CN1312078C - Submicron grain Ti(C,N)-base cermet and its prepn process - Google Patents

Submicron grain Ti(C,N)-base cermet and its prepn process Download PDF

Info

Publication number
CN1312078C
CN1312078C CNB2004100610259A CN200410061025A CN1312078C CN 1312078 C CN1312078 C CN 1312078C CN B2004100610259 A CNB2004100610259 A CN B2004100610259A CN 200410061025 A CN200410061025 A CN 200410061025A CN 1312078 C CN1312078 C CN 1312078C
Authority
CN
China
Prior art keywords
sintering
metal
mutually
phase
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100610259A
Other languages
Chinese (zh)
Other versions
CN1609052A (en
Inventor
熊惟皓
崔崑
余立新
郑勇
丰平
夏阳华
李晨辉
陆庆忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CNB2004100610259A priority Critical patent/CN1312078C/en
Publication of CN1609052A publication Critical patent/CN1609052A/en
Application granted granted Critical
Publication of CN1312078C publication Critical patent/CN1312078C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The present invention discloses a submicron crystal particle Ti(C, N)-base metal ceramic and a making method thereof, which relates to a making method of a metal ceramic material and aims to enable sintered alloy to have a submicron crystal particle structure, simultaneously have high hardness and toughness and increase the alloy strength. The metal ceramic is made from Ti of IVB, VB and VIB transition groups and one kind or more than one kind of metallic element carbides, nitrides or multielement complex sosoloid carbon nitride ceramic powder and metal powder of iron family elements of Ni, Co, etc. through the working procedures of mixing, high-energy ball milling, drying, pressing forming, sintering in vacuum, hot isostatic pressing, etc. The hard phase crystal size of the metal ceramic is 0.6 to 1.0 mum which reaches the submicron order; four metallographic structures of a black core phase, a white core phase, a grey annular phase and a white binding phase can be observed through a scanning electron microscope; compared with the past metal ceramics, the metal ceramic has obviously improved hardness and obdurability, and can be applied to cutting tools, cutters and various wear parts.

Description

Sub-micron grain Ti (C, N) based ceramic metal and preparation method thereof
Technical field
The present invention relates to cermet material, particularly sub-micron grain Ti (C, N) based ceramic metal and preparation method thereof.
Background technology
Sintering metal has that density is low, hardness and red hardness are higher than Wimet, chemical stability and good in oxidation resistance,, thermal expansivity little to the frictional coefficient of steel is higher than performance characteristics such as WC-Co Wimet, is suitable for as cutting tool, measurer, mould, wear part etc.Early stage sintering metal composition is TiC-Mo-Ni, and its wear resistance is better than the WC-Co Wimet, but intensity and toughness is far inferior to the WC-Co Wimet, and this has limited ceramic-metallic range of application.Rudy finds to add an amount of TiN and improves ceramic-metallic toughness effectively in sintering metal, can be applicable to the High Speed Machining of steel, described in No. 3971656, United States Patent (USP), its micro-metallographic structure mainly is made up of three parts: titanium carbonitride core phase, on every side for containing the carbonitride annular phase of Mo, Ti, all the other are the bonding phase to core mutually.After this relevant Ti (C, N) research of based ceramic metal rolls up, the carbide of IVB, VB, VIB transiting group metal elements, nitride ceramics join in the alloy as additive, and to the optimization of bonding phase alloy composition, the use properties that makes sintering metal be applied to cutting tool constantly improves, and the application of polynary compound sosoloid carbonitride powder has also improved ceramic-metallic use properties.Chinese patent 88107079.3 provides a kind of cermet cutting tool, and its composition comprises Ti, Mo, W, Ta, Nb, Cr, Co, Ni, C, N etc., and the grain fineness number of carbonitride hard phase is a micron order in the alloy.Chinese patent 94102287.0 provides a kind of sintering metal and preparation method thereof, used starting material are the (Ti of grain-size<1.5 μ m, W, Ta, Nb) C, Ti (C, N) and WC powder, they and Ni, the pulverizing together of Co powder, compacting sintering are made, and the sintered alloy hard has a core annular phase structure mutually mutually, and core is its composition Ti (C mutually, N), annular is mutually for containing the carbonitride of Ti, W, Ta, Nb.Hard phase average crystal grain diameter<1.5 μ m.Chinese patent 96121920.3 provides a kind of Ti (C, N) based ceramic metal, it has a core annular phase structure mutually, be distributed in around the core phase but annular is mutually discontinuous, so that core partly be exposed to mutually metal bonding mutually in, and described discontinuous geminus hard phase volume umber is 30% or more, and this sintering metal cutting tip presents superior resistance to fracture.Chinese patent 01133646.3 a kind of grain refining is provided Ti (C, N) based ceramic metal, but its main preparation technology's characteristics are for to prepare powder mix with the mechanical alloying method.Generally speaking, ceramic-metallic obdurability awaits further raising.Table 1 is the trade mark and the performance of domestic and international several common metal ceramals.
Meeting commonly used belongs to the ceramic trade mark and performance on table 1 domestic and international market
Alloy designations Major ingredient Hardness (HRA) Bending strength (MPa) Use properties
Japan N302 Ti(C,N),WC,TaC, Ni/Co 93.0~94.0 1200~1400 High-wearing feature
Japan N308 Ti(C,N),WC,TaC, Ni/Co 91.0~92.0 1600~1800 High tenacity
Japan N310 Ti(C,N),WC,TaC, Ni/Co 91.0~92.0 1700~1900 High tenacity more
Japan N350 (Ti,W,Ta)(C,N),Ni/Co 91.5~92.5 1700~1900 High tenacity more
China YN05 TiC,Mo,Ni ≥93.0 ≥950 High-wearing feature
China YN10 Ti(C,N),Mo,Ni ≥92.5 ≥1200 Toughness is higher than YN05
China YN20 Ti(C,N),Mo,Ni ≥91.5 ≥1400 Toughness preferably
China YN30 Ti(C,N),Mo,Ni ≥90.5 ≥1550 High tenacity
Summary of the invention
(C, N) based ceramic metal is so that its hardness and obdurability have clear improvement than present sintering metal performance to the invention provides a kind of sub-micron grain Ti.Another task of the present invention provide described sub-micron grain Ti (C, the N) preparation method of based ceramic metal, thereby make sintered alloy have the sub-micron crystal kernel structure, have higher hardness and toughness concurrently, have very low porosity, thereby improve the intensity of alloy.
(C, N) based ceramic metal are made of with bonding hard sub-micron grain Ti of the present invention mutually mutually, the expression formula of hard phase composition is (Ti, M) (C, N), M is two or more among metallic element Cr, the Mo except that Ti, W, Nb, the Ta in IVB, VB, the VIB transition group; Bonding phase composition is Ni, Co or its mixture; It is characterized in that: described sintering metal moiety atomic percent is: Ti 24~42, Mo 4.5~7.0, W 1.2~16.0, Ta 0~3.0, Nb 0~5.0, Cr0~4.0, Co 0~13, Ni 6.1~30, all the other compositions are C and N; Hard phase grain fineness number reaches submicron order, is 0.6~1.0 μ m; Observe four kinds of metallographic structures under scanning electronic microscope: black core phase, white core phase, grey annular bond mutually with white mutually; The black core be mutually Ti (C, N), white core mutually for the sintering commitment form (Ti, M) (C, N) phase, grey annular are (Ti, M) (C, the N) phase, but the content of M is lower in mutually than white core of sintering later stage formation mutually.
(it is further characterized in that for C, N) based ceramic metal: middle mutually C of hard and N content mass percent are described sub-micron grain Ti: N/ (C+N)=0.1~0.7; The volume parts of white core phase is greater than the volume parts of black core phase.
(according to preparation technology's difference, white bonding can contain two or more among 1~20% metallic element Cr, Mo except that Ti, W, Nb, the Ta in mutually to described sub-micron grain Ti for C, N) based ceramic metal.
Sub-micron grain Ti of the present invention (C, the N) preparation method of based ceramic metal may further comprise the steps successively:
(1) can satisfy the above-mentioned Ti of the present invention (C, N) carbon of based ceramic metal composition, nitride ceramics powder mix with metal-powder, adopt high energy ball mill to carry out wet-milling, make powder mix refine to submicron order; Described ceramic powder is binary carbide, nitride or its polynary carbonitride sosoloid of IVB, VB, VIB magnesium-yttrium-transition metal, and metal-powder adopts Ni, Co or its mixture;
(2) powder mix adds forming agent, drying, the back compression moulding of granulating;
(3) rolled-up stock is carried out degreasing and sintering in vacuum sintering furnace, in the hot isostatic pressing stove, carry out HIP again and handle; Perhaps rolled-up stock carries out sintering in sintering one hot isostatic pressing stove, and its degreasing, sintering and hot isostatic pressing are finished in a heat-processed.
(C, the N) preparation method of based ceramic metal is characterized in that the granularity Fsss≤20 μ m of the ceramic powder in the described starting material, metal-powder Fsss≤3 μ m to described sub-micron grain Ti; Described forming agent is paraffin or polyvinyl alcohol.
Described sub-micron grain Ti (C, N) preparation method of based ceramic metal, carry out high energy ball mill that wet-milling is adopted and to be agitating ball mill or planetary ball mill, by controlling milling parameters: the above or planetary ball mill rotating disk revolution speed 450rpm of the linear velocity 0.5m/s of ball-milling medium motion; Ratio of grinding media to material 5: 1; 2,6,12,24 hours ball milling time; Make powder mix refine to submicron order.
Ti (C, N) fracture toughness property of based ceramic metal is a face-centred cubic structure, as Ti (C, when N) particle is thick, transgranular fracture very easily takes place, and also significant deflection or bifurcated can not take place during the expansion of the continuous transcrystalline of crackle, sintering metal presents stronger brittle rupture feature; And when Ti (C, the transgranular fracture probability reduced greatly when N) particle was thin, crackle more easily (C, N) expand with bonding interface mutually, causes minimizing of brittle rupture phenomenon and crack deflection and toughness reinforcing along Ti by particle.In addition, because black Ti (C, N) core and the annular composition difference between mutually, make and have tensile stress in the black core mutually, make the black core be easy to take place transgranular fracture (96121920.3) mutually, therefore reduce black Ti (C, N) granularity of core phase and reduction black Ti (C, N) ratio of core phase all helps reducing the microtexture stress of alloy, thereby improves the obdurability of alloy.
Cermet material weave construction provided by the invention is different from Chinese patent 96121920.3, but can reduce the structural stress between black core phase and the annular phase equally, and hard phase grain fineness number is a submicron order, so its hardness and obdurability had clear improvement than former sintering metal performance.
Fig. 1 is that (C, the N) scanning electron photomicrograph of based ceramic metal have only three kinds of metallographic structures: black core phase, grey annular bond mutually with white micron order Ti mutually.Fig. 2 is a kind of sub-micron grain Ti (C provided by the invention, N) scanning electron photomicrograph of based ceramic metal, its hard phase grain fineness number reaches submicron order, be 0.6~1.0 μ m, structure can be observed four kinds of metallographic structures under scanning electronic microscope: black core phase, white core phase, grey annular bond mutually with white mutually, the black core be mutually Ti (C, N); The white core mutually for sintering commitment formation (Ti, M) (M is one or more IVB, VB, VIB transition group other metal except that Ti for C, N) phase.The grey annular mutually for the sintering later stage form (Ti, M) (its hardness and obdurability had clear improvement than former sintering metal performance for C, N) phase, but the content of M is lower in mutually than white core.
The preparation method of cermet material of the present invention, in its step, high-energy ball milling technology and sintering process are crucial, high-energy ball milling makes powder be crushed to submicron order, thereby makes sintered alloy have the sub-micron crystal kernel structure, makes alloy have higher hardness and toughness concurrently; Hot isostatic pressing makes sintered alloy have very low porosity, thereby improves the intensity of alloy.
Description of drawings
Fig. 1 is micron order Ti (C, N) the ceramic-metallic scanning electron photomicrograph of basic technology;
Fig. 2 is sub-micron grain Ti of the present invention (C, N) scanning electron photomicrograph of based ceramic metal;
Fig. 3 is ceramic-metallic degreasing process;
Fig. 4 is ceramic-metallic vacuum sintering technology;
Fig. 5 is ceramic-metallic sintering-heat and other static pressuring processes.
Embodiment
Below in conjunction with example the present invention is further described.The used raw-material parameter of the present invention is as shown in table 2.
Table 2 starting powder granularity, composition (comprising foreign gas) content (wt%)
The powder title Granularity (Fsss, μ m) O 2(%) Foreign matter content N 2(%) C(%)
TiC TiN WC Mo (Ti,w)C NbC TaC Ni Co Cr 2.58 8.1 2.1 2.8 2.5 2.37 2.2 2.8 1.23 11.3 0.39 0.34 0.3 0.1 0.19 0.24 0.14 0.15 0.02 0.13 0.035 5.35 0.32 0.019 0.037 19.3 0.31 5.92 0.0012 12.61 11.2 6.2 0.15
Example 1:
Selecting TiC, TiN, WC, Mo, Ni in the table 2 for use is that starting material add an amount of carbon dust, make preparation Ti (C, N) each moiety atomic percent of based ceramic metal is approximately: Ti 38, and Mo 4.5, and W 1.3, and Ni 13, and N 6.5, all the other are C.Specimen preparation adopts stirring ball-milling, sintering-heat and other static pressuring processes or vacuum sintering.Stirring ball-milling must make the linear velocity of ball-milling medium motion reach more than the 0.5m/s; Ratio of grinding media to material is 5: 1; 2,6,12,24 hours respectively ball milling time.Add an amount of forming agent in the powder mix mechanical milling process, oven dry is after sintering is carried out in compression molding then.Sintering carries out in sintering-hot isostatic pressing all-in-one oven, and the sintering temperature sintering temperature is 1420 ℃, uses argon gas to make transmission medium, and atmosphere pressures is 1.7MPa.Powder to ball milling 24h also carries out the vacuum sintering ball milling.The performance of alloy is as shown in table 3.The vacuum sintering alloy is owing to the porosity height, and intensity is lower.Ball milling 6h alloy hard phase particle sizes is a micron order, and the scanning electron microscopy metallograph as shown in Figure 1.Reach 12h when above when the stirring ball-milling time, the hard phase particle sizes of alloy reaches submicron order, and Fig. 2 is the scanning electron microscopy metallograph of stirring ball-milling 12h alloy.
The compression moulding part carried out Tuo La and sintering in vacuum sintering furnace after, carrying out HIP again in the hot isostatic pressing stove handles, rolled-up stock also can carry out sintering in sintering one hot isostatic pressing stove, it takes off cured, sintering and hot isostatic pressing can be finished in a heat-processed, and corresponding sintering is shown in Fig. 3,4,5.
Alloy hard phase particle sizes of different stirring ball-milling time of table 3 and performance
Ball-milling technology Sintering process HRA KIC(MNm -3/2) TRS Hard phase grain fineness number Porosity
Stirring ball-milling 2h stirring ball-milling 6h stirring ball-milling 12h stirring ball-milling 24h stirring ball-milling 24h Sintering-HIP sintering-HIP sintering-HIP sintering-high temperature insostatic pressing (HIP) vacuum-sintering 90.2 90.5 91.0 91.3 91.5 8.6 8.93 9.48 9.53 9.13 1736 1859 1931 2008 1156 2.01 1.40 0.90 0.68 0.70 A02, B00 A02, B00 A02, B00 A02, B00 A06, B06
Example 2:
Select for use the starting material in the table 2 to prepare burden, (C, N) each moiety atomic percent of based ceramic metal is as shown in table 4 to make the various Ti of preparation.Specimen preparation adopts stirring ball-milling, sintering-heat and other static pressuring processes.Stirring ball-milling must make the linear velocity of ball-milling medium motion reach more than the 0.5m/s; Ratio of grinding media to material is 5: 1; 12 hours respectively stirring ball-milling time.Add an amount of forming agent in the powder mix mechanical milling process, oven dry is after sintering is carried out in compression molding then.Sintering carries out in sintering-hot isostatic pressing all-in-one oven, and the sintering temperature sintering temperature is 1420 ℃, uses argon gas to make transmission medium, and atmosphere pressures is 1.7MPa.The performance and the hard phase particle sizes of each alloy are as shown in table 5.
The various ceramic-metallic compositions of table 4
The prescription sequence number Adopt starting material Ti (C, N) based ceramic metal alloy ingredient (atm.%)
Ti Mo W Ta Nb Ni Co Cr N C
1 TiC,TiN,Mo,WC,Ni,C 42 4.5 1.2 6.1 5.8 All the other
2 TiC,TiN,Mo,WC,Ni,C 37 4.5 1.3 13 6.5 All the other
3 TiC,TiN,Mo,WC,Ni,Co, C 32 7.0 1.4 21 5.0 6.8 All the other
4 TiC,TiN,Mo,WC,NbC,Ni, C 27 6.2 1.5 5.0 30 7.1 All the other
5 TiC,TiN,Mo,WC,Co,C 37 4.5 1.3 13 6.5 All the other
6 TiC,TiN,Mo,WC,NbC,Ni, C 40 3.3 12 5.6 All the other
7 TiC,TiN,Mo,WC,TaC,Ni, C 41 1.8 12 5.6 All the other
8 (Ti,W)C,TiN,Ni,TaC,C 24 16 3.0 20 9 All the other
9 TiC,TiN,Mo,WC,Ni,Cr,C 37 4.5 1.3 9 4 6.5 All the other
Various ceramic-metallic performance and alloy hard phase particle sizes that table 5 prepares with the stirring ball-milling method
The material prescription sequence number HRA KIC(MNm -3/2) TRS Hard phase grain fineness number Porosity
1 2 3 4 5 6 7 8 9 92.0 91.0 88.6 84.7 91.8 90.6 90.0 88.5 92.0 8.06 9.48 13.67 8.57 9.08 9.53 9.70 7.82 1789 1931 2259 2261 1724 1771 2109 2024 1634 0.92 0.90 0.86 0.82 0.94 0.88 0.92 0.98 0.96 A02,B00 A02,B00 A02,B00 A02,B00 A04,B00 A02,B00 A02,B00 A02,B00 A02,B00
Example 3:
Selecting TiC, TiN, WC, Mo, Ni in the table 2 for use is that starting material add an amount of carbon dust, make preparation Ti (C, N) each moiety atomic percent of based ceramic metal is approximately: Ti 38, and Mo 4.5, and W 1.3, and Ni 13, and N 6.5, all the other are C.Specimen preparation adopts planetary ball mill, sintering-heat and other static pressuring processes.Planetary ball mill rotating disk revolution speed is set at 450rpm.The ball milling time is respectively 12; 24h.Add an amount of forming agent behind the powder mix ball milling, oven dry is after sintering is carried out in compression molding then.Sintering carries out in sintering-hot isostatic pressing all-in-one oven, and the sintering temperature sintering temperature is 1420 ℃, uses argon gas to make transmission medium, and atmosphere pressures is 1.7MPa.The performance and the hard phase grain fineness number of 12,24 hours alloys of ball milling are as shown in table 6.
Table 6 planetary ball mill Ti (C, N) performance of based ceramic metal and hard phase grain fineness number
Ball-milling technology HRA KIC(MNm -3/2) TRS Hard phase grain fineness number Porosity
Planetary ball mill 12h planetary ball mill 24h 90.8 91.1 9.06 9.47 1856 1973 1.20 0.80 A02,B00 A02,B00

Claims (6)

1. (C, N) based ceramic metal are made of with bonding hard sub-micron grain Ti mutually mutually, the expression formula of hard phase composition is (Ti, M) (C, N), M is two or more among metallic element Cr, the Mo except that Ti, W, Nb, the Ta in IVB, VB, the VIB transition group; Bonding phase composition is Ni, Co or its mixture; It is characterized in that: described sintering metal moiety atomic percent is: Ti24~42, Mo4.5~7.0, W1.2~16.0, Ta0~3.0, Nb0~5.0, Cr0~4.0, Co0~13, Ni6.1~30, all the other compositions are C and N; Hard phase grain fineness number reaches submicron order, is 0.6~1.0 μ m; Observe four kinds of metallographic structures under scanning electronic microscope: black core phase, white core phase, grey annular bond mutually with white mutually; The black core be mutually Ti (C, N), white core mutually for the sintering commitment form (Ti, M) (C, N) phase, grey annular are (Ti, M) (C, the N) phase, but the content of M is lower in mutually than white core of sintering later stage formation mutually.
Sub-micron grain Ti 2. as claimed in claim 1 (C, N) based ceramic metal is characterized in that: middle mutually C of hard and N content mass percent are: N/ (C+N)=0.1~0.7; The volume parts of white core phase is greater than the volume parts of black core phase.
3. (C, N) based ceramic metal is characterized in that: white bonding also contains two or more among 1~20% metallic element Cr, Mo except that Ti, W, Nb, the Ta in mutually to sub-micron grain Ti as claimed in claim 1 or 2.
Each described sub-micron grain Ti among the claim 1-3 (C, the N) preparation method of based ceramic metal may further comprise the steps successively:
(1) can satisfy each Ti among the claim 1-3 (C, N) carbon of based ceramic metal composition, nitride ceramics powder mix with metal-powder, adopt high energy ball mill to carry out wet-milling, make powder mix refine to submicron order; Described ceramic powder is binary carbide, nitride or its polynary carbonitride sosoloid of IVB, VB, VIB magnesium-yttrium-transition metal, and metal-powder adopts Ni, Co or its mixture;
(2) powder mix adds forming agent, drying, the back compression moulding of granulating;
(3) rolled-up stock is carried out degreasing and sintering in vacuum sintering furnace, in the hot isostatic pressing stove, carry out HIP again and handle; Perhaps rolled-up stock carries out sintering in sintering-hot isostatic pressing stove, and its degreasing, sintering and hot isostatic pressing are finished in a heat-processed.
5. (C, the N) preparation method of based ceramic metal is characterized in that the granularity Fsss≤20 μ m of the ceramic powder in the described starting material, metal-powder Fsss≤3 μ m to sub-micron grain Ti as claimed in claim 4; Described forming agent is paraffin or polyvinyl alcohol.
6. according to claim 4 or 5 described sub-micron grain Ti (C, N) preparation method of based ceramic metal, it is characterized in that carrying out high energy ball mill that wet-milling is adopted is agitating ball mill or planetary ball mill, by controlling milling parameters: the above or planetary ball mill rotating disk revolution speed 450rpm of the linear velocity 0.5m/s of ball-milling medium motion; Ratio of grinding media to material 5: 1; 2,6,12 or 24 hours ball milling time; Make powder mix refine to submicron order.
CNB2004100610259A 2004-10-29 2004-10-29 Submicron grain Ti(C,N)-base cermet and its prepn process Expired - Fee Related CN1312078C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100610259A CN1312078C (en) 2004-10-29 2004-10-29 Submicron grain Ti(C,N)-base cermet and its prepn process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100610259A CN1312078C (en) 2004-10-29 2004-10-29 Submicron grain Ti(C,N)-base cermet and its prepn process

Publications (2)

Publication Number Publication Date
CN1609052A CN1609052A (en) 2005-04-27
CN1312078C true CN1312078C (en) 2007-04-25

Family

ID=34764396

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100610259A Expired - Fee Related CN1312078C (en) 2004-10-29 2004-10-29 Submicron grain Ti(C,N)-base cermet and its prepn process

Country Status (1)

Country Link
CN (1) CN1312078C (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE534073C2 (en) * 2008-12-18 2011-04-19 Seco Tools Ab cermet
GB0922488D0 (en) * 2009-12-23 2010-02-03 Advanced Interactive Materials Improvements in or relating to hot isostatic pressing
CN101792880B (en) * 2010-03-12 2015-07-01 四川大学 Weak core ring structured novel cermet material based on (Ti, M) (C, N) solid solution powder
CN102805663A (en) * 2012-07-06 2012-12-05 华中科技大学同济医学院附属同济医院 Operative instrument with mechanical cutting and hemostasis functions
CN103589929B (en) * 2013-10-17 2015-10-07 株洲钻石切削刀具股份有限公司 Cermet preparation method and products thereof
CN103710602A (en) * 2014-01-08 2014-04-09 湖北宝德隆商贸有限公司 Metal ceramic kitchen knife, fruit knife, slaughter knife, and manufacture method thereof
CN107282937B (en) * 2016-04-12 2020-08-11 海南大学 Superfine multi-element composite ceramic powder and preparation method thereof
CN106521213A (en) * 2016-12-26 2017-03-22 苏州新锐合金工具股份有限公司 Static pressure forming method for Ti(C, N) base metal ceramic material
EP3825297A1 (en) * 2018-07-17 2021-05-26 Sumitomo Electric Industries, Ltd. Sintered body, powder, and production method for powder
CN109053191B (en) * 2018-08-17 2021-11-30 中南大学 Titanium carbonitride based cermet without binder phase and preparation method thereof
CN109576545B (en) * 2018-12-12 2020-09-25 南京航空航天大学 Ti (C, N) -based metal ceramic with mixed crystal structure and preparation method thereof
CN109576547B (en) * 2018-12-21 2021-06-04 中南大学 Ternary boride reinforced Ti (C, N) -based metal ceramic material and preparation method thereof
CN109457162B (en) * 2018-12-29 2020-03-06 重庆文理学院 Ti (C, N) -based superhard metal composite material and preparation method thereof
CN111036918B (en) * 2019-12-20 2021-11-23 北京科技大学天津学院 Metal ceramic with high toughness and thermal fatigue resistance and preparation method thereof
CN113046610A (en) * 2020-12-24 2021-06-29 成都美奢锐新材料有限公司 Titanium carbonitride base metal ceramic material for 3D glass mold
CN113046611B (en) * 2020-12-24 2022-04-15 成都美奢锐新材料有限公司 Titanium carbonitride base metal ceramic material with special structure and high-temperature oxidation resistance
CN114309578A (en) * 2021-03-22 2022-04-12 武汉钜能科技有限责任公司 Wear-resistant metal ceramic powder, application thereof and wear-resistant metal ceramic
CN113234950B (en) * 2021-04-01 2022-03-08 三峡大学 Preparation method of Ti (C, N) -based metal ceramic
CN113444952A (en) * 2021-06-30 2021-09-28 厦门理工学院 High-entropy metal ceramic with high strength and high toughness and preparation method thereof
JP2023148484A (en) * 2022-03-30 2023-10-13 Ntkカッティングツールズ株式会社 Sintered body and cutting tool
CN115044815B (en) * 2022-06-29 2023-11-24 苏州新锐新材料科技有限公司 Cobalt-free titanium-based metal ceramic with multi-hard phase structure and preparation method thereof
CN115233073B (en) * 2022-07-07 2023-02-24 九江学院 (W, ti) (C, N) -based cermet material with core-ring structure and in-situ synthesis method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4120719A (en) * 1976-12-06 1978-10-17 Sumitomo Electric Industries, Ltd. Cemented carbonitride alloys containing tantalum
CN1410575A (en) * 2002-12-02 2003-04-16 株洲硬质合金集团有限公司 Metal ceramic and its preparation method
CN1410574A (en) * 2002-12-02 2003-04-16 株洲硬质合金集团有限公司 Metal-ceramic cutting tool material and its preparation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4120719A (en) * 1976-12-06 1978-10-17 Sumitomo Electric Industries, Ltd. Cemented carbonitride alloys containing tantalum
CN1410575A (en) * 2002-12-02 2003-04-16 株洲硬质合金集团有限公司 Metal ceramic and its preparation method
CN1410574A (en) * 2002-12-02 2003-04-16 株洲硬质合金集团有限公司 Metal-ceramic cutting tool material and its preparation method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
TA对金属陶瓷材料结构和机械性能的影响 吴欢,薄正利,分析检测 2003 *
TA对金属陶瓷材料结构和机械性能的影响 吴欢,薄正利,分析检测 2003;搅拌球磨制备亚微米晶粒TI基金属陶瓷 余立新等,材料工程,第7期 2002;金属陶瓷的组织与性能 徐智谋等,硬质合金,第19卷第4期 2000;微米级和亚微米级TI基金属陶瓷的组织和性能 郑勇等,材料工程,第5期 2001 *
微米级和亚微米级TI基金属陶瓷的组织和性能 郑勇等,材料工程,第5期 2001 *
搅拌球磨制备亚微米晶粒TI基金属陶瓷 余立新等,材料工程,第7期 2002 *
金属陶瓷的组织与性能 徐智谋等,硬质合金,第19卷第4期 2000 *

Also Published As

Publication number Publication date
CN1609052A (en) 2005-04-27

Similar Documents

Publication Publication Date Title
CN1312078C (en) Submicron grain Ti(C,N)-base cermet and its prepn process
CN100569978C (en) Nano WC-Co composite powder modified Ti (CN) based ceramic metal and preparation method thereof
JP5427380B2 (en) Carbide composite material and manufacturing method thereof
CN104404337B (en) A kind of hard alloy and preparation method thereof
CN1094988C (en) A cermet having a binder with improved plasticity, a method for the manufacture and use thereof
JP4773416B2 (en) Method for producing sintered body, powder mixture used in the method, and sintered body produced by the method
CN107739950A (en) A kind of WC Co cBN composite hard alloys and preparation method thereof
WO2010008004A1 (en) Hard powder, method for producing hard powder and sintered hard alloy
JP5652113B2 (en) WC-based cemented carbide cutting tool and surface-coated WC-based cemented carbide cutting tool exhibiting excellent fracture resistance in heat-resistant alloy cutting
CN101967593A (en) Ultrafine grain solid carbide material containing rare earth and preparation method thereof
CN107523710A (en) A kind of whisker modified Ti (C, N) based composite metal ceramic preparation of resistance to high temperature oxidation
JPWO2014208447A1 (en) Cermet, manufacturing method thereof and cutting tool
CN110438384B (en) Iron-nickel-based ultrafine-grained hard alloy and preparation method thereof
CN101899602A (en) Cermet body and a method of making a cermet body
CN113336554A (en) Water jet sand pipe raw material, water jet sand pipe preparation method and water jet sand pipe
JP2004292842A (en) Cermet
CN101307406A (en) Molybdenum free Ti(C, N)-based cermet and method for preparing same
JP6922110B1 (en) Crushing / stirring / mixing / kneading machine parts
JP2006111947A (en) Ultra-fine particle of cermet
CN115386775B (en) High-elasticity-modulus metal ceramic material and preparation method thereof
JP2017179474A (en) Hard metal used for tool for processing nonmetallic material
JP7429432B2 (en) Pressure sintered body and its manufacturing method
CN113174522A (en) Ti (C, N) -based metal ceramic with titanium-containing nickel-cobalt as binder phase and preparation method thereof
JP3374653B2 (en) Carbonitride cermet cutting tool with excellent wear resistance
TW202342777A (en) Improved cemented carbide compositions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070425

CF01 Termination of patent right due to non-payment of annual fee