図1は、カテーテルベース処置システム10の実施例を示す斜視図である。カテーテルベース処置システム10を用いて、カテーテルベースの医療処置、例えば、経皮的冠動脈インターベンション(PCI) (例えば、STEMIを処置するため)、神経血管インターベンション処置(NVI) (例えば、急性脳主幹動脈閉塞(ELVO)を処置するため)、末梢血管インターベンション処置(PVI) (例えば、重症虚血肢(CLI)などに対し)を行うことができる。カテーテルベース医療処置は、診断カテーテル処置を含む場合もあり、この場合、1つ以上のカテーテル又は他の細長い医療デバイス(EMD)が患者の病気の診断を補助するために使用される。例えば、カテーテルベース診断処置の1つの実施例では、造影剤がカテーテルを通して1つ以上の動脈に注入され、患者の脈管構造の画像が取得される。カテーテルベース医療処置には、カテーテルベースの治療処置(血管形成術、ステント留置、周辺血管病変の治療、凝血塊の除去、動静脈形成療法、動脈龍の治療など)も含まれる。この場合、カテーテル(又は他のEMD)を用いて病変を治療する。治療処置は、例えば、血管内超音波(IVUS)、光コヒーレンストモグラフィ(OCT)、血流予備量比(FFR)など、補助デバイス54(図2に示す)を備えることによって強化することができる。しかしながら、当業者にとっては、特殊な(専用の)経皮的インターベンションデバイス又はコンポーネント(例えば、ガイドワイヤの種類、カテーテルの種類など)が、実施されるべき処置のタイプに従って選択されることも常識である。カテーテルベース処置システム10は、処置で使用される特定の経皮的インターベンションデバイスを収容するためのマイナー調整だけで、数種のカテーテルベース医療処置を実施することができる。
カテーテルベース処置システム10は、数ある要素の中でもとりわけ、ベッドサイドユニット20及びコントロールステーション26を含む。ベッドサイドユニット20は、患者12に隣接して位置するロボット制御駆動装置24及び位置決めシステム22を含む。患者12は患者テーブル18に寝かされている。位置決めシステム22は、ロボット制御駆動装置24の位置決め及び支持に使用される。位置決めシステム22は、例えば、ロボットアーム、多関節アーム、ホルダ等である。位置決めシステム22は、一端を、例えば患者テーブル18にあるレール、ベース、又はカートに取り付けることができる。位置決めシステム22の他端は、ロボット制御駆動装置24に取り付けられる。位置決めシステム22は、患者12を患者テーブル18に寝かすことができるように、(ロボット制御駆動装置24と共に)邪魔にならないよう移動することができる。患者12が患者テーブル18に位置決めされると、位置決めシステム22を使用して、処置のために患者12に対してロボット制御駆動装置24を据える又は位置決めすることができる。一実施例によると、患者テーブル18は、床及び/又は地面に固定された台座17によって動作可能に支持される。患者テーブル18は、台座17に対して多自由度、例えばロール、ピッチ、ヨーで動作することができる。ベッドサイドユニット20は、コントロール及びディスプレイ46(図2に示される)も含み得る。例えば、コントロール及びディスプレイは、ロボット制御駆動装置24のハウジングに配置することができる。
通例、ロボット制御駆動装置24は、適切な経皮的インターベンションデバイス及び付属機器48(図2に示される)(例えば、ガイドワイヤ、バルーンカテーテル、ステントデリバリーシステム、ステントレトリーバー、塞栓コイル、液体塞栓、吸引ポンプ、造影剤注入デバイス、薬剤、止血弁アダプタ、注射器、活栓、膨張デバイスなど)を有し、コントロールステーション26にあるコントロール機器及び入力機器などの様々なコントロールを操作することによってユーザ又はオペレータ11が、ロボット制御システムを介してカテーテルベース医療処置を実行できるようにする。ベッドサイドユニット20、特にロボット制御駆動装置24は、ここに説明される機能をベッドサイドユニット20に提供するために、いくつかの及び/又は組み合わせたコンポーネントを含んでもよい。コントロールステーション26にいるユーザ又はオペレータ11は、コントロールステーションユーザ又はコントロールステーションオペレータと呼ばれ、ここではユーザ又はオペレータと呼ぶ。ベッドサイドユニット20のユーザ又はオペレータは、ベッドサイドユニットユーザ又はベッドサイドユニットオペレータと呼ばれる。ロボット制御駆動装置24は、レール又は直線部材60(図3に示す)に連結された複数のデバイスモジュール32a-dを含む。レール又は直線部材60は、デバイスモジュールを案内し支持する。デバイスモジュール32a-dの各々は、カテーテルやガイドワイヤなどのEMDを駆動するために使用される。例えば、ロボット制御駆動装置24を使用して、ガイドワイヤを診断カテーテル内に、そして患者12の動脈内のガイドカテーテル内に、自動的に供給することができる。EMDなどの1つ以上のデバイスは、例えばイントロデューサーシースを介して、挿入点16で患者12の体(例えば血管)に入る。
ベッドサイドユニット20は、コントロールステーション26と通信しており、コントロールステーション26のユーザ入力によって生成された信号が無線又は有線でベッドサイドユニット20に送信されて、ベッドサイドユニット20の様々な機能を制御することを可能にする。後述するように、コントロールステーション26は、コントロールコンピューティングシステム34(図2に示す)を含んでおり、又はコントロールコンピューティングシステム34を介してベッドサイドユニット20に接続されている。ベッドサイドユニット20はまた、フィードバック信号(例えば、負荷、速度、動作条件、警告信号、エラーコードなど)をコントロールステーション26又はコントロールコンピューティングシステム34(図2に示す)、あるいはその両方に提供する。コントロールコンピューティングシステム34とカテーテルベース処置システム10の種々のコンポーネントとの間の通信は、無線接続、有線接続、又はコンポーネント間の通信を可能にする他のあらゆる手段である、通信リンクを介して提供される。コントロールステーション26又は他の類似のコントロールシステムは、局所拠点(例えば、図2に示すローカルコントロールステーション38)又は遠隔拠点(例えば、図2に示すリモートコントロールステーション及びコンピューティングシステム42)のいずれかに配置される。カテーテルベース処置システム10は、局所拠点のコントロールステーション、又は遠隔拠点のコントロールステーション、あるいは同時にローカルコントロールステーションとリモートコントロールステーションの両方によって、操作される。局所拠点では、ユーザ又はオペレータ11及びコントロールステーション26は、患者12及びベッドサイドユニット20と同じ部屋又は隣接する部屋に配置される。ここで使用されている局所拠点は、ベッドサイドユニット20と患者12又は被験体(例えば、動物又は遺体)の位置であり、遠隔拠点は、ベッドサイドユニット20を遠隔制御するために使用されるユーザ又はオペレータ11及びコントロールステーション26の位置である。遠隔拠点のコントロールステーション26(及びコントロールコンピューティングシステム)と局所拠点のベッドサイドユニット20及び/又はコントロールコンピューティングシステムは、例えばインターネットを介し、通信システム及びサービス36(図2に示す)を使用して通信する。一実施例において、遠隔拠点と局所(患者)拠点とは互いに離れており、例えば、同じ建物内の別々の部屋、同じ都市内の別々の建物、別々の都市、又はその他の、遠隔拠点が局所拠点のベッドサイドユニット20及び/又は患者12に対する物理的なアクセスをもたない別々の場所である。
コントロールステーション26は、通例、カテーテルベース処置システム10の様々なコンポーネント又はシステムを作動させるためのユーザ入力を受け付けるように構成された1つ以上の入力モジュール28を含む。図示の実施例では、コントロールステーション26は、ユーザ又はオペレータ11がベッドサイドユニット20を制御してカテーテルベース医療処置を実行することを可能にする。例えば、入力モジュール28は、ベッドサイドユニット20に、ロボット制御駆動装置24とインターフェースされた経皮的インターベンションデバイス(例えば、EMD)を用いて種々の作業を実行させるように(例えば、ガイドワイヤを前進、後退又は回転させる、カテーテルを前進、後退又は回転させる、カテーテルに配置されたバルーンを膨張又は収縮させる、ステントを位置決め及び/又は展開する、ステントレトリーバーを位置決め及び/又は展開する、コイルを位置決め及び/又は展開する、カテーテルに造影剤を注入する、カテーテルに液体塞栓を注入する、薬剤又は塩水をカテーテルに注入する、カテーテルで吸引する、又は、カテーテルベース医療処置の一環として実行され得るその他の機能を実行するなど)、構成される。ロボット制御駆動装置24は、経皮的インターベンションデバイスを含むベッドサイドユニット20のコンポーネントの動き(例えば、軸方向及び回転方向の動き)を生じさせるための様々な駆動機構を含む。
一実施例では、入力モジュール28は、1つ以上のタッチスクリーン、ジョイスティック、スクロールホイール、及び/又はボタンを含む。入力モジュール28に加えて、コントロールステーション26は、フットスイッチや音声コマンド用のマイクロホンなどの追加ユーザコントロール44(図2に示す)を使用することができる。入力モジュール28は、種々のコンポーネント、及び例えばガイドワイヤ及び1つ以上のカテーテル又はマイクロカテーテルなどの経皮的インターベンションデバイスを前進、後退、又は回転させるように構成される。ボタンは、例えば、非常停止ボタン、倍率ボタン、デバイス選択ボタン、及び自動動作ボタンを含む。非常停止ボタンが押されると、動力(例えば電力)が、遮断されるかベッドサイドユニット20から排除される。速度制御モードにあるとき、倍率ボタンは、入力モジュール28の操作に応じて関連するコンポーネントが移動する速度を、増減させるように作用する。位置制御モードにあるとき、倍率ボタンは、入力される距離と出力される指令距離との間のマッピングを変更する。デバイス選択ボタンにより、ユーザ又はオペレータ11は、ロボット制御駆動装置24に装填された経皮的インターベンションデバイスのどれを入力モジュール28によって制御するかを選択することができる。自動動作ボタンは、カテーテルベース処置システム10がユーザ又はオペレータ11から直接の指令を受けることなく経皮的インターベンションデバイスで実行することができるアルゴリズム動作を可能にするために、使用される。一実施例では、入力モジュール28は、タッチスクリーン(ディスプレイ30の一部であってもなくてもよい)に表示される1つ以上のコントロール又はアイコン(図示せず)を含み、これらは起動されると、カテーテルベース処置システム10のコンポーネントの動作を引き起こす。入力モジュール28はまた、バルーンを膨張又は収縮させ及び/又はステントを展開するように構成されたバルーン又はステントコントロールを含む。入力モジュール28の各々が、1つ以上のボタン、スクロールホイール、ジョイスティック、タッチスクリーンなどを含み、これらを用いて、コントロールが担当している特定の1つ以上のコンポーネントを制御することができる。さらに、1つ以上のタッチスクリーンが、入力モジュール28の種々の部分に関連する又はカテーテルベース処置システム10の各コンポーネントに関連する、1つ以上のアイコン(図示せず)を表示することができる。
コントロールステーション26はディスプレイ30を含む。他の実施例では、コントロールステーション26は、2つ以上のディスプレイ30を含んでもよい。ディスプレイ30は、コントロールステーション26のユーザ又はオペレータ11に情報又は患者固有データを表示するように構成することができる。例えば、ディスプレイ30は、画像データ(例えば、X線画像、MRI画像、CT画像、超音波画像等)、血行動態データ(例えば、血圧、心拍数等)、患者記録情報(例えば、医療履歴、年齢、体重等)、病変又は治療評価データ(例えば、IVUS、OCT、FFR等)を表示するように構成される。さらに、ディスプレイ30は、処置に固有の情報(例えば、処置チェックリスト、勧告、処置時間、カテーテル又はガイドワイヤの位置、送り込む薬剤又は造影剤の量など)を表示するように構成されてもよい。さらに、ディスプレイ30は、コントロールコンピューティングシステム34(図2に示される)に関連する機能を提供するために情報を表示するように構成されてもよい。ディスプレイ30は、システムのユーザ入力機能の一部を提供するために、タッチスクリーン機能を含んでもよい。
カテーテルベース処置システム10は、撮像システム14も含む。撮像システム14は、カテーテルベース医療処置と連携して使用される医療撮像システムである(例えば、非デジタルX線、デジタルX線、CT、MRI、超音波など)。一実施例において、撮像システム14は、コントロールステーション26と通信するデジタルX線撮像装置である。一実施例では、撮像システム14は、患者12に対し異なる角度位置(例えば、矢状断面、尾側面、前後面など)で画像を得るために、患者12の周囲を撮像システム14が部分的又は完全に回転できるようにするCアーム(図1に示される)を含む。一実施例では、撮像システム14は、X線源13と、イメージインテンシファイアとしても知られる検出器15とを有するCアームを含む透視装置システムである。
撮像システム14は、処置中に患者12の適切な領域のX線画像を撮影するように構成され得る。例えば、撮像システム14は、神経血管状態を診断するために頭部の1つ以上のX線画像を取得するように構成されてもよい。撮像システム14はまた、カテーテルベース医療処置中に1つ以上のX線画像(例えばリアルタイム画像)を撮影して、ガイドワイヤ、ガイドカテーテル、マイクロカテーテル、ステントレトリーバー、コイル、ステント、バルーンなどを処置中に適切に位置決めできるように、コントロールステーション26のユーザ又はオペレータ11を補助するように構成されてもよい。1つ以上の画像がディスプレイ30に表示される。例えば、ユーザ又はオペレータ11がガイドカテーテル又はガイドワイヤを適切な位置に正確に移動させることを可能にするために、ディスプレイ30に画像を表示することができる。
方向を明確にするために、X、Y、Z軸をもつ直交座標系が導入される。正のX軸は、長手方向(軸方向)の遠位方向、すなわち、近位端から遠位端へ向かっての方向に向けられており、言い換えると、近位から遠位への方向である。Y軸とZ軸はX軸に対して横断面にあり、正のZ軸は上向き、つまり重力の反対方向に向いており、Y軸は右手の法則によって自動的に決定される。
図2の実施例は、カテーテルベース処置システム10をブロック図で示す。カテーテルベース処置システム10は、コントロールコンピューティングシステム34を含む。コントロールコンピューティングシステム34は、物理的には、例えばコントロールステーション26(図1に示される)の一部であってもよい。コントロールコンピューティングシステム34は、広く言えば、ここに説明される種々の機能を有するカテーテルベース処置システム10を提供するのに適した電子制御ユニットであり得る。例えば、コントロールコンピューティングシステム34は、組み込みシステム、専用回路、ここに説明される機能をプログラムされる汎用システムなどである。コントロールコンピューティングシステム34は、ベッドサイドユニット20、通信システム及びサービス36(例えば、インターネット、ファイアウォール、クラウドサービス、セッションマネージャー、病院ネットワークなど)、ローカルコントロールステーション38、追加通信システム40(例えばテレプレゼンスシステム)、リモートコントロールステーション及びコンピューティングシステム42、及び患者センサ56(例えば、心電図(ECG)デバイス、脳波図(EEG)デバイス、血圧モニタ、温度モニタ、心拍数モニタ、呼吸モニタなど)と通信する。また、コントロールコンピューティングシステムは、撮像システム14、患者テーブル18、追加医療システム50、造影剤注入システム52、及び補助デバイス54(例えば、IVUS、OCT、FFRなど)とも通信する。ベッドサイドユニット20は、ロボット制御駆動装置24、位置決めシステム22を含み、追加コントロール及びディスプレイ46を含んでもよい。上述のように、追加コントロール及びディスプレイは、ロボット制御駆動装置24のハウジングに配置することができる。インターベンションデバイス及び付属機器48(例えば、ガイドワイヤ、カテーテルなど)は、ベッドサイドユニット20とインターフェースする。一実施例によると、インターベンションデバイス及び付属機器48には、それぞれの補助デバイス54、すなわちIVUSシステム、OCTシステム、及びFFRシステムなどとインターフェースする、専用デバイス(例えば、IVUSカテーテル、OCTカテーテル、FFRワイヤ、造影剤用診断カテーテルなど)が含まれる。
様々な実施例において、コントロールコンピューティングシステム34は、入力モジュール28(例えば、ローカルコントロールステーション38又はリモートコントロールステーション42などのコントロールステーション26(図1に示す)の)とユーザの相互作用に基づいて及び/又はコントロールコンピューティングシステム34のアクセス可能な情報に基づいて、カテーテルベース処置システム10を使用して医療処置が実行されるように、制御信号を生成するべく構成される。ローカルコントロールステーション38は、1つ以上のディスプレイ30、1つ以上の入力モジュール28、及び追加ユーザコントロール44を含む。リモートコントロールステーション及びコンピューティングシステム42は、ローカルコントロールステーション38と同様のコンポーネントを含み得る。リモートコントロールステーション42とローカルコントロールステーション38は、必要な機能に応じて別々のあつらえたものとすることができる。追加ユーザコントロール44は、例えば、1つ以上の足入力コントロールを含み得る。足入力コントロールは、X線をオン及びオフにしたり各保存画像をスクロールするなど、ユーザが撮像システム14の機能を選択できるように構成される。別の実施例では、足入力デバイスは、入力モジュール28に含まれるスクロールホイールにどのデバイスをマッピングするかユーザが選択できるように構成することもできる。追加通信システム40(例えば、音声会議、ビデオ会議、テレプレゼンスなど)を採用して、オペレータと患者、医療スタッフ(例えば血管造影検査室のスタッフ)、及び/又はベッドサイドの近くにある機器との相互作用を補助することができる。
カテーテルベース処置システム10は、明記はしていないが他のシステム及び/又はデバイスを含むように接続又は構成されてもよい。例えば、カテーテルベース処置システム10は、画像処理エンジン、データストレージ及びアーカイブシステム、自動バルーン及び/又はステント膨張システム、薬剤注入システム、薬剤追跡及び/又は記録システム、ユーザログ、暗号化システム、カテーテルベース処置システム10のアクセス又は使用を制限するシステムなどを含んでもよい。
上述したように、コントロールコンピューティングシステム34は、ベッドサイドユニット20(ロボット制御駆動装置24、位置決めシステム22を含み、追加コントロール及びディスプレイ46を含み得る)と通信し、経皮的インターベンションデバイス(例えば、ガイドワイヤ、カテーテルなど)を駆動するために使用されるモータ及び駆動機構を動作制御する制御信号をベッドサイドユニット20に提供する。種々の駆動機構を、ロボット制御駆動装置24の一部として設けることができる。図3の実施例は、カテーテルベース処置システム10のロボット制御駆動装置を斜視図で示す。図3において、ロボット制御駆動装置24は、直線部材60に連結された複数のデバイスモジュール32a-dを含む。各デバイスモジュール32a-dは、ステージ62a-dを介して直線部材60に連結されており、各ステージ62a-dは直線部材60に移動可能に連結されている。デバイスモジュール32a-dは、オフセットブラケット78a-dとして示すようなコネクタを用いてステージ62a-dに接続することができる。別の実施例では、デバイスモジュール32a-dは、ステージ62a-dに直接取り付けられる。ステージ62a-dのそれぞれは個別に作動させることができ、直線部材60に沿って直線的に移動する。すなわち、各ステージ62a-d(及びステージ62a-dに連結された該当するデバイスモジュール32a-d)は、互いに対し及び直線部材60に対し相対的に独立して移動することができる。駆動機構が各ステージ62a-dを作動させるために使用される。図3に示す実施例では、駆動機構は、ステージ62a-dのそれぞれに割り当てられた個別のステージ並進モータ64a-dと、例えば回転ナットを介する送りネジ、ピニオンを介するラック、ピニオン又はプーリを介するベルト、又はスプロケットを介するチェーンのステージ駆動機構76とを含む。あるいは、ステージ並進モータ64a-d自体がリニアモータであってもよい。一実施例では、ステージ駆動機構76は、これらのメカニズムの組み合わせであってもよく、例えば、ステージ62a-dのそれぞれに、異なるタイプのステージ駆動機構を採用することもできる。ステージ駆動機構が送りネジ及び回転ナットである実施例では、送りネジが回転し、各ステージ62a-dは送りネジと係合しまた係合解除して前進又は後退するなど移動することができる。図3に図示の実施例では、ステージ62a-d及びデバイスモジュール32a-dは、縦列駆動構成である。
各デバイスモジュール32a-dは、駆動モジュール68a-dと、駆動モジュール68a-dに搭載されて連結されているカセット66a-dを含む。図3に図示の実施例では、各カセット66a-dは、上下の向きで駆動モジュール68a-dに取り付けられている。他の実施例では、各カセット66a-dは、他の取り付けの向きで駆動モジュール68a-dに取り付けられてもよい。各カセット66a-dは、EMD (図示せず)の近位部分とインターフェースし、これを支持するように構成される。加えて、各カセット66a-dは、直線部材60に沿って直線移動する該当ステージ62a-dの作動によってもたらされる直線移動に加えて1つ以上の自由度をもたらす要素を含み得る。例えば、カセット66a-dは、駆動モジュール68a-dに連結されているカセットにおいてEMDを回転させるために使用される要素を含んでもよい。各駆動モジュール68a-dは、各カセット66a-dにおいて追加の自由度を提供するメカニズムに駆動インターフェースを提供するために少なくとも1つのカプラを含む。各カセット66a-dはまた、デバイス支持体79a-dが配置されるチャンネルを含み、各デバイス支持体79a-dは、EMDが座屈しないように使用される。支持アーム77a,77b,77cは、それぞれデバイスモジュール32a,32b,32cに取り付けられ、それぞれが、デバイス支持体79b,79c,79dの近位端を支持するための固定点を提供する。ロボット制御駆動装置24は、デバイス支持体79、遠位支持アーム70、及び支持アーム770に接続されたデバイス支持接続72を含むことができる。支持アーム770は、最も遠位のデバイスモジュール32a内に収容された最も遠位のデバイス支持体79aの近位端を支持するための固定点を提供するために使用される。イントロデューサーインターフェース支持体(リダイレクタ)74が、デバイス支持接続72及びEMD(例えばイントロデューサーシース)に接続され得る。これらロボット制御駆動装置24の構成は、1つの直線部材で各アクチュエータを使用することによって、ロボット制御駆動装置24の大きさと重量を減少させるという利点を有する。
患者が病原体に汚染されるのを防ぐために、医療スタッフは、ベッドサイドユニット20及び患者12又は被験体(図1に示される)を収容する部屋で無菌操作を使う。ベッドサイドユニット20及び患者12を収容する部屋は、例えば、カテ室や血管造影検査室である。無菌操作は、無菌バリア、無菌デバイスの使用、患者の適切な準備、環境管理、及び接触ガイドラインからなる。これに従い、全てのEMD及びインターベンション付属機器は滅菌され、滅菌バリア又は滅菌器具のいずれかとのみ接触することができる。実施例において、滅菌ドレープ(図示せず)が、未滅菌のロボット制御駆動装置24を覆って配置される。各カセット66a-dは滅菌され、ドレープされたロボット制御駆動装置24と少なくとも1つのEMDとの間の滅菌インターフェースとして機能する。各カセット66a-dは、1回使用を目的として滅菌されるように設計されるか、又は、カセット66a-d又はそのコンポーネントを何回か処置で使用できるように全体又は部分的に再滅菌できる設計とされる。
[定義と用語]
EMD:「細長い医療デバイス(EMD)」は、カテーテル(例えば、ガイドカテーテル、マイクロカテーテル、バルーン/ステントカテーテル)、ワイヤベースデバイス(例えば、ガイドワイヤ、エンボライゼーションコイル、ステントレトリーバーなど)、及びこれらのいずれかを組み合わせた医療デバイスを指す。ただし、これらに限定されない。
負荷:「負荷」は、力、トルク、又は力とトルクの組み合わせを指す。負荷は、力の単一成分(単一軸に沿った力)又は力の複数成分(複数の軸の力)及び/又はトルクの単一成分(単一軸の周りのトルク)又はトルクの複数成分(複数の軸のトルク)を含み得る。負荷は、静的(経時変化しない)又は動的(経時変化する)であり得る。
力:「力」は、物体の動きを引き起こす又は引き起す要因となる作用を指す。物体に作用する力は、物体の動きを変化させ、物体の動きを遅らせ、物体に既に作用している力を平衡させ、物体に内部応力を生じさせ得る。力の特性には、力の大きさ、力の作用線(力の作用が沿う軸)、力の方向(圧縮力か引張力かに従う)、及び、力が作用している点、が含まれる。
トルク:「トルク」は、物体の回転動作を引き起こす又は引き起こす要因となる作用を指す。物体に作用するトルクは、物体の回転動作を変化させ、物体の回転動作を遅らせ、物体に既に作用しているトルクを平衡させ、物体に内部応力を生じさせ得る。トルクの特性には、トルクの大きさ、トルクの作用線、トルクの方向(作用線を中心に時計回りか反時計回りか)、及び、トルクが作用している点、が含まれる。「トルク」は、モーメント、力のモーメント、回転力、ねじれ力、及び“回動力”とも呼び得る。トルクは力の回転版である。トルクの大きさは、力の大きさと、回転軸からの力の作用線の垂直距離との積として決定されもする。
コントロールコンピューティングシステム:「コントロールコンピューティングシステム」は、処理回路を有するプロセッサを含む。プロセッサは、汎用プロセッサ、特定用途向けプロセッサ(ASIC)、1つ以上の処理コンポーネントを含む回路、分散処理コンポーネントのグループ、処理用に構成された分散コンピュータのグループなどを含み、ここに説明するモジュール又はサブシステムコンポーネントの機能を提供するように構成される。メモリユニット(例えば、メモリデバイス、ストレージデバイスなど)は、ここに説明される種々のプロセスを完了し及び/又は容易にするためのデータ及び/又はコンピュータコードを保存するためのデバイスである。メモリユニットは、揮発性メモリ及び/又は不揮発性メモリを含み得る。メモリユニットは、データベースコンポーネント、オブジェクトコードコンポーネント、スクリプトコンポーネント、及び/又はここに説明される種々のアクティビティを支援する他のタイプの情報構造を含んでもよい。一実施例によれば、ここに開示するシステム及び方法と共に、過去、現在、又は将来のあらゆる分散及び/又はローカルメモリデバイスを利用することができる。一実施例によれば、メモリユニットは、1つ以上の関連する処理回路に通信可能に接続される。この接続は、回路接続、他の有線、無線、又はネットワーク接続を介するものであり、ここに説明される1つ以上のプロセスを実行するためのコンピュータコードが含まれる。1つのメモリユニットは、様々な個々のメモリデバイス、チップ、ディスク、及び/又は他の記憶構造又はシステムを含むことができる。モジュール又はサブシステムコンポーネントは、各モジュールのそれぞれの機能を実行するためのコンピュータコード(例えば、オブジェクトコード、プログラムコード、コンパイル済みコード、スクリプトコード、実行可能コード、又はそれらの組み合わせ)であってよい。
遠位と近位:「遠位」及び「近位」は、2つの異なる部分の相対的位置を定義する。ロボット制御駆動装置に関して言う「遠位」及び「近位」は、使用中のロボット制御駆動装置の患者に対する位置(姿勢)によって定義される。
相対位置を定義するべく使用される場合、遠位の部分は、ロボット制御駆動装置がその計画された使用位置にあるときに、近位の部分よりも患者に近いところのロボット制御駆動装置の部分である。患者の体内では、アクセスポイントから経路に沿ってより遠くにある脈管構造ランドマークが、アクセスポイントにより近いランドマークに対して遠位であるとみなされる。このときのアクセスポイントは、EMDが患者に入るポイントである。同様に、近位の部分は、ロボット制御駆動装置がその計画された使用位置にあるときに、遠位の部分よりも患者から遠くにある部分である。
方向を定義するべく使用される場合、遠位方向は、ロボット制御駆動装置がその計画された使用位置にあるときに、何かが移動しているか又は移動しようとしている経路、あるいは、何かが近位の部分から遠位の部分及び/又は患者の方を指している又は向いている経路を指す。近位方向は、遠位方向の反対方向である。図1を参照すると、患者に向いているオペレータの視点からロボット制御デバイスが示されている。この配置の場合、遠位方向は正のX座標軸に沿っており、近位方向は負のX座標軸に沿っている。図3を参照すると、EMDは、ロボット制御駆動装置24の遠位端を画定するイントロデューサーインターフェース支持体74を通って患者に向かう経路上の遠位方向へ移動される。ロボット制御駆動装置24の近位端は、負のX軸に沿った遠位端から最も遠い点である。
縦軸(長手軸):部材(例えば、カテーテルベース処置システムにおけるEMD又は他の要素)についての「縦軸(長手軸)」は、部材の近位部分から遠位部分への方向において、部材の横断面の中心を通る部材の長さに沿った線又は軸である。例えば、ガイドワイヤの縦軸(長手軸)は、ガイドワイヤが関連部分において直線でなくても、ガイドワイヤの近位部分からガイドワイヤの遠位部分へ向かう方向の中心軸である。
軸方向及び回転方向の動作:部材の「軸方向動作」は、部材の縦軸に沿った部材の並進を指す。EMDの遠位端が、その縦軸に沿って遠位方向に患者の中へ又は患者のさらに中へ軸方向で動かされる場合、EMDは前進している。EMDの遠位端が、その縦軸に沿って近位方向に患者から外へ又は患者からさらに外へ軸方向で動かされる場合、EMDは引き抜かれている。部材の「回転動作」は、部材の局所的な縦軸のまわりの部材の角度方向の変化を指す。EMDの回転動作は、加えられたトルクによるEMDの縦軸を中心とした時計回り又は反時計回りの回転に相当する。
軸方向及び横方向の挿入:「軸方向挿入」は、第1の部材を第2の部材の縦軸に沿って第2の部材に挿入することを言う。「横方向挿入」は、第1の部材を第2の部材の縦軸に交差する面内の方向に沿って第2部材に挿入することを言う。これは、ラジアル(径方向)装填又はサイド(側方)装填とも呼ばれる。
ピンチ/アンピンチ:「ピンチ」は、部材が動くときにEMDと部材が一緒に動くように、EMDを部材に取り外し可能に固定することを指す。「アンピンチ」は、部材が動くときにEMDと部材が独立して動くように、部材からEMDを外すことを指す。
クランプ/アンクランプ:「クランプ」は、EMDの動きが部材に対して拘束されるように、EMDを部材に取り外し可能に固定することを指す。部材は、グローバル座標系に関して又はローカル座標系に関して、固定とすることができる。「アンクランプ」は、EMDが独立して動けるように、EMDを部材から外すことを指す。
グリップ/アングリップ:「グリップ(把持)」は、少なくとも1つの自由度のEMDの動作を滑り無く引き起こす駆動機構によるEMDへの力又はトルクの印加を指す。「アングリップ(解放)」は、EMDの位置がそれ以降拘束されないような駆動機構によるEMDへの力又はトルクの印加の解放を指す。2つのタイヤの間にグリップされたEMDは、タイヤが互いに対して長手方向に移動するとき、その縦軸のまわりを回転する。EMDの回転動作は、2つのタイヤの運動とは異なる。グリップされるEMDの位置は、駆動機構によって拘束される。
座屈:「座屈」は、軸方向圧縮下で、可撓性EMDが縦軸から外れて曲がる、又は、EMDが前進している予定経路から外れて曲がる、EMDの性向を指す。一実施例では、軸方向圧縮は、脈管系内ナビゲーション中の抵抗に応じて生じる。EMDが座屈するまでに支持無しで縦軸に沿って駆動され得る距離をここではデバイス座屈距離と呼ぶ。デバイス座屈距離は、デバイスの剛性、形状(直径を含むがこれに限定されない)、及びEMDに加えられる力の関数である。座屈は、EMDが予定の経路とは異なる弓形部分を形成してしまう原因となる。キンキング(よじれ)は、EMDの変形が非弾性で永久変形となったケースの座屈である。
ホーミング:「ホーミング(自動誘導)」は、規定位置に部材を移動することを指す。規定位置の例は、基準位置である。規定位置の別の例は、初期位置である。「ホーム(原点)」は、規定位置を指す。通常、後に続く直線位置又は回転位置に対する基準として使用される。
上(頭)/底(下)・上方/下方・前/後・内/外: 「上(頭・頂)」、「上方」、「上向き(上側)」は、重力の方向とはほぼ逆の方向を指し、「下(底)」、「下方」、「下向き(下側)」は、おおよそ重力の方向を指す。「前」は、患者に面するロボット制御駆動装置の側であり、関節アームなどの位置決めシステムから離れているロボット制御駆動装置の側を指す。「後」は、関節アームなどの位置決めシステムに最も近いロボットド制御駆動装置の側を指す。「内」は、部分の内側を指す。「外」は、部分の外側を指す。
ステージ:「ステージ」は、デバイスモジュールをロボット制御駆動装置に連結するために使用される部材、部分、又はデバイスを指す。例えば、ステージを使用して、デバイスモジュールをロボット制御駆動装置のレール又は直線部材に連結することができる。
駆動モジュール:「駆動モジュール」は、広く言えば、カセットとインターフェースする駆動カプラ(連結器)を備えており、1つ以上のモータを標準装備する、ロボット制御駆動システムの部品(例えば主要部品)を指す。
デバイスモジュール:「デバイスモジュール」は、駆動モジュールとカセットの組み合わせを指す。
カセット:「カセット」は、広く言えば、駆動モジュールと少なくとも1つのEMDとの間の(直接)又は駆動モジュールとデバイスアダプタを介して少なくとも1つのEMDとの間の(間接)基本的に無菌インターフェースである、ロボット制御駆動システムの部品(取り替え可能な、消耗品の、又は殺菌可能なユニット)を指す。
コレット:「コレット」は、EMDの一部を取り外し可能に固定できるデバイスを指す。ここでの「固定」は、作動中のコレットとEMDとの意図的な相対動作がないことを意味する。一実施例では、コレットは、互いに対して回転方向に動作する少なくとも2つの部材を含み、EMDをその2つの部材のうちの少なくとも1つに取り外し可能に固定する。一実施例では、コレットは、互いに対して軸方向に(縦軸に沿って)動作する少なくとも2つの部材を含み、EMDをその2つの部材のうちの少なくとも1つに取り外し可能に固定する。一実施例では、コレットは、互いに対して回転方向及び軸方向に動作する少なくとも2つの部材を含み、EMDをその2つの部材のうちの少なくとも1つに取り外し可能に固定する。
固定:「固定」は、動作中に第2の部材に対する第1の部材の意図的な相対動作がないことを意味する。
オンデバイスアダプタ:「オンデバイスアダプタ」は、駆動インターフェースを提供するためにEMDを取り外し可能にピンチすることができる滅菌装置を指す。オンデバイスアダプタは、エンドエフェクタ又はEMDキャプチャデバイスとも呼ばれる。限定的意味のない一実施例では、オンデバイスアダプタはロボット制御することの可能なコレットであり、EMDをその縦軸のまわりに回転させ、EMDを当コレットでピンチ及び/又はアンピンチし、及び/又はEMDをその縦軸に沿って並進させる。一実施例では、オンデバイスアダプタは、EMDのハブに位置する従動ギアのようなハブ駆動機構である。
タンデム駆動:「タンデム駆動」は、1つ以上のEMDを操作することができる、2つ以上のEMD駆動モジュールを含んだ、ロボット制御駆動装置内の駆動ユニット又はサブシステムを指す。
ハブ(近位)駆動:「ハブ駆動又は近位駆動」は、近位の位置(例えば、カテーテルハブにあるギア付きアダプタ)からEMDを保持して操作することを指す。一実施例では、ハブ駆動は、カテーテルのハブに力又はトルクを付与してカテーテルを並進及び/又は回転させることを言う。ハブ駆動はEMDを座屈させる可能性があり、したがってハブ駆動は、ほとんどの場合、座屈防止機能を必要とする。ハブ又は他のインターフェース(例えばガイドワイヤ)をもたないデバイスの場合、デバイスアダプタをデバイスに追加して、デバイスモジュールに対するインターフェースとして作用させるとよい。一実施例では、EMDは、手元からカテーテルの遠位端まで延伸するワイヤなどのカテーテル内部分を操作するメカニズムを含まず、カテーテルの遠位端を逸らす。
シャフト(遠位)駆動:「シャフト(遠位)駆動」は、シャフトに沿ってEMDを保持し操作することを指す。オンデバイスアダプタは、通例、デバイスが挿入されるハブ又はY-コネクタの直近に配置される。オンデバイスアダプタの位置が挿入点(身体への、あるいは、別のカテーテル又はバルブへの)の近くである場合、シャフト駆動は、通常、座屈防止機能を必要としない。(駆動能力を向上させるために座屈防止機能を含む場合はある。)
滅菌可能ユニット:「滅菌可能ユニット」は、滅菌可能な(病原性微生物を含まない)デバイスを指す。これには、カセット、消耗品ユニット、ドレープ、デバイスアダプタ、及び滅菌可能な駆動モジュール/ユニット(電気機械コンポーネントを含み得る)が含まれる。ただし、これらに限定されない。滅菌可能ユニットは、患者、他の滅菌デバイス、又は医療処置の無菌域内に配置された他のものと接触する可能性がある。
滅菌インターフェース:「滅菌インターフェース」は、滅菌ユニットと未滅菌ユニットとの間のインターフェース又は境界を指す。例えば、カセットは、ロボット制御駆動装置と少なくとも1つのEMDとの間の無菌インターフェースであり得る。
リセット(駆動機構リセット):「リセット」は、駆動機構を第1の位置から第2の位置に配置し直して、EMDの継続的な回転及び/又は軸方向の動作を可能にすることを意味する。リセット中、EMDは駆動機構によって能動的に動かされることはない。一実施例では、EMDは、駆動機構の再配置に先立って駆動機構からリリースされる。一実施例では、クランプが、駆動機構の再配置中にEMDの位置を固定する。
連続動作:「連続動作(連続モーション)」は、リセットを必要とせず、途切れることのない動作を指す。タイヤ駆動直線動作は連続動作である。
不連続動作:「不連続動作(不連続モーション)」は、リセットを必要とし、中断される動作を指す。パドル駆動直線動作は不連続動作である。
消耗品:「消耗品」は、医療処置で通常は1回だけ使用する滅菌可能ユニットを指す。このようなユニットは、別の医療処置で使用するための再滅菌プロセスを通して再使用可能な消耗品のこともある。
デバイス支持体:「デバイス支持体」は、EMDの座屈を防止する部材、部分、又はデバイスを指す。
ダブルギア:「ダブルギア」は、デバイスの2つの異なる部分に動作可能に接続される2つの独立従動ギアを指す。2つのギアの各々は、同一でも違う設計でもよい。「ギア(歯車)」は、ベベルギア、スパイラルベベルギア、スパーギア、マイタギア、ウォームギア、ヘリカルギア、ラックアンドピンオン、スクリューギア、サンギアなどのインターナルギア(内歯車)、インボリュートスプラインシャフト及びブッシング、又は、当技術分野で周知の他のタイプのギアである。一実施例では、ダブルギアは、駆動接続がデバイスの2つの異なる部分によって維持されるデバイスを含み、限定的列挙ではないが、ベルト、摩擦係合、又は当技術分野で周知の他のカプラを含む。
負荷センサ:「負荷センサ」は、力及び/又はトルクの1つ以上の成分を測定するセンサを指す。例えば、一軸負荷センサは、1つの軸に沿った力又は1つの軸のまわりのトルクを測定する。多軸負荷センサは、複数の相互交差する軸における力及び/又はトルクを測定する。負荷センサは、一般に、負荷に応じて電気信号を生成し(例えば、歪みゲージベースの負荷センサは負荷に応じて電荷を生成する)、一般に、信号を力及び/又はトルクに変換するために信号調整回路を必要とする。このように、負荷センサは、圧縮力及び/又は引張力及び/又は時計回りのトルク及び/又は反時計回りのトルクの1つ以上の成分を、測定可能な電気出力(例えば電圧又は電流)に変換するトランスデューサである。
モーションセンサ:「モーションセンサ」は、動作パラメータを検出するセンサを指す。接触型モーションセンサには、加速度計、LVDT、エンコーダが含まれる。ただし、これらに限定されない。非接触型モーションセンサには、CMOSセンサ、光学エンコーダ、超音波センサ、標準又は高速度カメラが含まれる。ただし、これらに限定されない。
ゼロオフセット:「ゼロオフセット」は、無負荷時の見かけの負荷を示す、負荷検知システムの測定負荷におけるバイアスを指す。センサ較正のプロセスは、無負荷時に負荷検知システムがゼロ負荷を示すように、ゼロオフセットに関し補正する。
過負荷保護:「過負荷保護」は、負荷センサが過負荷状態にならないように、つまり、センサの作動範囲を超える力を受けることのないように、あるいは、センサの測定仕様の上限を超える負荷でダメージを受けることのないように、保護する手段を指す。
自動較正:「自動較正(自動化較正・自己較正)」は、手動による介入なしで起動するセンサ又はセンサシステムの較正手段を指す。自動較正において、負荷センサ又は負荷検知システムは、非手動手段(既知の剛性の弾性部材を変位させる被駆動モータなど)による既知の負荷で(すなわち、別の方法によって正確に把握した負荷で)作動し、プロセッサが誤差を補正するために使用される。
[負荷検知]
細長い円筒部分を有する機械的コンポーネントに作用する力及びトルクを検知するために、センサが細長い円筒部分と一列にして配置されるか、又は、歪みゲージが細長い円筒部分に取り付けられる。細長い円筒部分が細長い医療デバイス(EMD)であるカテーテル及びガイドワイヤインターベンションシステムの場合、センサは、患者の体外で力及びトルク(以降、負荷と呼ぶ)を測定することが望ましい場合があり、この場合、センサはEMDと一列にないか、EMDに取り付けられていない。患者の外で負荷を測定することで、血管内にセンサや関連電子機器(ケーブルなど)を配置するといった要件が排除される。直径が大きめのEMD(例えば、直径>2mmの一部のEP(電気生理学)カテーテル)のように、血管内に負荷センサを置くことが可能であることもあるが、0.2mmから2mmの直径をもつ小さめの径のEMDを、血管内配置が要求されるセンサ無しで使用する場合であっても、負荷を測定することが望ましいことがある。手動の処置では、医師は負荷の推定を指に頼って行っている。しかしながら、EMDに伝わる低い範囲の力とトルクについて、直径の小さいデバイスに加わる負荷を術者が正確に推定するのは非常に難しい。
ロボット制御システムにおいて、ロボット制御駆動機構内の負荷センサを用いて、EMDに作用する力とトルクを測定することができる。センサを駆動機構の内部に配置することによって、摩擦及び慣性効果に起因する寄生の力及びトルクが実際の値に影響を与える(例えば、付加される)ことがあり、故にEMD内の力及びトルクの測定精度が低下する可能性がある。ここでは、負荷センサに作用する寄生負荷を低減すると共にロボット制御血管インターベンションシステムにおいて負荷検知を実施する方法と設計を提示する。言い換えると、測定負荷と実際の負荷との差が最小になるように、被負荷検知成分を寄生負荷から分離する。
ここに説明する負荷検知システムは、特許出願「SYSTEMS, APPARATUS AND METHODS FOR SUPPORTING AND DRIVING ELONGATED MEDICAL DEVICES IN A ROBOTIC CATHETER-BASED PROCEDURE SYSTEM」(Atty Dkt. No. C130-362, 169528.00004;米国仮出願62/874,222;2019年7月15日出願)に開示のシステムに接続して使用することができる。その中に浮遊カセット部材が記載されている。チューブはもちろん、コレット駆動に使用される座屈防止支持システム(伸縮式支持体、アコーディオン式支持体、固定シースなど)は、使い捨てコンポーネントに、負荷検知測定においてEMDに作用する実際の力と混合され得る(又は加えられ得る)意図しない力(寄生力)を印加し得る。
図3及び図4A-図4Dを参照すると、ロボット制御駆動装置24のデバイスモジュール32は、滅菌バリア100によって分離された駆動モジュール68及びカセット66を含む。一実施例では、滅菌バリア100は可撓性ドレープである。一実施例では、滅菌バリア100はボックスなどの硬質の滅菌バリアである。一実施例では、駆動モジュール68がデバイスモジュール32の主要部分であり、カセット66及び滅菌バリア100は、デバイスモジュール32の使い捨て部分である。ロボット制御駆動システムは、EMDの縦軸に沿ってEMD102を直線的に移動させ及び/又はEMDの縦軸のまわりにEMD102を回転動作させることができる。直線(前進、後退)動作と回転(時計回り、反時計回り)動作がEMD102の主な自由度(DOF)である。例えば、コレット内でEMD102をピンチ/アンピンチしたり、自己拡張型ステントを鞘から出したりする、追加のDOFも存在し得る。
カセット66は、カセットハウジング104と、カセットハウジング104の中で及び/又はカセットハウジング104と相対的に動作可能な隔離コンポーネント106とを含む。一実施例では、隔離コンポーネント106はハウジング104から隔離され、隔離コンポーネント106はハウジング104に固定されない。一実施例では、隔離コンポーネント106は、生理食塩水、造影剤等を導入するために使用することができるチューブ110に接続される。一実施例では、チューブ110はY-コネクタ又はカテーテルのハブに接続され、この場合のチューブ110はカセットハウジング104に固定される。一実施例では、カセット66が使い捨てユニットであり、カセットハウジング104、隔離コンポーネント106、及びチューブ110は使い捨てコンポーネントである。
EMD102は、隔離コンポーネント106内のメカニズム(後述する)によって操作される。隔離コンポーネント106は、EMD102に作用する実際の負荷以外の外的負荷から切り離されている。一実施例では、カセット66の隔離コンポーネント106は、例えば、可撓性膜108を使用することによって、カセット66のハウジング104につながれる。別の例では、カセット66の隔離コンポーネント106は、ガイド及びスライダインターフェースを用いてカセット66のハウジング104に滞留する。(図6Bの符号150-151及び156-157参照。)
一実施例では、可撓性膜108は、負荷測定方向において隔離コンポーネント106に大きな負荷を加えない。例えば、可撓性膜108によって隔離コンポーネント106に加えられる負荷は、測定される負荷の範囲の10%を下回る。
一実施例では、隔離コンポーネント106は、カセット66のハウジング104の中に閉じ込められ、すなわち拘束されている。これにより、カセット66の2つのコンポーネント(カセットハウジング104及び隔離コンポーネント106)を一緒に動作させることができ、駆動モジュール68に一緒に搭載することができる。駆動モジュール68に搭載されると、隔離コンポーネント106は、カセット66のハウジング104に対して非接触となり、その結果、カセット66のハウジング104から隔離コンポーネント106に負荷がかからない。この特徴は、特許出願「SYSTEMS, APPARATUS AND METHODS FOR SUPPORTING AND DRIVING ELONGATED MEDICAL DEVICES IN A ROBOTIC CATHETER-BASED PROCEDURE SYSTEM」(Atty Dkt. No. C130-362, 169528.00004;米国仮出願62/874,222;2019年7月15日出願)に開示されている。
図3、図4A-図4D、及び図5Dを参照すると、一実施例において、EMD102の直線DOF動作はステージ駆動機構76に沿ってデバイスモジュール32を移動させることによって達成され、一方でEMD102は、カセット66の隔離コンポーネント106に全体的に接続されたEMDオンデバイスアダプタ112によって捕らえられている。EMDオンデバイスアダプタ112は、エンドエフェクタ又はEMDキャプチャデバイスとしても知られている。一実施例では、EMDオンデバイスアダプタ112はコレットである。一実施例では、EMDオンデバイスアダプタ112は、ハブ駆動装置である。一実施例では、ステージ駆動機構76は送りネジであり、駆動モジュール68は、ベルト114の使用によって送りネジに螺合のナットを回転させるステージ並進モータ64を含む。ナットは、2つのスラストベアリングを介して駆動モジュール68と接触し、ナットが親ねじに対し回転することでデバイスモジュール32が並進する。駆動モジュール68は、ステージ駆動機構76に対して直線的にのみ動くようにガイドによって拘束される。
駆動モジュール68は、駆動モジュール基部コンポーネント116及び被負荷検知コンポーネント118を含む。被負荷検知コンポーネント118は、少なくとも1つの負荷測定方向で隔離コンポーネント106を支持し、そして被負荷検知コンポーネント118は、駆動モジュール基部コンポーネント116に接続された負荷センサ120によって、少なくとも1つの負荷測定方向において支持される。一実施例では、駆動モジュール68は主要ユニットであり、駆動モジュール基部コンポーネント116、被負荷検知コンポーネント118、及び負荷センサ120を主要コンポーネントとする。
一実施例では、ケーブル122が被負荷検知コンポーネント118に接続され、このケーブル122は例えば、アクチュエータに給電したり、エンコーダ(例えば図4A及び図4C)と信号を交信するための、配線を含む。一実施例では、被負荷検知コンポーネント118に接続されたケーブル122は、ケーブル122が被負荷検知コンポーネント118を引きずることのないように、駆動モジュール基部コンポーネント116に固着される。一実施例では、ケーブル122は、駆動モジュール基部コンポーネント116の内腔を経て被負荷検知コンポーネント118に接続される。一実施例では、ケーブル122は、分割して接続されたケーブルを含み、例えば、第1の部分は、駆動モジュール基部コンポーネント116のコネクタに接続されたケーブルであり、第2の部分は、駆動モジュール基部コンポーネント116のコネクタを被負荷検知コンポーネント118に接続する別個のケーブルであり、この場合、第2の部分のケーブルは、負荷測定方向において被負荷検知コンポーネント118に大きな負荷を与えない。1つの例では、第2の部分のケーブルが加える負荷は、測定される負荷の全範囲の10%を下回っていれば、有意とはみなされない。
一実施例では、被負荷検知コンポーネント118は、負荷センサ120によって完全に支持される。ただし、オフ軸負荷(例えば、X軸として図中に示されている測定軸以外の軸に沿って作用する力成分)に対する負荷センサ120の負荷容量は、被負荷検知コンポーネント118の重量や慣性力といった負荷に耐えるのに適切でない場合がある。通常、負荷センサの構造強度はセンサの負荷測定範囲に比例する。EMD102に作用する負荷の範囲は、被負荷検知コンポーネント118の重量や慣性力よりも著しく低くなり得るので、重量及び/又は慣性力をセンサが完全に支持することになると、負荷センサ120にとっては過負荷となり、ダメージを受ける可能性がある。オフ軸負荷を支持するための1つのアプローチとして、高いオフ軸負荷を支えることができる、より高い構造強度をオフ軸方向に有する負荷センサ120の使用が含まれる。例えば、一実施例では、負荷センサ120は、このような特性をもつ曲げビーム型センサである。
一実施例では、オフ軸負荷は、ベアリング支持体のような付加的コンポーネントによって支えられる。ベアリング支持体は、測定方向において負荷を加えることなく、オフ軸負荷のみを支えるために使用することができる。
一実施例では、負荷検知は、間接的に、すなわち、あからさまな負荷センサ120の使用をせずとも達成することができる。例えば、一実施例では、負荷検知は、アクチュエータにより印加された力及び/又はトルクに関連付けられる、電動アクチュエータの電流を測定することによって達成される。一実施例では、負荷検知は、印加された力及び/又はトルクに関連させることができるアクチュエータの圧力などの物理的特性を測定することによって達成することができる。一実施例では、物理的特性と負荷との関係は、実験的較正によって決定できる。一実施例では、物理的特性と負荷との関係は、数学モデル又は方程式によって決定できる。
一実施例では、駆動モジュール68全体が負荷検知される。一例として、駆動モジュール68の全体が負荷センサ120を介してステージ62に連結され、負荷センサ120は、少なくとも1つの方向(負荷測定方向)で駆動モジュール68を支持する。一実施例では、負荷センサ120は、寄生負荷の発生源を被負荷検知コンポーネント118から排除し、測定中にEMD102に作用する実際の負荷の測定を損なう摩擦負荷、慣性負荷、重力負荷などの寄生負荷を低減するために、駆動モジュール68の内側に配置される。
負荷検知システムは、測定された負荷を表す1つ以上の信号を負荷センサから受け取るプロセッサ(処理ユニット)を含む。
負荷検知システムは、駆動モジュール68、カセット66、ケーブル122、チューブ110、及び滅菌バリア100からの寄生負荷など、駆動システム内の寄生負荷源に起因する、被負荷検知コンポーネント118に作用して実際の負荷に影響を与える寄生負荷を補正する方法を含む。一実施例では、滅菌バリア100はドレープを含む。この方法は、慣性負荷、重力負荷、摩擦負荷、及び障害負荷などの寄生負荷の特性評価及び/又は測定を含む。障害負荷とは、被負荷検知コンポーネント118に抵抗負荷を加えるケーブル及び/又はチューブ及び/又は他のコンポーネントによって生じる負荷をいう。摩擦負荷には、これに限定されないが、駆動系における摩擦負荷、例えば、ギア、ベルト、摺動コンポーネント、封止における摩擦損失が含まれる。EMDに作用する実際の力“Factual”と実際のトルク“Tactual”は、それぞれ、以下のように決定される。
[式1]Factual=Fsensed-Finertia-Fgravity-Ffriction-Fdrag
[式2]Tactual=Tsensed-Tinertia-Tgravity-Tfriction-Tdrag
式中、Finertia、Fgravity、Ffriction、及びFdragはそれぞれ、寄生の慣性、重力、摩擦、及び障害の力を表し、Tinertia、Tgravity、Tfriction、及びTdragはそれぞれ、寄生の慣性、重力、摩擦、及び障害のトルクを表す。FsensedとTsensedは、それぞれ、被負荷検知コンポーネントに接続された負荷センサによって測定される力とトルクを表す。
上述したた図4A-図4Dを参照すると、説明した負荷検知概念に係るデバイスモジュール32は、駆動モジュール基部コンポーネント116及び被負荷検知コンポーネント118を有する駆動モジュール68を含む。EMD102は、隔離されたコンポーネント106に取り外し可能に連結されている。隔離コンポーネント106は、被負荷検知コンポーネント118とEMD102との間のインターフェースを提供するので、隔離インターフェースコンポーネントとも呼ぶ。ここで使用される隔離コンポーネントは、浮遊部材又は浮遊コンポーネントとも呼ぶ。隔離コンポーネント106は、EMD102に作用する実際の負荷以外の負荷から隔離される。隔離コンポーネント106は、被負荷検知コンポーネント118に取り外し可能に連結される。駆動モジュール基部コンポーネント116及び被負荷検知コンポーネント118に固定された負荷センサ120が、EMD102に作用する実際の負荷を検知する。
一実施例において、負荷センサ120は、少なくとも1つの負荷測定の方向において被負荷検知コンポーネント118の唯一の支持部である。一実施例では、カセットハウジング104と隔離コンポーネント106とは、これらで1つのコンポーネントを形成するように、内部で接続される。一実施例では、可撓性膜108がカセットハウジング104と隔離コンポーネント106との間を接続し、この可撓性膜108は、X方向(デバイス方向)には無視できる力を隔離コンポーネント106に印加する。一実施例では、可撓性膜108は、物理的な膜ではなく、カセットインターフェースを表す。
図4Aを参照すると、デバイスモジュール32は、負荷センサ120によって全体的に支持される被負荷検知コンポーネント118を含む。一実施例では、負荷センサ120は、EMD102にかかる実際の力を決定するために反力を測定する単軸センサである。一実施例では、負荷センサ120は、反力負荷の成分を測定する多軸センサで、EMD102に作用する対応する実際の力及びトルクを決定する。一実施例では、EMD102を回転させたり、EMD102をピンチ/アンピンチするアクチュエータは、存在しない。一実施例では、EMD102を回転させるため及び/又はEMD102をピンチ/アンピンチするために、被負荷検知コンポーネント118の内側に位置する又は一体的に接続される少なくとも1つのアクチュエータ(図示せず)が存在する。
図4Bを参照すると、負荷検知システムを備えたデバイスモジュール32の図4Aとは別の実施例は、付加的な部分を有すること、すなわち、EMD102を回転させるため及び/又は被負荷検知コンポーネント118の外でピンチ/アンピンチするために使用される、少なくとも1つのアクチュエータを配置すること、を示している。一実施例では、アクチュエータ124は、被負荷検知コンポーネント118の内から被負荷検知コンポーネント118の外へ出してあり、被負荷検知コンポーネント118にアクチュエータによって印加され得る寄生負荷(慣性負荷など)を低減する。
一実施例では、動力は、被負荷検知コンポーネント118の外に位置するアクチュエータ124から、負荷センサ120に負荷測定方向の負荷を印加しないパワートレインを介して、被負荷検知コンポーネント内の駆動コンポーネント(例えば、カセット内の使い捨てオンデバイスアダプタを駆動するために使用されるプーリ及び/又はキャプスタン)に伝達される。一実施例では、動力は、負荷測定方向に対し交差するベルト126を使用することによって、被負荷検知コンポーネント118の外に位置するアクチュエータ124から被負荷検知コンポーネント118の中の駆動コンポーネントに伝達される。一実施例では、動力は、被負荷検知コンポーネント118の外に位置するアクチュエータ124から、負荷測定方向に対し交差するチェーン又はケーブル又はワイヤを使用するなどの他の手段によって、被負荷検知コンポーネント118の中の駆動コンポーネントに伝達される。一実施例では、動力は、負荷センサ120に負荷測定方向の負荷を印加する駆動トレインを介して、アクチュエータ124からEMDオンデバイスアダプタ112に伝達される。この場合、この負荷は、EMD102にかかる実際の負荷の判定において補正することができる。一実施例では、アクチュエータ124は、アクチュエータ124と駆動モジュール基部コンポーネント116との間の反力トルクを測定するために、トルクセンサ125のような第2の負荷センサを含む。一実施例では、アクチュエータ124は、デバイス角度位置フィードバック用のエンコーダを含む。
一実施例では、負荷センサ120は、EMD102に作用する力を測定するための曲げビーム型力センサのような力センサである。一実施例では、負荷センサ120は、EMD102に作用する力及びトルクを測定するために使用される多軸センサである。一実施例では、EMD102の回転又はピンチ/アンピンチのためにアクチュエータ124から被負荷検知コンポーネント118に動力を伝達するべく使用されるパワートレイン(例えば、ベルト、ケーブル、チェーンなど)の中心線は、負荷センサ120の軸と一致し、トルク測定方向においてパワートレインのプレテンションがトルクセンサに印加されないようにする。別の実施例では、パワートレインは、隔離コンポーネント106に係合されたEMDの近位部分と平行であり、トルク測定方向におけるパワートレインのプレテンションによって生成されるトルクがないようにする。
一実施例では、EMD102の回転又はピンチ/アンピンチのためのアクチュエータ124とEMDオンデバイスアダプタ112との間のパワートレインに負荷センサ120が使用され、EMD102に作用するトルク及び/又はコレットをピンチ/アンピンチするために印加されるトルクを判定する。一実施例では、負荷センサ120は、アクチュエータ124と駆動モジュール基部コンポーネント116との間に配置され、EMD102に作用するトルク及び/又はコレットをピンチ/アンピンチするために印加されるトルクを判定する。
図4Cを参照すると、負荷検知システムを備えたデバイスモジュール32の図4Aとは別の実施例は、追加的な部分を有すること、すなわち、少なくとも1つの非測定方向において被負荷検知コンポーネント118を支持するためのベアリング128を含むこと、が示されている。言い換えれば、ベアリング支持体128は、測定方向において負荷を加えない。図4Cを参照すると、一実施例では、ベアリング支持体128は、力の測定方向以外のすべての方向において被負荷検知コンポーネント118を支持するリニアベアリング(平面内に方向をもった)である。
図4Dを参照すると、負荷検知システムを備えたデバイスモジュール32の図4Aとは別の実施例は、上述した図4Bと図4Cの部分を組み合わせて含むことが示されている。すなわち、被負荷検知コンポーネント118の外にEMD102の回転及び/又はピンチ/アンピンチのためのアクチュエータ124を配置すると共に、少なくとも1つのオフ軸(非測定)方向における被負荷検知コンポーネント118のベアリング支持体128を含む。ベアリング支持体128は、測定方向に負荷を加えない。図4Dを参照すると、一実施例では、ベアリング支持体128は、力の測定方向以外のすべての方向において被負荷検知コンポーネント118を支持するリニアベアリング(平面内に方向をもった)である。
図5A、図5B、及び図5Cを参照すると、負荷検知システムを備えた駆動モジュール68が示されている。駆動モジュール68は、駆動モジュール基部コンポーネント116と被負荷検知コンポーネント118との間に位置する負荷センサ120によって接続される別個の部分として、駆動モジュール基部コンポーネント116と被負荷検知コンポーネント118とを含む。被負荷検知コンポーネント118のベアリング128は、少なくとも1つのオフ軸(非測定)方向において被負荷検知コンポーネントを支持する。
図5Bを参照すると、負荷検知システムを備えた駆動モジュール68は、被負荷検知コンポーネント118の外に位置するアクチュエータ124(EMD102を回転及び/又はピンチ/アンピンチするために使用される)を含む。一実施例では、アクチュエータ124は、ベルト126を駆動する第1のプーリを回転させ、この第1のプーリが、カセット66と係合及び係合解除の可能なカプラ130を回転させる第2のプーリを回転させる。
図5A、図5B、図5C、図5G、及び図5Hを参照すると、一実施例では、駆動モジュール基部コンポーネント116は、被負荷検知コンポーネント118及び負荷センサ120を含む。上述したように、駆動モジュール68は駆動モジュール基部コンポーネント116と被負荷検知コンポーネント118とを含み、これらは、駆動モジュール基部コンポーネント116と被負荷検知コンポーネント118との間に位置する負荷センサ120によって接続される別個の部品として含まれる。被負荷検知コンポーネント118のベアリング128は、少なくとも1つのオフ軸(非負荷測定)方向において被負荷検知コンポーネントを支持する。被負荷検知コンポーネント118は、駆動モジュール基部コンポーネント116内に配置され、負荷センサ120を用いて駆動モジュール基部コンポーネント116に連結される。一実施例では、負荷センサ120は、第1の留め具115を用いて駆動モジュール基部コンポーネント116に固定される第1の部分と、第2の留め具119を用いて被負荷検知コンポーネント118に固定される第2の部分とを含む。一実施例では、負荷センサ120の第1の部分は、負荷センサ120の第2の部分とは異なる別個のものである。一実施例では、第1の留め具115及び第2の留め具119はボルトである。一実施例では、第1の留め具115及び第2の留め具119は、機械的接続を確保するための当技術分野で周知の機械的締結部品である。一実施例では、第1の留め具115及び第2の留め具119は、機械的接続を確実にするための接着手段と置き換えられる。一実施例では、第1の留め具115及び第2の留め具119は、磁石である。
図5Dを参照すると、負荷検知システムを備えた駆動モジュール68が、カセット66及びEMD102に対する接続と共に示されている。カプラ130の回転が、後述するように、EMDオンデバイスアダプタ112を回転させてEMD102を回転させ及び/又はピンチ/アンピンチする。
カセット66はカセットハウジング104を含む。カセットハウジング104は、EMD102と共にEMDオンデバイスアダプタ112を受け入れいるように構成されたクレードル132を含む。カセットハウジング104内のカセットベベルギア134は、駆動モジュール68のカプラ130が回転する中心のカプラ軸131と一致する軸を中心にして、カセットハウジング104に対して自由に回転することができる。組み立てられたデバイスモジュール32において、カセット66は、駆動モジュール68の搭載面に配置されて、カセットベベルギア134がカプラ軸131に沿ってカプラ130を受け入れる。このとき、カプラ軸131に沿って係合及び係合解除が自在であり、そして、カプラ130の回転がカセットベベルギア134の回転に相当するようにカプラ軸131の周りに一体的に接続される(自由でない)。換言すれば、カプラ130が所定の速度で時計回りに回転する場合、カセットベベルギア134も同じ所定の速度で時計回りに回転し、カプラ130が所定の速度で反時計回りに回転する場合、カセットベベルギア134も同じ所定の速度で反時計回りに回転する。
カセットベベルギア134は、EMDオンデバイスアダプタ112がカセットハウジング104のクレードル132に着座しているとき、EMDオンデバイスアダプタ112に一体的に接続されている従動ベベルギア136と噛み合う。一実施例では、図5Dの実施例は、EMD102がガイドワイヤであり、EMDオンデバイスアダプタ112がコレットである。駆動モジュール68のカプラ130からカセットベベルギア134に動力が伝達されると、コレットの従動ベベルギア136と噛み合っているカセットベベルギア134がガイドワイヤを回転させる。
図5Dを参照すると、デバイス支持体79がカセットハウジング104内のチャンネル138に配置される。デバイス支持体79及びカセット66は、互いに相対的に動作するように構成される。詳細は、ここに援用される特許出願62/874,247「SYSTEMS, APPARATUS AND METHODS FOR ROBOTIC INTERVENTIONAL PROCEDURES USING A PLURALITY OF ELONGATED MEDICAL DEVICES」(Atty Dkt. No. C130-337, 169528.00005;米国仮出願62/874,247;2019年7月15日出願)に記載されている。
図5Dを参照すると、一実施例において、駆動モジュール68がEMD102を第1の方向に動作させ、隔離コンポーネント106は、第1の方向においてカセットハウジング104から分離される。一実施例では、第1の方向はEMD102の縦軸に沿っている。この例では第1の方向がX軸に相当する。一実施例では、駆動モジュール68がEMD102を第2の方向に動作させ、隔離コンポーネント106は、第1の方向及び第2の方向においてカセットハウジング104から分離される。一実施例において、第2の方向は、EMDの縦軸を中心とした時計回り及び反時計回りの回転である。
図5D及び図5Iを参照すると、一実施例に係る装置は、駆動モジュール基部コンポーネント116に取り外し可能に取り付けられるカセットハウジング104と、隔離コンポーネント106に取り付けられたカセットカバー105とを有するカセット66を含む。
図4A-図4D、図5D、及び図5Iを参照すると、一実施例では、隔離コンポーネント106を介して被負荷検知コンポーネント118に連結されているオンデバイスアダプタ112は、カセットハウジング104から離間していて非接触関係にある。一実施例では、隔離コンポーネント106は、全ての方向においてカセットハウジング104から分離される。一実施例では、隔離コンポーネント106は、カセットハウジング104から分離されており、非接触関係にある。
図5D、図5I及び図5Jを参照すると、隔離コンポーネント106は、第1コンポーネント106aとこれに連結される第2コンポーネント106bとを含む。第1コンポーネント106aは、カセット66が駆動モジュール68に固定された使用位置にあるとき、駆動モジュール68に向かう方向でカセットハウジング104のリセス143内に入れられる。第2コンポーネント106bは、第1コンポーネント106aに向かって被負荷検知コンポーネント118から離れる方向からリセス143内に入れられる。隔離コンポーネント106が被負荷検知コンポーネント118に接続されているとき、隔離コンポーネント106は、カセットハウジング104の中に少なくとも1つの方向においてカセットハウジング104から分離して配置される。
図5Gを参照すると、一実施例では、駆動モジュール基部コンポーネント116は、被負荷検知コンポーネント118を受け入れるリセスを含む。一実施例では、駆動モジュール基部コンポーネント116は、さらに、リセスから延びるキャビティを、負荷センサ120の一部を受け入れるために画定する。
図5I及び図5Jを参照すると、カセット66は、カセットハウジング104と、隔離コンポーネント106の第1コンポーネント106aに接続されるカセットカバー105とを含む。カセットハウジング104は、EMD102と共にEMDオンデバイスアダプタ112を受けるように構成されたキャビティ132を含む。キャビティ132は、ここではクレードル132とも呼ばれる。
図5J、図5K、及び図5Lを参照すると、カセットハウジング104内に収容されている隔離コンポーネント106の第2コンポーネント106bにあるカセットベベルギア134は、被負荷検知コンポーネント118のカプラ130の回転中心となるカプラ軸131に整列する軸を中心として、隔離コンポーネント106に対して自由に回転することができる。被負荷検知コンポーネント118は駆動モジュール68内に収容されている。
図5I及び図5Kを参照すると、一実施例では、カセットハウジング104は、クイックリリース機構121を介して駆動モジュール基部コンポーネント116に取り外し可能に接続される。一実施例では、クイックリリース機構121は、カセットハウジング104内にスプリングで付勢された部材を含み、該部材は、駆動モジュール基部コンポーネント116に固定されたクイックリリースロックピン117aと解放可能に係合し、ラッチリリース123によって作動される。一実施例では、駆動モジュール基部コンポーネント116に固定された位置合わせピン117bが、駆動モジュール基部コンポーネント116に対してカセットハウジング104を位置合わせする。
図5I及び図5Lを参照すると、使用時の一実施例では、オンデバイスアダプタ112は、オンデバイスアダプタ112の近位端部に向かって長手方向に形成された円筒溝内に支持される。使用時におけるオンデバイスアダプタ112の支持は、隔離コンポーネント106の第1コンポーネント106aの遠位端面にある下側支持体133と、閉じられたカセットカバー105の内部にある上側支持体135とによって提供される。一実施例では、オンデバイスアダプタ112において、オンデバイスアダプタ112を支持するための溝が、縦方向に向かってオンデバイスアダプタ112の近位端で従動ベベルギア136の遠位側のところでオンデバイスアダプタ112に形成されている。一実施例では、オンデバイスアダプタ112は、オンデバイスアダプタ112を支持する前記溝の両脇にフランジなどの部分を含む。一実施例では、オンデバイスアダプタ112のこの溝において下側支持体133及び上側支持体135によって提供される支持は、オンデバイスアダプタ112のスラストベアリングとして機能し、オンデバイスアダプタ112の自由な回転を許容する一方で、隔離コンポーネント106のヒンジ103で接続されている第1コンポーネント106aとカセットカバー105との並進動作に対してオンデバイスアダプタ112の縦方向動作を拘束する。下側支持体133は、回転駆動要素クレードルとも呼ばれる。
図5I、図5J、及び図5Mを参照すると、一実施例では、カセット66は、カセットハウジング104から分離されて非接触の隔離コンポーネント106に、ヒンジ103によって回動可能に連結されたカセットカバー105を含む。一実施例では、カセットカバー105は、ヒンジ103によって、隔離コンポーネント106の第1コンポーネント106aに回動可能に連結される。一実施例では、カセットカバー105は、スナップ嵌めなどの他の手段によって、隔離コンポーネント106の第1コンポーネント106aに接続される。一実施例では、EMD102は、オンデバイスアダプタ112が被負荷検知コンポーネント118に連結されているとき、カセットハウジング104から離間して非接触になっている。
図5Eを参照すると、EMDオンデバイスアダプタ112及び従動ベベルギア136と共にEMD102のカテーテル140の実施例が示されている。カテーテル140は、ハブをカテーテル140の近位端に備え、例えば回転止血弁がハブに接続される。一実施例では、カテーテル140のハブは、カテーテルの遠位端まで延伸するワイヤなどのカテーテル内部分を操作して先端を逸らせるために使用される、コントロールを備えていない。一実施例では、カテーテル140は、カテーテルの遠位端まで延伸するワイヤなどのカテーテル内部分を操作して先端を逸らせるために使用される、コントロールを含んでいない。
一実施例では、EMDオンデバイスアダプタ112は、従動ベベルギア136に一体的に接続されたカテーテル140を含む。従動ベベルギア136は、ハブ142と共に示されたY-コネクタに取り外し可能に接続することができ、ハブ142は、近位端の止血弁と取り外し可能に接続することができる。EMDオンデバイスアダプタ112の一実施例は、従動ベベルギア136に取り外し可能に接続されたカテーテル140を含む。カテーテル140は、カテーテルハブ139と、一体的に接続されたカテーテルシャフト141とを含む。
図5Fを参照すると、EMDオンデバイスアダプタ112及び従動ベベルギア136と共にEMD102のガイドワイヤの実施例が示されている。図5Fの実施例において、EMDオンデバイスアダプタ112はコレット113であり、コレットの近位端に従動(被駆動)ベベルギア136が設けられている。
一実施例では、オンデバイスアダプタ112は、オンデバイスアダプタ112の遠位端にコレットジョー(又はコレットナット)を備えたコレット113と、開放円筒ハウジング内に収められたコレット本体とを含み、従動ベベルギア136が、オンデバイスアダプタ112の近位端でコレット本体に一体的に接続される。オンデバイスアダプタ112の中心縦軸を通る内腔は、コレット113の中心縦軸と同軸であり、ガイドワイヤのEMD102を通過させる。一実施例では、オンデバイスアダプタ112の開放円筒ハウジングは、縦方向スリットなどの部分を含み、コレット本体を円筒ハウジング内に嵌合できるようにする。一実施例では、オンデバイスアダプタ112の開放円筒ハウジングは、外部フランジを含み、この外部フランジは、オンデバイスアダプタ112を並進させる作動部材との運動学的係合を確実にするために使用することができる。一実施例では、従動ベベルギア136の回転がオンデバイスアダプタ112の回転に相当し、したがって、EMD102を回転させ及び/又はピンチ/アンピンチするために使用される。
図5J及び図5Mを参照すると、隔離コンポーネント106は、隔離コンポーネント106の第1コンポーネント106aを、カセットハウジング104内のレール107を挟んで第2コンポーネント106bに取り付けることによって、カセットハウジング104の中に収容される。使用時、隔離コンポーネント106はレール107と接触していない。
一実施例では、負荷センサ120は、EMD102によってカセット66の隔離コンポーネント106に加えられる反力を測定する。一実施例では、負荷センサ120は、EMD102によってカセット66の隔離コンポーネント106に印加されるトルクを測定する。一実施例では、負荷センサ120は、EMDによってカセット66の隔離コンポーネント106に加えられる反力と反作用トルクの両方を測定する。一実施例では、EMD102の縦軸に沿って作用する実際の力及びEMD102の縦軸のまわりのトルクが、負荷センサの測定値に基づいて判定される。
図5J及び図5Mを参照すると、隔離コンポーネント106の第1コンポーネント106a及び第2コンポーネント106bは、互いに固定される。カセットハウジング104は、リセス143の中に位置する2つの縦(長手)向きレール107を含む。レール107は、ここではリニアガイドとも呼ぶ。カセット66が駆動モジュール68に取り付けられる前に、第1コンポーネント106aは、カセットハウジング104の上面に近い方のレール107の上方に配置され、第2コンポーネント106bは、被負荷検知コンポーネント118に近い方のレール107の下方に離間して配置される。隔離コンポーネント106の第1コンポーネント106a及び第2コンポーネント106bの組み立ての方向は、使用位置に関連して説明してあるが、隔離コンポーネント106の第1コンポーネント及第2のコンポーネントは、駆動モジュール68から離れて設置されていることに注目すべきである。別の言い方をすれば、隔離コンポーネント106の第1コンポーネント106aは、カセット66の上面からカセット66の底面に向かう方向で、カセットハウジング104の縦軸に略垂直な方向において、リセス143に挿入される。
一実施例では、機械的留め具又は複数の留め具が、隔離コンポーネント106の第1コンポーネント106aを第2コンポーネント106bに固定する。一実施例では、第1コンポーネント106a及び第2コンポーネント106bは、磁石を用いて互いに固定される。一実施例では、隔離コンポーネント106の第1コンポーネント106a及び第2コンポーネント106bは、接着剤で固定される。一実施例では、第1コンポーネント106a及び第2コンポーネント106bは、ツールを使用せずに互いに取り外し可能に固定される。一実施例では、第1コンポーネント106a及び第2コンポーネント106bは、取り外しできないように互いに固定される。
図5Kを参照すると、一実施例では、隔離コンポーネント106の第2コンポーネント106bは、留め具を用いて被負荷検知コンポーネント118に取り外し可能に固定される。一実施例では、留め具は、隔離コンポーネント106の第2コンポーネント106bを被負荷検知コンポーネント118に取り外し可能に固定することができるクイックリリース機構を含む。一実施例では、留め具は磁石である。一実施例では、隔離コンポーネント106の第2コンポーネント106bは、分離可能な嵌合によって、被負荷検知コンポーネント118に取り外し可能に固定される。一実施例では、隔離コンポーネント106の第2コンポーネント106bは、すきま嵌めによって、被負荷検知コンポーネント118に取り外し可能に固定される。一実施例では、隔離コンポーネント106の第2コンポーネント106bは、締り嵌めによって、被負荷検知コンポーネント118に取り外し可能に固定される。
図5Mを参照すると、隔離コンポーネント106の第2コンポーネント106bが被負荷検知コンポーネント118に取り外し可能に固定される使用時において、第1コンポーネント106a及び第2コンポーネント106bは、第1コンポーネント106a及び第2コンポーネント106bがカセットハウジング104と非接触の関係にあるように、カセットハウジング104のレール107から離間している。
図6Aを参照すると、カセットハウジング104及び隔離コンポーネント106の第1コンポーネント106aと共にデバイスモジュール32が示されている。駆動モジュール基部コンポーネント116も示されている。隔離コンポーネント106の第1コンポーネント106aは、カセットハウジング104内に位置し、EMDオンデバイスアダプタ112内に収容されたEMD102(図示せず)に対する支持を提供する。一実施例では、カセットハウジング104は、剛性(比較的硬質)の支持体である。EMDオンデバイスアダプタ112は、カセットベベルギア134(図示せず)とインターフェースするように構成された、隔離コンポーネント106内の従動ベベルギア136を含む。従動ベベルギア136を有するオンデバイスアダプタ112は、隔離コンポーネント106の第1コンポーネント106aの回転駆動要素クレードル133内に支持される。一実施例では、Y-コネクタを有するEMDオンデバイスアダプタ112は、Y-コネクタハブ142を含む。一実施例では、隔離コンポーネント106は、直接の接触がないという意味で、カセットハウジング104に対して浮いている。
カセットハウジング104は、例えば、カセットに接続されたデバイス支持体79からの力、流体チューブの障害力(抗力)、支持トラックアームによって加えられる力、及びEMD102以外のカセットと接続又は相互作用する他のコンポーネントからの負荷などの力に反応する。回転力に関する測定ノイズを低減するために、EMDオンデバイスアダプタ112の従動ベベルギア136を支持する回転駆動要素クレードル133は、低静止摩擦材料から形成されてもよい。別の実施例では、回転駆動要素クレードル133は、滑り又は転がりベアリングの形態のベアリングを含むことができる。
図6Bを参照すると、隔離コンポーネント106は、接続される第1コンポーネント106a及び第2コンポーネント106bを含み、隔離コンポーネント106は、第1のスロット148及び第2のスロット149によってカセットハウジング104から隔離される。隔離コンポーネント106は、第1のスロット148及び第2のスロット149の内側に緩く(ルーズに)収容され、限定された動作範囲に閉じ込められる。隔離コンポーネント106の動作範囲によって、隔離コンポーネント106は、インタフェースするコンポーネント間の公差を許容しつつ、(図示しない)駆動モジュール68の被負荷検知コンポーネント118に搭載される。第1のスロット148及び第2のスロット149は、X方向及びY方向における隔離コンポーネント106の限定された移動を可能にするように構成される。隔離コンポーネント106は、カセットハウジング104の第1の側面152にある第1のタブ150と、カセットハウジング104の第2の側面154にある第2のタブ151とによって、第1のスロット148及び第2のスロット149の内側でZ方向に浮いているが、閉じ込められている。隔離コンポーネント106は、隔離コンポーネント106の第1の側面158に第1のリセス156と、隔離コンポーネント106の第2の側面160に第2のリセス157とを含む。第1のタブ150は、隔離コンポーネント106の第1のリセス156の中に緩く配置され、第2のタブ151は、隔離コンポーネント106の第2のリセス157の中に緩く配置される。一実施例では、隔離コンポーネント106及びカセットハウジング104は、別個のコンポーネントとして存在する。一実施例では、隔離コンポーネント106及びカセットハウジング104は、2つの完全に独立したコンポーネントではなく、1つのユニットとして存在する。一実施例では、隔離コンポーネント106が駆動モジュール68(図示せず)に取り付けられるとき、非接触の摩擦無しのインターフェースが達成される。一実施例では、隔離コンポーネント106は、接触して駆動モジュール68に取り付けられる。
一実施例では、駆動モジュールの被負荷検知コンポーネント118にある位置決めピン129が、隔離コンポーネント106の接続点166と係合する。カセットハウジング104は、カセット66が駆動モジュール68に取り付けられると、駆動モジュール基部コンポーネント116に取り付けられる。駆動モジュール68にある位置決めピンが、カセットハウジング104と相対的な高さに隔離コンポーネント106を持ち上げ、非接触インターフェースが達成される。一実施例では、その高さは1mmである。他の実施例では、その高さは1mm未満であり、他の実施例では、その高さは1mmより大きい。隔離コンポーネント106とカセットハウジング104との間の非接触摩擦無しインターフェースは、測定方向(X軸)でEMD102に作用する実際の負荷が、被負荷検知コンポーネント118によってのみ支持されることを可能にし、これにより、摩擦寄生負荷が、負荷センサ120によって検知される負荷に組み合わされることが防止される。換言すれば、EMD102を収容するカセット66の隔離コンポーネント106は、直接負荷検知され、寄生負荷の発生源から隔離される。
図6Cを参照すると、カセット66の隔離コンポーネント106の底面図が示されている。隔離コンポーネント106の底面162は、駆動モジュール68に連結するように構成される。隔離コンポーネント106の底面162は、駆動モジュール68のカプラ130を受け入れるためのコネクタ164を含む。隔離コンポーネント106の底面162はまた、駆動モジュール68の接続部材を受け入れるように構成された接続点166を含む。例えば、駆動モジュール68の位置決めピン129が、隔離コンポーネント106の底面162にある一連の穴及びスロットに嵌合する。位置決めピン129を使用して、隔離コンポーネント106及び駆動モジュール68をX、Y及びZ方向の全方向において拘束することができる。一実施例では、隔離コンポーネント106は、1つ以上の接続点166内に配置された磁石によってZ方向に拘束される。別の実施例では、隔離コンポーネント106は、接続点166との摩擦によってZ方向に拘束される。一実施例では、スロットが、隔離コンポーネント106を拘束するために、駆動モジュール68の位置決めピン129と相互作用するように使用される。
図5K及び図6Cを参照すると、一実施例では、駆動モジュール68の被負荷検知コンポーネント118の位置決めピン129は、隔離コンポーネント106の第2コンポーネント106bの接続点166においてポケット内に着座する。カセットハウジング104は、カセット66が駆動モジュール68に取り付けられると、駆動モジュール基部コンポーネント116に取り付けられる。駆動モジュール68内の被負荷検知コンポーネント118の位置決めピン129は、隔離コンポーネント106の第2コンポーネント106bを、隔離コンポーネント106とカセットハウジング104との間で非接触インターフェースが達成されるカセットハウジング104と相対的な高さに持ち上げる。一実施例では、隔離コンポーネント106は、3つの直交するX、Y、及びZ方向においてカセットハウジング104と接触しない。一実施例では、隔離コンポーネント106とカセットハウジング104との間の間隙高さは1mmである。他の実施例では、間隙高さは1mm未満であり、他の実施例では、間隙高さは1mmより大きい。隔離コンポーネント106とカセットハウジング104との間の非接触摩擦無しインターフェースは、測定方向(X軸)においてEMD102に作用する実際の負荷が、被負荷検知コンポーネント118によってのみ支持されることを可能にし、これにより、摩擦寄生負荷が、負荷センサ120によって検知される負荷に組み合わされることが防止される。換言すれば、EMD102を収容するカセット66の隔離コンポーネント106は、直接負荷検知され、寄生負荷の発生源から隔離される。
図7を参照すると、使い捨てカセットコンポーネント及び主要駆動モジュールコンポーネントを含む、図4Dと同様の負荷検知システムの実施例の側面図が示されている。デバイスモジュール32は、破線で囲われたカセット66及び駆動モジュール68を含む。一実施例では、カセット66及びそのコンポーネントは使い捨てであり、駆動モジュール68及びそのコンポーネントは主要、すなわち、再利用可能で使い捨てではない。カセット66は、カセットハウジング104と、カセットカバー105に接続された隔離コンポーネント106とを含む。
一実施例では、EMD102の直線DOF動作は、ステージ駆動機構76に沿ってデバイスモジュール32を移動させることによって達成され、一方、EMD102は、カセット66の隔離コンポーネント106に一体的に接続されたEMDオンデバイスアダプタ112によって収容される。EMDオンデバイスアダプタ112は、エンドエフェクタ又はオンデバイスアダプタとしても知られている。一実施例では、EMDオンデバイスアダプタ112はコレットである。一実施例では、EMDオンデバイスアダプタ112は、ハブ駆動装置である。一実施例では、ステージ駆動機構76が送りネジであり、駆動モジュール68は、送りネジと螺合したナットを回転させるステージ並進モータ64を含む。
駆動モジュール68は、被負荷検知コンポーネント118と負荷センサ120を含む。一実施例では、負荷センサ120は、EMDオンデバイスアダプタ112によって収容されているEMD102にかかる実際の力を判定するために反力を測定する単一軸センサである。一実施例では、負荷センサ120は、反作用負荷の成分を測定する多軸センサであり、EMDオンデバイスアダプタ112によって収容されているEMD102に作用する、対応する実際の力及びトルクを判定するために使用される。一実施例では、EMD102を回転させるため及び/又はEMD102をピンチ/アンピンチするために使用される少なくとも1つのアクチュエータ124が、被負荷検知コンポーネント118の外に配置される。先に述べたように、これは、アクチュエータによって被負荷検知コンポーネント118に印加され得る寄生負荷(慣性負荷など)を低減する。
一実施例では、動力は、負荷測定方向と交差するベルト126を使用することによって、被負荷検知コンポーネント118の外に位置するアクチュエータ124から被負荷検知コンポーネント118の内側の駆動コンポーネントに伝達される。一実施例では、動力は、被負荷検知コンポーネント118の外に位置するアクチュエータ124から、負荷測定方向と交差するチェーン又はケーブル又はワイヤを使用するなどの他の手段によって、被負荷検知コンポーネント118の内側の駆動コンポーネントに伝達される。一実施例では、動力は、負荷センサ120に負荷測定方向の負荷を加える駆動トレインを介して、アクチュエータ124からEMDオンデバイスアダプタ112に伝達される。この場合にその負荷は、EMD102にかかる実際の負荷の判定のために補正することができる。一実施例では、アクチュエータ124は、デバイス角度位置フィードバック用のエンコーダを含む。
一実施例では、動力は、被負荷検知コンポーネント118の外に位置するアクチュエータ124から、負荷センサ120に負荷測定方向の負荷を印加しないパワートレインを介して、被負荷検知コンポーネント内の駆動コンポーネント(例えば、カセット内の使い捨てオンデバイスアダプタを駆動するために使用されるプーリ及び/又はキャプスタン)に伝達される。
一実施例では、負荷センサ120は、EMD102に作用する力を測定するための曲げビーム型力センサなどの力センサである。一実施例では、負荷センサ120は、EMD102に作用する力及びトルクを測定するために使用される多軸センサである。一実施例では、EMD102の回転又はピンチ/アンピンチのためにアクチュエータ124から被負荷検知コンポーネント118に動力を伝達するべく使用されるパワートレイン(例えば、ベルト、ケーブル、チェーンなど)の中心線は、パワートレインにおけるプレテンションによってトルク測定方向でトルクセンサにトルクが印加されないように、負荷センサ120の軸と一致する。別の実施例では、パワートレインは、隔離コンポーネント106に係合したEMD近位部分と平行であり、その結果、トルク測定方向においてパワートレインのプレテンションによりトルクが生成されることがない。
一実施例では、EMD102に作用するトルク及び/又はコレットをピンチ/アンピンチするために加えられるトルクを判定するために、EMD102の回転又はピンチ/アンピンチのためのアクチュエータ124とEMDオンデバイスアダプタ112との間のパワートレインに、負荷センサ120が使用される。一実施例では、負荷センサ120は、EMD102に作用するトルク及び/又はコレットをピンチ/アンピンチするために加えられるトルクを判定するために、アクチュエータ124と駆動モジュール基部コンポーネント116との間に配置される。
一実施例では、ベアリング128は、非測定方向の少なくとも1つで被負荷検知コンポーネント118を支持するために使用される。言い換えれば、ベアリング支持体128は、測定方向において負荷を加えない。一実施例では、ベアリング支持体128は、力測定方向以外の全ての方向において被負荷検知コンポーネント118を支持するリニアベアリング(平面内に方向をもった)である。
図7を参照すると、一実施例において、EMD102をその縦軸のまわりに回転させるアクチュエータが、被負荷検知コンポーネント118の外に位置している。一実施例では、EMD102をピンチ/アンピンチする駆動モジュール内のアクチュエータは、被負荷検知コンポーネント118の外に配置される。一実施例では、駆動モジュール68は、EMD102の回転及び/又はピンチ/アンピンチのためにアクチュエータによって駆動される動力伝達デバイスを含み、このときに、そのアクチュエータは被負荷検知コンポーネント118の外に位置し、EMD102を操作するために、被負荷検知コンポーネント118内のコンポーネントを作動させるべく使用される。一実施例では、動力伝達デバイスは、少なくとも1つの負荷測定方向において被負荷検知コンポーネント118に負荷を加えない。一実施例では、動力伝達デバイスは、ベルト、ケーブル、チェーンなどの剪断力に逆らわない可撓性デバイスである。一実施例では、動力伝達デバイスは、負荷測定方向において被負荷検知コンポーネント118に負荷を加えないように、負荷測定方向と交差する。一実施例では、駆動モジュール68は、少なくとも1つの非測定方向のオフ軸負荷を支持するために、当該非測定方向において被負荷検知コンポーネント118を支持するベアリングを含む。一実施例では、負荷センサ120は、EMD102の縦軸から離間している。加えて、一実施例では、被負荷検知コンポーネント118は、EMDから離間しており、EMDと同一線上にない。言い換えれば、負荷センサは、EMDの縦軸から離間している。
図8を参照すると、二重ベベルギア駆動機構178を組み込んだ負荷検知システムの上面図が示されている。二重ベベルギア駆動機構178は、二重ギアコレット駆動とも呼ばれる。このシステムは、ステージ並進モータ64と、ステージ駆動機構76と、EMD102と、駆動モジュール基部コンポーネント116と、被負荷検知コンポーネント118と、被負荷検知コンポーネント118を支持するベアリング128と、EMD102を回転させ及び/又はEMD102をピンチ/アンピンチするための第1のアクチュエータ168と、EMD102を回転させ及び/又はEMD102をピンチ/アンピンチするための第2のアクチュエータ170と、EMD102を回転させ及び/又はEMD102をピンチ/アンピンチするために使用される第1のベルト172と、EMD102を回転させ及び/又はEMD102をピンチ/アンピンチするために使用される第2のベルト174とを含む。一実施例では、負荷センサ120は、駆動モジュール基部コンポーネント116及び被負荷検知コンポーネント118に固定される。一実施例では、ここに開示される全てのセンサは、当該技術分野で既知のように、図示されるように、それぞれの関連する隣接コンポーネントに固定される。
図示の実施例では、被負荷検知コンポーネント118は、二重部分コレット180を介してEMD102の回転及び/又はピンチ/アンピンチを達成するために、ベルト(172及び174)を介して2つのアクチュエータ(168及び170)によって駆動される二重ベベルギア駆動機構178である。当該機構178及びコレット180は、米国特許出願「MANIPULATION OF AN ELONGATED MEDICAL DEVICE」(Atty Dkt No. C130-338;米国仮出願62/874,173;2019年7月15日出願)に詳述されている。この‘173出願には、二重ベベルコレット駆動機構が説明されている。
一実施例では、加速度計176が、被負荷検知コンポーネント118の加速度を判定する。一実施例では、加速度計176は、縦方向(すなわちX方向)の加速度成分を測定する単軸加速度計である。一実施例では、加速度計176は、X、Y、及びZ方向の加速度成分を測定する多軸加速度計である。
一実施例では、別の種類のセンサ(例えば、速度トランスデューサ、変位トランスデューサ等)を使用して、被負荷検知コンポーネント118の加速度を判定する。一実施例では、複数のセンサを使用して、被負荷検知コンポーネント全体と、被負荷検知コンポーネントと相対動する被負荷検知コンポーネントの内部部品とを含む、異なる部分の加速度を判定する。一実施例では、被負荷検知コンポーネントの加速度は、アクチュエータのパラメータ、例えば、ステージ並進モータ64のアクチュエータパラメータから判定される。アクチュエータのパラメータには、アクチュエータのエンコーダ信号、アクチュエータの電流、及びアクチュエータの電圧が含まれる。ただし、これらに限定されない。
図8を参照すると、一実施例では、寄生慣性負荷を補正するために、加速度計176などのセンサを使用して、被負荷検知コンポーネント118の加速度が判定される。一実施例では、被負荷検知コンポーネント118の加速度が速度トランスデューサなどのセンサを使用して判定され、このセンサからの被負荷検知コンポーネントの加速度は、寄生慣性負荷に関して補正するために判定される。一実施例では、被負荷検知コンポーネント118の加速度が変位トランスデューサなどのセンサを使用して判定され、このセンサからの被負荷検知コンポーネントの加速度は、寄生慣性負荷に関して補正するために判定される。
測定された又は判定された加速度は、被負荷検知コンポーネント及びその内部コンポーネントの慣性によって生じる寄生負荷に関して負荷測定値を補正するために使用され、EMDに作用する実際の負荷を判定するために使用される。慣性力“Finertia”は、所定の方向におけるコンポーネントの質量と加速度の積としてコンポーネントごとに計算される。実際の力は、[式1]を使用して検知力(Fsensed)から決定できる。
被負荷検知コンポーネントにかかる重力負荷は、所定の方向の質量と重力の成分との積として、コンポーネントの質量及び向きに基づいて判定される。
摩擦及び障害寄生負荷を測定して評価し、それらの値を決定することができる。一実施例では、測定及び特性評価は、オフライン試験を実施することによって達成される。一実施例では、摩擦及び障害寄生荷重の値は、変位及び速度などの各種のパラメータの関数として表にし及び/又は定式化することができる。
一実施例では、寄生慣性負荷を低減するために、少なくともアクチュエータの1つ以上が、被負荷検知コンポーネント118から駆動モジュール基部コンポーネント116に移動される。このような場合、動力は、センサに負荷測定方向の負荷を加えない駆動トレインを介して(例えば、負荷測定方向に交差するベルト/チェーン/ケーブルを使用することによって、又は磁気連結によって)、アクチュエータからオンデバイスアダプタに伝達できる。駆動トレインがセンサに負荷測定方向の寄生負荷を加える場合、EMDにかかる実際の負荷を判定するために、負荷測定値を寄生負荷に関してさらに補正する必要がある。
ここに説明されるシステムでは、EMD102は、カセットの隔離コンポーネント内のメカニズムによって操作される。カセットの隔離コンポーネントは主要機器の被負荷検知コンポーネントに取り付けられ、EMDによりカセットの隔離コンポーネントに加わえられる反作用負荷を、主要機器内のセンサを用いて測定する。主要ユニット(駆動モジュール)とカセットとの間に滅菌バリアを使用して、センサ又は駆動モジュールに滅菌が不要となるようにすることができる。寄生負荷を生み出すことのできるコンポーネント(例えば、座屈防止支持体、チューブ、ケーブル等)は、寄生負荷から被負荷検知コンポーネントを隔離するために、使い捨て品のベースサブコンポーネント(カセットハウジング)に接続される。
一実施例では、EMDの縦軸に沿った力及びEMDの縦軸のまわりのトルクのような、少なくとも2つの負荷が測定される。
図8に図示の実施例では、駆動機構はディファレンシャルコレット(2つの部分を含む)である。一実施例では、駆動機構は、直線及び回転のような2つのDOFを有するハブ駆動モジュールである。
図9A及び図9Bを参照すると、カセット66に含まれたコレット180は、二重ベベルギア駆動機構178によって作動し、コレット180を通しEMD102が取り外し可能に収容される。カセット66は、被負荷検知コンポーネント118を含む。このシステムはまた、ステージ並進モータ64、ステージ駆動機構76、駆動モジュール基部コンポーネント116、負荷センサ(図示せず)、被負荷検知コンポーネント118を支持するベアリング(図示せず)、第1のアクチュエータ168、及び第2のアクチュエータ170を含む駆動モジュール68を組み込んでいる。アクチュエータ168,170のハウジングは、駆動モジュール基部コンポーネント116に一体的に搭載されている。アクチュエータ168,170のキャプスタン(シャフト)は、EMD102を回転させるため及び/又はEMD102をピンチ/アンピンチするために使用される。第1のトルクセンサ182は、第1の駆動ギア186を駆動する第1のアクチュエータ168のキャプスタンに位置する。第1のトルクセンサ182は、第1のアクチュエータ168と第1の駆動ギア186との間の反作用トルクを測定する。第2のトルクセンサ184は、第2の駆動ギア188を駆動する第2のアクチュエータ170のキャプスタンに位置する。第2のトルクセンサ184は、第2のアクチュエータ170と第2の駆動ギア188との間の反作用トルクを測定する。
EMD102は、コレット180によって画定される経路内に取り外し可能に配置される。コレット180は、第1のコレットカプラに接続された第1の部分と、第2のコレットカプラに接続された第2の部分とを有する。一実施例では、第1のアクチュエータ168のキャプスタンは、一対のベベルギアを介して第1のコレットカプラに動作自在に連結され、第2のアクチュエータ170のキャプスタンは、一対のベベルギアを介して第2のコレットカプラに動作自在に連結される。第1のコレットカプラの回転と第2のコレットカプラの回転とは、経路内でEMD102をピンチ及びアンピンチ可能とするため及び/又はEMD102を時計回り及び反時計回りに回転させるために、独立して及び/又は組み合わせて使用することができる。
コレット180を備えた二重ベベルギア駆動機構178は、ここに援用される米国特許出願「MANIPULATION OF AN ELONGATED MEDICAL DEVICE」(Atty Dkt No. C130-338;米国仮出願62/874,173;2019年7月15日出願)に開示されている。(特に、当該出願の図F4.1-F4.6と関連する説明を参照。)
第1のトルクセンサ182は第1のコレットカプラに作用するトルクを判定し、第2のトルクセンサ184は第2のコレットカプラに作用するトルクを判定する。プロセッサは、第1のトルクセンサ182からの第1の信号と第2のトルクセンサ184からの第2の信号とに基づいて、EMDに作用するトルクを判定する。また、プロセッサは、第1のトルクセンサ182からの第1の信号と第2のトルクセンサ184からの第2の信号とに基づいて、EMD102をピンチするために二重ベベルギア駆動機構178の2つの端部に加えられる差動トルクを判定する。一実施例では、EMDに印加されるピンチ力は、二重ベベルギア駆動機構178を留め、EMD102をピンチするために使用される差動トルクを使用することによって計算される。一実施例では、EMD102にかかるピンチ力と、二重ベベルギア駆動機構178の2つの端部に加えられる差動トルクとの間の関係は、実地試験によって決定される。一実施例では、そのような関係は、数学モデル又は方程式によって決定される。
駆動モジュール68は、第1のコレットカプラに動作可能に連結されて、経路内でEMD102をピンチ及びアンピンチ可能としEMD102を回転させる第1のアクチュエータ168と、第2のコレットカプラに動作可能に係合する第2のアクチュエータ170とを含む。第1のトルクセンサ182(又はより広く言えば第1の負荷センサ)は、第1のコレットカプラに作用する第1のコレットカプラトルクを判定し、プロセッサは、第1のトルクセンサ182(又はより広く言えば第1の負荷センサ)からの第1の信号に応じて、EMD102に作用するEMDトルクを判定する。
一実施例では、第2のアクチュエータ170は、第2のコレットカプラと動作可能に係合しまた係合解除して、第2のコレットカプラの回転を防止するか可能にする。一実施例では、第2のコレットカプラは、EMD102を回転させる経路においてEMD102をピンチ及びアンピンチ可能とし、第2のトルクセンサ184(又はより広く言えば第2の負荷センサ)は、第2のコレットカプラに作用する第2のコレットカプラトルクを判定する。プロセッサは、第1のトルクセンサ182(又はより広く言えば第1の負荷センサ)からの第1の信号と第2のトルクセンサ184(又はより広く言えば第2の負荷センサ)からの第2の信号とに応じて、EMD102に作用するEMDトルクを判定する。
一実施例では、プロセッサは、EMD102をピンチ及び/又はアンピンチするためにコレットに加えられる正味のコレットトルクを判定する。この場合、正味のコレットトルクは、第1のアクチュエータ168から第1のコレットカプラに作用するトルクと第2のアクチュエータ170から第2のコレットカプラに作用するトルクとの間の相対トルクである。
図9Aに図示の実施例では、第1のトルクセンサ182は、第1のアクチュエータ168のキャプスタンに取り付けられ、第1のアクチュエータ168の上方に位置し、第2のトルクセンサ184は、第2のアクチュエータ170のキャプスタンに取り付けられ、第2のアクチュエータ170の上方に位置する。一実施例では、第1のトルクセンサ182は、第1のアクチュエータ168のキャプスタンに取り付けられる第1のトルクセンサ回転部と、駆動モジュール基部コンポーネント116に固定される第1のアクチュエータ168のハウジングに取り付けられる第1のトルクセンサハウジングとの、2つの部分を含む。一実施例では、第2のトルクセンサ184は、第2のアクチュエータ170のキャプスタンに取り付けられる第2のトルクセンサ回転部と、駆動モジュール基部コンポーネント116に固定される第2のアクチュエータ170のハウジングに取り付けられる第2のトルクセンサハウジングとの、2つの部分を含む。代替の実施例では、2つのトルクセンサのうちの少なくとも1つは、アクチュエータのうちの1つによって駆動されるキャプスタンシャフトと一直線に配置され、この場合、センサはアクチュエータシャフトと共に回転する。
図9Bに図示の実施例では、第1のトルクセンサ182は、第1のアクチュエータ168のハウジングと駆動モジュール基部コンポーネント116との間に取り付けられ、第1のアクチュエータ168の下方に位置し、第2のトルクセンサ184は、第2のアクチュエータ170のハウジングと駆動モジュール基部コンポーネント116との間に取り付けられ、第2のアクチュエータ170の下方に位置する。一実施例では、トルクセンサの少なくとも1つは、駆動モジュール68のアクチュエータと駆動モジュール基部コンポーネント116との間に配置される。この場合、トルクセンサがアクチュエータを少なくとも1つの方向において支持する。
図9Cを参照すると、図9Bの負荷検知システムの斜視図が示されている。図示の実施例では、第1のトルクセンサ182は、第1のアクチュエータ168のキャプスタンに取り付けられ、第1のアクチュエータ168の下方に位置し、第2のトルクセンサ184は、第2のアクチュエータ170のキャプスタンに取り付けられ、第2のアクチュエータ170の下方に位置する。一実施例では、トルクセンサの少なくとも1つは、駆動モジュール68のアクチュエータと駆動モジュール基部コンポーネント116との間に配置され、トルクセンサがアクチュエータを少なくとも1つの方向において支持する。
デバイスモジュール32は、ステージ62に対してステージ駆動機構76(送りネジなど)を駆動するステージ並進モータ64の作動によってEMD102の軸方向に沿って並進する駆動モジュール68を含む。あるいは、ステージ駆動機構76(送りネジなど)は静止していてもよく、ステージ並進モータ64は送りネジに螺合したナットを直接又はベルト114(図4に示すように)を使用して回転させてもよい。ナットは、2つのスラストベアリングを介して駆動モジュール68と接触し、ナットが送りネジ上で回転すると、デバイスモジュール32を並進させる。駆動モジュール68は、ステージ駆動機構76に対して直線的にのみ動くようにガイドによって拘束される。駆動モジュール68は、駆動モジュール基部コンポーネント116と、カセット66と、カセットハウジング104とを含む。カセット66は、コレット180(図示せず)及びEMDガイド190を含む二重ベベルギア駆動機構178を有する。EMDガイド190は、V字形ノッチとして働き、駆動システムを通してEMD102を導くための開放チャンネルとして働く複数対のガイドを含んでいる。動作時には、カセットハウジング104は、閉位置になるように下向きに回動させられる。ガイドは座屈防止機能として機能する。一実施例では、EMDガイド190は、ガイドとして機能する複数対のV字形ノッチ又はU字形チャンネルを含む。V字形又はU字形チャンネルの頂部は、EMD102のローディングを補助するために面取りされてもよい。一実施例では、二重ベベルギア駆動機構178の近位側にEMD102の一対のガイドが使用され、二重ベベルギア駆動機構178の遠位側に一対のEMDガイド190が使用される。一実施例では、二重ベベルギア駆動機構178の近位側に複数対のEMDガイド190が使用され、二重ベベルギア駆動機構178の遠位側に複数対のEMDガイド190が使用される。
図9Dを参照すると、使用中にコレット180をロック/アンロックするための、第1のアクチュエータ168とそのキャプスタンとの間の第1のトルクセンサ182を使用する、トルク検知システムの実施例が示される。第1のアクチュエータ168のキャプスタンは、EMDがコレットにピンチされているときにEMD102と共にコレット180の全体を回転させるために使用されるコレット駆動機構の第1の部分192に連続的に係合する第1の駆動ギア186を駆動する。EMD102をアンピンチするために、ロック用アクチュエータ171は、ロック/アンロック機構194と係合して、コレット駆動機構の第2の部分196をロックし、当該部分の回転を防止して、EMD102をピンチ/アンピンチングするために、コレット180の2つの部分に差動トルクを印加することを可能にする。一実施例では、ロック/アンロック機構194は、ロック用アクチュエータ171の直線動作によって作動する。一実施例では、ロック/アンロック機構194は、ロック用アクチュエータ171の回転動作によって作動する。一実施例では、コレット180のロック/アンロック機構194は、ギアの歯やキーの係合/解除、摩擦インターフェースなどの他の方法によって達成される。
コレット駆動機構の第2の部分196は、駆動モジュール基部コンポーネント116に一体的に接続された保持マウント197によって所定の位置に保持される。保持マウント197は、コレット駆動機構の第2の部分196がその縦軸のまわりを自由に回転することを可能にし、第2の部分196を、縦(軸)方向X及び横方向Y及びZの動作から拘束する。一実施例では、保持マウント197は、コレット駆動機構の第2の部分196が自由に回転することを可能にするために、回転ベアリングを組み込んでいる。
使用中にコレット180の第2の部分196から外れるロック/アンロック機構194を有するロック用アクチュエータ171と共に、EMD102にかかるトルクが、継続して係合している第1のアクチュエータ168にかかる反作用トルクを測定する1つの負荷センサ、すなわち第1のトルクセンサ182を用いることによって判定される。測定される反作用トルクは、コレット180にピンチされたEMD102にかかるトルクを判定するために使用され、また、ロック/アンロック機構194がコレット180の第2の部分196と係合したときのリセット状態の間のコレット180の締め付けトルクを判定するために使用される。
本システムは、EMD102に作用する実際のトルクの測定に影響する可能性のある寄生負荷の補正方法を含む。このシステムは、測定中にEMD102に作用する実際のトルクの測定に影響する可能性のある、ギア(伝達)装置からの摩擦を含む摩擦に起因して測定された反作用トルクに関する補正方法を含む([式2]を参照)。
一実施例では、第1のアクチュエータ168の及びロック用アクチュエータ171の及び第1のトルクセンサ182の、被負荷検知コンポーネントに接続するケーブルは、主要ユニットの駆動モジュール基部コンポーネント116に固着され、被負荷検知コンポーネントを、ケーブルによって印加される障害負荷から分離する。
図9Eを参照すると、EMDハブ駆動機構198に関する、第1のアクチュエータ168の下の第1のトルクセンサ182を使用するトルク検知システムの実施例が示される。EMDハブ駆動機構198の実施例では、従動ベベルギア136がEMDオンデバイスアダプタ112のハブ142に接続されており、EMDに作用するトルクは、第1のアクチュエータ168の反作用トルクを測定するトルクセンサ182を用いて判定される。一実施例では、トルク検知は、間接的に、すなわち、あからさまなトルクセンサ182を使用することなく、達成することができる。例えば、一実施例では、トルク検知は、アクチュエータ168の電流を測定することによって達成され、電流はアクチュエータによる印加トルクに関連付けられる。一実施例では、トルクセンサ182は、反力を測定する1つ以上の力センサと、測定された反力に基づいてトルクを決定する処理ユニットとを含む。軸のまわりのトルクは、力の作用点(トルク測定の軸に対する)及び反力ベクトルに対する位置ベクトルの外積として計算されてもよい。
図9Fを参照すると、図9Bの一実施例が示され、この実施例では、EMD102に加えられる力を測定するために、負荷センサ120が、駆動モジュール基部コンポーネント116と被負荷検知コンポーネント118との間で使用される。第1のアクチュエータ168の下端にある第1のトルクセンサ182と、第2のアクチュエータ170の下端にある第2のトルクセンサ184とが、EMD102に印加されるトルクを判定するために使用される。一実施例では、第1のトルクセンサ182及び第2のトルクセンサ184は、図9Aに示されるように、それぞれ、第1のアクチュエータ168及び第2のアクチュエータ170のキャプスタンシャフトに沿って配置される。
一実施例では、被負荷検知コンポーネント118を負荷測定方向以外の方向において支持するために、リニアベアリング支持体128が使用される。
図10Aを参照すると、EMDハブ駆動機構のための負荷検知システムの実施例が示され、この実施例では、EMDに作用する力、トルク、又は、力成分及びトルク成分は、駆動モジュール基部コンポーネント116と被負荷検知コンポーネント118との間の負荷センサ120及び第1のアクチュエータ168の下の第1のトルクセンサ182によって判定される。一実施例では、負荷センサ120は、少なくとも力成分とトルク成分を測定する多軸センサである。一実施例では、被負荷検知コンポーネント118は、負荷センサ120によって全体的に支持され、ベアリングは使用されない。一実施例では、リニアベアリング128が、少なくとも1つの非測定方向において被負荷検知コンポーネント118を支持するために使用される。
一実施例では、負荷センサ120は、EMDに作用する力を測定する力センサであり、トルクセンサ182は、EMDに作用するトルクを判定するために使用される。一実施例では、ベアリング128は、被負荷検知コンポーネント118を力測定方向以外のすべての方向において支持する。例えば、ベアリングは、ステージ駆動機構76の動作方向に平行な動作を可能にするリニアスライドである。
図10Bを参照すると、図10Aの一実施例が示され、第1のアクチュエータ168は、負荷センサ120に印加される慣性負荷などの寄生負荷を低減するために、被負荷検知コンポーネント118の外に位置する。また、EMDに作用するトルクは、第1のアクチュエータ168と駆動モジュール基部コンポーネント116との間で少なくとも一方向で第1のトルクセンサ182を使用し、判定することができる。あるいは、トルクセンサ182は、第1のアクチュエータ168と被負荷検知コンポーネント118内のオンデバイスアダプタとの間の駆動系内に配置されてもよい。
図11を参照すると、第1の駆動モジュール202、第1の負荷センサ222、第2の駆動モジュール204、及び第2の負荷センサ224を含む、リセットモーションを有する被負荷検知駆動システム200が示されている。第1の駆動モジュール202は、第1のステージ並進モータ206を含み、第2の駆動モジュール204は、第2のステージ並進モータ208を含む。第1のステージ並進モータ206及び第2のステージ並進モータ208は、独立して動作し、第1の駆動モジュール202及び第2の駆動モジュール204が、それぞれ、ステージ駆動機構210に対して並進することを可能にする。一実施例では、ステージ駆動機構210は送りネジである。
第1の駆動モジュール202は、第1の駆動モジュール基部コンポーネント212と、第1のオンデバイスアダプタ216を収容するカセット214とを含み、第1のEMD220を取り外し可能に把持し、第1のEMD220を前進させ(すなわち、EMD220を縦方向遠位に並進させ)、第1のEMD220を後退させ(すなわち、EMD220を縦方向近位に並進させ)、第1のEMD220を時計回りに回転させ、第1のEMD220を反時計回りに回転させることができる。一実施例では、第1のオンデバイスアダプタ216は、二重ベベルギア駆動機構である。
第1のオンデバイスアダプタ216の動作は、ここに援用される上述の米国仮出願62/874,173(Dkt C130-338)に開示されている。この‘173出願の段落[0317]-[0322]及び図G2A-G2Dなどを参照。
ピンチされた状態で、第1のEMD220をピンチしている第1のオンデバイスアダプタ216は、第1のEMD220をある距離一方向に移動させ、次いでリセット状態において、第1のオンデバイスアダプタ216は、第1のEMD220をリリースし、前記一方向と反対方向にリセット位置へ移動する。例えば、第1のオンデバイスアダプタ216が第1のEMD220をピンチし、そして遠位方向に第1のEMD220を動作させる。リセット状態では、第1のオンデバイスアダプタ216が第1のEMD220をアンピンチし、そして第1のオンデバイスアダプタ216がリセット位置に戻る。すなわち、第1のオンデバイスアダプタ216は、EMD220をアンピンチしてから近位方向へ移動する。一実施例では、リセット状態の間、EMD220は、第2のオンデバイスアダプタ218によってクランプされる。別の実施例では、第1のEMD220は、第1のEMD220と第2のEMD234及び/又は第2のEMD234の止血弁との間の摩擦によって、リセット状態の間、適所に留まる。第1のオンデバイスアダプタ216がリセット位置に移動すると、第1のオンデバイスアダプタ216は第1のEMD220を再度ピンチする。リセットモーションを有する被負荷検知駆動システム200は、ピンチ状態及びリセット状態のシーケンスを繰り返すことができる。
第1のオンデバイスアダプタ216と第2のオンデバイスアダプタ218との間のデバイス支持体230は、EMD220が座屈するのを防止する。
第1のオンデバイスアダプタ216は、第1の被負荷検知コンポーネントである。第1の負荷センサ222は、第1のオンデバイスアダプタ216において第1のEMD220に印加される負荷に相当する第1のオンデバイスアダプタ216に作用する負荷を検出する。第2のオンデバイスアダプタ218は、第2の被負荷検知コンポーネントである。第2の負荷センサ224は、第2のオンデバイスアダプタ218において第1のEMD220に印加される負荷に相当する第2のオンデバイスアダプタ218に作用する負荷を検出する。一実施例では、測定される負荷は、軸力である。一実施例では、測定される負荷は、トルクである。一実施例では、測定される負荷は、軸力の1成分と、トルクの1成分とをもつ。
一実施例では、第1のオンデバイスアダプタ216は、第1のリニアベアリング226によって横方向において支持され、このベアリングは、第1のオンデバイスアダプタ216と第1の駆動モジュール基部コンポーネント212とを、負荷測定方向以外のすべての方向において全体的に接続する。負荷測定方向において、第1のオンデバイスアダプタ216は、第1のオンデバイスアダプタ216と第1の駆動モジュール基部コンポーネント212とを負荷測定方向において接続する第1の負荷センサ222によってのみ支持される。第1の負荷センサ222は、第1のEMD220の縦方向に沿った向きとされ、第1のオンデバイスアダプタ216(第1の被負荷検知コンポーネント)と第1の駆動モジュール基部コンポーネント212との間に配置される。第1の負荷センサ222は、第1のオンデバイスアダプタ216に作用する負荷を測定し、したがって、第1のオンデバイスアダプタ216によって把持されている第1のEMD220に作用する負荷を測定する。
第2の負荷センサ224は、第2のオンデバイスアダプタ218と第2の駆動モジュール204の第2の駆動モジュール基部コンポーネント228との間に配置される。第2の負荷センサ224は、第2のオンデバイスアダプタ218に作用する負荷を測定し、したがって、第2のオンデバイスアダプタ218によってピンチされ又は固定されている第1のEMD220に作用する負荷を測定する。
一実施例では、第2のオンデバイスアダプタ218は、第1のオンデバイスアダプタ216がリセット状態にある間、第1のEMD220の位置を第2のオンデバイスアダプタ218に対して固定するクランプである。別の実施例では、第2のオンデバイスアダプタ218は、第2のオンデバイスアダプタ218に対して第1のEMD220に直線動作を与える駆動装置である。一実施例では、第2のオンデバイスアダプタ218は、第1のEMD220を動作させる2つの別の係合面(車輪又はパドル)を含む。一実施例では、第2のオンデバイスアダプタ218は、EMD220を直線動作させ且つ回転させることができる。
一実施例では、第2のオンデバイスアダプタ218及び第2の負荷センサ224が使用されず、第1のEMD220と第2のEMD234及び/又は止血弁との間の摩擦により、第1のEMD220がリセット状態の間、適所に留まる。
プロセッサ(図示せず)は、駆動機構内の状態センサを使用して、ピンチされた状態とリセット状態とを区別し、第1のEMD220にかかる実際の負荷を判定する。一実施例では、プロセッサは、ピンチされた状態の間だけ第1のEMD220にかかる実際の負荷を判定し、一方、リセット状態の間は負荷情報が提供されない。一実施例では、プロセッサは、第1の負荷センサ222からの負荷データ、第2の負荷センサ224からの負荷データ、第1のオンデバイスアダプタ216の状態、及び第2のオンデバイスアダプタ218の状態に応じて、第1のオンデバイスアダプタの第1のEMD220に対する実際の負荷を判定する。このときの状態は、オンデバイスアダプタがEMD220を把持しているか把持していないか、時計回りに回転しているか、反時計回りに回転しているか、又は回転していないかなどを指す。
負荷フィードバックシステムがユーザに負荷情報を提示する。一実施例では、負荷フィードバックシステムは、ピンチされた状態の間、第1のEMD220にかかる実際の負荷及び第1のオンデバイスアダプタ216の状態を示し、リセット状態の間、第1のオンデバイスアダプタ216の状態のみを示す(例えば、第2のオンデバイスアダプタ及び/又は第2の負荷センサが使用されない場合)。この方式は、EMD220が第1のオンデバイスアダプタ216によって把持されていない間に検知される誤った負荷測定値をフィードバックシステムが示すことを防止する。一実施例では、フィードバックシステムは、第1のオンデバイスアダプタ216の第1のEMD220にかかる実際の負荷と、ピンチされた状態及びリセット状態の両方における第1のオンデバイスアダプタ216の状態とを示す。
図11を参照すると、リセット負荷検知システム200の一実施例では、第1の駆動モジュール202は、EMD220と動作可能に係合する第1のオンデバイスアダプタ216を含み、第2の駆動モジュール204は、EMD220と取り外し可能に係合する第2のオンデバイスアダプタ218を含み、リセット状態は、第1のオンデバイスアダプタ216を第2の駆動モジュール204に対して延伸位置とリセット位置との間で移動させることを含む。この実施例では、第1の負荷センサ222は、第1のオンデバイスアダプタ216と第1の駆動モジュール202とに作動可能に接続され、第2の負荷センサ224は、第2のオンデバイスアダプタ218と第2の駆動モジュール204とに動作可能に接続される。プロセッサ(図示せず)は、第1の負荷センサ222からの第1の信号及び第2の負荷センサ224からの第2の信号を受信し、第1の信号、第2の信号、第1のオンデバイスアダプタ216の状態、及び第2のオンデバイスアダプタ218の状態に応じて、EMDにかかる実際の負荷を判定する。一実施例では、第1のオンデバイスアダプタは、コレットを含む。一実施例では、第2のオンデバイスアダプタは、一対の回転部材を有するクランプを含む。
一実施例では、第1のオンデバイスアダプタ216と第2のオンデバイスアダプタ218との間の距離は、装置がEMD220を前進させているときは、延伸位置におけるよりもリセット位置における方が大きく、そして、第1のオンデバイスアダプタ216と第2のオンデバイスアダプタ218との間の距離は、装置がEMD220を後退させているときは、リセット位置におけるよりも延伸位置において大きい。一実施例では、第1のオンデバイスアダプタ216の状態は、ピンチ状態及びアンピンチ状態を含み、第2のオンデバイスアダプタ218は、グリップ(把持)状態及びアングリップ状態を含む。
一実施例では、第1の駆動モジュールが第1のオンデバイスアダプタと第2の駆動モジュールとを含み、この場合、第1のオンデバイスアダプタは、EMDと動作可能に係合する第1の状態と、EMDと係合しない第2の状態とを有し、第2のオンデバイスアダプタは、EMDと係合する第3の状態と、EMDと係合しない第4の状態とを有する。リセット状態は、第1のオンデバイスアダプタを、第2の駆動モジュールに対して、延伸位置とリセット位置との間で移動させることを含む。第2の負荷センサは、第2のオンデバイスアダプタ及び第2の駆動モジュールに作動可能に接続される。プロセッサは、負荷センサからの第1の信号と、第2の負荷センサからの第2の信号とを受信し、第1の信号、第2の信号、第1のオンデバイスアダプタが第1の状態にあるか第2の状態にあるか、及び第2のオンデバイスアダプタが第3の状態にあるか第4の状態にあるかに応じて、EMDにかかる実際の負荷を判定する。一実施例では、第1のオンデバイスアダプタの第1の状態はピンチされた状態であり、第1のオンデバイスアダプタの第2の状態はアンピンチされた状態であり、第2のオンデバイスアダプタの第3の状態はグリップ状態であり、第2のオンデバイスアダプタの第4の状態はアングリップ状態である。
図11を参照すると、システムは、第1のEMD220と同軸である第2のEMD234をグリップし操作するための第3のオンデバイスアダプタ232を含む。一実施例では、第3のオンデバイスアダプタ232は、第2のリニアベアリング236によって横方向において支持され、このベアリングは、第3のオンデバイスアダプタ232と第2の駆動モジュール基部コンポーネント228とを、第2のEMD234に関する負荷測定方向以外のすべての方向において全体的に接続する。負荷測定方向において、第3のオンデバイスアダプタ232は、第3のオンデバイスアダプタ232と第2の駆動モジュール基部コンポーネント228とを負荷測定方向において接続する第3の負荷センサ238によってのみ支持される。第3の負荷センサ238は、第3のオンデバイスアダプタ232と第2の駆動モジュール基部コンポーネント228との間に配置される。第3の負荷センサ238は、第3のオンデバイスアダプタ232に作用する負荷を測定し、したがって、第3のオンデバイスアダプタ232によってグリップされた第2のEMD234に作用する負荷を測定する。
図12A及び図12Bを参照すると、リセットモーションを伴うリセットモーション被負荷検知駆動システム200を有する被負荷検知駆動システムの別の実施例は、1つの駆動モジュール240を含む。駆動モジュール240は、ステージ駆動機構210に対して駆動モジュール240が並進することを可能にするステージ並進モータ242を含む。一実施例では、ステージ駆動機構210は送りネジである。
駆動モジュール240は、駆動モジュール基部コンポーネント244を含み、カセット214が、EMD250をリリース可能にグリップし、EMD250を前進させ(すなわち、EMD250を縦方向遠位に並進させる)、EMD250を後退させ(すなわち、EMD250を縦方向近位に並進させる)、EMD250を時計回りに回転させ、そしてEMD250を反時計回りに回転させる第1のオンデバイスアダプタ216を収容する。一実施例では、EMD250に関する並進自由度は、EMD250が第1のオンデバイスアダプタ216によってグリップされている間に、ステージ駆動機構210に沿って駆動モジュール240を移動させることによって達成される。一実施例では、第1のオンデバイスアダプタ216は、二重ベベルギア駆動機構である。
第1のオンデバイスアダプタ216の動作は、ここに援用される上述の米国仮出願62/874,173(Dkt C130-338)に記載されている。この‘173出願の段落[0317]-[0322]及び図G2A-G2Dなどを参照。
駆動モジュール基部コンポーネント244は、第2のオンデバイスアダプタ218も含む。図12A及び図12Bの実施例では、第2のオンデバイスアダプタ218は、第1のオンデバイスアダプタ216の近位側にある。
ピンチされた状態において、EMD250をピンチしている第1のオンデバイスアダプタ216は、EMD250をある距離一方向に移動させ、そして第1のオンデバイスアダプタ216は、EMD250をリリースし、前記一方向とは反対方向にリセット位置へ移動する。例えば、ピンチされた状態では、EMD250をピンチする第1のオンデバイスアダプタ216は、EMD250を遠位方向に移動させる。一実施例では、EMD250に関する並進自由度は、EMD250が第1のオンデバイスアダプタ216によってピンチされている間に、ステージ駆動機構210に沿って駆動モジュール240を移動させることによって達成される。リセット状態では、第1のオンデバイスアダプタ216がEMD 250をアンピンチし、そして第1のオンデバイスアダプタ216がリセット位置に戻る。すなわち、第1のオンデバイスアダプタ216がEMD250をアンピンチした後に近位方向へ移動する。一実施例では、EMD250は、ピンチされた状態及びリセット状態の両方の間、第2のオンデバイスアダプタによってクランプされる。一実施例では、第2のオンデバイスアダプタ218は、軸を中心に回転することによってEMD250を直線的に移動させることができるタイヤの1つ以上の対である。対をなす2つのタイヤは、同じ速度で反対方向に回転して、EMD250を近位方向又は遠位方向に直線的に移動させる。ピンチされた状態では、第2のオンデバイスアダプタ218は、第2のオンデバイスアダプタ218に対してEMD250を移動させない。リセット状態では、EMD250は、第2のオンデバイスアダプタ218によってクランプされ、第2のオンデバイスアダプタ218は、EMD250を第2のオンデバイスアダプタ218に対して移動させ、駆動モジュール240がステージ駆動機構210に沿ってリセット位置へ移動するときに、EMD250の絶対位置が維持されるようにする。第1のオンデバイスアダプタ216がリセット位置に移動すると、第1のオンデバイスアダプタ216はEMD250を再ピンチする。リセットモーションを有する被負荷検知駆動システム200は、ピンチされた状態及びリセット状態のシーケンスを繰り返すことができる。
第1のオンデバイスアダプタ216及び第2のオンデバイスアダプタ218は、被負荷検知コンポーネント246に取り付けられる。負荷センサ248が、被負荷検知コンポーネント246に作用する負荷を検出する。一実施例では、負荷センサ248は、EMD250の縦方向に沿った向きで、被負荷検知コンポーネント246と駆動モジュール基部コンポーネント244との間に配置される。負荷センサ248は、ピンチされた状態とリセット状態の両方で、EMD250に作用する負荷を測定する。
一実施例では、被負荷検知コンポーネント246は、測定方向以外の1つ以上の方向でベアリング252によって支持される。
図13A及び図13Bを参照すると、負荷センサ262の自動較正及び負荷センサ262の過負荷保護を備えた負荷検知システム260は、1つの駆動モジュール264を含む。駆動モジュール264は、ステージ駆動機構210に対して駆動モジュール264が並進することを可能にするステージ並進モータ242を含む。一実施例では、ステージ駆動機構210は送りネジである。
駆動モジュール264は駆動モジュール基部コンポーネント266を含み、カセット268が、EMD250をリリース可能にグリップし、EMD250を前進させ(すなわち、EMD250を縦方向遠位に並進させる)、EMD250を後退させ(すなわち、EMD250を縦方向近位に並進させる)、EMD250を時計回りに回転させ、そしてEMD250を反時計回りに回転させる第1のオンデバイスアダプタ270を収容する。一実施例では、第1のオンデバイスアダプタ270は、単一ベベルギア駆動機構272(図9Eで使用されるものと同様)を含む。
第1のオンデバイスアダプタ270の動作は、ここに援用される上述の米国仮出願62/874,173(Dkt C130-338)に開示されている。この‘173出願の段落[0317]-[0322]及び図G2A-図G2Dなどを参照。
一実施例では、負荷検知システム260は、第2のオンデバイスアダプタ274も含む。図13A及び図13Bの実施例では、第2のオンデバイスアダプタ274は、第1のオンデバイスアダプタ270の遠位側に位置する保持クランプである。第2のオンデバイスアダプタ274は、直線部材又はレール60(図3参照)に対して固定される第2のオンデバイスアダプタベース276に取り付けられる。
第1のオンデバイスアダプタ270と第2のオンデバイスアダプタ274との間のデバイス支持体230は、EMD250が座屈するのを防止する。
第1のオンデバイスアダプタ270は、被負荷検知コンポーネント278に取り付けられる。負荷センサ262は、被負荷検知コンポーネント278に作用する負荷を検知する。一実施例では、負荷センサ262は、EMD250の縦方向に沿った向きで、被負荷検知コンポーネント278と弾性コンポーネント280との間に縦方向に配置される。弾性コンポーネント280は、負荷センサ262と駆動モジュール基部コンポーネント266内のポケット282との間にサンドイッチされている。一実施例では、弾性コンポーネント280は、既知のバネ剛性を有する機械的螺旋バネである。一実施例では、ポケット282は、駆動モジュール基部コンポーネント266に設けた円形リセスであり、このリセスに、既知のバネ剛性を有する機械的螺旋バネが着座させてある。一実施例では、弾性コンポーネント280は、既知の一定の弾性剛性を有する。一実施例では、弾性コンポーネント280は、既知の非線形弾性剛性、すなわち、その力対変位特性が既知である非線形弾性剛性を有する。
図13Aを参照すると、被負荷検知コンポーネント278は、負荷センサ262及び負荷測定方向の弾性コンポーネント280によってのみ支持される。一実施例では、第1のオンデバイスアダプタ270は、被負荷検知コンポーネント278と駆動モジュール基部コンポーネント266とを全体的に接続するベアリング252によって横方向(非負荷測定方向)において支持される。
被負荷検知コンポーネント278の縦方向近位と遠位とのそれぞれにおいて、機械的ストップ284及び機械的ストップ286が駆動モジュール基部コンポーネント266に一体的に接続されている。一実施例では、機械的ストップは、1つの機械的ストップを含む。一実施例では、機械的ストップは、複数の機械的ストップを含む。機械的ストップ284は、負荷センサ262に最も近い駆動モジュール基部コンポーネント266の側面にあり、負荷センサ262の横方向寸法よりも大きい距離で互いに離れており、負荷センサを囲むことができるようになっている。一実施例では、機械的ストップ284及び機械的ストップ286は、駆動モジュール基部コンポーネント266から縦方向に向かう延伸ロッドである。一実施例では、機械的ストップ284及び機械的ストップ286は、駆動モジュール基部コンポーネント266から縦方向に向かう延伸フランジである。一実施例では、機械的ストップ284及び機械的ストップ286と駆動モジュール基部コンポーネント266とは、同じ材料から1部品として作られている。一実施例では、機械的ストップ284及び機械的ストップ286と駆動モジュール基部コンポーネント266とは、異なる材料で作られ、一体的に接続されて、1部品をなす。機械的ストップ284の目的は、負荷センサ262を過負荷から保護することである。すなわち、ここで「センサの過負荷保護」として定義される、センサの動作範囲を超える力にさらされることから保護する、あるいは、押圧力がEMD250に加えられたときにセンサの上限を超える力によってダメージを被ることから保護する、ことにある。機械的ストップ286の目的は、EMD250に引っ張り力が加えられたときに、駆動モジュール基部コンポーネント266に対する被負荷検知コンポーネント278の縦方向動作の範囲を制限することである。
図13Aを参照すると、負荷検知システム260は、被負荷検知コンポーネント278の中立位置で示され、すなわち、被負荷検知コンポーネント278に負荷が加わらない状態で示される。中立位置では、被負荷検知コンポーネント278と機械的ストップ284との間には接触がない。図13Bを参照すると、負荷検知システム260は、被負荷検知コンポーネント278の最大負荷位置に示され、すなわち、負荷センサ262に最大許容押し込み負荷が加わった状態で、被負荷検知コンポーネント278は、駆動モジュール264の負荷センサ262の側で機械的ストップ284と接触する。一実施例では、第2のセンサを、被負荷検知コンポーネント278と機械的ストップ284との間の接触を検出するための接触検出センサとすることができる。距離センサ、負荷センサ、光センサ、電子回路ベースの接触検出センサを含む各種のセンサを、接触検出センサとして使用することができる。ただし、これらに限定されない。機械的ストップ284に対する被負荷検知コンポーネントの動作は、EMDに加えられる負荷に比例する。弾性コンポーネント280の剛性が既知であり、無負荷状態(すなわち、弾性コンポーネントがその中立長さを有する場合)での被負荷検知コンポーネント278と機械的ストップ284との間のギャップは、弾性コンポーネント280の偏向に従い最大許容負荷でギャップが閉じるように選択される。最大許容負荷は、負荷センサ262に加えることが許容される最大負荷として定義される。
負荷センサ262の自動較正及び負荷センサ262の過負荷保護のためのプロセスは、次のような2つのステップを含む。ステップ1は、ゼロオフセットを除去することである。これは、EMD250に負荷が加えられていないとき、すなわち弾性コンポーネント280がその中立長さを有するとき、負荷センサ262から力を測定することによって行われる。負荷検知システムによって示される負荷は、EMD250には負荷が印加されないので、ゼロであるべきである。したがって、示される負荷がゼロでない場合、負荷センサ262によって測定される負荷は、そのゼロでない値によって減算される。ステップ2は、EMD250に作用する実際の力と、負荷センサ262によって測定される力との間の較正係数又は関係を補正することである。中立位置から、保持クランプなどの第2のオンデバイスアダプタ274が、EMD250をクランプして静止させる。一実施例では、ステップ2は、負荷センサ262によって測定された力とEMD250に作用する実際の力との間に誤差が存在するのであればこれを補正することである。EMD250は静止しているので、被負荷検知コンポーネント278も静止している。次に、ステージ並進モータ242を駆動し、被負荷検知コンポーネント278(第1のオンデバイスアダプタ270を含む)を弾性コンポーネント280に押し付けることによって、力288がEMD250に加えられる。力288の反力が、今度は、弾性コンポーネント280に加えられる。力288の反力により、弾性コンポーネント280は、偏向される(すなわち、圧縮される)。偏向量は、負荷センサ側の機械的ストップ284と被負荷検知コンポーネント278との間にハードコンタクトが存在するまで、力288の大きさと共に増加する。次いで、プロセッサ(図示せず)は、負荷センサ262から測定された力を力288と比較する。力288は、弾性コンポーネント280の剛性が既知であり、被負荷検知コンポーネント278の偏向が既知であり(すなわち、被負荷検知コンポーネント278と機械的ストップ284との初期ギャップが既知である)から、フッキアン理論-弾性力は弾性部材の偏向を乗算した弾性剛性に等しい-を適用することにより、既知である。次いで、プロセッサは、負荷センサ262が較正されるように、負荷センサ262の測定データの必要な補正係数を計算することができる。
一実施例では、負荷検知システム260は、第2のアクチュエータをもたず、較正の第2のステップは、接触するまで、機械的ストップ284に向かって手動で被負荷検知コンポーネント278を押すことによって、手動で行われる。接触状態で、プロセッサは、負荷センサ262による測定力を既知の力288と比較し、負荷センサ262が較正されるように、負荷センサ262の測定データの必要な補正係数を計算する。
一実施例では、トルクセンサの較正及び過負荷保護に関し、回転自由度に対して同じ方法が使用される。当該システムでは、機械的ストップ及びトーションバネが使用され、機械的ストップが被負荷検知コンポーネント278の角度変位を制限する。
上述の図13A及び図13Bを参照すると、負荷センサ262を較正するための装置が示され、ここでは、駆動モジュール264は、駆動モジュール基部コンポーネント266、被負荷検知コンポーネント(図示せず)、負荷センサ262、及び既知の剛性を有する弾性コンポーネント280を含む。弾性コンポーネント280は、負荷センサ262と駆動モジュール基部コンポーネント266との間にある。カセット268は、駆動モジュール264に取り外し可能に固定される。カセット268は、ハウジングと、ハウジング内で可動の隔離コンポーネントとを含み、細長い医療デバイス(EMD)250を受け入れるように構成されている。
一実施例では、機械的ストップ284は、弾性コンポーネント280の方向においてハウジング及び駆動モジュール基部コンポーネント266のどちらかに対し隔離コンポーネントの移動を制限し、弾性コンポーネント280の最大偏向を機械的ストップ284と隔離コンポーネントとの間の既知の距離に制限する。一実施例では、機械的ストップ284と被負荷検知コンポーネントとの間の距離は、負荷センサ262が過負荷から保護されるように、負荷センサ262に加えられる最大負荷を制限するために予め定められる。
一実施例では、第2のセンサが、被負荷検知コンポーネントと機械的ストップ284との間の接触を検出する。一実施例では、第2のセンサは、モーションセンサである。一実施例では、プロセッサは、負荷センサ262の測定値からゼロオフセットを決定して除去するために使用され、ゼロオフセットは、無負荷時の見かけの負荷を示す測定負荷中のバイアスを指す。センサ較正のプロセスは、無負荷時に負荷検知システムがゼロ負荷を示すように、ゼロオフセットに関して補正する。一実施例では、プロセッサは、測定された負荷と既知の負荷とを比較することによって、較正係数を補正するために使用される。一実施例では、負荷センサ262の較正は、1つ以上の機械的ストップ284に接触するまで、被負荷検知コンポーネントを1つ以上の機械的ストップ284に向かって押し込む手動で行われる。一実施例では、負荷センサ262の較正は、自動的に行われる。一実施例では、負荷センサ262の較正は、EMD250をクランプするために使用される機構によって自動的に達成される。一実施例では、負荷センサ262の較正は、EMD250がデバイス支持体によって支持される場合のEMD250をクランプするために使用される機構によって自動的に達成される。一実施例では、負荷センサ262の較正は、駆動モジュール基部コンポーネント266から独立した、適所に被負荷検知コンポーネントを固定するロック機構を用いて自動的に達成される。一実施例では、負荷センサ262の較正は自動的に行われ、負荷センサ262の過負荷保護があり、負荷センサ262はEMD250に作用する軸力を測定する。一実施例では、負荷センサ262の較正は自動的に行われ、負荷センサ262の過負荷保護があり、負荷センサ262はEMD縦軸のまわりでEMD250に作用するトルクを測定する。一実施例では、負荷センサ262の較正は自動的に行われ、負荷センサ262の過負荷保護があり、負荷センサ262はEMD250に作用する軸力を測定し、EMD縦軸のまわりでEMD250に作用するトルクを測定する。
図14A及び図14Bを参照すると、負荷検知システムのコンポーネントは、第1のオンデバイスアダプタ270の代替実施例を除いて、図13A及び図13Bの負荷検知システムのコンポーネントと同じである。
図14A及び図14Bを参照すると、負荷センサの自動較正及び過負荷保護を備えた負荷検知システムは、タイヤ駆動機構292である第1のオンデバイスアダプタ270と、クランプ294とを含む。タイヤ駆動機構292は、駆動モジュール基部コンポーネント266に取り付けられた駆動アクチュエータ296によって駆動される。駆動アクチュエータ296は、測定方向において被負荷検知コンポーネントに大きな負荷を与えない(例えば、X軸方向の力がない)パワートレイン298によって、タイヤ駆動機構292に動力を伝達する。一実施例では、パワートレイン298は、駆動アクチュエータ296に取り付けられたプーリに巻回されて駆動されるベルトである。
図13Aの代替実施例である図14Aを参照すると、負荷検知システムは、被負荷検知コンポーネント278の中立位置に示されている。すなわち、被負荷検知コンポーネント278に負荷が加わっていない状態で示されている。図13Bの代替実施例である図14Bを参照すると、負荷検知システムは、被負荷検知コンポーネント278の最大負荷位置、すなわち、負荷センサ262に印加される最大許容負荷を示している。
図14A及び図14Bを参照すると、負荷センサ262の自動較正及び負荷センサ262の過負荷保護のためのプロセスは、図13A及び図13Bの負荷検知システムについて上述したものと同じである。
図15A及び図15Bを参照すると、負荷センサの自動較正及び過負荷保護を備えた負荷検知システムの代替実施例は、図14A及び図14Bの負荷検知システムのコンポーネントと同じコンポーネントを含む。この代替実施例では、タイヤ駆動機構292は、被負荷検知コンポーネント278に取り付けられた駆動アクチュエータ296によって駆動される。一実施例では、駆動アクチュエータ296は、被負荷検知コンポーネント278の内側に取り付けられる。
図14Aの代替実施例である図15Aを参照すると、負荷検知システムは、被負荷検知コンポーネント278の中立位置に示される。図14Bの代替実施例である図15Bを参照すると、負荷検知システムは、被負荷検知コンポーネント278の最大負荷位置に示される。
図15A及び図15Bを参照すると、負荷センサ262の自動較正及び負荷センサ262の過負荷保護のためのプロセスは、図13A及び図13Bの負荷検知システムについて上述したものと同じである。
図16A及び図16Bを参照すると、負荷センサの自動較正及び過負荷保護を備えた負荷検知システムの代替実施例は、ステージ駆動機構210に対して被負荷検知コンポーネント278の縦方向位置を可逆的に固定する係止部材300を含み、一方、ステージ並進モータ242は、ステージ駆動機構210に沿って駆動モジュール264を並進させる。被負荷検知コンポーネント278の縦方向の動作は、被負荷検知コンポーネント278のポケット302に係止部材300を着座させることによって防止される。一実施例では、係止部材300は、ロックピンである。一実施例では、係止部材300は、フランジである。一実施例では、係止部材300は、リンクの隆起又は突起である。一実施例では、係止部材300は、摩擦によって被負荷検知コンポーネント278をロックする。
係止部材300は、横方向の直線動作に拘束される(図示しないシステムによって作動し制御される)。一実施例では、係止部材300は、リニアベアリングによって直線動作に拘束される。一実施例では、係止部材300は、ガイドによって直線動作に拘束される。一実施例では、係止部材300の直線動作は、ネジの回転によって達成される。
図14Aの代替実施例である図16Aを参照すると、負荷検知システムは、被負荷検知コンポーネント278の中立位置に示される。被負荷検知コンポーネント278は、縦方向において負荷センサ及び弾性コンポーネントにより支持され、リニアベアリング(図示せず)により横方向において拘束される。リニアベアリングは、被負荷検知コンポーネント278と駆動モジュール基部コンポーネント266とを一体的に接続する。図14Bの代替実施例である図16Bを参照すると、負荷検知システムは、被負荷検知コンポーネント278の負荷位置に示される。
図16A及び図16Bを参照すると、負荷センサ262の自動較正及び負荷センサ262の過負荷保護のためのプロセスは、図13A及び図13Bの負荷検知システムについて上述したものと同様であり、この場合、被負荷検知コンポーネント278の位置の固定が係止部材300をポケット302に着座させることによって行われ、これにより、被負荷検知コンポーネント278の縦方向の動作を防止する。
図17及び図18を参照すると、プロセッサ又は処理ユニットは、EMDに作用する実際の負荷の測定に影響する寄生負荷に関して補正を行い、寄生負荷は、これらに限定されないが、摩擦負荷、慣性負荷、障害負荷、及び重力負荷を含む。
実施例を参照して本発明を説明したが、当業者であれば、明確にされた主題の思想及び範囲から逸脱することなく、形態及び詳細に変更を加えることができることは、当然理解される。例えば、異なる実施例は、1つ以上の利益をもたらす1つ以上の特徴を含むものとして説明してきたが、説明した実施例において、説明した特徴は互いに交換されてもよく、又は、説明した実施例又は他の代替実施例において互いに組み合わせてもよいと理解される。開示した事項は、可能な限り広いように意図されているのは明白である。例えば、特段の記載がない限り、1つの特定要素を記載する定義は、同様の特定要素を複数包含しもする。