminum to the total atomic ratio y2 of carbon, nitrogen and oxygen is 1 or more. sintered body.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018134072 | 2018-07-17 | ||
JP2018134072 | 2018-07-17 | ||
PCT/JP2019/023116 WO2020017191A1 (en) | 2018-07-17 | 2019-06-11 | Sintered body, powder, and production method for powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020017191A1 JPWO2020017191A1 (en) | 2021-08-05 |
JP7226446B2 true JP7226446B2 (en) | 2023-02-21 |
Family
ID=69164001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020530935A Active JP7226446B2 (en) | 2018-07-17 | 2019-06-11 | sintered body |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210230073A1 (en) |
EP (1) | EP3825297A1 (en) |
JP (1) | JP7226446B2 (en) |
CN (1) | CN112399966A (en) |
WO (1) | WO2020017191A1 (en) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5529039B2 (en) * | 1972-02-02 | 1980-07-31 | ||
JPS6016867A (en) * | 1983-07-07 | 1985-01-28 | 東芝タンガロイ株式会社 | High hardness sintered body |
JPH01167206A (en) * | 1987-12-22 | 1989-06-30 | Kobe Steel Ltd | Production of niobium nitride |
JPH06100302A (en) * | 1991-04-30 | 1994-04-12 | Toshiba Tungaloy Co Ltd | B1 type tantalum nitride of stoichiometric composition and its sintered compact |
JPH06305732A (en) * | 1993-04-27 | 1994-11-01 | Toshiba Tungaloy Co Ltd | Wc type tantalum nitride and method for synthesizing the same |
DE10297020T5 (en) * | 2001-07-03 | 2004-08-12 | Honda Giken Kogyo K.K. | Multi-component ceramic powder, method for producing multi-component ceramic powder, sintered body and method for producing a sintered body |
US6814775B2 (en) * | 2002-06-26 | 2004-11-09 | Diamond Innovations, Inc. | Sintered compact for use in machining chemically reactive materials |
CN1312078C (en) * | 2004-10-29 | 2007-04-25 | 华中科技大学 | Submicron grain Ti(C,N)-base cermet and its prepn process |
JP6237530B2 (en) | 2014-08-08 | 2017-11-29 | 住友電気工業株式会社 | Hard material, sintered body, tool using sintered body, method for manufacturing hard material, and method for manufacturing sintered body |
CN105439562A (en) * | 2015-12-09 | 2016-03-30 | 燕山大学 | Preparation method of multi-component transition metal covalent bond compound of single-phase simple crystal structure |
CN108464247A (en) | 2017-02-23 | 2018-08-31 | 赖郑惠珠 | Tool is integrally formed the pet box of ontology |
-
2019
- 2019-06-11 CN CN201980046646.4A patent/CN112399966A/en active Pending
- 2019-06-11 US US17/259,552 patent/US20210230073A1/en not_active Abandoned
- 2019-06-11 JP JP2020530935A patent/JP7226446B2/en active Active
- 2019-06-11 WO PCT/JP2019/023116 patent/WO2020017191A1/en unknown
- 2019-06-11 EP EP19837298.9A patent/EP3825297A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
CN112399966A (en) | 2021-02-23 |
JPWO2020017191A1 (en) | 2021-08-05 |
EP3825297A1 (en) | 2021-05-26 |
WO2020017191A1 (en) | 2020-01-23 |
US20210230073A1 (en) | 2021-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7219215B2 (en) | Sintered body and cutting tool containing the same | |
JP6992808B2 (en) | Manufacturing method of cemented carbide, cutting tools including it and cemented carbide | |
JPWO2020090280A1 (en) | Manufacturing method of cemented carbide, cutting tool and cemented carbide | |
JP7388431B2 (en) | Cemented carbide and cutting tools containing it as a base material | |
JP6990319B2 (en) | Cubic boron nitride sintered body | |
KR20220095233A (en) | Cubic boron nitride sintered compact | |
JP7392423B2 (en) | Cemented carbide and cutting tools containing it as a base material | |
JP7392714B2 (en) | Cemented carbide and cutting tools containing it as a base material | |
JP6798648B1 (en) | Cubic boron nitride sintered body | |
JP6990320B2 (en) | Cubic boron nitride sintered body | |
JP7226446B2 (en) | sintered body | |
JP7098969B2 (en) | Cemented Carbide, Cutting Tools Containing It, Cemented Carbide Manufacturing Method and Cutting Tool Manufacturing Method | |
JP7311826B1 (en) | cemented carbide | |
JP7517483B2 (en) | Cemented carbide and cutting tools containing it as a substrate | |
WO2021124401A1 (en) | Cubic boron nitride sintered body | |
JP7346751B1 (en) | Cubic boron nitride sintered body | |
WO2020036009A1 (en) | Hard material, sintered body, powder, and method of manufacturing hard material | |
JP7494952B2 (en) | Cemented carbide and cutting tools containing it as a substrate | |
JP7533839B1 (en) | Hardmetal and cutting tools |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210113 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220906 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230123 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7226446 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |