JP7223424B2 - 視覚検査装置 - Google Patents

視覚検査装置 Download PDF

Info

Publication number
JP7223424B2
JP7223424B2 JP2019130078A JP2019130078A JP7223424B2 JP 7223424 B2 JP7223424 B2 JP 7223424B2 JP 2019130078 A JP2019130078 A JP 2019130078A JP 2019130078 A JP2019130078 A JP 2019130078A JP 7223424 B2 JP7223424 B2 JP 7223424B2
Authority
JP
Japan
Prior art keywords
image
subject
inspection
mirror
fixation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019130078A
Other languages
English (en)
Other versions
JP2021013576A (ja
Inventor
誠 鈴木
英昭 足利
欣也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QD Laser Inc
Original Assignee
QD Laser Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QD Laser Inc filed Critical QD Laser Inc
Priority to JP2019130078A priority Critical patent/JP7223424B2/ja
Publication of JP2021013576A publication Critical patent/JP2021013576A/ja
Application granted granted Critical
Publication of JP7223424B2 publication Critical patent/JP7223424B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Description

本発明は、視覚検査装置に関する。
測定装置の測定光出射口に被検者の瞳の像を映し出すための反射部材を配置することが知られている。これにより、被検者が光学系と瞳との光軸合わせを行えるため、正確でばらつきの少ない測定が可能となることが知られている(例えば特許文献1)。また、個人認証のために人の虹彩パターンを撮像する眼画像撮像装置において、撮像装置の前面にハーフミラー等を配置することが知られている。これにより、被撮像者が眼の位置合わせを行えるため、虹彩パターンを精度良く認識できることが知られている(例えば特許文献2)。
特開2008-8663号公報 特開2003-141517号公報
レーザ光等の光線を走査することで網膜に直接画像を投影する画像投影装置を視覚検査装置に用いることがある。視覚検査装置において、被検者が適切な方向を固視するように、被検者が自身の眼が適切な方向を向いているかを確認できることが望ましい。
本発明は、上記課題に鑑みなされたものであり、被検者が自身の眼が適切な方向を向いているかを確認できるようにすることを目的とする。
本発明は、光源と、前記光源から出射された光線を2次元に走査する走査機構と、走査された前記光線を被検者の網膜に照射することにより、前記網膜に前記被検者の眼を検査するための検査指標と前記被検者の視線を向けさせるための固視指標とを投影する投影光学系と、を備え、前記投影光学系は、前記被検者の眼の正面に配置され、前記走査された光線の光軸を前記被検者の眼の内部で収束させるミラーを含み、前記被検者は前記ミラーに映された前記被検者の眼の像を視認可能である、視覚検査装置である。
上記構成において、前記固視指標は、前記被検者が正面を見たときの視野範囲の略中心に投影される構成とすることができる。
上記構成において、前記ミラーは、凹面ミラーである構成とすることができる。
上記構成において、前記投影光学系は、前記ミラーと前記被検者の眼との間に配置されたハーフミラーを含み、前記ハーフミラーは、前記走査された光線を前記ミラーに向けて反射すると共に前記ミラーが反射した前記走査された光線を前記被検者の眼に向けて透過し、且つ前記被検者の周囲の外光を前記ミラーに向けて透過する構成とすることができる。
上記構成において、前記ミラーは、前記走査された光線を略平行光に変換する構成とすることができる。
上記構成において、前記投影光学系は、前記固視指標を含む画像を前記網膜に投影し、前記被検者又は検査者の指示に応じて、前記画像の前記固視指標の周りの背景の色合い及び明るさの少なくとも一方を変更する制御部を備える構成とすることができる。
上記構成において、前記投影光学系は、前記検査指標を含む検査画像と、前記固視指標を含み且つ前記検査指標を含まない固視画像と、を前記網膜に投影し、前記固視画像を前記網膜に投影させた後に前記検査画像を前記網膜に投影させ、且つ前記固視画像の前記固視指標の周りの背景を前記検査画像の前記検査指標の周りの背景よりも暗くする制御部を備える構成とすることができる。
上記構成において、前記制御部は、順々に投影される複数の前記検査画像のうちの最初の検査画像の前に前記固視画像を投影させ、且つ前記複数の検査画像の間に前記固視画像を挿入して投影させる構成とすることができる。
上記構成において、前記被検者の視野を検査する構成とすることができる。
本発明によれば、被検者が自身の眼が適切な方向を向いているかを確認することができる。
図1は、実施例1に係る視覚検査装置のブロック図である。 図2は、実施例1に係る視覚検査装置の光学系を示す図である。 図3は、実施例1における投影光学系を示す図である。 図4は、曲面ミラーに映される像について説明するための図である。 図5は、網膜に投影される検査画像の一例を示す図である。 図6(a)から図6(d)は、固視指標が投影された状態で曲面ミラーに映された眼の像を被検者が見た場合について説明するための図である。 図7は、実施例1における視覚検査の一例を示すフローチャートである。 図8は、図7のステップS10の一例を示すフローチャートである。 図9は、図7のステップS12の一例を示すフローチャートである。 図10(a)から図10(d)は、視覚検査を説明するための図である。 図11は、視野欠損画像の一例である。 図12は、網膜に投影される固視画像の一例を示す図である。 図13は、実施例2における視覚検査の一例を示すフローチャートである。 図14は、実施例3における投影光学系を示す図である。
以下、図面を参照し、本発明の実施例について説明する。
図1は、実施例1に係る視覚検査装置のブロック図である。図1のように、視覚検査装置100は、投影部10、制御部30、入力部40、及び表示部41を備える。投影部10は、光源11、調整機構12、走査機構13、投影光学系20、駆動回路15、及び入力回路16を備える。制御部30は、駆動制御部31、信号処理部32、及び画像生成部33を備える。
駆動制御部31は、被検者の網膜に投影する検査画像の生成等を行う。入力回路16には、駆動制御部31から画像信号が入力する。駆動回路15は、入力回路16が取得した画像信号及び駆動制御部31の制御信号に基づき光源11及び走査機構13を駆動する。
光源11は、例えば赤色レーザ光(波長:610nm~660nm程度)、緑色レーザ光(波長:515nm~540nm程度)、及び青色レーザ光(波長:440nm~480nm程度)の可視光線を出射する。すなわち、光源11は、1つのモジュール内に、赤色レーザ光、緑色レーザ光、及び青色レーザ光それぞれのレーザダイオードチップを有する。なお、光源11は、可視光線として単一の波長のレーザ光を出射してもよい。
調整機構12は、コリメートレンズ、トーリックレンズ、及び/又はアパーチャ等を有していて、光源11が出射したレーザ光50を成型する。レーザ光50は、赤色レーザ光、緑色レーザ光、及び青色レーザ光が合成された光線であり、それぞれのレーザ光の光軸が一致している。
走査機構13は、レーザ光50を2次元に走査するスキャナである。走査機構13は、例えばMEMS(Micro Electro Mechanical System)ミラー等の走査ミラーである。走査機構13は反射型の走査ミラーの場合に限られず、透過型のスキャナであってもよい。
投影光学系20は、走査機構13で走査されたレーザ光50を被検者の眼70に照射する。
入力部40は、被検者が視覚検査に対する応答を入力する機器、並びに、被検者及び/又は検査者が制御部30に対する指示を入力する機器であり、例えばボタン、タッチパネル、キーボード、及び/又はマウス等である。信号処理部32は、視覚検査において駆動制御部31からの制御信号に基づき入力部40の出力信号を処理する。信号処理部32は、視覚検査において駆動回路15からの同期信号に基づき光源11がレーザ光50を出射したタイミングで処理を開始する。画像生成部33は、信号処理部32が処理した信号に基づき2次元の画像を生成する。表示部41は、例えば液晶ディスプレイであり、画像生成部33が生成した画像を表示する。
駆動制御部31、信号処理部32、及び画像生成部33は、例えばCPU(Central Processing Unit)等のプロセッサがプログラムと協働して処理を行ってもよい。駆動制御部31、信号処理部32、及び画像生成部33は、専用に設計された回路でもよい。駆動制御部31、信号処理部32、及び画像生成部33は、1つの回路でもよいし、異なる回路でもよい。
図2は、実施例1に係る視覚検査装置の光学系を示す図である。図2のように、視覚検査装置100は、マクスウェル視を利用して、被検者の網膜71にレーザ光50を照射する。これにより、被検者は自身の視力によらずにフォーカスフリーで画像を視認できる。光源11が出射したレーザ光50は、調整機構12において開口数(NA)及び/又はビーム径等が調整される。調整機構12を通過したレーザ光50は、ハーフミラー14で反射し、走査機構13に入射して2次元に走査される。走査されたレーザ光50は、ハーフミラー14を透過した後、ハーフミラー21、曲面ミラー22、ハーフミラー23、及び曲面ミラー24を介し、被検者の眼70に照射される。ハーフミラー21、曲面ミラー22、ハーフミラー23、及び曲面ミラー24は、投影光学系20を構成する部材である。レーザ光50は、被検者の眼70内(例えば水晶体72近傍)で収束し、硝子体73を通過して網膜71に照射される。これにより、網膜71に画像が投影される。
図3は、実施例1における投影光学系を示す図である。各レーザ光の3つの直線は、中心の破線がレーザ光の光軸を示し、両側の実線がレーザ光の端を示す。両側の実線の間隔がレーザ光の径に相当する。以下の同様の図においても同様である。図3のように、投影光学系20は、ハーフミラー21、曲面ミラー22、ハーフミラー23、及び曲面ミラー24を備える。曲面ミラー22及び24は、反射面が凹状に湾曲した曲面である凹面ミラーである。ハーフミラー21及び23は、平面ハーフミラーである。曲面ミラー22と24は、例えば略同じ曲面形状を有し、略同じ焦点距離を有する。略同じとは製造誤差程度のずれを含むものである。
レーザ光51a、51b及び51cは、光源11から出射されたレーザ光50が走査機構13によって2次元に走査されたレーザ光である。走査機構13で走査されたレーザ光51a、51b及び51cの光軸は互いに拡散し且つ各レーザ光51a、51b及び51cは略平行光である。レーザ光51a、51b及び51cは、ハーフミラー21を透過した後、曲面ミラー22に入射する。
曲面ミラー22は、レーザ光51a、51b及び51cをレーザ光52a、52b及び52cに変換する。レーザ光52a、52b及び52cの光軸は互いに略平行であり且つ各レーザ光52a、52b及び52cは曲面ミラー22を出射した直後は焦点60まで収束光である。レーザ光52a、52b及び52cはハーフミラー21及び23で反射して曲面ミラー24に入射する。レーザ光52a、52b及び52cはハーフミラー21と23との間において焦点60を結ぶ。曲面ミラー24に入射するレーザ光52a、52b及び52cの光軸は互いに略平行であり且つ各レーザ光52a、52b及び52cは拡散光である。
曲面ミラー24は、レーザ光52a、52b及び52cをレーザ光53a、53b及び53cに変換する。レーザ光53a、53b及び53cの光軸は互いに収束し且つ各レーザ光53a、53b及び53cは略平行光である。レーザ光53a、53b及び53cは眼70の内部の収束面62において収束し且つレーザ光53a、53b及び53cはほぼ網膜71において合焦する。
走査機構13と収束面62とは投影光学系20を介し等倍の共役関係になっている。これにより、走査機構13で走査されたレーザ光51a、51b及び51cによって網膜71に画像を投影することができる。レーザ光の光軸が略平行及び各レーザ光が略平行光とは、網膜71に画像が投影できる程度に略平行及び略平行光であればよい。
曲面ミラー24は、被検者の眼70の正面に配置される。被検者の周囲の外光はハーフミラー23を透過して曲面ミラー24に照射される。このため、被検者の眼70の像が曲面ミラー24に映される。よって、被検者は、曲面ミラー24に映された眼70の像を視認することができる。
図4は、曲面ミラーに映される像について説明するための図である。図4のように、ハーフミラー23で反射されたレーザ光52a、52b及び52cが曲面ミラー24に入射する領域をP1、O1、Q1とする。曲面ミラー24で反射されたレーザ光53a、53b及び53cが網膜71に照射される領域をP2、O2、Q2とする。この場合、Pの位置にある物体はP1に像が映され、P1に映された像はP2に投影される。同様に、Oの位置にある物体はO1に像が映されてその像がO2に投影され、Qの位置にある物体はQ1に像が映されてその像はQ2に投影される。
図5は、網膜に投影される検査画像の一例を示す図である。図5のように、レーザ光50によって網膜71に検査画像80が投影される。走査機構13は、レーザ光50を矢印86のように左上から右下までラスタースキャンする。駆動回路15が光源11からのレーザ光50の出射と走査機構13の振動とを同期させる。例えば、光源11は破線矢印86と太実線87において異なる色合い及び/又は異なる明るさのレーザ光50を出射する。これにより、被検者の眼70を検査するための検査指標81と、被検者の視線を向けさせるための固視指標82と、検査指標81及び固視指標82の周りの背景83と、を含む検査画像80が投影される。検査指標81は、網膜71の異なる複数の領域に異なる時間で投影されるが、図5では便宜上、網膜71の異なる領域に投影される複数の検査指標81を同時に図示している。固視指標82は、検査画像80の中央領域に位置し、被検者が正面を見たときに網膜71の中央領域に投影される。言い換えると、固視指標82は、被検者が正面を見たときの被検者の視野範囲の中央領域に投影される。
検査指標81の形状として円形状の場合を例に説明するが、楕円形状又は四角形状等の多角形状でもよい。検査指標81は、赤色、緑色、及び青色レーザ光を含む白色光でもよいし、単一の波長のレーザ光を含む単色光でもよい。検査指標81の直径は例えば数μmである。固視指標82は、十字パターンの場合に限られず、ドットパターン、星状パターン、円形状パターン、又は多角形状パターン等、被検者の視線を向けさせることができればその他の図形でもよい。固視指標82は、赤色、緑色、及び青色レーザ光を含む白色光でもよいし、単一の波長のレーザ光を含む単色光でもよい。背景83は、被検者が検査指標81、固視指標82、及び曲面ミラー24に映される被検者の眼70の像を視認し易い色合い及び/又は明るさに調整されている。明るさには明度及び輝度の少なくとも一方が含まれる。
図6(a)から図6(d)は、固視指標が投影された状態で曲面ミラーに映された眼の像を被検者が見た場合について説明するための図である。図6(a)及び図6(c)では、固視指標82を投影するレーザ光をレーザ光50aとして図示すると共に、図4に示したP~P2、O~O2、Q~Q2を図示している。図6(b)及び図6(d)では、被検者が視認する固視指標82及び眼70の像76を図示している。
図6(a)のように、被検者が正面を見たときに、固視指標82を投影するレーザ光50aは瞳孔75の中央を通過して網膜71の中央領域71a(O2)に照射される。言い換えると、レーザ光50aは被検者が正面を見たときの視野範囲の中央領域に照射される。この場合、Oに位置する物体の像はO1に映されてO2に投影されることから、図6(b)のように、被検者は固視指標82が瞳孔75の中央に位置して見える。図6(c)のように、被検者の視線が正面から上下左右のいずれかの方向に逸れているときには、レーザ光50aは瞳孔75の中央からずれた領域を通過して網膜71の中央領域71aからずれた領域に照射される。この場合、図6(d)のように、被検者は固視指標82が瞳孔75の中央からずれた位置に見える。図6(b)及び図6(d)のように、被検者は、固視指標82と虹彩74及び瞳孔75との相対位置を確認でき、自身の眼70が適切な方向を固視しているかを確認できる。これにより、被検者は、固視指標82を瞳孔75の中央に位置するように合わせて、眼70が適切な方向を向くようにすることができる。
このように、固視指標82は被検者が正面を見たときに被検者の視野範囲の中央領域に投影されることが好ましい。
図7は、実施例1における視覚検査の一例を示すフローチャートである。図7のように、まず、被検者の眼70の視覚検査のための準備を行う(ステップS10)。
図8は、図7のステップS10の一例を示すフローチャートである。図8のように、駆動制御部31は、検査画像80と同様の画像である複数のサンプル画像を被検者の網膜71に投影させる(ステップS20)。複数のサンプル画像は、背景の色合い及び/又は明るさが各々異なっている。被検者は、網膜71に投影された複数のサンプル画像の中から検査指標81、固視指標82、及び曲面ミラー24に映された眼70の像76が視認し易いサンプル画像を特定する。そして、被検者又は検査者は入力部40を操作し、検査画像80の背景83の色合い及び/又は明るさを特定したサンプル画像の背景の色合い及び/又は明るさに変更するように指示する。被検者又は検査者が入力部40を操作することで入力部40から信号処理部32に出力信号が出力される。
次いで、駆動制御部31は、信号処理部32が取得した入力部40の出力信号に基づき、検査画像80の背景83の色合い及び/又は明るさを変更する(ステップS22)。これにより、被検者の網膜71に検査画像80が投影されたときに、被検者は検査指標81、固視指標82、及び曲面ミラー24に映された眼70の像76を視認し易くなる。
図7に戻り、視覚検査の準備が完了した後、視覚検査を開始する(ステップS12)。図9は、図7のステップS12の一例を示すフローチャートである。図10(a)から図10(d)は、視覚検査を説明するための図である。図9のように、駆動制御部31は、検査画像80を被検者の網膜71に投影させる(ステップS30)。このとき、検査画像80の背景83は図9のステップS22で設定した色合い及び/又は明るさになっている。検査画像80に含まれる検査指標81は網膜71の異なる複数の領域に異なる時間で投影される。したがって、図10(a)のように、まず、網膜71の異なる複数の領域に投影される検査指標のうちの検査指標81aを含む検査画像80aが投影される。検査画像80aの背景83が図9のステップS22で設定した色合い及び/又は明るさに設定されていることで、被検者は検査指標81a、固視指標82、及び曲面ミラー24に映された眼70の像76を視認し易くなる。このため、被検者は、視覚検査の最中に曲面ミラー24に映された眼70の像76を見て瞳孔75と固視指標82の位置合わせを行うことができ、視覚検査の測定ばらつきが抑えられる。
次いで、信号処理部32は、入力部40の出力信号を取得したか否かを判断する(ステップS32)。被検者は、網膜71に検査指標81aが投影されたことを認識したときに入力部40を操作する。被検者が入力部40を操作したときに入力部40から信号処理部32に出力信号が出力される。信号処理部32は、レーザ光50の出射に同期して入力部40の出力信号を取得する。信号処理部32は、入力部40の出力信号を取得した場合(ステップS32:Yes)、ステップS36に進む。一方、信号処理部32は、入力部40の出力信号を取得していない場合(ステップS32:No)、ステップS34に進み、所定時間(例えば数秒)が経過するまで待機する(ステップS34:No)。信号処理部32は、所定時間が経過した後(ステップS34:Yes)、ステップS36に進む。
次いで、駆動制御部31は、全ての検査画像80を投影したか否かを判断する(ステップS36)。投影すべき検査画像80がまだ残っている場合は、ステップS36の判断が否定され(ステップS36:No)、ステップS30からS36を繰り返し行う。ステップS30からS36を繰り返し行うことで、図10(a)の検査指標81aを含む検査画像80aを投影してから例えば数秒経過した後に、図10(b)のように、網膜71の別の領域に投影される検査視標81bを含む検査画像80bが投影され、さらに数秒経過した後に、図10(c)のように、網膜71の更に別の領域に投影される検査視標81cを含む検査画像80cが投影される。これが繰り返し行われ、図10(d)のように、網膜71に最後の検査視標81zを含む検査画像80zが投影される。駆動制御部31は、全ての検査画像80を投影したと判断した場合(ステップS36:Yes)、検査画像80の投影を終了させる(ステップS38)。
次いで、画像生成部33は、検査画像80を用いた検査において信号処理部32が取得した入力部40の出力信号に基づき、例えば視野欠損画像を生成する(ステップS40)。表示部41は、視野欠損画像を表示する(ステップS42)。表示部41に表示された視野欠損画像を医師が精査することによって被検者の視野欠損を判断することができる。
図11は、視野欠損画像の一例である。図11のように、網膜71に検査指標81を投影したにも関わらず被検者から入力部40に応答がなかった破線部位77の視野が欠損していると判断される。
実施例1によれば、視覚検査装置100は、光源11と、光源11から出射されたレーザ光50を2次元に走査する走査機構13と、走査されたレーザ光50を被検者の網膜71に照射することにより、網膜71に検査指標81と固視指標82を投影する投影光学系20と、を備える。投影光学系20は、被検者の眼70の正面に配置され、走査されたレーザ光50の光軸を被検者の眼70の内部で収束させる曲面ミラー24を含む。被検者は曲面ミラー24に映された眼70の像76を視認可能となっている。これにより、被検者は自身の眼70が適切な方向を向いているかを確認でき、適切な方向を向いていない場合には、瞳孔75と固視指標82の位置合わせを行うことで適切な方向を向くようにできる。よって、視覚検査の測定ばらつきを低減できる。また、曲面ミラー24は、レーザ光50を網膜71に照射するために用いられるミラーである。このような曲面ミラー24に被検者の眼70の像76を映しているため、眼70の像76を映すための専用に部品を設けなくて済み、部品点数の増加が抑えられる。
図6(a)から図6(d)で説明したように、固視指標82は被検者が正面を見たときの視野範囲の略中心に投影されることが好ましい。これにより、被検者は自身の眼70が適切な方向を向いているかを確認でき、向いていない場合には適切な方向を向くようにすることができる。略中心とは、完全に中心の場合の他に、眼70の向きを確認できる程度に中心からずれている場合も含む。
曲面ミラー24は、図3のように、凹面ミラーであることが好ましい。これにより、被検者は眼70が拡大された像76を視認することができる。よって、瞳孔75と固視指標82との位置合わせが行い易くなる。また、被検者が眼70の像76を視認し易くなるために、曲面ミラー24は略放物面ミラーであることが好ましい。略放物面ミラーとは、完全な放物面ミラーの場合の他に、製造誤差程度に完全な放物面ミラーから外れている場合も含む。
図3のように、投影光学系20は、曲面ミラー24と被検者の眼70との間に配置されたハーフミラー23を含む。ハーフミラー23は、レーザ光52a、52b及び52cを曲面ミラー24に向けて反射すると共に曲面ミラー24が反射したレーザ光53a、53b及び53cを被検者の眼70に向けて透過する。また、ハーフミラー23は、被検者の周囲の外光を曲面ミラー24に向けて透過する。これにより、曲面ミラー24に被検者の眼70の像76が映され、被検者は曲面ミラー24に映された眼70の像76を視認可能となる。
図3のように、曲面ミラー24は、レーザ光52a、52b及び52cを略平行光なレーザ光53a、53b及び53cに変換する。これにより、レーザ光50を被検者の網膜71に合焦させることができ、網膜71に画像を投影することができる。
制御部30は、図8のステップS22のように、被検者又は検査者の指示に応じて、検査画像80の背景83の色合い及び明るさの少なくとも一方を変更することが好ましい。これにより、被検者が、検査指標81、固視指標82、及び曲面ミラー24に映された眼70の像76を視認し易い状態にすることができる。よって、検査指標81が視認し易く且つ瞳孔75と固視指標82の位置合わせが行い易い状態になるため、視覚検査の測定ばらつきを低減できる。
投影光学系20は、図3のように、ハーフミラー21及び23と曲面ミラー22及び24とを含む。ハーフミラー21は、走査機構13で走査された光軸が互いに拡散し且つ各々略平行光であるレーザ光51a、51b及び51cを透過するとともに、曲面ミラー22が反射したレーザ光52a、52b及び52cを反射する。曲面ミラー22は、ハーフミラー21を透過した光軸が互いに拡散し且つ各々略平行光であるレーザ光51a、51b及び51cを光軸が互いに略平行で且つ各々収束光であるレーザ光52a、52b及び52cに変換する。ハーフミラー23は、ハーフミラー21で反射したレーザ光52a、52b及び52cを曲面ミラー24に向けて反射するとともに、曲面ミラー24が反射したレーザ光53a、53b及び53cを透過する。曲面ミラー24は、ハーフミラー23が反射した光軸が互いに略平行で且つ各々拡散光であるレーザ光52a、52b及び52cを光軸が互いに収束し且つ各々略平行光であるレーザ光53a、53b及び53cに変換する。これにより、走査機構13と、レーザ光53a、53b及び53cが収束する収束面62と、を略等倍の共役関係とすることができる。よって、網膜71に良質な画像を投影することができる。また、レンズを用いていないため、色収差が抑制され、この点においても網膜71に良質な画像を投影することができる。
実施例2に係る視覚検査装置の構成は、実施例1に係る視覚検査装置の構成と同じであるため説明を省略する。実施例2では、駆動制御部31は検査画像に加えて固視画像の生成も行う。したがって、被検者の網膜71には実施例1の図5に示した検査画像80に加えて固視画像が投影される。図12は、網膜に投影される固視画像の一例を示す図である。図12のように、レーザ光50によって網膜71に固視画像84が投影される。例えば、光源11は破線矢印86と太実線87において異なる色合い及び/又は明るさのレーザ光50を出射する。これにより、固視指標82と固視指標82の周りの背景85とを含み、検査指標81を含まない固視画像84が投影される。固視指標82は、検査画像80の場合と同様に固視画像84の中央領域に位置し、被検者が正面を見たときに網膜71の中央領域に投影される。すなわち、固視指標82は、被検者が正面を見たときの被検者の視野範囲の中央領域に投影される。なお、破線矢印86において光源11からレーザ光50が出射しない場合でもよい。走査機構13が振動しても光源11がレーザ光50を出射しないとレーザ光50は網膜71に照射されない。
図13は、実施例2における視覚検査の一例を示すフローチャートである。図13のように、駆動制御部31は、固視画像84を被検者の網膜71に投影させる(ステップS50)。これにより、被検者は自身の眼70が適切な方向を向いているかを確認でき、適切な方向を向いていない場合には瞳孔75と固視指標82の位置合わせを行うことで適切な方向を向くようにできる。このときに、固視画像84の背景85を検査画像80の背景83よりも暗くする。例えば、固視画像84の背景85の輝度を検査画像80の背景83の輝度よりも低く抑える。視覚検査によっては検査画像80の背景83の明るさが規定されている場合があり、固視画像84の背景85の明るさを検査画像80の背景83の明るさに合わせた場合、背景85が明るいことで被検者は曲面ミラー24に映された眼70の像76を視認し難いことがある。そこで、固視画像84の背景85を検査画像80の背景83よりも暗くすることで、被検者は曲面ミラー24に映された眼70の像76を視認し易くなり、瞳孔75と固視指標82の位置合わせを行い易くなる。駆動制御部31は、所定時間(例えば数秒)経過後に固視画像84の投影を終了させる(ステップS52)。
次いで、駆動制御部31は、検査画像80を被検者の網膜71に投影させる(ステップS54)。このとき、検査画像80の背景83が固視画像84の背景85よりも明るいことで、被検者は曲面ミラー24に映された眼70の像76が見え難くなり、結果として検査指標81の視認性が向上する。
信号処理部32は、入力部40の出力信号を取得したか否かを判断する(ステップS56)。信号処理部32は、入力部40の出力信号を取得した場合(ステップS56:Yes)、ステップS60に進む。一方、信号処理部32は、入力部40の出力信号を取得していない場合(ステップS56:No)、ステップS58に進み、所定時間(例えば数秒)が経過するまで待機する(ステップS58:No)。信号処理部32は、所定時間が経過した後(ステップS58:Yes)、ステップS60に進む。
次いで、駆動制御部31は、全ての検査画像80を投影したか否かを判断する(ステップS60)。投影すべき検査画像80がまだ残っている場合は、ステップS60の判断が否定され(ステップS60:No)、ステップS62に進む。駆動制御部31は、検査画像80を所定枚数連続して投影したか否かを判断する(ステップS62)。所定枚数は適宜設定することができ、例えば30枚としてもよいし、50枚としてもよい。なお、検査画像80を所定枚数連続して投影したか否かの判断に代えて、検査画像80の連続した投影時間が所定時間を超えたか否かを判断してもよい。
検査画像80の連続した投影枚数が所定枚数に到達していない場合(ステップS62:No)、ステップS54からS62を繰り返し行う。一方、検査画像80の連続した投影枚数が所定枚数に到達した場合(ステップS62:Yes)、駆動制御部31は、検査画像80の投影を一時中断し(ステップS64)、固視画像84を投影する(ステップS66)。これにより、視覚検査の途中において、被検者は曲面ミラー24に映し出された眼70の像76を用いて瞳孔75と固視指標82の位置合わせを再度行うことができる。駆動制御部31は、所定時間(例えば数秒)経過後に固視画像84の投影を終了させ(ステップS68)、ステップS54に戻る。
駆動制御部31は、全ての検査画像80を投影したと判断した場合(ステップS60:Yes)、検査画像80の投影を終了させる(ステップS70)。次いで、画像生成部33は、検査画像80を用いた検査において信号処理部32が取得した入力部40の出力信号に基づき、例えば視野欠損画像を生成する(ステップS72)。表示部41は、視野欠損画像を表示する(ステップS74)。
実施例2によれば、投影光学系20は、検査指標81を含む検査画像80と、固視指標82を含み且つ検査指標81を含まない固視画像84と、を被検者の網膜71に投影する。制御部30は、図13のステップS50からS54のように、固視画像84を投影した後に検査画像80を投影させ、且つ固視画像84の固視指標82の周りの背景85を検査画像80の検査指標81の周りの背景83よりも暗くする。これにより、被検者は固視画像84が投影されたときに曲面ミラー24に映された眼70の像76を視認し易くなり、瞳孔75と固視指標82の位置合わせを行い易くなる。
図13のように、制御部30は、順々に投影される複数の検査画像80のうちの最初の検査画像80の前に固視画像84を投影し、且つ複数の検査画像80の間に固視画像84を挿入して投影させる。これにより、被検者は視覚検査の途中において曲面ミラー24に映された眼70の像76を用いて瞳孔75と固視指標82の位置合わせを行うことができ、視覚検査の測定精度を向上させることができる。
実施例2では、検査画像80に固視指標82が含まれている場合を例に示したが、固視指標82が含まれない場合でもよい。この場合、例えば検査画像80と固視画像84が交互に網膜71に投影されてもよいし、数枚の検査画像80の投影の後に固視画像84が投影されることを繰り返し行うようにしてもよい。また、実施例1においても、検査画像80に固視指標82が含まれずに、被検者又は検査者の指示に応じて被検者が固視指標82を視認し易い色合い及び/又は明るさに設定された背景85を有する固視画像84が検査画像80と交互に投影されてもよいし、数枚の検査画像80の投影の後に投影されることを繰り返し行うようにしてもよい。
図14は、実施例3における投影光学系を示す図である。図14のように、投影光学系20aは、レンズ25、全反射ミラー26、ハーフミラー27、及び曲面ミラー28を備える。レンズ25は、回折溝付レンズ又はダブレットのような色収差を低減させたレンズを用いることが好ましい。曲面ミラー28の反射面は、自由曲面等の曲面である。全反射ミラー26及びハーフミラー27は平面ミラーである。
走査機構13で走査されたレーザ光51a、51b及び51cの光軸は互いに拡散し且つ各レーザ光51a、51b及び51cは略平行光である。レーザ光51a、51b及び51cはレンズ25を透過する。レンズ25は、レーザ光51a、51b及び51cをレーザ光52a、52b及び52cに変換する。レーザ光52a、52b及び52cの光軸は互いに略平行であり且つ各レーザ光52a、52b及び52cはレンズ25から出射した直後は焦点60まで収束光である。レーザ光52a、52b及び52cは、全反射ミラー26及びハーフミラー27で反射して曲面ミラー28に入射する。また、ハーフミラー27は、被検者の眼70の周りの外光を曲面ミラー28に透過する。レーザ光52a、52b及び52cはレンズ25と曲面ミラー28との間において焦点60を結ぶ。曲面ミラー28に入射するレーザ光52a、52b及び52cの光軸は互いに略平行であり且つ各レーザ光52a、52b及び52cは拡散光である。
曲面ミラー28は、レーザ光52a、52b及び52cをレーザ光53a、53b及び53cに変換する。レーザ光53a、53b及び53cの光軸は互いに収束し且つ各レーザ光53a、53b及び53cは略平行光である。レーザ光53a、53b及び53cは、ハーフミラー27を透過した後、眼70の内部の収束面62において収束し且つほぼ網膜71において合焦する。
実施例1では、投影光学系20は、ハーフミラー21及び23と曲面ミラー22及び24とを含む場合を例に示したが、実施例3のように、投影光学系20aは、レンズ25と全反射ミラー26とハーフミラー27と曲面ミラー28を含む場合でもよい。この場合でも、実施例1と同様に、被検者は、曲面ミラー28に映された眼70の像76を視認できるため、自身の眼70が適切な方向を向いているかを確認できる。
投影光学系20aの場合、レンズ25は、走査機構13で走査された光軸が互いに拡散し且つ各々略平行光であるレーザ光51a、51b及び51cを透過して光軸が互いに略平行で且つ各々収束光であるレーザ光52a、52b及び52cに変換する。全反射ミラー26は、平面ミラーであり、レンズ25を透過したレーザ光52a、52b及び52cを反射する。ハーフミラー27は、全反射ミラー26で反射したレーザ光52a、52b及び52cを曲面ミラー28に向けて反射するとともに、曲面ミラー28で反射したレーザ光53a、53b及び53cを透過する。曲面ミラー28は、ハーフミラー27で反射した光軸が互いに略平行で且つ各々拡散光であるレーザ光52a、52b及び52cを光軸が互いに収束し且つ各々略平行光であるレーザ光53a、53b及び53cに変換する。これにより、走査機構13と、レーザ光53a、53b及び53cが収束する収束面62と、を略等倍の共役関係とすることができる。よって、網膜71に良質な画像を投影することができる。
実施例1から実施例3では、被検者の視野を検査する視野検査装置の場合を例に示したが、その他の視覚検査装置の場合でもよい。例えば、検査画像80の検査指標81としてランドルト環又は文字等が用いられて、被検者の網膜視力を検査する視力検査装置の場合でもよい。
以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
10 投影部
11 光源
12 調整機構
13 走査機構
14 ハーフミラー
15 駆動回路
16 入力回路
20、20a 投影光学系
21、23 ハーフミラー
22、24 曲面ミラー
25 レンズ
26 全反射ミラー
27 ハーフミラー
28 曲面ミラー
30 制御部
31 駆動制御部
32 信号処理部
33 画像生成部
40 入力部
41 表示部
50、51a~51c、52a~52c、53a~53c レーザ光
60 焦点
62 収束面
70 眼
71 網膜
72 水晶体
73 硝子体
74 虹彩
75 瞳孔
76 像
80、80a、80b、80c、80z 検査画像
81、81a、81b、81c、81z 検査指標
82 固視指標
83 背景
84 固視画像
85 背景
100 視覚検査装置

Claims (9)

  1. 光源と、
    前記光源から出射された光線を2次元に走査する走査機構と、
    走査された前記光線を被検者の網膜に照射することにより、前記網膜に前記被検者の眼を検査するための検査指標と前記被検者の視線を向けさせるための固視指標とを投影する投影光学系と、を備え、
    前記投影光学系は、前記被検者の眼の正面に配置され、前記走査された光線の光軸を前記被検者の眼の内部で収束させるミラーを含み、
    前記被検者は前記ミラーに映された前記被検者の眼の像を視認可能である、視覚検査装置。
  2. 前記固視指標は、前記被検者が正面を見たときの視野範囲の略中心に投影される、請求項1記載の視覚検査装置。
  3. 前記ミラーは、凹面ミラーである、請求項1または2記載の視覚検査装置。
  4. 前記投影光学系は、前記ミラーと前記被検者の眼との間に配置されたハーフミラーを含み、
    前記ハーフミラーは、前記走査された光線を前記ミラーに向けて反射すると共に前記ミラーが反射した前記走査された光線を前記被検者の眼に向けて透過し、且つ前記被検者の周囲の外光を前記ミラーに向けて透過する、請求項1から3のいずれか一項記載の視覚検査装置。
  5. 前記ミラーは、前記走査された光線を略平行光に変換する、請求項1から4のいずれか一項記載の視覚検査装置。
  6. 前記投影光学系は、前記固視指標を含む画像を前記網膜に投影し、
    前記被検者又は検査者の指示に応じて、前記画像の前記固視指標の周りの背景の色合い及び明るさの少なくとも一方を変更する制御部を備える、請求項1から5のいずれか一項記載の視覚検査装置。
  7. 前記投影光学系は、前記検査指標を含む検査画像と、前記固視指標を含み且つ前記検査指標を含まない固視画像と、を前記網膜に投影し、
    前記固視画像を前記網膜に投影させた後に前記検査画像を前記網膜に投影させ、且つ前記固視画像の前記固視指標の周りの背景を前記検査画像の前記検査指標の周りの背景よりも暗くする制御部を備える、請求項1から5のいずれか一項記載の視覚検査装置。
  8. 前記制御部は、順々に投影される複数の前記検査画像のうちの最初の検査画像の前に前記固視画像を投影させ、且つ前記複数の検査画像の間に前記固視画像を挿入して投影させる、請求項7記載の視覚検査装置。
  9. 前記被検者の視野を検査する、請求項1から8のいずれか一項記載の視覚検査装置。
JP2019130078A 2019-07-12 2019-07-12 視覚検査装置 Active JP7223424B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019130078A JP7223424B2 (ja) 2019-07-12 2019-07-12 視覚検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019130078A JP7223424B2 (ja) 2019-07-12 2019-07-12 視覚検査装置

Publications (2)

Publication Number Publication Date
JP2021013576A JP2021013576A (ja) 2021-02-12
JP7223424B2 true JP7223424B2 (ja) 2023-02-16

Family

ID=74531178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019130078A Active JP7223424B2 (ja) 2019-07-12 2019-07-12 視覚検査装置

Country Status (1)

Country Link
JP (1) JP7223424B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022117082A (ja) 2021-01-29 2022-08-10 株式会社神戸製鋼所 積層造形物の変形予測方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089916A (ja) 2005-09-29 2007-04-12 Nidek Co Ltd 網膜機能計測装置
JP2011050479A (ja) 2009-08-31 2011-03-17 Panasonic Electric Works Co Ltd 視機能計測装置および視機能訓練装置
JP2013119019A (ja) 2011-12-09 2013-06-17 Nidek Co Ltd 視機能評価装置及び視機能評価プログラム
JP2018143554A (ja) 2017-03-07 2018-09-20 株式会社ニデック 自覚式検眼装置
WO2019069648A1 (ja) 2017-10-05 2019-04-11 株式会社Qdレーザ 視覚検査装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779914A (ja) * 1993-06-30 1995-03-28 Canon Inc 視野計及び視線操作装置
JPH07241274A (ja) * 1994-03-07 1995-09-19 Canon Inc 眼科用測定装置
JPH0852110A (ja) * 1994-08-09 1996-02-27 Canon Inc 小型視野計

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089916A (ja) 2005-09-29 2007-04-12 Nidek Co Ltd 網膜機能計測装置
JP2011050479A (ja) 2009-08-31 2011-03-17 Panasonic Electric Works Co Ltd 視機能計測装置および視機能訓練装置
JP2013119019A (ja) 2011-12-09 2013-06-17 Nidek Co Ltd 視機能評価装置及び視機能評価プログラム
JP2018143554A (ja) 2017-03-07 2018-09-20 株式会社ニデック 自覚式検眼装置
WO2019069648A1 (ja) 2017-10-05 2019-04-11 株式会社Qdレーザ 視覚検査装置

Also Published As

Publication number Publication date
JP2021013576A (ja) 2021-02-12

Similar Documents

Publication Publication Date Title
JP4947387B2 (ja) 眼科学機器に適用される眼の収差を補正する方法及びシステム
WO2018180730A1 (ja) 眼科撮像装置およびその制御方法
JP2018167000A (ja) 眼底撮影装置および眼科装置
WO2017104162A1 (ja) 眼科装置
WO2018056377A1 (ja) 走査型レーザ検眼鏡
JP2020099736A (ja) 視覚検査装置
JP7223424B2 (ja) 視覚検査装置
US11867916B2 (en) Device apparatus for projecting a laser beam for generating an image on the retina of an eye
JP6756516B2 (ja) 眼科撮影装置
WO2023068071A1 (ja) 眼科装置
JP2004222849A (ja) 検眼装置
JP2017064407A (ja) 眼底撮影装置
JP6776189B2 (ja) 眼科装置、及びその制御方法
KR100393532B1 (ko) 레이저 다이오드를 이용한 시력 및 각막곡률 반경 측정검안장치
JP2021062162A (ja) 走査型眼底撮影装置
JP2017046939A (ja) 走査型レーザ検眼鏡
JP7089823B1 (ja) 画像投影装置、視覚検査装置、および眼底撮影装置
JPWO2016103484A1 (ja) 眼底像形成装置
JP6937536B1 (ja) 眼底撮影装置
JP7348334B2 (ja) 眼科撮影装置
JP7317582B2 (ja) 眼科装置及び眼科装置の制御方法
JP2021153710A (ja) 視機能検査装置
JP6350698B2 (ja) 眼底撮影装置
JP2022038529A (ja) 眼科装置、その制御方法、及びプログラム
JP2022157208A (ja) 眼科装置及びその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230130

R150 Certificate of patent or registration of utility model

Ref document number: 7223424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150