JP7214451B2 - Copper alloy - Google Patents
Copper alloy Download PDFInfo
- Publication number
- JP7214451B2 JP7214451B2 JP2018226248A JP2018226248A JP7214451B2 JP 7214451 B2 JP7214451 B2 JP 7214451B2 JP 2018226248 A JP2018226248 A JP 2018226248A JP 2018226248 A JP2018226248 A JP 2018226248A JP 7214451 B2 JP7214451 B2 JP 7214451B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- copper alloy
- copper
- content
- hardness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Sliding-Contact Bearings (AREA)
Description
本発明は、摺動部材等に用いる銅合金に関する。 TECHNICAL FIELD The present invention relates to a copper alloy used for sliding members and the like.
従来、高強度銅合金としてベリリウム銅が知られているが、ベリリウム銅はベリリウム化合物が毒性を有することやコストが高いという問題がある。これに対し、毒性が無く、時効硬化処理により強度を向上させることができる銅-ニッケル-スズ(Cu-Ni-Sn)系の銅合金が注目されている。 Conventionally, beryllium copper is known as a high-strength copper alloy, but beryllium copper has problems that beryllium compounds are toxic and cost is high. On the other hand, copper-nickel-tin (Cu-Ni-Sn)-based copper alloys, which are non-toxic and whose strength can be improved by age hardening treatment, have attracted attention.
例えば、3.0~25.0質量%のニッケルと、3.0~9.0質量%のスズと、0~0.10質量%のリンとを含有し、残部が銅および不可避不純物からなる銅合金が提案されている。そして、このような銅合金を使用することにより、強度と導電率をバランスよく向上させた銅合金を提供することができると記載されている(例えば、特許文献1参照)。 For example, it contains 3.0 to 25.0% by mass of nickel, 3.0 to 9.0% by mass of tin, and 0 to 0.10% by mass of phosphorus, with the balance being copper and unavoidable impurities. Copper alloys have been proposed. It is also stated that by using such a copper alloy, it is possible to provide a copper alloy with improved strength and conductivity in a well-balanced manner (see, for example, Patent Document 1).
しかしながら、上記特許文献1に記載の銅合金では、ニッケルとスズにより強度を確保することはできるものの、切削性と摺動性を十分に確保することができないという問題があった。 However, in the copper alloy described in Patent Document 1, although nickel and tin can ensure strength, there is a problem that sufficient machinability and slidability cannot be ensured.
そこで、本発明は、上述の問題に鑑みてなされたものであり、高い強度を有するとともに、切削性と摺動性に優れた銅合金を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a copper alloy having high strength and excellent machinability and slidability.
上記目的を達成するために、本発明に係る銅合金は、ニッケルを4.0~20.0質量%、スズを4.0~20.0質量%、及び硫黄を0.1~1.0質量%含有し、残分が銅と不可避的不純物であることを特徴とする。 In order to achieve the above object, the copper alloy according to the present invention contains 4.0 to 20.0% by mass of nickel, 4.0 to 20.0% by mass of tin, and 0.1 to 1.0% by mass of sulfur. % by mass, and the remainder is copper and unavoidable impurities.
本発明によれば、高い強度を有するとともに、優れた切削性と摺動性を両立することができる銅合金を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, while having high intensity|strength, the copper alloy which can be compatible with the excellent machinability and slidability can be provided.
以下、本実施形態における銅合金について説明する。 The copper alloy in this embodiment will be described below.
本実施形態の銅合金は、ニッケルとスズと硫黄(S)とを所定量含有し、残分が銅と不可避的不純物である銅合金である。 The copper alloy of the present embodiment contains predetermined amounts of nickel, tin, and sulfur (S), and the balance is copper and unavoidable impurities.
本実施形態の銅合金においては、強度を確保するとの観点から、ニッケルを4.0~20.0質量%含むことが必要である。4.0質量%未満であると材料強度が低下する。また、20.0質量%よりも多い場合は、鋳造に適さなくなる場合がある。なお、ニッケルの含有量は4.0~19.0質量%が好ましく、4.0~16.0質量%が特に好ましい。 In the copper alloy of the present embodiment, it is necessary to contain 4.0 to 20.0% by mass of nickel from the viewpoint of ensuring strength. If it is less than 4.0% by mass, the material strength is lowered. Moreover, when it is more than 20.0% by mass, it may not be suitable for casting. The nickel content is preferably 4.0 to 19.0% by mass, particularly preferably 4.0 to 16.0% by mass.
スズは、上記ニッケルとの相乗効果により、銅合金の強度を向上させるためのものである。本実施形態の銅合金においては、スズを4.0~20.0質量%含むことが必要である。4.0質量%未満であると材料強度が低下する。また、20.0質量%よりも多い場合は、熱伝導率が低下し、高温環境下での使用に適さなくなる。なお、スズの含有量は4.0~18.0質量%が好ましく、4.0~15.5質量%が特に好ましい。 Tin is intended to improve the strength of the copper alloy through a synergistic effect with nickel. The copper alloy of this embodiment must contain 4.0 to 20.0% by mass of tin. If it is less than 4.0% by mass, the material strength is lowered. On the other hand, when it is more than 20.0% by mass, the thermal conductivity is lowered, making it unsuitable for use in high-temperature environments. The tin content is preferably 4.0 to 18.0% by mass, particularly preferably 4.0 to 15.5% by mass.
また、硫黄は、銅、鉄(Fe)等と反応して硫化物を形成する。この硫化物は、鉛やグラファイト、二硫化モリブデンと同様に固体潤滑性を有しており、摩擦係数を低下させ、なじみを良好にし、摺動状態において良好な摺動性を付与するものとなる。また、これらの硫化物があることにより、上記銅合金は切削の際に切り屑が寸断された短い切粉となるため、切削に用いる刃物に巻き付いたりするといったことが起こりにくくなり、結果として、切削性を向上させることができる。 Sulfur also reacts with copper, iron (Fe), and the like to form sulfides. This sulfide, like lead, graphite, and molybdenum disulfide, has solid lubricity, lowers the coefficient of friction, improves compatibility, and provides good slidability in sliding conditions. . In addition, due to the presence of these sulfides, the copper alloy becomes short chips that are shredded during cutting, so it is difficult for them to wrap around the blade used for cutting. As a result, Machinability can be improved.
本実施形態の銅合金においては、硫黄を0.1~1.0質量%含むことが必要である。
硫黄が0.1質量%未満であると、上述の切削性と摺動性の効果が十分に得られない場合がある。一方で、1.0質量%を超えると鋳造に適さなくなる。なお、Cu-Sの金属状態図から、十分な摺動性能を発揮させるためには、0.6質量%以下であると好ましい。
The copper alloy of this embodiment must contain 0.1 to 1.0% by mass of sulfur.
If the sulfur content is less than 0.1% by mass, the aforementioned machinability and slidability effects may not be sufficiently obtained. On the other hand, if it exceeds 1.0% by mass, it becomes unsuitable for casting. From the metal phase diagram of Cu—S, it is preferable that the content is 0.6% by mass or less in order to exhibit sufficient sliding performance.
即ち、本実施形態の銅合金においては、硫黄を0.1~1.0質量%含有しているため、摺動特性を改善する固体潤滑材として、硫化物が合金中に分散して存在することになる。また、銅合金において硫化物が分散することになり、この硫化物は切削加工時においてチップブレーカとして作用するため、切削性も改善することになる。 That is, since the copper alloy of the present embodiment contains 0.1 to 1.0% by mass of sulfur, sulfides are dispersed in the alloy as a solid lubricant that improves sliding characteristics. It will be. In addition, sulfides are dispersed in the copper alloy, and these sulfides act as chip breakers during cutting, thus improving machinability.
本実施形態の銅合金においては、鉄を含有してもよい。鉄は、上述の硫黄とともに、上記銅合金の摺動性を向上させる硫化物を形成する。なお、摺動性を確保するために必要な硫化物を形成するとの観点から、鉄の含有量は0.03質量%以上であることが好ましい。また、鉄の含有量は1.0質量%以下であることが好ましい。鉄の含有量が1.0質量%を超えると、摺動性が確保できなくなる場合があるためである。 The copper alloy of this embodiment may contain iron. Iron forms sulfides, together with sulfur, which improve the slidability of the copper alloy. From the viewpoint of forming sulfides necessary for ensuring slidability, the content of iron is preferably 0.03% by mass or more. Also, the content of iron is preferably 1.0% by mass or less. This is because if the iron content exceeds 1.0% by mass, the slidability may not be ensured.
本実施形態の銅合金においては、リン(P)を含有してもよい。リンは、その含有量に応じて銅合金溶湯を脱酸させる効果を発揮する。さらに、アトマイズ法で生成させた粉末を焼結する場合、互いに焼結する粉末の粒子同士の境界に存在する不純物が脱酸によって減少すると、焼結の際に障害が少なくなるため、焼結密度を向上させる効果が発揮される。これらの効果を十分に発揮させるには、0.01質量%以上含有することが好ましい。一方、0.5質量%を超えると、摺動部材としての性能を阻害するおそれがあるため、好ましくない。即ち、本実施形態の銅合金においては、リンの含有量は0.01~0.5質量%が好ましい。 The copper alloy of this embodiment may contain phosphorus (P). Phosphorus exhibits the effect of deoxidizing the molten copper alloy according to its content. Furthermore, when sintering the powder produced by the atomization method, if the impurities present at the boundaries between the particles of the powder to be sintered are reduced by deoxidation, obstacles during sintering will be reduced. The effect of improving the In order to fully exhibit these effects, it is preferable to contain 0.01% by mass or more. On the other hand, if it exceeds 0.5% by mass, the performance as a sliding member may be impaired, which is not preferable. That is, in the copper alloy of this embodiment, the phosphorus content is preferably 0.01 to 0.5% by mass.
本実施形態の銅合金においては、亜鉛(Zn)を含有してもよい。亜鉛は、銅合金の強度をさらに向上させるものである。なお、亜鉛の含有量が20.0質量%を超えると、20質量%未満の場合に比し、強度が、若干、低下する場合がある。即ち、本実施形態の銅合金においては、亜鉛を含有させる場合、亜鉛の含有量については、特に限定されないが、優れた強度を維持するとの観点から、20.0質量%以下(但し、0質量%を含まない)であることが好ましい。 The copper alloy of this embodiment may contain zinc (Zn). Zinc further improves the strength of the copper alloy. When the content of zinc exceeds 20.0% by mass, the strength may slightly decrease compared to the case where the content is less than 20% by mass. That is, in the copper alloy of the present embodiment, when zinc is contained, the content of zinc is not particularly limited, but from the viewpoint of maintaining excellent strength, it is 20.0% by mass or less (however, 0 mass %).
本実施形態の銅合金は、上記の各元素と残分である銅以外に、不可避的に含まれてしまう不純物であって、上記銅合金の特性を阻害しない程度に含まれるものを含有してもよい。 The copper alloy of the present embodiment contains impurities that are inevitably contained in addition to the above elements and copper, which is the residual, to the extent that the characteristics of the copper alloy are not impaired. good too.
この不純物は、環境に配慮してリサイクル材料を用いる場合や、上記銅合金の調製や摺動部材の鋳造において設備を共有する場合に、不可避的に含まれてしまう成分である。もちろん、物性上はこの不純物の含有量は少ないほど好ましく、不純物を含有しないことがより好ましいが、0にすることは困難である。 These impurities are components that are unavoidably included when recycled materials are used in consideration of the environment, or when facilities are shared for the preparation of the copper alloy and the casting of the sliding members. Of course, from the point of view of physical properties, the content of this impurity is preferably as small as possible, and it is more preferable to contain no impurity, but it is difficult to reduce the content to zero.
例えば、上記不純物として、銅合金に含まれるコバルトの量は、0.1質量%以下であることが好ましい。0.1質量%を超えると、鋳造品の品質が悪化するためである。 For example, as the impurity, the amount of cobalt contained in the copper alloy is preferably 0.1% by mass or less. This is because if it exceeds 0.1% by mass, the quality of the casting deteriorates.
また、上記不純物として、銅合金に含まれるモリブデンの量は、0.1質量%以下であることが好ましく、検出限界未満であることがより好ましい。モリブデンが銅合金に硫黄と結合した二硫化モリブデンとして含まれていると、銅合金の調製時や、摺動部材の製造時、及び摺動部材の使用時に、二硫化モリブデンが酸化されて、意図せぬ硫黄分が生じてしまい、銅合金を侵すおそれがあるためである。 As the impurity, the amount of molybdenum contained in the copper alloy is preferably 0.1% by mass or less, and more preferably less than the detection limit. When molybdenum is contained in copper alloys as molybdenum disulfide combined with sulfur, the molybdenum disulfide is oxidized during the preparation of the copper alloy, during the manufacture of the sliding member, and during the use of the sliding member. This is because an undesired amount of sulfur is generated, which may corrode the copper alloy.
また、この不純物として、銅合金に含まれるシリコン(Si)の量は、0.1質量%以下であると好ましい。 Moreover, as this impurity, the amount of silicon (Si) contained in the copper alloy is preferably 0.1% by mass or less.
なお、この発明において規定するそれぞれの成分の質量混合比は、製造段階での原料の混合比ではなく、原料を溶融して得られた合金における成分の質量混合比である。 The mass mixing ratio of each component specified in the present invention is not the mixing ratio of the raw materials in the manufacturing stage, but the mass mixing ratio of the components in the alloy obtained by melting the raw materials.
また、銅合金の残分は銅であり、上記の元素成分を含む合金は、一般的な銅合金の製造方法で得ることができ、この銅合金からなる摺動部材は、一般的な鋳造法により製造することができる。 In addition, the remainder of the copper alloy is copper, and the alloy containing the above elemental components can be obtained by a general copper alloy production method, and the sliding member made of this copper alloy is produced by a general casting method. can be manufactured by
本実施形態の銅合金を用いた摺動部材としては、例えば、ブッシュ、軸受、ライナー、プレートなどが挙げられる。 Examples of sliding members using the copper alloy of this embodiment include bushes, bearings, liners, and plates.
以下、本発明の銅合金について、具体的な実施例を挙げて説明する。なお、本発明はこれらの実施例には限定されない。 Hereinafter, the copper alloy of the present invention will be described with specific examples. However, the present invention is not limited to these examples.
<ボールオンディスク試験>
表1に記載の実施例1及び比較例1の各成分を配合して、1200℃に加熱して溶解し、鋳型を用いて銅合金を鋳造した。その後、強度を上げるために、熱処理(溶体化処理…800℃で1時間保持、及び時効処理…350℃で3時間15分保持)を行い、機械加工により、外径44mm、内径19mm、及び厚さ8.5mmのドーナツ型のディスクを用意した。なお、摩擦面は#80耐水ペーパー仕上げとした。
<Ball-on-disk test>
Each component of Example 1 and Comparative Example 1 shown in Table 1 was blended, heated to 1200° C. to melt, and cast into a copper alloy using a mold. After that, in order to increase the strength, heat treatment (solution treatment: held at 800 ° C. for 1 hour, and aging treatment: held at 350 ° C. for 3 hours and 15 minutes) was performed, and machining was performed to increase the outer diameter to 44 mm, the inner diameter to 19 mm, and the thickness. A doughnut-shaped disc with a thickness of 8.5 mm was prepared. The friction surface was finished with #80 waterproof paper.
次に、作製した実施例1及び比較例1の各ディスク上に、クロム軸受鋼(SUJ2)である直径6.35mmのボール(3個)を等間隔(直径34mmの円周上に120°間隔)で配置した。なお、ボールは、ディスクと面接触するように、先端部を平坦に研摩したものを用いた。 Next, on each of the fabricated disks of Example 1 and Comparative Example 1, balls (3 pieces) of 6.35 mm diameter made of chromium bearing steel (SUJ2) were placed at equal intervals (120° intervals on a circumference of 34 mm diameter). ). The ball used had a flat polished tip so as to come into surface contact with the disk.
次に、ボールを配置した治具を試験装置の上部に設置された駆動軸に固定し、試験装置下部に位置する摩擦トルク測定機構を内蔵した回転軸にディスクを固定した。 Next, the jig in which the balls were arranged was fixed to the driving shaft installed in the upper part of the test device, and the disk was fixed to the rotary shaft containing the friction torque measuring mechanism located in the lower part of the test device.
次に、ディスクとボールを面接触させた状態で、梃子を介して、1kgの重りを用いてディスクを押し上げることにより、ディスクとボールとの接触面を1.0MPaの圧力で押圧しながら、0.2m/sの摩擦速度で回転させた。 Next, while the disc and the ball are in surface contact, the disc is pushed up with a weight of 1 kg via a lever to press the contact surface between the disc and the ball with a pressure of 1.0 MPa, thereby reducing the pressure to zero. It was rotated at a friction speed of .2 m/s.
次に、実施例1及び比較例1の各ディスクにおいて、摩擦トルクの値から摩擦力を得るとともに、これを用いて摩擦係数を算出し、当該摩擦係数が0.5(焼き付きが発生し、摺動性が低下する値)になるまでの回転距離(即ち、摩擦距離[m])を測定した。以上の結果を図1に示す。 Next, in each disk of Example 1 and Comparative Example 1, the friction force was obtained from the value of the friction torque, and the friction coefficient was calculated using this value. The rotational distance (that is, the frictional distance [m]) until the value at which the mobility decreases) was measured. The above results are shown in FIG.
図1に示すように、ニッケルを6.37質量%、スズを6.14質量%、及び硫黄を0.31質量%含有する実施例1の銅合金は、硫黄を含有しない比較例1の銅合金に比し、摩擦係数が0.5になるまでの摩擦距離が長く、摺動性に優れていることが分かる。 As shown in FIG. 1, the copper alloy of Example 1 containing 6.37% by weight nickel, 6.14% by weight tin, and 0.31% by weight sulfur is comparable to the copper alloy of Comparative Example 1 containing no sulfur. It can be seen that the friction distance until the coefficient of friction reaches 0.5 is longer than that of the alloy, and the slidability is excellent.
<切削試験>
上述の実施例1及び比較例1の各銅合金について、卓上旋盤(コスモ機械(株)製、商品名:JL-200)、及び超硬の切削工具(住友電気工業(株)製、商品名:CCGT060202MN)を使用して、切削速度が300rpm、切込量が0.1mm、及び送り量が0.02mm/revの条件で旋盤加工を行い、切削屑の形状に基づいて、切削性を判断した。なお、実施例1の銅合金の切削屑を図2に示すとともに、比較例1の銅合金の切削屑を図3に示す。
<Cutting test>
For each copper alloy of Example 1 and Comparative Example 1 described above, a desktop lathe (manufactured by Cosmo Machinery Co., Ltd., trade name: JL-200) and a carbide cutting tool (manufactured by Sumitomo Electric Industries, Ltd., trade name : CCGT060202MN), perform lathe processing under the conditions of cutting speed of 300 rpm, depth of cut of 0.1 mm, and feed rate of 0.02 mm/rev, and judge machinability based on the shape of the chips. bottom. 2 shows cutting chips of the copper alloy of Example 1, and FIG. 3 shows cutting chips of the copper alloy of Comparative Example 1. As shown in FIG.
図2、図3に示すように、比較例1の銅合金の切削屑は途切れることなく連続しており、切削性に劣るが、実施例1の銅合金の切削屑は細かく分断されており、優れた切削性を有することが分かる。 As shown in FIGS. 2 and 3, the copper alloy shavings of Comparative Example 1 are continuous without interruption and are inferior in machinability, but the copper alloy shavings of Example 1 are finely divided, It can be seen that it has excellent machinability.
<硬度試験>
JIS Z 2244(ビッカース硬さ試験-試験方法)に準拠して、上述のボールオンディスク試験において用いた実施例1及び比較例1の各ディスクの硬さを測定したところ、実施例1のディスクの硬さは302HV、比較例1のディスクの硬さは317HVであった。従って、実施例1のディスクは、硫黄を含有しない従来のディスク(比較例1のディスク)と同様の高い強度を有することが分かる。
<Hardness test>
The hardness of each disk of Example 1 and Comparative Example 1 used in the above-described ball-on-disk test was measured according to JIS Z 2244 (Vickers hardness test-testing method). The hardness was 302 HV, and the hardness of the disk of Comparative Example 1 was 317 HV. Therefore, it can be seen that the disk of Example 1 has the same high strength as the conventional disk containing no sulfur (the disk of Comparative Example 1).
(実施例2~16、比較例2~4)
まず、ニッケルの配合量、スズの配合量、硫黄の配合量、鉄の配合量、リンの配合量、及び亜鉛の配合量を適宜変化させ、残りを銅及び不可避的不純物として配合し、溶解温度を1200℃として、金型鋳造方法によりインゴットを作製した後、実施例2~16、及び比較例2~4の試料を作製し、成分を分析した。以上の結果を表2~4に示す。
(Examples 2 to 16, Comparative Examples 2 to 4)
First, the blending amounts of nickel, tin, sulfur, iron, phosphorus, and zinc are appropriately changed, and the remainder is blended as copper and unavoidable impurities, and the melting temperature was set to 1200° C., ingots were produced by the die casting method, samples of Examples 2 to 16 and Comparative Examples 2 to 4 were produced, and the components were analyzed. The above results are shown in Tables 2-4.
<硬度試験>
実施例2~16および比較例2~4の各試験片において、JIS Z 2244(ビッカース硬さ試験-試験方法)に準拠して、所定の熱処理条件下(溶体化処理:800℃で2時間保持、時効処理:350℃で4時間保持の熱処理条件下)で、硬さ(ビッカース硬度)を測定した。また、実施例2~16および比較例2~4の各試験片において、当該熱処理前の硬さも測定し、以下の式(1)に基づいて、熱処理前の硬さに対する熱処理後の硬度の上昇率(時効硬化性)を算出した。
<Hardness test>
In each test piece of Examples 2 to 16 and Comparative Examples 2 to 4, in accordance with JIS Z 2244 (Vickers hardness test-test method), prescribed heat treatment conditions (solution treatment: held at 800 ° C. for 2 hours , aging treatment: under heat treatment conditions of holding at 350° C. for 4 hours), hardness (Vickers hardness) was measured. In addition, in each test piece of Examples 2 to 16 and Comparative Examples 2 to 4, the hardness before the heat treatment was also measured, and the increase in hardness after the heat treatment relative to the hardness before the heat treatment was based on the following formula (1). The rate (age hardenability) was calculated.
[数1]
時効硬化性[%]=[(熱処理後の硬さ-熱処理前の硬さ)/熱処理前の硬さ]×100 (1)
[Number 1]
Age hardenability [%] = [(Hardness after heat treatment - Hardness before heat treatment) / Hardness before heat treatment] × 100 (1)
また、実施例2~4、比較例2~4の各試験片においては、鋳造欠陥の発生を、下記評価基準に従って、目視にて評価した。以上の結果を表2~4に示す。
鋳造欠陥が発生しなかった:○
鋳造欠陥が発生した:×
In addition, in each test piece of Examples 2 to 4 and Comparative Examples 2 to 4, occurrence of casting defects was visually evaluated according to the following evaluation criteria. The above results are shown in Tables 2-4.
Casting defects did not occur: ○
A casting defect occurred: ×
表2に示すように、ニッケルの含有量が4.0~20.0質量%である実施例2~4においては、ニッケルの含有量が4.0質量%未満である比較例2~3に比し、熱処理前後において、優れた硬度を有するとともに、時効硬化性が高いことが分かる。 As shown in Table 2, in Examples 2 to 4 in which the nickel content is 4.0 to 20.0% by mass, Comparative Examples 2 to 3 in which the nickel content is less than 4.0% by mass In comparison, it can be seen that both before and after the heat treatment, it has excellent hardness and high age hardenability.
なお、比較例4においては、ニッケルの含有量が20.0質量%よりも多いため、鋳造欠陥が発生していることが分かる。 In addition, in Comparative Example 4, since the nickel content is more than 20.0% by mass, it can be seen that casting defects occur.
また、表3に示すように、スズの含有量が4.0~20.0質量%である実施例5~10においては、熱処理前後において、優れた硬度を有するとともに、時効硬化性が高いことが分かる。 In addition, as shown in Table 3, in Examples 5 to 10 in which the tin content was 4.0 to 20.0% by mass, both before and after the heat treatment had excellent hardness and high age hardenability. I understand.
また、表2~4に示すように、亜鉛の含有量が20.0質量%以下である実施例2~15においては、亜鉛の含有量が20.0質量%よりも多い実施例16に比し、熱処理前後において、優れた硬度を有するとともに、時効硬化性が高いことが分かる。 Further, as shown in Tables 2 to 4, in Examples 2 to 15 in which the zinc content is 20.0% by mass or less, compared to Example 16 in which the zinc content is more than 20.0% by mass However, before and after the heat treatment, it can be seen that the hardness is excellent and the age hardening property is high.
なお、亜鉛の含有量が20.0質量%よりも多い実施例16においても、ニッケルを4.0~20.0質量%、スズを4.0~20.0質量%、及び硫黄を0.1~1.0質量%含有しているため、表2における比較例2~3に比し、優れた硬度を有するとともに、時効硬化性も高いことが分かる。 In addition, in Example 16, in which the zinc content is more than 20.0% by mass, 4.0 to 20.0% by mass of nickel, 4.0 to 20.0% by mass of tin, and 0.0% by mass of sulfur are used. Since it contains 1 to 1.0% by mass, it can be seen that compared to Comparative Examples 2 and 3 in Table 2, it has excellent hardness and high age hardenability.
また、特に、実施例5(亜鉛を含有せず)と実施例11(亜鉛を2.97質量%含有)の対比、及び実施例6(亜鉛を含有せず)と実施例12(亜鉛を3.16質量%含有)の対比から、20.0質量%以下の亜鉛を含有することにより、熱処理前後の硬度が顕著に向上することが分かる。 Also, in particular, a comparison of Example 5 (containing no zinc) and Example 11 (containing 2.97% by weight of zinc), and Example 6 (containing no zinc) and Example 12 (containing 3 zinc) .16% by mass), it can be seen that the hardness before and after the heat treatment is remarkably improved by containing 20.0% by mass or less of zinc.
以上に説明したように、本発明は、高い摺動性と切削性が要求される摺動部材用の銅合金について、特に有用である。 As explained above, the present invention is particularly useful for copper alloys for sliding members that require high slidability and machinability.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/023496 WO2020115932A1 (en) | 2018-02-13 | 2019-06-13 | Copper alloy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018023492 | 2018-02-13 | ||
JP2018023492 | 2018-02-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019137913A JP2019137913A (en) | 2019-08-22 |
JP7214451B2 true JP7214451B2 (en) | 2023-01-30 |
Family
ID=67695054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018226248A Active JP7214451B2 (en) | 2018-02-13 | 2018-12-03 | Copper alloy |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7214451B2 (en) |
WO (1) | WO2020115932A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220316029A1 (en) * | 2021-03-31 | 2022-10-06 | Ngk Insulators, Ltd. | Copper alloy and method for producing same |
JPWO2023191053A1 (en) * | 2022-03-31 | 2023-10-05 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005226097A (en) | 2004-02-10 | 2005-08-25 | Kobe Steel Ltd | Tinned copper alloy material for electrical/electronic component, and its production method |
JP2006152373A (en) | 2004-11-29 | 2006-06-15 | Shiga Valve Cooperative | Lead-free copper alloy for casting having excellent pressure resistance |
WO2007126006A1 (en) | 2006-04-28 | 2007-11-08 | Kaibara Corporation | Copper alloy for sliding maerial which has excellent bearing properties |
JP2007297706A (en) | 2006-04-28 | 2007-11-15 | Wieland Werke Ag | Material composite in strip form and its use, composite sliding element consisting of the material composite in strip form |
JP6210572B1 (en) | 2016-07-06 | 2017-10-11 | 古河電気工業株式会社 | Copper alloy wire rod and method for producing the same |
JP2019014946A (en) | 2017-07-07 | 2019-01-31 | 株式会社藤井製作所 | Lead-free free-cutting phosphorus bronze bar wire rod, and manufacturing method of lead-free free-cutting phosphorus bronze bar wire rod |
JP2020050914A (en) | 2018-09-27 | 2020-04-02 | 株式会社栗本鐵工所 | Lead-free free-cutting phosphor bronze rod wire |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58183724A (en) * | 1982-04-21 | 1983-10-27 | Mitsubishi Electric Corp | Thermosetting resin composition |
BR8606279A (en) * | 1985-12-19 | 1987-10-06 | Pfizer | PROCESS FOR THE PREPARATION OF A SPINODAL ALLOY ARTICLE BASED ON DIFFERENT COPPER AND MANUFACTURING ARTICLE |
-
2018
- 2018-12-03 JP JP2018226248A patent/JP7214451B2/en active Active
-
2019
- 2019-06-13 WO PCT/JP2019/023496 patent/WO2020115932A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005226097A (en) | 2004-02-10 | 2005-08-25 | Kobe Steel Ltd | Tinned copper alloy material for electrical/electronic component, and its production method |
JP2006152373A (en) | 2004-11-29 | 2006-06-15 | Shiga Valve Cooperative | Lead-free copper alloy for casting having excellent pressure resistance |
WO2007126006A1 (en) | 2006-04-28 | 2007-11-08 | Kaibara Corporation | Copper alloy for sliding maerial which has excellent bearing properties |
JP2007297706A (en) | 2006-04-28 | 2007-11-15 | Wieland Werke Ag | Material composite in strip form and its use, composite sliding element consisting of the material composite in strip form |
JP6210572B1 (en) | 2016-07-06 | 2017-10-11 | 古河電気工業株式会社 | Copper alloy wire rod and method for producing the same |
JP2019014946A (en) | 2017-07-07 | 2019-01-31 | 株式会社藤井製作所 | Lead-free free-cutting phosphorus bronze bar wire rod, and manufacturing method of lead-free free-cutting phosphorus bronze bar wire rod |
JP2020050914A (en) | 2018-09-27 | 2020-04-02 | 株式会社栗本鐵工所 | Lead-free free-cutting phosphor bronze rod wire |
Also Published As
Publication number | Publication date |
---|---|
JP2019137913A (en) | 2019-08-22 |
WO2020115932A1 (en) | 2020-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10519528B2 (en) | Lead-free, high-sulphur and easy-cutting copper-manganese alloy and preparation method thereof | |
JP5868510B2 (en) | Free-cutting lead-free copper alloy and manufacturing method thereof | |
WO2010137483A1 (en) | Lead-free copper alloy for casting with excellent mechanical properties | |
CN101705396B (en) | Aluminum-based bearing compound material and preparation method thereof | |
WO2020261636A1 (en) | Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting | |
KR20090130128A (en) | Pb-free copper alloy sliding material and plain bearings | |
JP7214451B2 (en) | Copper alloy | |
JP6799305B1 (en) | Method for manufacturing free-cutting copper alloy castings and free-cutting copper alloy castings | |
EP2821514B1 (en) | Sintered alloy having excellent abrasion resistance | |
JP3957308B2 (en) | Lead-free copper alloy for castings with excellent pressure resistance | |
JPS61133357A (en) | Cu base alloy for bearing superior in workability and seizure resistance | |
EP2135964B1 (en) | Copper-based sliding material | |
JP2007297675A (en) | Lead-free copper alloy for casting superior in machinability | |
KR20230110837A (en) | Sliding member, bearing, manufacturing method of sliding member, manufacturing method of bearing | |
US5512242A (en) | Tin-base white metal bearing alloy excellent in heat resistance and fatigue resistance | |
KR100555854B1 (en) | Lead-Free cutting bronze alloy | |
JP4323069B2 (en) | Valve guide material | |
JPS6316456B2 (en) | ||
JP4757460B2 (en) | Pb-free copper alloy composite sliding material with excellent seizure resistance | |
JPS6086237A (en) | Cu-alloy for slide member | |
US3031298A (en) | Bearing alloys | |
JP2006037178A (en) | SLIDING MATERIAL SUPERIOR IN SEIZURE RESISTANCE MADE OF Pb-FREE COPPER ALLOY | |
RU2367696C2 (en) | Metallo-matrix composite | |
JP2006037179A (en) | Pb-FREE COPPER-ALLOY-BASED COMPOSITE SLIDING MATERIAL SUPERIOR IN SEIZURE RESISTANCE | |
JP7126197B2 (en) | Lead-free free-cutting phosphor bronze rod wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190612 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211019 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220830 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7214451 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |