JP2007297675A - Lead-free copper alloy for casting superior in machinability - Google Patents

Lead-free copper alloy for casting superior in machinability Download PDF

Info

Publication number
JP2007297675A
JP2007297675A JP2006126666A JP2006126666A JP2007297675A JP 2007297675 A JP2007297675 A JP 2007297675A JP 2006126666 A JP2006126666 A JP 2006126666A JP 2006126666 A JP2006126666 A JP 2006126666A JP 2007297675 A JP2007297675 A JP 2007297675A
Authority
JP
Japan
Prior art keywords
copper alloy
lead
machinability
casting
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006126666A
Other languages
Japanese (ja)
Inventor
Takeshi Kobayashi
武 小林
Toru Maruyama
徹 丸山
Ryozo Matsubayashi
良蔵 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiga Valve Cooperative
Original Assignee
Shiga Valve Cooperative
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiga Valve Cooperative filed Critical Shiga Valve Cooperative
Priority to JP2006126666A priority Critical patent/JP2007297675A/en
Publication of JP2007297675A publication Critical patent/JP2007297675A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-free copper alloy for casting, which shows excellent machinability and pressure resistance even without containing such lead as to cause the degradation of water quality, is superior in mechanical properties such as strength and elongation, and is useful as a base material of water tap fittings, faucets for contact with water and the like. <P>SOLUTION: The lead-free alloy for casting includes 0.05-1.5% S (by mass%, hereafter the same), 3.5% or less Bi (excluding 0%), 0.5% or less Fe (excluding 0%) and/or 3.0% or less Ni (excluding 0%); and has sulfides dispersed therein. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被削性に優れた鋳物用銅合金に関するものであり、殊に人体に有害な鉛を含有させずとも優れた被削性および耐圧性を発揮すると共に、強度や伸び等の機械的特性にも優れた鋳物用無鉛銅合金に関するものである。   The present invention relates to a copper alloy for castings excellent in machinability, and in particular, exhibits excellent machinability and pressure resistance without containing lead harmful to the human body, and has a machine such as strength and elongation. The present invention relates to a lead-free copper alloy for castings having excellent mechanical properties.

銅合金は、導電性や熱伝導性に優れていることから、従来から各種電気部品等の素材として広く使用されている。また銅合金のうち鋳物用銅合金については、JIS H5120に各種規定されており、バルブ胴体、給水栓、軸受等、各種用途で使用されることが予定されている。   Copper alloys have been widely used as materials for various electric parts and the like since they are excellent in electrical conductivity and thermal conductivity. Among the copper alloys, various copper alloys for casting are defined in JIS H5120, and are planned to be used for various purposes such as valve bodies, water taps, and bearings.

ところで、上下水道の水栓金具や一般配管用の接水栓には、鋳物用銅合金が一般に使用されており、特に上記JIS H5120に規定されているもののうち、CAC203合金等の黄銅系(Cu−Zn系)の銅合金やCAC403,406等の青銅系(Cu−Sn−Zn系、Cu−Sn−Pb−Zn系)等がその素材として知られている。   By the way, a copper alloy for casting is generally used for water faucet fittings for general water supply and sewerage and water pipes for general piping, and among those specified in the above JIS H5120, a brass system such as CAC203 alloy (Cu -Zn-based) copper alloys and bronze-based (Cu-Sn-Zn-based, Cu-Sn-Pb-Zn-based) such as CAC403 and 406 are known as materials.

上記の様な水栓金具や接水栓等に使用される場合には、耐圧性、耐磨耗性、鋳造性、機械的特性(強度や硬さ)の他、被削性(切削性)が良好であることも要求されるのであるが、こうした被削性を向上させる手段として、鉛(Pb)を含有させることが良く知られており、上記鋳物用銅合金のうちCAC406は鉛を4〜6%程度含有させることによって被削性を向上させたものである。また鉛を含有させることは、銅合金の耐圧性を向上させる上でも有用であることが知られている(例えば、非特許文献1)。   When used for faucet fittings and water faucets as described above, in addition to pressure resistance, wear resistance, castability, mechanical properties (strength and hardness), machinability (cutability) However, it is well known that lead (Pb) is contained as a means for improving the machinability. Among the above-mentioned copper alloys for casting, CAC406 contains 4 lead. The machinability is improved by adding about 6%. Moreover, it is known that inclusion of lead is also useful in improving the pressure resistance of a copper alloy (for example, Non-Patent Document 1).

しかしながら、鉛を含有させた鋳物用銅合金によって水栓金具や給水栓等を製作すると、その中に含まれる有害な鉛が飲料水中に溶出して水質悪化を招き、人体に悪影響を及ぼすことが指摘されている。特に、我が国においては、平成15年度から鉛の水質基準が従来の1/5に強化され、それにともなって水栓金具や給水栓等に使用される鋳物用銅合金における鉛の規制が厳しくなってきている。   However, if a faucet fitting or water faucet is manufactured using a copper alloy for casting containing lead, harmful lead contained in the faucet elutes in the drinking water, causing water quality deterioration and adversely affecting the human body. It has been pointed out. In particular, in Japan, the water quality standard for lead has been strengthened to 1/5 of the conventional level since fiscal 2003, and as a result, the regulation of lead in copper alloys for castings used for faucets and faucets has become stricter. ing.

こうしたことから、鉛を積極的に含有させずに被削性を向上させる鋳物用銅合金がこれまでにも様々提案されている。被削性改善のために、鉛の代替としてBiやSeを添加した銅合金が欧米を中心に開発され、CDA(Copper Development Association)規格として登録されている(例えば、非特許文献2)。また、BiとともにSbを含有することも知られている(前記非特許文献1)。   For these reasons, various copper alloys for casting that improve the machinability without actively containing lead have been proposed. In order to improve machinability, copper alloys to which Bi or Se is added as a substitute for lead have been developed mainly in Europe and the United States, and are registered as CDA (Copper Development Association) standards (for example, Non-Patent Document 2). It is also known to contain Sb together with Bi (Non-Patent Document 1).

これらの銅合金は、快削性元素として鉛の代わりにBi、Se、Sb等を含有させるものであり、こうした技術の開発によって鉛による害を防止しつつ比較的良好な被削性を維持できたのである。   These copper alloys contain Bi, Se, Sb, etc. instead of lead as free-cutting elements, and the development of such technology can maintain relatively good machinability while preventing harm from lead. It was.

しかしながら、これまで開発されている無鉛銅合金では、鋳造欠陥である「鋳巣」が発生しやすくなっており、これが原因して従来の規格銅合金よりも耐圧性が劣化することがあり、更なる改善が望まれているのが実情である。
「まてりあ」、第43巻、第8号(2004)、第647〜650頁 「素形材」、2003.8月、(財)素形材センター発行、第7〜第14頁
However, lead-free copper alloys that have been developed so far are more prone to casting defects, which are likely to deteriorate the pressure resistance of conventional standard copper alloys. The actual situation is that improvement is desired.
“Materia”, Vol. 43, No. 8 (2004), pp. 647-650 “Shape Material”, August 2003, Issued by the Shape Materials Center, pages 7-14

本発明はこうした状況の下になされたものであって、その目的は、水質悪化を招く鉛を含有させずとも優れた被削性および耐圧性を発揮すると共に、強度、伸び等の機械的特性にも優れ、水栓金具や接水栓等の素材として有用な鋳物用無鉛銅合金を提供することにある。   The present invention has been made under such circumstances, and its purpose is to exhibit excellent machinability and pressure resistance without containing lead that causes deterioration of water quality, and mechanical properties such as strength and elongation. Another object of the present invention is to provide a lead-free copper alloy for castings that is excellent as a material for faucets and water faucets.

上記の目的を達成し得た本発明の鋳物用無鉛銅合金とは、S:0.05〜1.5%(質量%の意味、以下同じ)およびBi:3.5%以下(0%を含まない)を含有すると共に、Fe:0.5%以下(0%を含まない)および/またはNi:3.0%以下(0%を含まない)を含有し、且つ硫化物が分散されたものである点に要旨を有するものである。この銅合金においては、Sの含有量は0.05〜0.8%程度であることが好ましい。   The lead-free copper alloy for castings of the present invention that can achieve the above-mentioned object is S: 0.05 to 1.5% (meaning of mass%, the same shall apply hereinafter) and Bi: 3.5% or less (0% Not contained), Fe: not more than 0.5% (not including 0%) and / or Ni: not more than 3.0% (not including 0%), and sulfide was dispersed It has a gist in that it is a thing. In this copper alloy, the S content is preferably about 0.05 to 0.8%.

また本発明の鋳物用無鉛銅合金には、必要によって(a)Sn:10%以下(0%を含まない)、(b)Zn:10%以下(0%を含まない)等を含有させることも有効であり、含有される成分に応じて銅合金の特性が改善される。   The lead-free copper alloy for castings of the present invention may contain (a) Sn: 10% or less (not including 0%), (b) Zn: 10% or less (not including 0%), etc. as necessary. Is also effective, and the properties of the copper alloy are improved depending on the components contained.

本発明の銅合金では、SおよびBiと共にFeやNiを含有させることによって銅マトリクス内に硫化物を効果的に分散させることができ、水質悪化を招く鉛を含有させずとも優れた耐圧性および被削性を発揮すると共に、強度等の機械的特性にも優れた鋳物用無鉛銅合金が実現できた。この銅合金は水栓金具や接水栓等の素材として有用である。   In the copper alloy of the present invention, by containing Fe and Ni together with S and Bi, sulfides can be effectively dispersed in the copper matrix, and excellent pressure resistance without containing lead that causes water quality deterioration and A lead-free copper alloy for castings that has excellent machinability and excellent mechanical properties such as strength could be realized. This copper alloy is useful as a material for water faucets and water faucets.

本発明者らは、鉛を含有させずとも優れた耐圧性および被削性を発揮する鋳物用銅合金を実現するべく、様々な角度から検討した。その結果、硫黄(S)およびビスマス(Bi)を必須成分として含有させると共に、FeやNiの含有量を適切な範囲に調整して添加し、且つ金属組織中に硫化物が形成・分散した銅合金では、上記目的が見事に達成されることを見出し、本発明を完成した。   The present inventors have studied from various angles to realize a copper alloy for castings that exhibits excellent pressure resistance and machinability without containing lead. As a result, copper containing sulfur (S) and bismuth (Bi) as essential components, adjusting the content of Fe and Ni to an appropriate range, and forming and dispersing sulfide in the metal structure In the case of alloys, the inventors have found that the above object can be achieved brilliantly and completed the present invention.

鉄鋼材料の分野においては、Sは被削性向上元素であることは知られている。しかしながら、銅合金の場合には、Sは被削性向上元素として採用されていない。これは、溶解させた銅中ではSは早期に硫化物を形成し、溶解した銅の表面に浮上・分離してしまい、硫化物を銅マトリクス中に分散させること自体が困難であると考えられていた。   It is known that S is a machinability improving element in the field of steel materials. However, in the case of a copper alloy, S is not employed as a machinability improving element. This is because, in dissolved copper, S forms sulfides at an early stage, floats and separates on the surface of the dissolved copper, and it is considered difficult to disperse sulfides in the copper matrix itself. It was.

一方、銅合金において、快削性元素として鉛の代わりにBiを含有させることも知られているが、Biを含有させた無鉛銅合金では、鋳造欠陥である「鋳巣」が発生しやすくなっており、これが原因して従来の規格銅合金よりも耐圧性が劣化したものとなっていたのである。   On the other hand, in a copper alloy, it is also known to contain Bi as a free-cutting element instead of lead. However, in a lead-free copper alloy containing Bi, a “cast hole” that is a casting defect is likely to occur. As a result, the pressure resistance deteriorated compared with the conventional standard copper alloy.

本発明者らは、快削性元素として有用なBiを含有する銅合金において、硫化物を銅マトリクス中に効果的に分散できたら良好な被削性および耐圧性が実現できるのではないかとの着想の下で更に検討してきた。その結果、所定量のFeやNiを共存させた状態では、Sの活量が抑えられ、硫化物が比較的低温となった段階(即ち、銅の凝固完了直前の段階)で形成されることによって、銅マトリクス中に硫化物を効果的に分散できることを見出したのである。また、硫化物を分散させた銅合金では、Biに原因する鋳巣の発生も抑えられて、良好な耐圧性が発揮され、機械的特性も良好に維持できたのである。   In the copper alloy containing Bi useful as a free-cutting element, the inventors of the present invention can realize good machinability and pressure resistance if sulfides can be effectively dispersed in a copper matrix. I have studied further under the idea. As a result, in the state where a predetermined amount of Fe or Ni coexists, the activity of S is suppressed, and the sulfide is formed at a stage where the temperature is relatively low (that is, a stage immediately before completion of solidification of copper). Thus, it has been found that sulfide can be effectively dispersed in the copper matrix. In addition, in the copper alloy in which sulfide is dispersed, the occurrence of a casting hole due to Bi is suppressed, good pressure resistance is exhibited, and the mechanical characteristics can be maintained well.

本発明の鋳物用銅合金によって、上記のような効果が得られる理由についてはその全てを解明し得た訳ではないが、おそらく次の様に考えることができた。   Although not all of the reasons why the above-described effects can be obtained by the copper alloy for castings of the present invention can be considered as follows.

鋳物用銅合金が凝固する際には、デンドライト(樹枝状晶)が形成され、このデンドライト間に微小な空隙(気泡)を残しながら凝固が完了し(最終凝固領域)、それが鋳巣となることは知られている。本発明の銅合金では、SおよびBiと共にFeやNiを共存させることによって、比較的低温まで硫化物の形成が抑えられ、デンドライトが形成される凝固完了直前でも硫化物は銅との共晶融液の状態になっている。そして、鋳巣の原因となる気泡中にこの共晶融液が流れ込んで硫化物を形成することになる。そして、その結果として鋳巣の発生を抑制して良好な耐圧性を発揮すると共に、強度等の機械的特性が向上するものと考えられた。また、硫化物がデンドライト間に共晶状若しくは微細に分散することによって、各硫化物が切削屑を分断するチップブレーカの役割を発揮すると共に(切り屑が細かくなり)、硫化物自体が固体潤滑剤として寄与することによって、被削性が向上するものと考えられた。   When the copper alloy for castings solidifies, dendrites (dendrites) are formed, and solidification is completed while leaving minute voids (bubbles) between the dendrites (final solidification region), which becomes the casting cavity. It is known. In the copper alloy of the present invention, the formation of sulfide is suppressed to a relatively low temperature by coexisting Fe and Ni together with S and Bi. It is in a liquid state. Then, this eutectic melt flows into the bubbles that cause the cast hole to form sulfides. As a result, it was considered that the occurrence of a cast hole was suppressed and good pressure resistance was exhibited, and mechanical properties such as strength were improved. In addition, when sulfides are eutectic or finely dispersed between dendrites, each sulfide plays the role of a chip breaker that divides cutting chips (chips become finer), and the sulfide itself is a solid lubricant. It was considered that the machinability was improved by contributing as an agent.

本発明の無鉛銅合金では、SおよびBiを必須成分として含む他、所定量のFeやNiを含有するものであるが、これらの範囲限定理由は下記の通りである。   In addition to containing S and Bi as essential components, the lead-free copper alloy of the present invention contains a predetermined amount of Fe or Ni. The reasons for limiting these ranges are as follows.

[S:0.05〜1.5%]
Sは、CuやBiと結合して、Cu2S化合物(Znを含有する場合にはZnS化合物)やBi23化合物を形成し、銅合金の耐圧性、被削性および機械的強度を向上させるのに有用な元素である。こうした効果を発揮させる為には、S含有量は少なくとも0.05%以上とする必要があるが、1.5%を越えて過剰に含有されると耐圧性、機械的性質が却って低下するので1.5%以下とすべきである。尚、S含有量の好ましい上限は0.8%程度であり、この含有量では後述するSnを含有させずとも、良好な強度が確保できる。但し、それほど強度が要求されない部材(例えば、軸受け部材)に適用する場合には、Sの含有量が0.8%超〜1.5%程度であっても、Snを含有しなくても良い。
[S: 0.05 to 1.5%]
S combines with Cu or Bi to form a Cu 2 S compound (ZnS compound when Zn is contained) or Bi 2 S 3 compound, and the pressure resistance, machinability and mechanical strength of the copper alloy are increased. It is an element useful for improvement. In order to exert such effects, the S content needs to be at least 0.05%, but if it exceeds 1.5% and excessively contained, the pressure resistance and mechanical properties will decrease. Should be less than 1.5%. In addition, the upper limit with preferable S content is about 0.8%, and even if it does not contain Sn mentioned later with this content, favorable intensity | strength is securable. However, when applied to a member (for example, a bearing member) that does not require so much strength, even if the S content is more than 0.8% to about 1.5%, Sn may not be contained. .

[Bi:3.5%以下(0%を含まない)]
Biは、Sと結合して、Bi23化合物を形成し、銅合金の耐圧性、被削性および機械的強度を向上させるのに有用な元素である。こうした効果は、その含有量が増加するにつれて増大するが、3.5%を越えて過剰に含有されるとBi相が過剰になって、機械的性質が却って低下することになる。Biは上記効果を発揮させるためには、0.05%以上含有させることが好ましい。また、Bi含有量の好ましい上限は3.0%であり、より好ましくは2.0%以下とするのが良い。
[Bi: 3.5% or less (excluding 0%)]
Bi is an element useful for combining with S to form a Bi 2 S 3 compound and improving the pressure resistance, machinability and mechanical strength of the copper alloy. Such an effect increases as its content increases. However, if the content exceeds 3.5%, the Bi phase becomes excessive and the mechanical properties are lowered. Bi is preferably contained in an amount of 0.05% or more in order to exhibit the above effects. Moreover, the upper limit with preferable Bi content is 3.0%, It is good to set it as 2.0% or less more preferably.

[Fe:0.5%以下(0%を含まない)および/またはNi:3.0%以下(0を含まない)]
FeおよびNiは、硫化物(CuS、Bi23、ZnS等)を低温で形成させて、硫化物を銅マトリクス中に分散させるために必要な元素である。こうした効果は、その含有量が増加するにつれて増大するが、過剰に含有させると、溶湯の湯流れ性が悪くなって鋳造性が悪化する。こうしたことから、Feについては0.5%以下、Niについては3.0%以下と規定した。尚、Fe含有量の好ましい下限は0.1%であり、より好ましくは0.2%以上とするのが良い。またFe含有量の好ましい上限は0.4%であり、より好ましくは0.3%以下とするのが良い。一方、Ni含有量の好ましい下限は0.5%であり、より好ましくは1.0%以上とするのが良い。またNi含有量の好ましい上限は2.5%であり、より好ましくは2.0%以下とするのが良い。
[Fe: 0.5% or less (not including 0%) and / or Ni: 3.0% or less (not including 0)]
Fe and Ni are elements necessary for forming a sulfide (Cu 2 S, Bi 2 S 3 , ZnS, etc.) at a low temperature and dispersing the sulfide in the copper matrix. Such an effect increases as the content thereof increases. However, if the content is excessive, the flowability of the molten metal deteriorates and the castability deteriorates. For these reasons, Fe is defined as 0.5% or less, and Ni is defined as 3.0% or less. In addition, the minimum with preferable Fe content is 0.1%, It is good to set it as 0.2% or more more preferably. Moreover, the upper limit with preferable Fe content is 0.4%, More preferably, it is good to set it as 0.3% or less. On the other hand, the preferable lower limit of the Ni content is 0.5%, more preferably 1.0% or more. Moreover, the upper limit with preferable Ni content is 2.5%, It is good to set it as 2.0% or less more preferably.

本発明の銅合金における基本的な化学成分組成は上記の通りであり、残部は実質的に銅(Cu)からなるものであるが、必要によってSnやZn等を含有させることも有効である。これらを含有させるときの範囲限定理由は下記の通りである。尚、「実質的に銅」とは、本発明の銅合金にはCu以外にその特性を阻害しない程度の微量元素(許容成分)を含み得るものであり、こうした許容成分としては、例えばSb,P,Si等の元素や、Al,Mn等の不可避不純物が挙げられる。また、上記基本成分のうち、Sについては不可避的に混入してくることがあるが、0.05%未満で含有するときは不可避不純物扱いとなる。   The basic chemical composition of the copper alloy of the present invention is as described above, and the balance is substantially made of copper (Cu), but it is also effective to contain Sn, Zn or the like if necessary. The reasons for limiting the range when these are contained are as follows. In addition, “substantially copper” means that the copper alloy of the present invention can contain trace elements (allowable components) to the extent that they do not impede their properties in addition to Cu. Examples of such allowable components include Sb, Examples thereof include elements such as P and Si, and inevitable impurities such as Al and Mn. Of the above basic components, S may be inevitably mixed, but when it is contained in less than 0.05%, it is treated as an unavoidable impurity.

[Sn:10%以下(0%を含まない)]
Snは銅合金の強度(引張強さ)を向上させるのに有効な元素である。特に、Sを含有することによって、低下する強度を、Snを含有させることによって補填することに効果がある。例えば、Sを0.8%超〜1.5%程度含有させた場合には、強度が低下する傾向を示すが、Sを含有させることによる被削性向上効果を維持しつつ、良好な強度を確保する上で有効な元素である。こうした効果は、その含有量が多くなればなるほど大きくなるが、過剰に含有されると機械的特性を劣化させるので(後記図5参照)、10%以下とすべきである。こうした効果を発揮させる上で、Sn含有量の好ましい下限は2.0%である。またSn含有量の好ましい上限は7.6%程度であり、より好ましくは6.0%以下とするのが良い。尚、Snは不可避的に混入してくることがあるが、0.1%以下では不可避不純物扱いとなる。
[Sn: 10% or less (excluding 0%)]
Sn is an element effective for improving the strength (tensile strength) of the copper alloy. In particular, by containing S, it is effective to compensate for the decreasing strength by containing Sn. For example, when S is contained in an amount of more than 0.8% to about 1.5%, the strength tends to decrease, but the strength is improved while maintaining the machinability improvement effect by containing S. It is an effective element for securing These effects increase as the content increases, but if excessively contained, the mechanical properties deteriorate (see FIG. 5 below), and should be 10% or less. In order to exert such an effect, the preferable lower limit of the Sn content is 2.0%. Moreover, the upper limit with preferable Sn content is about 7.6%, More preferably, it is good to set it as 6.0% or less. Sn may be inevitably mixed, but if it is 0.1% or less, it is treated as an unavoidable impurity.

[Zn:10%以下(0%を含まない)]
ZnはZnS化合物を形成することによって、銅合金の耐圧性、被削性および機械的強度を更に向上させるのに有用な元素である。こうした効果はその含有量が増すにつれて大きくなるのであるが、少なくとも3.0%以上含有させることが好ましい。しかしながら、Znが過剰に含有されるとZnの溶出量が増加するので10%以下とすることが好ましく、より好ましくは8.0%以下とするのが良い。
[Zn: 10% or less (excluding 0%)]
Zn is an element useful for further improving the pressure resistance, machinability and mechanical strength of a copper alloy by forming a ZnS compound. Such effects increase as the content increases, but it is preferable to contain at least 3.0% or more. However, if Zn is excessively contained, the elution amount of Zn increases, so that it is preferably 10% or less, more preferably 8.0% or less.

本発明の銅合金は、金属組織(銅マトリクス)中に硫化物が分散されることによって上記の効果を発揮するものであるが、こうした硫化物は、S,Bi,Fe,Niの含有量を適切に調整して溶解・凝固させることによって必然的に形成されることになる。また、本発明の銅合金を用いて鋳物を製造するに当たっては、砂型鋳造、金型鋳造、遠心鋳造、精密鋳造等、これまで一般的に行われている方法を採用することができる。   The copper alloy of the present invention exhibits the above effect by dispersing sulfides in the metal structure (copper matrix). Such sulfides have a content of S, Bi, Fe, Ni. It is inevitably formed by appropriately adjusting and dissolving and solidifying. Moreover, when manufacturing a casting using the copper alloy of this invention, the methods generally performed until now, such as sand casting, metal mold casting, centrifugal casting, and precision casting, can be adopted.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are technical aspects of the present invention. It is included in the range.

(実施例1)
下記表1に化学成分組成を示す各銅合金を、常法に従って溶解・鋳造した。得られた銅合金鋳物について、被削性について調査した。このときの切削条件は下記の通りである。そして、試験片をφ23mm→φ22mm→21mmと削った後、φ20mmの切削で切削抵抗を測定し、下記(1)式によって求められる切削性指数によって被削性を評価した。尚、表1に示したS以外の各成分の値(含有量)は、蛍光X線分析装置[エレメント・アナライザーJSX−3202(商品名:日本電子株式会社製)]によって測定した値であり、Sは燃焼法によって求めた値である。
Example 1
Each copper alloy having chemical composition shown in Table 1 below was melted and cast according to a conventional method. The machinability of the obtained copper alloy casting was investigated. The cutting conditions at this time are as follows. Then, after cutting the test piece with φ23 mm → φ22 mm → 21 mm, cutting resistance was measured by cutting with φ20 mm, and machinability was evaluated by a machinability index obtained by the following equation (1). In addition, the value (content) of each component other than S shown in Table 1 is a value measured by a fluorescent X-ray analyzer [Element Analyzer JSX-3202 (trade name: manufactured by JEOL Ltd.)] S is a value obtained by the combustion method.

[切削条件]
NC旋盤:OKUMA LP25C(商品名:オークマ株式会社製)
チップ:イゲタロイ
切削動力計:KISLER9257B(商品名:日本キスラー株式会社製)
切削油:油性
切削速度:100m/min
送り速度:0.1mm/rev
切り込み深さ:0.5mmまたは1.0mm
試験片径:φ23mm
加工径:φ20mm
切削性指数=(CAC406の切削抵抗値/各試験片の切削抵抗値)
×100…(1)
[Cutting conditions]
NC lathe: OKUMA LP25C (trade name: manufactured by Okuma Corporation)
Tip: Igetaroy cutting dynamometer: KISER 9257B (trade name: manufactured by Nippon Kistler Co., Ltd.)
Cutting oil: Oil-based cutting speed: 100 m / min
Feeding speed: 0.1mm / rev
Cutting depth: 0.5 mm or 1.0 mm
Test piece diameter: φ23mm
Processing diameter: φ20mm
Machinability index = (cutting resistance value of CAC406 / cutting resistance value of each test piece)
× 100 ... (1)

Figure 2007297675
Figure 2007297675

その結果(S含有量と切削性指数の関係)を図1に示す。この結果から明らかなように、S含有量が増すにつれて、被削性が向上する傾向を示していることが分かる。これは、硫化物が均一分散したという理由によるものと考えられる。   The results (relationship between S content and machinability index) are shown in FIG. As is clear from this result, it is understood that the machinability tends to improve as the S content increases. This is considered to be due to the fact that the sulfide was uniformly dispersed.

(実施例2)
上記表1に示した各銅合金鋳物について、各種機械的特性(引張り強さおよび伸び)を調査した。測定結果(S含有量と機械的特性の関係)を、図2に示す(n=2回の平均値)。尚、JISを参照したCAC406の引張強さは195MPaであり、伸びは15%である。この結果から次の様に考察できる。まずS含有量が0.3%を超えると引張強さが若干低下する傾向を示すが、伸びの点で従来の銅合金(CAC406)よりも良好になることが分かる。尚、各本発明の銅合金(No.1〜3)のものについて、走査型電子顕微鏡(SEM)によって組織を観察したところ、最終凝固領域に硫化物が分散していることが確認できた。
(Example 2)
For each copper alloy casting shown in Table 1 above, various mechanical properties (tensile strength and elongation) were investigated. The measurement results (relationship between S content and mechanical properties) are shown in FIG. 2 (n = 2 average values). The tensile strength of CAC406 referring to JIS is 195 MPa, and the elongation is 15%. This result can be considered as follows. First, when the S content exceeds 0.3%, the tensile strength tends to decrease slightly, but it is understood that the tensile strength is better than that of the conventional copper alloy (CAC406). In addition, about the thing of each copper alloy (No. 1-3) of this invention, when the structure | tissue was observed with the scanning electron microscope (SEM), it has confirmed that the sulfide was disperse | distributing to the last solidification area | region.

(実施例3)
上記表1に示した各銅合金ついて、耐圧性について調査した。耐圧力の試験方法は、「JIS B 2062 水道水の仕切弁」中の「9.1弁箱の耐圧試験」に準拠して行った(水圧:3MPa,2分間)。そして、各試験片について、24回(n=24)試験を行い、水漏れの有無を肉眼で観察し、「漏れ」が確認された場合を不良品と判定し、その発生率(不良率=不良品の個数/24)で耐圧性を評価した。
その結果、上記No.1〜3に示した銅合金では、不良率が極めて低くなっており(4%以下)、良好な耐圧性を示していることが確認できた。
(Example 3)
Each copper alloy shown in Table 1 was examined for pressure resistance. The test method of the pressure resistance was carried out in accordance with “9.1 pressure resistance test of valve box” in “JIS B 2062 tap water gate valve” (water pressure: 3 MPa, 2 minutes). Each test piece is tested 24 times (n = 24), the presence or absence of water leakage is observed with the naked eye, and when “leakage” is confirmed, it is determined as a defective product, and the occurrence rate (defective rate = The pressure resistance was evaluated by the number of defective products / 24).
As a result, no. In the copper alloys shown in 1 to 3, the defect rate was extremely low (4% or less), and it was confirmed that good pressure resistance was exhibited.

(実施例4)
下記表2に化学成分組成を示す各銅合金を、常法に従って溶解・鋳造した。得られた銅合金鋳物について、各種機械的特性(引張強さおよび伸び)を調査した。
Example 4
Each copper alloy having chemical composition shown in Table 2 below was melted and cast according to a conventional method. Various mechanical properties (tensile strength and elongation) of the obtained copper alloy casting were investigated.

Figure 2007297675
Figure 2007297675

測定結果(Bi含有量と機械的特性の関係)を、図3に示すが(n=2回の平均値)、この結果から次の様に考察できる。まずBi含有量が2%程度までは、伸びの低下を抑えつつ引張強さを高く維持していることが分かる。但し、Bi含有量が3%を超えると、機械的特性が低下する傾向を示すことになる。   The measurement results (relationship between Bi content and mechanical properties) are shown in FIG. 3 (n = 2 average values), and can be considered as follows from this result. First, it can be seen that when the Bi content is about 2%, the tensile strength is maintained high while suppressing the decrease in elongation. However, when the Bi content exceeds 3%, the mechanical properties tend to be lowered.

(実施例5)
上記表2に示した各銅合金鋳物について、実施例1と同様にして被削性について調査した。その結果(Bi含有量と切削性指数の関係)を図4に示す。この結果から明らかなように、Bi含有量が増すにつれて、被削性が向上する傾向を示していることが分かる。
(Example 5)
About each copper alloy casting shown in the said Table 2, it carried out similarly to Example 1, and investigated machinability. The results (relationship between Bi content and machinability index) are shown in FIG. As is clear from this result, it can be seen that the machinability tends to improve as the Bi content increases.

(実施例6)
下記表3に化学成分組成を示す各銅合金を、常法に従って溶解・鋳造した。得られた銅合金鋳物について、各種機械的特性(引張強さおよび伸び)を調査した。
(Example 6)
Each copper alloy having chemical composition shown in Table 3 below was melted and cast according to a conventional method. Various mechanical properties (tensile strength and elongation) of the obtained copper alloy casting were investigated.

Figure 2007297675
Figure 2007297675

測定結果(Sn含有量と機械的特性の関係)を、図5に示すが(n=2回の平均値)、この結果から次の様に考察できる。まずSn含有量が7.6%程度までは伸びの低下を抑えつつ引張強さが向上しており、特にSn含有量が6%以上になると、従来の銅合金(CAC406)と遜色がないことが分かる。これは、Snの固溶強化によるものと考えることができる。   The measurement results (relationship between Sn content and mechanical properties) are shown in FIG. 5 (n = 2 average values), and can be considered as follows from this result. First, when the Sn content is up to about 7.6%, the tensile strength is improved while suppressing the decrease in elongation. Especially when the Sn content is 6% or more, it is comparable to the conventional copper alloy (CAC406). I understand. This can be considered to be due to the solid solution strengthening of Sn.

(実施例7)
下記表4に化学成分組成を示す各銅合金鋳物について、実施例1と同様にして被削性(切削性指数)について調査した。その結果を図6に示すが、Fe,Ni,SnおよびZn等を含有しても、良好な被削性を発揮していることが分かる。
(Example 7)
About each copper alloy casting which shows a chemical component composition in following Table 4, it carried out similarly to Example 1, and investigated machinability (machinability index). The result is shown in FIG. 6, and it can be seen that even if Fe, Ni, Sn, Zn, and the like are contained, good machinability is exhibited.

Figure 2007297675
Figure 2007297675

(実施例8)
上記表3に示した各銅合金鋳物、および下記表5に化学成分を示す銅合金鋳物(No.19)について、実施例1と同様にして被削性(切削性指数)について調査した。その結果(Sn含有量と切削性指数の関係)を図7に示すが、Snを含有しない場合であっても十分な被削性有すること、およびSn含有量が増加してもSによる被削性向上効果は発揮されることが分かる。
(Example 8)
For each copper alloy casting shown in Table 3 and the copper alloy casting (No. 19) having chemical components shown in Table 5 below, the machinability (cutability index) was investigated in the same manner as in Example 1. The result (relationship between Sn content and machinability index) is shown in FIG. 7, but it has sufficient machinability even when it does not contain Sn, and even if the Sn content increases, the machining by S It can be seen that the effect of improving the performance is exhibited.

Figure 2007297675
Figure 2007297675

本発明の銅合金におけるS含有量と被削性の関係を示したグラフである。It is the graph which showed the S content and the machinability in the copper alloy of this invention. 本発明の銅合金におけるS含有量と機械的特性の関係を示したグラフである。It is the graph which showed the relationship between S content and the mechanical characteristic in the copper alloy of this invention. 本発明の銅合金におけるBi含有量と機械的特性の関係を示したグラフである。It is the graph which showed the relationship between Bi content and the mechanical characteristic in the copper alloy of this invention. 本発明の銅合金におけるBi含有量と被削性の関係を示したグラフである。It is the graph which showed the Bi content and the machinability in the copper alloy of this invention. 本発明の銅合金におけるSn含有量と機械的特性の関係を示したグラフである。It is the graph which showed the relationship between Sn content and the mechanical characteristic in the copper alloy of this invention. 各種銅合金における被削性(切削性指数)を比較して示したグラフである。It is the graph which compared and showed the machinability (cutability index) in various copper alloys. 本発明の銅合金におけるSn含有量と被削性の関係を示したグラフである。It is the graph which showed the relationship between Sn content and machinability in the copper alloy of this invention.

Claims (4)

S:0.05〜1.5%(質量%の意味、以下同じ)およびBi:3.5%以下(0%を含まない)を含有すると共に、Fe:0.5%以下(0%を含まない)および/またはNi:3.0%以下(0%を含まない)を含有し、且つ硫化物が分散されたものであることを特徴とする被削性に優れた鋳物用無鉛銅合金。   S: 0.05 to 1.5% (meaning of mass%, the same shall apply hereinafter) and Bi: 3.5% or less (excluding 0%) and Fe: 0.5% or less (0% And / or Ni: 3.0% or less (excluding 0%), and sulfides dispersed therein. Lead-free copper alloy for casting with excellent machinability . Sの含有量が0.05〜0.8%である請求項1に記載の鋳物用無鉛銅合金。   The lead-free copper alloy for castings according to claim 1, wherein the content of S is 0.05 to 0.8%. 更に、Sn:10%以下(0%を含まない)を含有するものである請求項1または2に記載の鋳物用無鉛銅合金。   The lead-free copper alloy for castings according to claim 1 or 2, further comprising Sn: 10% or less (not including 0%). 更に、Zn:10%以下(0%を含まない)を含有するものである請求項1〜3のいずれかに記載の鋳物用無鉛銅合金。   The lead-free copper alloy for castings according to any one of claims 1 to 3, further comprising Zn: 10% or less (not including 0%).
JP2006126666A 2006-04-28 2006-04-28 Lead-free copper alloy for casting superior in machinability Pending JP2007297675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006126666A JP2007297675A (en) 2006-04-28 2006-04-28 Lead-free copper alloy for casting superior in machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006126666A JP2007297675A (en) 2006-04-28 2006-04-28 Lead-free copper alloy for casting superior in machinability

Publications (1)

Publication Number Publication Date
JP2007297675A true JP2007297675A (en) 2007-11-15

Family

ID=38767412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006126666A Pending JP2007297675A (en) 2006-04-28 2006-04-28 Lead-free copper alloy for casting superior in machinability

Country Status (1)

Country Link
JP (1) JP2007297675A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009136457A1 (en) 2008-05-09 2009-11-12 石川県 Bronze alloy, process for producing the same, and sliding member comprising bronze alloy
JP2010150649A (en) * 2008-11-18 2010-07-08 Kurimoto Ltd Copper alloy for sliding member
WO2010137483A1 (en) * 2009-05-26 2010-12-02 滋賀バルブ協同組合 Lead-free copper alloy for casting with excellent mechanical properties
CN103298960A (en) * 2010-10-29 2013-09-11 仕龙阀门公司 Low lead ingot
US9181606B2 (en) 2010-10-29 2015-11-10 Sloan Valve Company Low lead alloy
EP2558606A4 (en) * 2010-04-13 2016-07-27 Nat Bronze & Metals Inc Noval lead-free brass alloy
WO2020136935A1 (en) 2018-12-26 2020-07-02 株式会社明石合銅 Bronze alloy, and sliding member using said bronze alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309835A (en) * 1998-12-22 2000-11-07 Toto Ltd Brass material, production of brass material and method for working brass material
JP2001059123A (en) * 1999-08-24 2001-03-06 Hitachi Alloy Kk Lead-free free-cutting copper alloy material
JP2005248329A (en) * 2002-09-09 2005-09-15 Kitz Corp Copper-based alloy, and cast ingot and liquid-contacting part each using the alloy
JP2006152373A (en) * 2004-11-29 2006-06-15 Shiga Valve Cooperative Lead-free copper alloy for casting having excellent pressure resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309835A (en) * 1998-12-22 2000-11-07 Toto Ltd Brass material, production of brass material and method for working brass material
JP2001059123A (en) * 1999-08-24 2001-03-06 Hitachi Alloy Kk Lead-free free-cutting copper alloy material
JP2005248329A (en) * 2002-09-09 2005-09-15 Kitz Corp Copper-based alloy, and cast ingot and liquid-contacting part each using the alloy
JP2006152373A (en) * 2004-11-29 2006-06-15 Shiga Valve Cooperative Lead-free copper alloy for casting having excellent pressure resistance

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101306597B1 (en) 2008-05-09 2013-09-11 가부시키가이샤 아카시 고도 Bronze alloy, process for producing the same, and sliding member comprising bronze alloy
JP2010031347A (en) * 2008-05-09 2010-02-12 Ishikawa Prefecture Bronze alloy, process for producing the same, and sliding member comprising bronze alloy
CN104018024B (en) * 2008-05-09 2015-09-02 株式会社明石合铜 The sliding component of bell metal and manufacture method thereof, use bell metal
EP2292805A1 (en) * 2008-05-09 2011-03-09 Akashi Gohdoh Inc. Bronze alloy, process for producing the same, and sliding member comprising bronze alloy
CN102099498A (en) * 2008-05-09 2011-06-15 株式会社明石合铜 Bronze alloy, process for producing the same, and sliding member comprising bronze alloy
US8900721B2 (en) 2008-05-09 2014-12-02 Akashi Gohdoh Inc. Bronze alloy, process for producing the same, and sliding member comprising bronze alloy
EP2292805A4 (en) * 2008-05-09 2013-06-19 Akashi Gohdoh Inc Bronze alloy, process for producing the same, and sliding member comprising bronze alloy
CN104018024A (en) * 2008-05-09 2014-09-03 株式会社明石合铜 Bronze alloy, process for producing same, and sliding member comprising bronze alloy
WO2009136457A1 (en) 2008-05-09 2009-11-12 石川県 Bronze alloy, process for producing the same, and sliding member comprising bronze alloy
JP2010150649A (en) * 2008-11-18 2010-07-08 Kurimoto Ltd Copper alloy for sliding member
JP4658269B2 (en) * 2008-11-18 2011-03-23 株式会社栗本鐵工所 Copper alloy for sliding members
WO2010137483A1 (en) * 2009-05-26 2010-12-02 滋賀バルブ協同組合 Lead-free copper alloy for casting with excellent mechanical properties
US8470101B2 (en) 2009-05-26 2013-06-25 Shiga Valve Cooperative Lead-free copper alloy for casting with excellent mechanical properties
US20120082588A1 (en) * 2009-05-26 2012-04-05 Biwalite Co., Ltd. Lead-free copper alloy for casting with excellent mechanical properties
EP2558606A4 (en) * 2010-04-13 2016-07-27 Nat Bronze & Metals Inc Noval lead-free brass alloy
JP2014501844A (en) * 2010-10-29 2014-01-23 スローン バルブ カンパニー Low lead ingot
US9181606B2 (en) 2010-10-29 2015-11-10 Sloan Valve Company Low lead alloy
CN103298960A (en) * 2010-10-29 2013-09-11 仕龙阀门公司 Low lead ingot
CN103298960B (en) * 2010-10-29 2016-10-05 仕龙阀门公司 Low lead pig
WO2020136935A1 (en) 2018-12-26 2020-07-02 株式会社明石合銅 Bronze alloy, and sliding member using said bronze alloy
KR20200083377A (en) 2018-12-26 2020-07-08 가부시키가이샤 아카시 고도 Bronze alloy and sliding member using the bronze alloy
CN111630194A (en) * 2018-12-26 2020-09-04 株式会社明石合铜 Bronze alloy and sliding member using the same
KR102343107B1 (en) * 2018-12-26 2021-12-24 가부시키가이샤 아카시 고도 Bronze alloy and sliding member using the bronze alloy
CN111630194B (en) * 2018-12-26 2022-05-03 株式会社明石合铜 Bronze alloy and sliding member using the same

Similar Documents

Publication Publication Date Title
JP5335558B2 (en) Lead-free copper alloy for castings with excellent mechanical properties
JP3957308B2 (en) Lead-free copper alloy for castings with excellent pressure resistance
US10017841B2 (en) Copper alloy casting and method of casting the same
KR102623143B1 (en) Free-cutting copper alloy castings, and method for manufacturing free-cutting copper alloy castings
JP2007297675A (en) Lead-free copper alloy for casting superior in machinability
KR101969010B1 (en) Lead free cutting copper alloy with no lead and bismuth
JPWO2008140100A1 (en) Pb-free copper alloy sliding material and plain bearing
JP2016534233A (en) Lead-free, high-sulfur, and easy-to-cut copper-manganese alloy and method for preparing the same
JP6799305B1 (en) Method for manufacturing free-cutting copper alloy castings and free-cutting copper alloy castings
JP2020183580A (en) Multi-layer sliding bearing element
JP4806823B2 (en) Bronze alloy and manufacturing method thereof, sliding member using bronze alloy
JP2017511841A (en) Lubricant compatible copper alloy
CN105624463A (en) Lead-free free-cutting brass alloy and preparation method thereof
JP2008214760A (en) Lead-free free-cutting brass alloy and its manufacturing method
JP5642603B2 (en) Lead-free free-cutting brass alloy for casting
KR101852053B1 (en) Copper-based alloy
WO2011121799A1 (en) Lead-free free-machining bronze casting alloy
KR100555854B1 (en) Lead-Free cutting bronze alloy
JP7214451B2 (en) Copper alloy
KR100940593B1 (en) Lead-free cutting bronze alloy and manufacturing method thereof
KR102334814B1 (en) Lead-free brass alloy for casting that does not contain lead and bismuth, and method for manufacturing the same
KR102314457B1 (en) Low-lead brass alloy for plumbing member
WO2011012931A1 (en) Low lead brass alloy containing rare earth elements
JP2003147460A (en) Lead-free copper alloy for casting having excellent machinability
JP2016079432A (en) Copper alloy for sliding shaft bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110309

A131 Notification of reasons for refusal

Effective date: 20110405

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110830