JP2006322059A - Lead-free free-cutting brass alloy and its manufacturing method - Google Patents

Lead-free free-cutting brass alloy and its manufacturing method Download PDF

Info

Publication number
JP2006322059A
JP2006322059A JP2005148597A JP2005148597A JP2006322059A JP 2006322059 A JP2006322059 A JP 2006322059A JP 2005148597 A JP2005148597 A JP 2005148597A JP 2005148597 A JP2005148597 A JP 2005148597A JP 2006322059 A JP2006322059 A JP 2006322059A
Authority
JP
Japan
Prior art keywords
free
lead
phase
brass alloy
cutting brass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005148597A
Other languages
Japanese (ja)
Other versions
JP4184357B2 (en
Inventor
Yoshiaki Tsujimoto
義章 辻本
Motoaki Kimura
元秋 木村
Kiyoshi Imamura
潔 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitz Metalworks Co Ltd
Original Assignee
Kyoto Brass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Brass Co Ltd filed Critical Kyoto Brass Co Ltd
Priority to JP2005148597A priority Critical patent/JP4184357B2/en
Publication of JP2006322059A publication Critical patent/JP2006322059A/en
Application granted granted Critical
Publication of JP4184357B2 publication Critical patent/JP4184357B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-free free-cutting brass alloy having machinability equal to that of conventional lead free-cutting brass alloys, being free from leaching of lead when brought into contact with water and having excellent dezincification corrosion resistance, hot forgeability and other physical properties and also to provide its manufacturing method. <P>SOLUTION: The lead-free free-cutting brass alloy has a metallic composition consisting of, by weight, 60.0 to 62.50% copper (Cu), 0.4 to 2.0% bismuth (Bi), ≤0.10% lead (Pb), 0.2 to 1.0% tin (Sn), 0.01 to 0.05% phosphorus (P), ≤0.1% iron (Fe) and the balance zinc (Zn) with inevitable impurities and also has a metallic structure in which a β-phase is surrounded by an α-phase by heat treatment and is in an isolated state. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐脱亜鉛腐食性及び熱間鍛造性等に優れた無鉛快削性黄銅合金及びその製造方法に関する。   The present invention relates to a lead-free free-cutting brass alloy excellent in dezincification corrosion resistance, hot forgeability and the like, and a method for producing the same.

水と接触し得る水道金具その他の接水器具には、従来、「JIS H 3250」の規格に基づく切削性に優れた快削黄銅C3604や切削性及び熱間鍛造性に優れた鍛造用黄銅C3771等の快削性黄銅合金が広く使用されている。   For water fittings and other water contact instruments that can come into contact with water, conventionally, free-cutting brass C3604 excellent in machinability based on the standard of “JIS H 3250” and brass for forging C3771 excellent in machinability and hot forgeability. Free-cutting brass alloys such as are widely used.

前記快削性黄銅合金には、容易に切削加工し得るように、鉛(Pb)が多量に添加され、このように添加された鉛は、合金のマトリックスに固溶せずに結晶粒の内外に微粒状に分散し、それによって該材料の良好な切削性が確保されている。   The free-cutting brass alloy contains a large amount of lead (Pb) so that it can be easily machined. The lead thus added does not dissolve in the alloy matrix, and the inside and outside of the crystal grains. In the form of fine particles, thereby ensuring good machinability of the material.

しかしながら、前記のように鉛が添加された有鉛快削性黄銅合金は、優れた切削性を呈する反面、水との接触により脱亜鉛腐食を生じ易い上に鉛を水中に浸出させる傾向があり、鉛害による環境汚染や健康被害を招くことが懸念されていた。この点に関して、平成15年4月1日施行の「給水装置の構造及び材質の基準に関する省令の一部を改正する省令」(平成14年厚生労働省令第138号)により鉛の水道水質基準が改正され、この改正を受けて給水装置に係る鉛の浸出性能基準についても厳しい基準値に改正されている。   However, as described above, the lead-free free-cutting brass alloy to which lead is added exhibits excellent machinability, but tends to cause dezincification corrosion on contact with water and tends to leach lead into water. There was concern about environmental pollution and health damage caused by lead damage. In this regard, the standard of tap water quality for lead was established in accordance with the “Ministerial Ordinance to Revise Part of the Ministerial Ordinance on Structure and Material Standards for Water Supply Equipment” enforced on April 1, 2003 (Ministry of Health, Labor and Welfare Ordinance 138) In response to this revision, the lead leaching performance standard for water supply systems has also been revised to a strict standard value.

このことから、従来の前記有鉛黄銅合金は、飲用に供する給水装置には事実上使用することができず、鉛の浸出に係る前記改正基準を満たす無鉛快削性黄銅合金の開発が待望されていた。   Therefore, the conventional leaded brass alloy cannot be practically used for drinking water supply devices, and the development of a lead-free free-cutting brass alloy that satisfies the revised standard for lead leaching is awaited. It was.

前記問題に対して、例えば特開平5‐255778号公報、特公平5−63536号公報、特許第3335002号公報には、鉛(Pb)の代わりに非毒性とされるビスマス(Bi)を銅合金中に添加することにより切削性を確保しつつ水中への鉛の浸出を防止し得るようにした無鉛快削性黄銅合金が提案されている。   In order to solve the above problem, for example, JP-A-5-255778, JP-B-5-63536, and Japanese Patent No. 3335002 describe that bismuth (Bi), which is non-toxic instead of lead (Pb), is a copper alloy. There has been proposed a lead-free free-cutting brass alloy that can be prevented from leaching of lead into water while being added while being able to ensure cutting performance.

しかしながら、特開平5‐255778号に係る黄銅合金は耐脱亜鉛腐食性に劣り、また特公平5−63536号に係る黄銅合金は熱間加工性に難点があり、また特許第3335002号に係る黄銅合金は前記黄銅合金の問題点を改良したとされるものの、なお耐脱亜鉛腐食性や耐磨耗性等に問題を残すものであった。
特開平5‐255778号公報 特公平5−63536号公報 特許第3335002号公報
However, the brass alloy according to JP-A-5-255778 is inferior in dezincification corrosion resistance, and the brass alloy according to JP-B-5-63536 has a problem in hot workability, and the brass according to Japanese Patent No. 3335002. Although the alloy is said to have improved the problems of the brass alloy, it still has problems in dezincification corrosion resistance, wear resistance and the like.
JP-A-5-255778 Japanese Patent Publication No. 5-63536 Japanese Patent No. 3335002

本発明の課題は、従来の有鉛快削性黄銅合金に匹敵する切削性を有し、しかも接水に際して鉛の浸出がないことから安全で鉛害の恐れがなく、さらに耐脱亜鉛腐食性、熱間鍛造性その他の物性に優れた無鉛快削性黄銅合金及びその製造方法を提供することにある。   It is an object of the present invention to have a machinability comparable to that of a conventional leaded free-cutting brass alloy, and since there is no leaching of lead when in contact with water, there is no fear of lead damage, and furthermore, dezincification corrosion resistance Another object of the present invention is to provide a lead-free free-cutting brass alloy excellent in hot forgeability and other physical properties and a method for producing the same.

請求項1に記載の発明に係る無鉛快削性黄銅合金は、60.0〜62.50wt%の銅(Cu)、0.4〜2.0wt%のビスマス(Bi)、0.10wt%以下の鉛(Pb)、0.2〜1.0wt%の錫(Sn)、0.01〜0.05wt%のリン(P)及び0.1wt%以下の鉄(Fe)並びに残部の亜鉛(Zn)及び不可避不純物からなる金属組成を有し、熱処理によりβ相がその周囲をα相で囲まれて孤立した状態にある金属組織を有することを特徴としている。   The lead-free free-cutting brass alloy according to the invention of claim 1 is 60.0 to 62.50 wt% copper (Cu), 0.4 to 2.0 wt% bismuth (Bi), 0.10 wt% or less. Lead (Pb), 0.2 to 1.0 wt% tin (Sn), 0.01 to 0.05 wt% phosphorus (P), 0.1 wt% or less iron (Fe), and the balance zinc (Zn) ) And inevitable impurities, and the β phase has a metal structure surrounded by the α phase and isolated by heat treatment.

請求項2に記載の発明に係る無鉛快削性黄銅合金は、請求項1に記載の無鉛快削性黄銅合金において、金属組成が、60.0〜61.0wt%の銅(Cu)、0.4〜2.0wt%のビスマス(Bi)、0.10wt%以下の鉛(Pb)、0.5〜0.7wt%の錫(Sn)、0.01〜0.05wt%のリン(P)及び0.1wt%以下の鉄(Fe)並びに残部の亜鉛(Zn)及び不可避不純物からなるものである。   The lead-free free-cutting brass alloy according to claim 2 is the lead-free free-cutting brass alloy according to claim 1, wherein the metal composition is 60.0 to 61.0 wt% of copper (Cu), 0 .4 to 2.0 wt% bismuth (Bi), 0.10 wt% or less lead (Pb), 0.5 to 0.7 wt% tin (Sn), 0.01 to 0.05 wt% phosphorus (P ) And 0.1 wt% or less of iron (Fe), the remaining zinc (Zn), and inevitable impurities.

請求項3に記載の発明に係る無鉛快削性黄銅合金は、61.0〜62.50wt%の銅(Cu)、0.4〜2.0wt%のビスマス(Bi)、0.10wt%以下の鉛(Pb)、0.5〜1.0wt%の錫(Sn)、0.01〜0.05wt%のリン(P)、0.1wt%以下の鉄(Fe)及び0.02〜0.25wt%のアンチモン(Sb)並びに残部の亜鉛(Zn)及び不可避不純物からなる金属組成を有し、熱処理によりβ相がその周囲をα相で囲まれて孤立した状態にある金属組織を有することを特徴としている。   The lead-free free-cutting brass alloy according to the invention of claim 3 is 61.0 to 62.50 wt% copper (Cu), 0.4 to 2.0 wt% bismuth (Bi), 0.10 wt% or less. Lead (Pb), 0.5 to 1.0 wt% tin (Sn), 0.01 to 0.05 wt% phosphorus (P), 0.1 wt% or less iron (Fe), and 0.02 to 0 .25 wt% of antimony (Sb) and the balance of zinc (Zn) and an inevitable impurity metal composition, and the β phase is surrounded by the α phase by heat treatment and has a metal structure in an isolated state It is characterized by.

請求項4に記載の発明に係る無鉛快削性黄銅合金の製造方法は、溶製、保持された請求項1、2又は3に記載の金属組成を有する銅基合金の溶湯から横型連続鋳造により鋳塊を鋳造し、引出しする工程と、得られた鋳塊を600〜730℃の温度で熱間押出しし又は該温度で熱間押出しし且つ冷間引抜きする工程と、得られた押出又は引抜素材を350〜550℃の温度で1〜8時間焼鈍し、徐冷する工程とを含み、それらの熱処理によりβ相がその周囲をα相で囲まれて孤立した状態にある金属組織を有するようにしたことを特徴としている。   According to a fourth aspect of the present invention, there is provided a lead-free free-cutting brass alloy manufacturing method by melting and holding a molten copper-base alloy having a metal composition according to claim 1, 2 or 3 by horizontal continuous casting. A step of casting and drawing the ingot, a step of hot-extruding the obtained ingot at a temperature of 600 to 730 ° C., or a step of hot-extruding and cold-drawing at the temperature, and an extrusion or drawing obtained And annealing the material at a temperature of 350 to 550 ° C. for 1 to 8 hours and gradually cooling the material, so that the β phase is surrounded by the α phase by the heat treatment so as to have an isolated metal structure. It is characterized by that.

前記金属組成において、銅(Cu)は、黄銅合金の金属組織が何れの温度範囲においてもα相とβ相の2相を有し、熱間加工の温度範囲では必ずβ相を含み、また常温においてはα相を主として含むようにし、しかも熱処理によりβ相がその周囲をα相で囲まれて孤立した状態にあるようにするために、請求項1に係る黄銅合金では60.0〜62.50wt%、好ましくは請求項2に記載のように60.0〜61.0wt%の範囲に管理され、請求項3に係る黄銅合金では61.0〜62.50wtの範囲に管理される。   In the metal composition, copper (Cu) has a brass alloy metal structure having two phases of α phase and β phase in any temperature range, and always includes β phase in the temperature range of hot working, In the brass alloy according to claim 1, in order to make the α phase mainly contain the α phase and to make the β phase surrounded by the α phase and isolated by heat treatment. 50 wt%, preferably in the range of 60.0 to 61.0 wt% as described in claim 2, and in the brass alloy according to claim 3, it is managed in the range of 61.0 to 62.50 wt.

ビスマス(Bi)は、主として切削性を向上させるために、0.4〜2.0wt%の範囲で添加される。この成分は、鉛(Pb)と同様に合金のマトリックスに固溶せずに微細な粒子状として分散し、それによって該材料の切削性を向上させる。なお、この添加量が0.4wt%に満たない場合は所要の効果が得られず、またそれが2.0wt%を超える場合は熱間鍛造性の低下を招くことになる。   Bismuth (Bi) is added in the range of 0.4 to 2.0 wt% mainly for improving machinability. This component, like lead (Pb), does not dissolve in the alloy matrix but is dispersed as fine particles, thereby improving the machinability of the material. In addition, when this addition amount is less than 0.4 wt%, a required effect is not acquired, and when it exceeds 2.0 wt%, the hot forgeability will be reduced.

鉛(Pb)については、不純物として0.10wt%以下の存在が許容される。地金として一部にスクラップを使用することは、製品の価格を低下させるために有利であり、本発明では、鉛含有量が前記許容範囲にある限り、スクラップが使用された前記地金を好適に使用することができる。黄銅合金に0.10wt%以下の鉛が含有されていても、該黄銅合金は鉛の浸出に係る前記改正基準を十分満たすことができるので、これを実質的に無鉛とみなして差し支えない。なお、前記のような不純物としての鉛も、前記ビスマス(Bi)と相俟って切削性の向上に役立つものである。   About lead (Pb), the presence of 0.10 wt% or less is allowed as an impurity. It is advantageous to use scrap as part of the bullion in order to reduce the price of the product. In the present invention, as long as the lead content is within the allowable range, the bullion from which scrap is used is suitable. Can be used for Even if the brass alloy contains 0.10 wt% or less of lead, the brass alloy can sufficiently satisfy the revised standard related to lead leaching, so that it can be regarded as substantially lead-free. Note that lead as an impurity as described above is also useful for improving machinability in combination with the bismuth (Bi).

アンチモン(Sb)は、ビスマス(Bi)と同様に切削性の向上と脱亜鉛腐食性の抑制に寄与するものであり、請求項2に係る黄銅合金では0.02〜0.25wt%の範囲で添加される。なお、この添加量が0.02wt%に満たない場合は所要の効果が得られず、またそれが0.25wt%を超える場合は粒界への偏析が著しくなり、特に熱間加工性については、β相が多い場合は熱間加工性への悪影響は少ないものの、α相の量が増えてくると熱間加工性を阻害し易くなる。   Antimony (Sb) contributes to improvement of machinability and suppression of dezincification corrosiveness similarly to bismuth (Bi), and in the brass alloy according to claim 2, in the range of 0.02 to 0.25 wt%. Added. In addition, when this addition amount is less than 0.02 wt%, the required effect cannot be obtained, and when it exceeds 0.25 wt%, segregation to the grain boundary becomes remarkable, especially with respect to hot workability. When the β phase is large, the adverse effect on the hot workability is small, but when the amount of the α phase is increased, the hot workability is easily inhibited.

錫(Sn)は、α相及びβ相の耐脱亜鉛腐食性を向上させ、特にα相より脱亜鉛腐食を生じ易いβ相に対してより大きな耐脱亜鉛腐食性を与えるものであり、請求項1に係る黄銅合金では0.2〜1.0wt%、好ましくは請求項2に記載のように0.5〜0.7wt%の範囲で添加され、請求項3に係る黄銅合金では0.5〜1.0wt%の範囲で添加される。錫の添加量が0.2〜0.5wt%の範囲にある場合は錫が合金のマトリックスに固溶し、またその添加量が0.5wt%を超える場合は硬質のγ相が析出して切削性を向上させるが、その添加量が1.0wt%を超える場合は冷間加工性に悪影響を生じることになる。   Tin (Sn) improves the dezincification corrosion resistance of the α phase and β phase, and in particular, provides greater dezincification corrosion resistance to the β phase, which is more susceptible to dezincification corrosion than the α phase. The brass alloy according to item 1 is added in an amount of 0.2 to 1.0 wt%, preferably 0.5 to 0.7 wt% as described in claim 2, and the brass alloy according to claim 3 is added in an amount of 0.2 to 1.0 wt%. It is added in the range of 5 to 1.0 wt%. When the added amount of tin is in the range of 0.2 to 0.5 wt%, tin is dissolved in the alloy matrix, and when the added amount exceeds 0.5 wt%, a hard γ phase is precipitated. Although the machinability is improved, when the amount added exceeds 1.0 wt%, the cold workability is adversely affected.

リン(P)は、金属組織の結晶粒微細化を促進すると共に脱亜鉛腐食を抑制するものであり、0.01〜0.05wt%の範囲で添加される。この添加量が0.01wt%に満たない場合は所要の効果が得られず、またそれが0.05wt%を超える場合は生成したCu3Pの微粒子が合金のマトリックスに分散して冷間加工性を阻害することになる。また、黄銅合金中でリンが前記アンチモンと共存することにより、結晶粒微細化及び耐脱亜鉛腐食性が相乗的に向上するものである。 Phosphorus (P) promotes refinement of crystal grains in the metal structure and suppresses dezincification corrosion, and is added in the range of 0.01 to 0.05 wt%. If the added amount is less than 0.01 wt%, the required effect cannot be obtained, and if it exceeds 0.05 wt%, the produced Cu 3 P fine particles are dispersed in the alloy matrix and cold worked. It will inhibit sex. Further, when phosphorus coexists with the antimony in the brass alloy, crystal grain refinement and dezincification corrosion resistance are synergistically improved.

鉄(Fe)は、鋳塊における結晶粒微細化に有効であり、0.1wt%以下の範囲で添加される。より健全な鋳塊を得るためには鉄をある程度添加することが好ましいが、添加量が過ぎる場合は硬くて脆いFe3PやFe3Sn等が生成して冷間加工性を阻害することになるので、健全な鋳塊の確保と冷間加工性の維持の点からは、鉄が0.02〜0.04wt%の範囲で添加されることが好ましい。 Iron (Fe) is effective for refining crystal grains in the ingot, and is added in a range of 0.1 wt% or less. In order to obtain a more healthy ingot, it is preferable to add iron to some extent. However, if the added amount is too large, hard and brittle Fe 3 P, Fe 3 Sn, etc. are generated and cold workability is inhibited. Therefore, from the viewpoint of securing a sound ingot and maintaining cold workability, it is preferable to add iron in the range of 0.02 to 0.04 wt%.

残部の亜鉛(Zn)は、合金のマトリックスに固溶して鋳造性や溶解性を向上させると共に強化するものである。   The remaining zinc (Zn) is solid-dissolved in the alloy matrix to improve castability and solubility and strengthen.

本発明に係るようなCu−Zn−Bi系合金材は、鋳造時にBiの偏析による鋳塊割れを生じ易い。本発明に係る無鉛快削性黄銅合金の製造方法では、前記鋳塊割れがなく良質で健全な鋳塊を得るために、低周波溝型溶解炉等により溶製され、保持器により保持された請求項1又は2に記載の金属組成を有する銅基合金の溶湯から横型連続鋳造により鋳塊を鋳造し、引出しする方法が採られる。前記鋳造後の引出しは、鋳塊割れがなく、より良質で健全な鋳塊を得るために、好ましくは50mm/分以下の速度で行われる。また、引出し後の冷却には、例えば、水冷による一次冷却と空冷又は軽度の水冷による二次冷却が採用される。   The Cu—Zn—Bi alloy material according to the present invention is liable to cause ingot cracking due to segregation of Bi during casting. In the method for producing a lead-free free-cutting brass alloy according to the present invention, in order to obtain a good quality and sound ingot without the ingot cracking, it was melted by a low frequency groove type melting furnace or the like and held by a cage. A method is employed in which an ingot is cast from a molten copper-base alloy having the metal composition according to claim 1 by horizontal continuous casting and drawn. The drawing after the casting is preferably performed at a speed of 50 mm / min or less in order to obtain a higher quality and sound ingot without cracking of the ingot. In addition, for cooling after drawing, for example, primary cooling by water cooling and secondary cooling by air cooling or light water cooling are employed.

前記のようにして得られた鋳塊は、微細柱状晶組織におけるビスマス等の均一化の状態並びに鋳塊表面割れ(2mm以下)、水素(H2)ガス及び内部欠陥等の有無の検査が行われる。 The ingot obtained as described above is inspected for the homogenized state of bismuth and the like in the fine columnar crystal structure and the presence or absence of ingot surface cracks (2 mm or less), hydrogen (H 2 ) gas and internal defects. Is called.

検査後の良質で健全な鋳塊は、油圧単動式直接押出機等により600〜730℃の温度、好ましくはβ相量の抑制のために600〜650℃の温度での熱間押出し又は該温度での熱間押出しとその後の冷間引抜きに供される。前記鋳塊は、好ましくは冷間加工度3〜10%の範囲で押出しされ、また押出し後の押出素材は好ましくは空冷により徐冷され、それにより冷間加工割れの防止が図られる。これは、押出素材中のビスマスが271℃以上で溶融しており、またβ相に濡れ易く、これがクラックの原因となるのを避けるためである。押出し後の冷却については、押出素材をその表面温度が180℃以下になるまでは空冷により徐冷し、水冷による急冷を避けることが好ましい。   A good and sound ingot after the inspection is subjected to hot extrusion at a temperature of 600 to 730 ° C., preferably 600 to 650 ° C. in order to suppress the amount of β phase by a hydraulic single-acting direct extruder or the like. It is subjected to hot extrusion at temperature and subsequent cold drawing. The ingot is preferably extruded in the range of 3 to 10% of cold work, and the extruded material after extrusion is preferably gradually cooled by air cooling, thereby preventing cold work cracks. This is because bismuth in the extruded material is melted at 271 ° C. or higher, and is easily wetted by the β phase, thereby preventing cracks from occurring. As for cooling after extrusion, it is preferable that the extruded material is gradually cooled by air cooling until the surface temperature becomes 180 ° C. or less, and rapid cooling by water cooling is avoided.

前記のようにして得られた押出素材では、金属組織がα相とβ相からなると共に、前記β相の大部分が熱間押出し、さらには冷間引抜きの加工により引き延ばされて連続した状態で存在している。そのような状態の前記押出又は引抜素材には、350〜550℃の温度での1〜8時間の焼鈍とその後の徐冷が施され、それらによって、β相の一部がα相に変態して該α相の存在比率が増加すると共に残留したβ相がα相に包み込まれるような金属組織が形成され、耐脱亜鉛腐食性が向上する。前記焼鈍条件については、α単相組織を改善してより優れた耐脱亜鉛腐食性を得るために、請求項1に係る黄銅合金では350〜550℃の温度での1〜5時間の焼鈍が好ましく、また請求項2に係る黄銅合金では450〜550℃の温度での2〜5時間の焼鈍が好ましい。本発明に係る黄銅合金では、銅の含有量が60.0〜62.50wt%と多いことから、β相の存在比率が比較的小さく、これは高い耐脱亜鉛腐食性の確保に極めて有利な条件となっている。   In the extruded material obtained as described above, the metal structure is composed of an α phase and a β phase, and most of the β phase is continuously extruded by hot extrusion and further by cold drawing. Exists in a state. The extruded or drawn material in such a state is subjected to annealing at a temperature of 350 to 550 ° C. for 1 to 8 hours and subsequent annealing, thereby transforming a part of the β phase into the α phase. As a result, the abundance ratio of the α phase increases, and a metal structure is formed in which the remaining β phase is wrapped in the α phase, and the dezincification corrosion resistance is improved. As for the annealing conditions, in order to improve the α single phase structure and obtain better dezincing corrosion resistance, the brass alloy according to claim 1 is annealed at a temperature of 350 to 550 ° C. for 1 to 5 hours. Preferably, the brass alloy according to claim 2 is preferably annealed at a temperature of 450 to 550 ° C. for 2 to 5 hours. In the brass alloy according to the present invention, since the copper content is as large as 60.0 to 62.50 wt%, the abundance ratio of the β phase is relatively small, which is extremely advantageous for ensuring high dezincing corrosion resistance. It is a condition.

以上のように、請求項1、2及び3に係る発明によれば、従来の有鉛快削性黄銅合金に匹敵する切削性を有し、しかも接水に際して鉛の浸出がないことから安全で鉛害の恐れがなく、さらに耐脱亜鉛腐食性、熱間鍛造性その他の物性に優れた無鉛快削性黄銅合金を提供することができる。特に請求項3に係る発明では、黄銅合金中でリンとアンチモンとが共存することにより、金属組織の結晶粒微細化及び耐脱亜鉛腐食性が相乗的に向上した無鉛快削性黄銅合金が得られる。   As described above, according to the first, second, and third aspects of the invention, it has a machinability comparable to that of a conventional leaded free-cutting brass alloy and is safe because there is no leaching of lead when in contact with water. It is possible to provide a lead-free free-cutting brass alloy which is free from fear of lead damage and further excellent in dezincification corrosion resistance, hot forgeability and other physical properties. In particular, the invention according to claim 3 provides a lead-free free-cutting brass alloy having a synergistic improvement in crystal grain refinement and dezincification corrosion resistance due to the coexistence of phosphorus and antimony in the brass alloy. It is done.

請求項4に係る発明によれば、請求項1〜3に記載の前記効果を相する無鉛快削性黄銅合金を確実に製造することができる。   According to the invention which concerns on Claim 4, the lead-free free-cutting brass alloy which combines the said effect of Claims 1-3 can be manufactured reliably.

以下に、本発明を実施例及び比較例に基づいて具体的に説明する。
〔黄銅合金供試体の準備〕
以下の表1に示す金属組成に基づき、本発明の実施例に係る無鉛快削性黄銅合金として本発明供試体1及び2を調製すると共に、比較例に係る従来の有鉛快削性黄銅合金として比較供試体1及び2を調製した。
Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples.
[Preparation of brass alloy specimen]
Based on the metal composition shown in Table 1 below, while preparing the specimens 1 and 2 of the present invention as lead-free free-cutting brass alloys according to the examples of the present invention, the conventional leaded free-cutting brass alloys according to the comparative examples Comparative specimens 1 and 2 were prepared as follows.

本発明供試体1としては、低周波溝型溶解炉、保持器及び横型連続鋳造装置により溶製、鋳造され、引出しされて得られた表1の本発明供試体1欄に記載の金属組成を有する銅基合金の鋳塊を、油圧単動式直接押出機により600〜670℃の温度で熱間押出しに供し、徐冷後、抽伸率0.5〜0.8mmの冷間引抜きに供し、得られた引抜素材を500〜550℃の温度で90〜120分焼鈍し、徐冷する工程により製造した。また、本発明供試体2として、前記と同様に溶製、鋳造され、引出しされて得られた表1の本発明供試体2欄に記載の金属組成を有する銅基合金の鋳塊を、前記と同様にして680〜720℃の温度で熱間押出しに供し、徐冷後、抽伸率0.3〜0.6mmの冷間引抜きに供し、得られた引抜素材を500〜550℃の温度で90〜150分焼鈍し、徐冷する工程により製造した。   As the specimen 1 of the present invention, the metal composition described in the column of the specimen 1 of the present invention in Table 1 obtained by melting, casting and drawing with a low frequency groove melting furnace, a cage and a horizontal continuous casting apparatus is used. The ingot of the copper-based alloy is subjected to hot extrusion at a temperature of 600 to 670 ° C. by a hydraulic single-acting direct extruder, and after slow cooling, it is subjected to cold drawing with a drawing rate of 0.5 to 0.8 mm, The obtained drawn material was manufactured by annealing at a temperature of 500 to 550 ° C. for 90 to 120 minutes and gradually cooling. Further, as the specimen 2 of the present invention, an ingot of a copper-based alloy having the metal composition described in the column 2 of the specimen of the present invention in Table 1 obtained by melting, casting, and drawing as described above, In the same manner as above, it is subjected to hot extrusion at a temperature of 680 to 720 ° C., and after slow cooling, it is subjected to cold drawing with a drawing rate of 0.3 to 0.6 mm, and the obtained drawing material is heated to a temperature of 500 to 550 ° C. It was manufactured by a step of annealing for 90 to 150 minutes and annealing.

また、比較供試体1として、前記と同様に溶製、鋳造され、引出しされて得られた表1の比較供試体1欄に記載の金属組成を有する銅基合金の鋳塊を、前記と同様にして690〜750℃の温度で熱間押出しに供し、徐冷後、抽伸率1mmの冷間引抜きに供し、得られた引抜素材を520℃の温度で100分焼鈍し、徐冷する工程により、「JIS H 3250」の規格に基づく快削黄銅C3604BD−Fからなる引抜素材を製造した。また、比較供試体2として、前記と同様に溶製、鋳造され、引出しされて得られた表1の比較供試体2欄に記載の金属組成を有する銅基合金の鋳塊を、前記と同様にして600〜670℃の温度で熱間押出しに供し、「JIS H 3250」の規格に基づく鍛造用黄銅C3771BD−Fからなる押出素材を製造した。
Further, as the comparative specimen 1, an ingot of a copper base alloy having the metal composition described in the comparative specimen 1 column of Table 1 obtained by melting, casting and drawing as described above is the same as described above. The sample is subjected to hot extrusion at a temperature of 690 to 750 ° C., and after slow cooling, it is subjected to cold drawing with a drawing rate of 1 mm, and the obtained drawing material is annealed at a temperature of 520 ° C. for 100 minutes and slowly cooled. A drawn material made of free-cutting brass C3604BD-F based on the standard of “JIS H 3250” was manufactured. Further, as the comparative specimen 2, an ingot of a copper-based alloy having the metal composition described in the comparative specimen 2 column of Table 1 obtained by melting, casting and drawing as described above is the same as described above. Then, it was subjected to hot extrusion at a temperature of 600 to 670 ° C. to produce an extrusion material made of forging brass C3771BD-F based on the standard of “JIS H 3250”.

〔機械的性質に関する試験〕
本発明供試体1及び2並びに比較供試体1及び2について、引張強さ(N/mm2)、伸び(%)、耐力(N/mm2)及び硬度(Hv)の各機械的性質を測定した。前記引張強さ(N/mm2)、伸び(%)については、「JIS Z 2201」の規格に基づく4号試験片を作成して測定し、また硬度(Hv)については、「JIS Z 2244」の規格に基づくビッカース硬さ試験方法により測定した。
[Test on mechanical properties]
Measure the mechanical properties of tensile strength (N / mm 2 ), elongation (%), proof stress (N / mm 2 ) and hardness (Hv) for specimens 1 and 2 of the present invention and comparative specimens 1 and 2 did. The tensile strength (N / mm 2 ) and elongation (%) were measured by preparing a No. 4 test piece based on the standard of “JIS Z 2201”, and the hardness (Hv) was measured according to “JIS Z 2244”. ”And the Vickers hardness test method based on the standard.

各供試体についての機械的性質に関する試験結果を以下の表2に示す。なお、参考として、本発明供試体1に係る黄銅合金の金属組織を示す顕微鏡写真(×500)と前記金属組織におけるビスマスの分散状態を示す顕微鏡写真(×500)を各々図1(A)及び(B)に示す。
The test results regarding the mechanical properties of each specimen are shown in Table 2 below. For reference, a micrograph (× 500) showing the metal structure of the brass alloy according to the specimen 1 of the present invention and a micrograph (× 500) showing the dispersion state of bismuth in the metal structure are shown in FIG. Shown in (B).

前記の機械的性質に関する試験結果によれば、本発明供試体1及び2は、比較供試体1及び2と略同等又はそれ以上の機械的性質を示した。   According to the test results relating to the mechanical properties, the specimens 1 and 2 of the present invention exhibited substantially the same or higher mechanical properties as the comparative specimens 1 and 2.

〔切削性試験〕
下記の表3に記載の試験条件の下に、本発明供試体1及び2並びに評価基準材料としての比較供試体1について、旋盤による切削試験及びボール盤による穿孔試験を実施した。各供試体についての切削試験結果を以下の表4に示す。
[Machinability test]
Under the test conditions shown in Table 3 below, a cutting test with a lathe and a drilling test with a drilling machine were performed on the specimens 1 and 2 of the present invention and the comparative specimen 1 as an evaluation reference material. The cutting test results for each specimen are shown in Table 4 below.

なお、表4中、切削性1は旋盤による切削時の切削性を示し、また切削性2は旋盤による切削時及びボール盤による穿孔時の各切削性を総合した切削性を示している。切削性については、切削性指数(%)=(評価基準材料である比較供試体1の切削抵抗値/各材料の切削抵抗値)×100の計算式で算出した。
In Table 4, the machinability 1 indicates the machinability when cutting with a lathe, and the machinability 2 indicates the machinability that combines the machinability when cutting with a lathe and when drilling with a drilling machine. The machinability was calculated by the following formula: machinability index (%) = (cutting resistance value of comparative specimen 1 being an evaluation reference material / cutting resistance value of each material) × 100.

前記の切削性試験結果によれば、本発明供試体1及び2は、旋盤による切削時及びボール盤による穿孔に際して、比較供試体1の80%以上という優れた切削性を奏した。   According to the results of the machinability test, the specimens 1 and 2 of the present invention exhibited excellent machinability of 80% or more of the comparative specimen 1 when cutting with a lathe and drilling with a drilling machine.

〔切粉状態に関する試験〕
本発明供試体1及び2並びに比較供試体1を前記のように前記切削試験における旋盤による切削試験に供したときに生じた切粉の状態を切込み量0.2mm、0.4mm及び1.0mmの場合について比較観察した。
[Test for chip condition]
The state of the chips produced when the specimens 1 and 2 of the present invention and the comparative specimen 1 were subjected to the lathe cutting test in the cutting test as described above were the cutting depths 0.2 mm, 0.4 mm and 1.0 mm. A comparative observation was made in the case of.

本発明供試体1における切込み量0.2mm、0.4mm及び1.0mmの各場合に生じた切粉の写真を各々図2(A)、(B)及び(C)に示し、本発明供試体2における切込み量0.2mm、0.4mm及び1.0mmの各場合に生じた切粉の写真を各々図3(A)、(B)及び(C)に示し、比較供試体1における切込み量0.2mm、0.4mm及び1.0mmの各場合に生じた切粉の写真を各々図4(A)、(B)及び(C)に示す。   FIGS. 2A, 2B and 2C show photographs of chips produced in each case of the depth of cut of 0.2 mm, 0.4 mm and 1.0 mm in the specimen 1 of the present invention, respectively. 3 (A), (B), and (C), respectively, show photographs of chips produced in each case where the cutting depth in the specimen 2 is 0.2 mm, 0.4 mm, and 1.0 mm, and the cutting in the comparative specimen 1 FIGS. 4A, 4B, and 4C show photographs of chips produced in each case of amounts 0.2 mm, 0.4 mm, and 1.0 mm, respectively.

前記の切粉状態に関する試験結果によれば、切込み量0.2mm及び0.4mmの場合において、本発明供試体1及び2は、比較供試体1と比較して若干大きくなるものの、ほぼ同様の細かい針状チップ形状の良好な切粉を生じた。また、切込み量1.0mmの場合においては、本発明供試体1は、比較供試体1と比較して若干大きくなるものの、ほぼ同様の細かい針状チップ形状の良好な切粉を生じたが、本発明供試体2では、カール状、渦巻き状の切粉の発生が観察された。   According to the test results relating to the chip state, the specimens 1 and 2 of the present invention are slightly larger than the comparative specimen 1 in the case of the depth of cut of 0.2 mm and 0.4 mm. Good chips with fine needle tip shape were produced. In addition, in the case of the cutting depth of 1.0 mm, the test specimen 1 of the present invention was slightly larger than the comparative test specimen 1, but produced good chips with the same fine needle tip shape. In the specimen 2 of the present invention, generation of curled and spiral chips was observed.

〔鍛造性試験〕
本発明供試体1及び評価基準材料としての比較供試体2について、評価試験法として最も過酷な平打ち鍛造に供し、元のサイズから割れなし広がりまでの径を測定し、600℃〜800度の各加熱温度における鍛造率(=割れなし広がり径/元の径)を算出した。熱間鍛造性の評価は、鍛造率1.5以下の場合を不良(×)、1.5〜2.5の場合を条件付き半不良(△)、2.5以上の場合を良好(〇)とした。
[Forgeability test]
The specimen 1 of the present invention and the comparative specimen 2 as the evaluation reference material are subjected to the most severe flat forging as an evaluation test method, and the diameter from the original size to the spread without cracks is measured, and the temperature is 600 ° C. to 800 ° C. The forging rate at each heating temperature (= expanded diameter without cracks / original diameter) was calculated. In the evaluation of hot forgeability, the case where the forging rate is 1.5 or less is defective (x), the case where the forging rate is 1.5 to 2.5 is conditional half-defect (△), and the case where it is 2.5 or more is good (◯ ).

各供試体についての鍛造性試験結果と熱間鍛造性の評価を以下の表5に示す。なお、参考として、600℃〜800度の各加熱温度において実施された前記鍛造試験に供された本発明供試体1及び比較供試体2における割れなし広がり状態に平打ちされた状態を示す断面写真を各々図5(A)及び(B)に示す。
Table 5 below shows the forgeability test results and the evaluation of hot forgeability for each specimen. As a reference, a cross-sectional photograph showing a flattened state without cracks in the specimen 1 and comparative specimen 2 of the present invention subjected to the forging test conducted at each heating temperature of 600 ° C. to 800 ° C. Are shown in FIGS. 5A and 5B, respectively.

前記の鍛造性試験結果によれば、本発明供試体1は700℃以上の温度では比較供試体2と略同等の良好な熱間鍛造性を示した。   According to the forgeability test results, the specimen 1 of the present invention exhibited good hot forgeability substantially equal to that of the comparative specimen 2 at a temperature of 700 ° C. or higher.

〔耐脱亜鉛腐食性試験〕
本発明供試体2及び評価基準材料としての比較供試体1について、「ISO 6509」の規格に準拠して、各々3試験片(No.1〜3)を75±3℃のCuCl2溶液(CuCl2−2H2O 12.7g/L)に24時間浸漬し、露出面の脱亜鉛腐食の最大深さ(μm)を測定した。耐脱亜鉛腐食性の評価は、脱亜鉛腐食深さ100μm以下の場合を実用上問題なしとして合格とし、100μmを超える場合を不合格とした。また、前記脱亜鉛腐食深さの測定に加えて、24時間浸漬後における露出面積100mm2当りの溶出亜鉛量(mg/L/100mm2)を測定した。
[Dezincing corrosion resistance test]
With respect to the specimen 2 of the present invention and the comparative specimen 1 as the evaluation reference material, three test pieces (Nos. 1 to 3) were respectively added to a 75 ± 3 ° C. CuCl 2 solution (CuCl 2 ) according to the standard of “ISO 6509”. 2 -2H 2 O 12.7g / L) was immersed for 24 hours, dezincification corrosion maximum depth of the exposed surface ([mu] m) was measured. In the evaluation of dezincification corrosion resistance, a case where the depth of dezincification corrosion was 100 μm or less was accepted as practically acceptable, and a case where the depth exceeded 100 μm was rejected. In addition to the measurement of the dezincification corrosion depth, the amount of zinc eluted (mg / L / 100 mm 2 ) per 100 mm 2 exposed area after 24 hours immersion was measured.

各供試体についての脱亜鉛腐食深さ及び溶出亜鉛量の各測定結果を各々表6及び表7に示す。なお、参考として、前記耐脱亜鉛腐食性試験に供された本発明供試体2の脱亜鉛腐食状態を示す顕微鏡写真(×100)を図6に示す。
Tables 6 and 7 show the measurement results of the dezincification corrosion depth and the eluted zinc amount for each specimen. For reference, a micrograph (× 100) showing the dezincification corrosion state of the specimen 2 of the present invention subjected to the dezincification corrosion resistance test is shown in FIG.

前記の耐脱亜鉛腐食性試験結果によれば、本発明供試体2は、比較供試体1よりも格段に優れた耐脱亜鉛腐食性を奏した。   According to the results of the dezincification corrosion resistance test, the specimen 2 of the present invention exhibited a dezincification corrosion resistance much superior to that of the comparative specimen 1.

〔耐磨耗性試験〕
本発明供試体1並びに評価基準材料としての比較供試体1−1及び1−2について、下記の試験条件の下に耐磨耗性試験を実施し、各摩耗速度における磨耗痕の幅(mm)を測定した。なお、比較供試体1−1は、比較供試体1をその素材長手方向に対して直角に加工する試料とし、また比較供試体1−2は、比較供試体1をその素材長手方向に対して平行に加工する試料とした。各供試体についての各摩耗速度における磨耗痕の幅の各測定結果を表8に示す。
[Abrasion resistance test]
With respect to the specimen 1 of the present invention and comparative specimens 1-1 and 1-2 as evaluation reference materials, an abrasion resistance test was carried out under the following test conditions, and the width (mm) of the wear scar at each wear rate. Was measured. The comparative specimen 1-1 is a sample that is processed at a right angle to the longitudinal direction of the material, and the comparative specimen 1-2 is the comparative specimen 1 with respect to the longitudinal direction of the material. A sample processed in parallel was used. Table 8 shows the measurement results of the width of the wear scar at each wear rate for each specimen.

試験条件
試験機名:大越式迅速摩耗試験機
摩耗距離:100000mm(100m)
最終荷重:2.1kgf
摩耗速度:0.17、0.61、1.14、1.64、2.37、4.36m/sec
相手材:SUS304(リング)
Test conditions Test machine name: Ogoshi type rapid wear tester Wear distance: 100,000mm (100m)
Final load: 2.1kgf
Wear rate: 0.17, 0.61, 1.14, 1.64, 2.37, 4.36 m / sec
Mating material: SUS304 (ring)

前記の耐磨耗性試験結果によれば、本発明供試体1は、比較供試体1−1及び1−2と略同等又はそれ以上の優れた耐磨耗性を奏した。   According to the results of the abrasion resistance test, the specimen 1 of the present invention exhibited excellent abrasion resistance substantially equal to or higher than that of the comparative specimens 1-1 and 1-2.

〔その他の物性対比試験〕
本発明供試体1及び2並びに比較供試体1及び2についてヤング率その他の物性を測定し、その測定結果を以下の表9に示す。
[Other physical property comparison tests]
The Young's modulus and other physical properties of the inventive specimens 1 and 2 and the comparative specimens 1 and 2 were measured, and the measurement results are shown in Table 9 below.

前記の物性対比試験結果によれば、本発明供試体1及び2は、比較供試体1及び2と略同等の物性を奏した。   According to the physical property comparison test results, the specimens 1 and 2 of the present invention exhibited substantially the same physical properties as the comparative specimens 1 and 2.

図1(A)は、本発明供試体1に係る黄銅合金の金属組織を示す顕微鏡写真(×500)、同図(B)は前記金属組織におけるビスマスの分散状態を示す顕微鏡写真(×500)である。FIG. 1 (A) is a micrograph (× 500) showing a metal structure of a brass alloy according to the specimen 1 of the present invention, and FIG. 1 (B) is a micrograph (× 500) showing a dispersion state of bismuth in the metal structure. It is. 図2(A)、(B)及び(C)は、本発明供試体1における切込み量0.2mm、0.4mm及び1.0mmの各場合に生じた切粉の写真である。2 (A), (B) and (C) are photographs of chips produced in each case of the depth of cut of 0.2 mm, 0.4 mm and 1.0 mm in the specimen 1 of the present invention. 図3(A)、(B)及び(C)は、本発明供試体2における切込み量0.2mm、0.4mm及び1.0mmの各場合に生じた切粉の写真である。3 (A), (B) and (C) are photographs of chips produced in each case of the depth of cut of 0.2 mm, 0.4 mm and 1.0 mm in the specimen 2 of the present invention. 図4(A)、(B)及び(C)は、比較供試体1における切込み量0.2mm、0.4mm及び1.0mmの各場合に生じた切粉の写真である。4 (A), (B) and (C) are photographs of chips produced in each case of the cutting depth of 0.2 mm, 0.4 mm and 1.0 mm in the comparative specimen 1. FIG. 図5(A)及び(B)は、600℃〜800度の各加熱温度において実施された鍛造試験に供された本発明供試体1及び比較供試体2における割れなし広がり状態に平打ちされた状態を示す断面写真である。5 (A) and 5 (B) were flattened in a crack-free spread state in the specimen 1 of the present invention and the comparative specimen 2 subjected to a forging test conducted at each heating temperature of 600 ° C. to 800 ° C. It is a cross-sectional photograph which shows a state. 図6は、耐脱亜鉛腐食性試験に供された本発明供試体2の脱亜鉛腐食状態を示す顕微鏡写真(×100)である。FIG. 6 is a micrograph (× 100) showing the dezincification corrosion state of the specimen 2 of the present invention subjected to the dezincification corrosion resistance test.

Claims (4)

60.0〜62.50wt%の銅(Cu)、0.4〜2.0wt%のビスマス(Bi)、0.10wt%以下の鉛(Pb)、0.2〜1.0wt%の錫(Sn)、0.01〜0.05wt%のリン(P)及び0.1wt%以下の鉄(Fe)並びに残部の亜鉛(Zn)及び不可避不純物からなる金属組成を有し、熱処理によりβ相がその周囲をα相で囲まれて孤立した状態にある金属組織を有することを特徴とする耐脱亜鉛腐食性及び熱間鍛造性に優れた無鉛快削性黄銅合金。 60.0-62.50 wt% copper (Cu), 0.4-2.0 wt% bismuth (Bi), 0.10 wt% or less lead (Pb), 0.2-1.0 wt% tin ( Sn), 0.01-0.05 wt% phosphorus (P), 0.1 wt% or less iron (Fe), the balance zinc (Zn), and a metal composition consisting of inevitable impurities, and β phase is formed by heat treatment. A lead-free free-cutting brass alloy excellent in dezincification corrosion resistance and hot forgeability, characterized by having an isolated metal structure surrounded by an α phase. 金属組成が、60.0〜61.0wt%の銅(Cu)、0.4〜2.0wt%のビスマス(Bi)、0.10wt%以下の鉛(Pb)、0.5〜0.7wt%の錫(Sn)、0.01〜0.05wt%のリン(P)及び0.1wt%以下の鉄(Fe)並びに残部の亜鉛(Zn)及び不可避不純物からなる請求項1に記載の耐脱亜鉛腐食性及び熱間鍛造性に優れた無鉛快削性黄銅合金。 Metal composition is 60.0-61.0 wt% copper (Cu), 0.4-2.0 wt% bismuth (Bi), 0.10 wt% or less lead (Pb), 0.5-0.7 wt% 2. Tin resistance (Sn), 0.01-0.05 wt% phosphorus (P), 0.1 wt% or less iron (Fe), and the balance zinc (Zn) and inevitable impurities. Lead-free free-cutting brass alloy with excellent dezincification corrosion resistance and hot forgeability. 61.0〜62.50wt%の銅(Cu)、0.4〜2.0wt%のビスマス(Bi)、0.10wt%以下の鉛(Pb)、0.5〜1.0wt%の錫(Sn)、0.01〜0.05wt%のリン(P)、0.1wt%以下の鉄(Fe)及び0.02〜0.25wt%のアンチモン(Sb)並びに残部の亜鉛(Zn)及び不可避不純物からなる金属組成を有し、熱処理によりβ相がその周囲をα相で囲まれて孤立した状態にある金属組織を有することを特徴とする耐脱亜鉛腐食性及び熱間鍛造性に優れた無鉛快削性黄銅合金。 61.0-62.50 wt% copper (Cu), 0.4-2.0 wt% bismuth (Bi), 0.10 wt% or less lead (Pb), 0.5-1.0 wt% tin ( Sn), 0.01-0.05 wt% phosphorus (P), 0.1 wt% or less iron (Fe) and 0.02-0.25 wt% antimony (Sb) and the balance zinc (Zn) and inevitable Excellent anti-dezincing corrosion resistance and hot forgeability, characterized by having a metal composition consisting of impurities and having a metal structure in which the β phase is surrounded by the α phase and isolated by heat treatment Lead-free free-cutting brass alloy. 溶製、保持された請求項1、2又は3に記載の金属組成を有する銅基合金の溶湯から横型連続鋳造により鋳塊を鋳造し、引出しする工程と、得られた鋳塊を600〜730℃の温度で熱間押出しし又は該温度で熱間押出しし且つ冷間引抜きする工程と、得られた押出又は引抜素材を350〜550℃の温度で1〜8時間焼鈍し、徐冷する工程とを含み、それらの熱処理によりβ相がその周囲をα相で囲まれて孤立した状態にある金属組織を有するようにしたことを特徴とする耐脱亜鉛腐食性及び熱間鍛造性に優れた無鉛快削性黄銅合金の製造方法。
A step of casting and drawing an ingot by horizontal continuous casting from a molten copper-base alloy having the metal composition according to claim 1, 2 or 3, and drawing the obtained ingot to 600 to 730 A step of hot extrusion at a temperature of ° C or a hot extrusion at that temperature and cold drawing, and a step of annealing the obtained extruded or drawn material at a temperature of 350 to 550 ° C for 1 to 8 hours and gradually cooling The β-phase has an isolated metal structure surrounded by the α-phase by heat treatment thereof, and is excellent in dezincification corrosion resistance and hot forgeability A method for producing a lead-free free-cutting brass alloy.
JP2005148597A 2005-05-20 2005-05-20 Lead-free free-cutting brass alloy and method for producing the same Active JP4184357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148597A JP4184357B2 (en) 2005-05-20 2005-05-20 Lead-free free-cutting brass alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005148597A JP4184357B2 (en) 2005-05-20 2005-05-20 Lead-free free-cutting brass alloy and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008134419A Division JP4266039B2 (en) 2008-05-22 2008-05-22 Method for producing lead-free free-cutting brass alloy

Publications (2)

Publication Number Publication Date
JP2006322059A true JP2006322059A (en) 2006-11-30
JP4184357B2 JP4184357B2 (en) 2008-11-19

Family

ID=37541947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148597A Active JP4184357B2 (en) 2005-05-20 2005-05-20 Lead-free free-cutting brass alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP4184357B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007657A (en) * 2007-06-29 2009-01-15 Joetsu Bronz1 Corp Lead-free free-cutting copper alloy, and lead-free free-cutting copper alloy for continuous casting
US8273192B2 (en) 2008-06-11 2012-09-25 Xiamen Lota International Co., Ltd. Lead-free, bismuth-free free-cutting phosphorous brass alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE538645C2 (en) * 2013-11-13 2016-10-11 Nordic Brass Gusum Ab Cutability-enhanced brass including ceramic nanoparticles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135618A (en) * 1978-04-13 1979-10-22 Sumitomo Metal Mining Co Cuttable presssformable brass bismuth alloy
JPS60194035A (en) * 1984-03-16 1985-10-02 Sanpo Shindo Kogyo Kk Corrosion resistant copper alloy
JPH07197150A (en) * 1993-12-30 1995-08-01 Sanpo Shindo Kogyo Kk Corrosion resistant copper group alloy material
JPH07310133A (en) * 1994-05-12 1995-11-28 Chuetsu Gokin Chuko Kk Leadless free-cutting brass alloy
JP2000169919A (en) * 1998-12-04 2000-06-20 Sanbo Copper Alloy Co Ltd Lead-free copper base alloy material
JP2001059123A (en) * 1999-08-24 2001-03-06 Hitachi Alloy Kk Lead-free free-cutting copper alloy material
JP2002003967A (en) * 2000-06-26 2002-01-09 Sumitomo Light Metal Ind Ltd Lead-free free cutting brass excellent in dezincification corrosion resistance and its production method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135618A (en) * 1978-04-13 1979-10-22 Sumitomo Metal Mining Co Cuttable presssformable brass bismuth alloy
JPS60194035A (en) * 1984-03-16 1985-10-02 Sanpo Shindo Kogyo Kk Corrosion resistant copper alloy
JPH07197150A (en) * 1993-12-30 1995-08-01 Sanpo Shindo Kogyo Kk Corrosion resistant copper group alloy material
JPH07310133A (en) * 1994-05-12 1995-11-28 Chuetsu Gokin Chuko Kk Leadless free-cutting brass alloy
JP2000169919A (en) * 1998-12-04 2000-06-20 Sanbo Copper Alloy Co Ltd Lead-free copper base alloy material
JP2001059123A (en) * 1999-08-24 2001-03-06 Hitachi Alloy Kk Lead-free free-cutting copper alloy material
JP2002003967A (en) * 2000-06-26 2002-01-09 Sumitomo Light Metal Ind Ltd Lead-free free cutting brass excellent in dezincification corrosion resistance and its production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007657A (en) * 2007-06-29 2009-01-15 Joetsu Bronz1 Corp Lead-free free-cutting copper alloy, and lead-free free-cutting copper alloy for continuous casting
US8273192B2 (en) 2008-06-11 2012-09-25 Xiamen Lota International Co., Ltd. Lead-free, bismuth-free free-cutting phosphorous brass alloy

Also Published As

Publication number Publication date
JP4184357B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
JP4266039B2 (en) Method for producing lead-free free-cutting brass alloy
EP1600517B1 (en) Lead-free, free-cutting copper alloys
JP3966896B2 (en) Brass
EP1038981B1 (en) Free-cutting copper alloy
CA2850053C (en) Leadless free-cutting copper alloy and method for producing the same
JP6391201B2 (en) Free-cutting copper alloy casting and method for producing free-cutting copper alloy casting
JP2004244672A (en) Copper-base alloy with excellent dezincification resistance
JP5847326B2 (en) Brass alloy, processed parts and wetted parts
JP6795872B1 (en) Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
JPWO2012057055A1 (en) Pressure-resistant and corrosion-resistant copper alloy, brazed structure, and method for producing brazed structure
JP6799305B1 (en) Method for manufacturing free-cutting copper alloy castings and free-cutting copper alloy castings
US7056396B2 (en) Copper/zinc alloys having low levels of lead and good machinability
JP4620963B2 (en) Brass, manufacturing method thereof, and parts using the same
JP2021511435A (en) Free-cutting lead-free copper alloy with no added lead and bismuth
JP5143948B1 (en) Lead-free brass alloy for hot working
KR101301290B1 (en) Brass alloy of unleaded free cutting with advanced corrosion resistance and superplastic formability and shape memory ability
JP4184357B2 (en) Lead-free free-cutting brass alloy and method for producing the same
JP2003247035A (en) Copper alloy having excellent stress corrosion cracking resistance and dezincification resistance and production method thereof
JPWO2012140977A1 (en) Copper-based alloy with excellent forging, stress corrosion cracking resistance and dezincification corrosion resistance
JP5513230B2 (en) Copper-base alloy for casting
JP6796355B1 (en) Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
JP2011038130A (en) Aluminum alloy having excellent machinability and high temperature embrittlement resistance
KR20120042483A (en) Brass alloy with corrosion resistance containing little lead
JP2005248303A (en) Leadless free-cutting brass casting and method for producing leadless free-cutting brass article
KR20040062314A (en) Composition of Unleaded Free Cutting Brass with Advenced Corrosion Resistance

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070417

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070921

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4184357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140912

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350