JP7214336B2 - X線管内の相対的なベアリングシャフトの撓みを減少させるためのシステムおよび方法 - Google Patents

X線管内の相対的なベアリングシャフトの撓みを減少させるためのシステムおよび方法 Download PDF

Info

Publication number
JP7214336B2
JP7214336B2 JP2017163987A JP2017163987A JP7214336B2 JP 7214336 B2 JP7214336 B2 JP 7214336B2 JP 2017163987 A JP2017163987 A JP 2017163987A JP 2017163987 A JP2017163987 A JP 2017163987A JP 7214336 B2 JP7214336 B2 JP 7214336B2
Authority
JP
Japan
Prior art keywords
shaft
ray tube
bearing
stationary member
relative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017163987A
Other languages
English (en)
Other versions
JP2018067529A (ja
Inventor
ジョン・ジェームズ・マッケイブ
マイケル・スコット・ヘバート
イアン・ストライダー・ハント
アンドリュー・トーマス・トリスカリ
ケビン・シェーン・クルーズ
アレクサンダー・トーマス・ライアン
アドルフォ・デルガド・マルケス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2018067529A publication Critical patent/JP2018067529A/ja
Application granted granted Critical
Publication of JP7214336B2 publication Critical patent/JP7214336B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/101Arrangements for rotating anodes, e.g. supporting means, means for greasing, means for sealing the axle or means for shielding or protecting the driving
    • H01J35/1017Bearings for rotating anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/101Arrangements for rotating anodes, e.g. supporting means, means for greasing, means for sealing the axle or means for shielding or protecting the driving
    • H01J35/1017Bearings for rotating anodes
    • H01J35/104Fluid bearings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/10Drive means for anode (target) substrate
    • H01J2235/1006Supports or shafts for target or substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/10Drive means for anode (target) substrate
    • H01J2235/1046Bearings and bearing contact surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/10Drive means for anode (target) substrate
    • H01J2235/1046Bearings and bearing contact surfaces
    • H01J2235/106Dynamic pressure bearings, e.g. helical groove type

Landscapes

  • X-Ray Techniques (AREA)
  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Support Of The Bearing (AREA)

Description

本明細書に開示する主題は、X線管に関し、より具体的には、相対的なベアリングシャフトの撓みを最小限にし、および/またはロータの動的モードを制御するための機構に関する。
様々な診断システムおよび他のシステムが、放射線源としてX線管を利用することができる。医用撮像システムでは、例えば、X線管は、X線放射源として投影X線システム、蛍光X線システム、トモシンセシスシステム、およびコンピュータ断層撮影(CT)システムで使用される。放射線は、検査シーケンスまたは撮像シーケンス中に制御信号に応答して放射される。放射線は人間の患者などの関心対象を横断し、放射線の一部は検出器または写真乾板に衝突して、そこで画像データが収集される。従来の投影X線システムでは、写真乾板は、その後現像されて、画像が生成され、この画像は、診断目的のために放射線科医または主治医によって使用され得る。デジタルX線システムでは、デジタル検出器が、検出器表面の個別のピクセル領域に衝突する放射線の量または強度を表す信号を生成する。CTシステムでは、一連の検出器素子を含む検出器アレイが、ガントリが患者の周りに配置される際に、様々な位置を通して同様の信号を生成する。
アノードアセンブリ(またはターゲットアセンブリ)は、一般的に、X線管の動作中にアノードの回転を引き起こすために、ロータを少なくとも部分的に囲むX線管の外側のロータおよびステータを含む。アノードはベアリングによって回転するように支持され、ベアリングが回転するとアノードを回転させる。ベアリングは、通常、シャフトと、アノードが取り付けられているシャフトの周りに配置されたベアリングスリーブと、を含む。X線システムの動作中には、シャフトは、その表面に沿って(例えば、CTガントリ上で回転するX線管からの遠心力のために)半径方向荷重を受け、その荷重は、シャフトの曲げモーメントおよび相対的な撓みを引き起こし、シャフトを曲げてベアリングスリーブに接触または擦れさせる。時間が経つと、ベアリング表面が摩耗して破損する。ベアリングの相対的な撓みはまた、使用可能な最大偏心量を減少させ、シャフトの荷重運搬能力を制限する。加えて、望ましくないロータ動的モードも、シャフトの摩耗に寄与し得る。
米国特許第8582722号明細書
第1の実施形態によれば、X線管が提供される。X線管は、アノードに結合するように構成されたベアリングを含む。ベアリングは、固定部材と、X線管の動作中に固定部材に対して回転するように構成された回転部材と、固定部材の表面に沿った曲げモーメントを最小にして、X線管の動作中の半径方向荷重に起因する回転部材に対する固定部材の撓みを減少させるように構成された支持機構と、を含む。
第2の実施形態によれば、X線管が提供される。X線管は、アノードに結合するように構成されたベアリングを含む。ベアリングは、固定部材と、X線管の動作中に固定部材に対して回転するように構成された回転部材と、固定部材の長手方向の長さに沿って固定部材内に配置されたシャフトと、を含み、シャフトは、固定部材の表面に沿った曲げモーメントを最小にして、X線管の動作中の半径方向荷重に起因する回転部材に対する固定部材の撓みを減少させるように構成される。
第3の実施形態によれば、X線管の製造方法が提供される。本方法は、固定部材と、X線管の動作中に固定部材に対して回転するように構成された回転部材と、を含むベアリングを含むX線管において、固定部材の表面に沿った曲げモーメントを最小にして、X線管の動作中の半径方向荷重に起因する回転部材に対する固定部材の撓みを減少させるように構成された支持機構をベアリング内に配置するステップを含む。
本主題のこれらの、ならびに他の特徴、態様および利点は、添付の図面を参照しつつ以下の詳細な説明を読めば、よりよく理解されよう。添付の図面では、図面の全体にわたって、類似する符号は類似する部分を表す。
本開示による、支持機構がベアリングのシャフトの表面に沿った曲げモーメント(ひいてはベアリングスリーブに対する相対的な撓み)を最小にする、X線管の一実施形態の概略図である。 X線管の動作中のベアリングのシャフトへの荷重の影響を示す概略図である。 シャフトの表面に沿った曲げモーメントを最小にするための支持機構が存在する場合の、X線管の動作中のベアリングのシャフトへの荷重の影響の一実施形態の概略図である。 シャフト内の支持機構(例えば、凹部)を有するX線管内のベアリングの一実施形態の概略図である。 シャフト内の支持機構(例えば、凹部およびキャビティ)を有するX線管内のベアリングの一実施形態の概略図である。 図4および図5の線6-6に沿った、シャフト内の支持機構(例えば、凹部またはキャビティ)の一実施形態の断面図である。 図4および図5の線6-6に沿った、シャフト内の支持機構(例えば、複数の凹部またはキャビティ)の一実施形態の断面図である。 シャフト内の支持機構(例えば、単一部品からなる二次シャフト)を有するX線管内のベアリングの一実施形態の概略図である。 シャフト内の支持機構(例えば、2つの部品からなる二次シャフト)を有するX線管内のベアリングの一実施形態の概略図である。 シャフト内およびシャフト上の支持機構(例えば、二次シャフト)を有するX線管内のベアリングの一実施形態の概略図である。 環状支持構造体の一実施形態の端面図である。 図11の環状支持構造体の側面図である。 環状支持構造体(例えば、蛇行した可撓性要素を有する)の一実施形態の端面図である。 図13の環状支持構造体の部分斜視図である。 環状支持構造体(例えば、単一の可撓性要素を有する)の一実施形態の部分斜視図である。 図15の環状支持構造体の横断面図である。 環状支持構造体(例えば、リブを有する単一の可撓性要素を有する)の一実施形態の部分斜視図である。 図17の環状支持構造体の横断面図である。 シャフト内およびシャフト上の支持機構(例えば、その周りに支持構造体が配置された二次シャフト)を有するX線管内のベアリングの実施形態の概略図である。
以下で、1つまたは複数の具体的な実施形態を説明する。これらの実施形態の簡潔な説明を提供しようと努力しても、実際の実施のすべての特徴を本明細書に記載することができるというわけではない。エンジニアリングまたは設計プロジェクトなどの実際の実施の開発においては、開発者の特定の目的を達成するために、例えばシステム関連および事業関連の制約条件への対応など実施に特有の決定を数多くしなければならないし、また、これらの制約条件は実施ごとに異なる可能性があることを理解されたい。さらに、このような開発努力は、複雑で時間がかかるが、それでもなお本開示の利益を有する当業者にとっては、設計、製作、および製造の日常的な仕事であることを理解されたい。
本主題の様々な実施形態の要素を導入する場合、冠詞「1つの(a)」、「1つの(an)」、「前記(the)」および「前記(said)」は、1つまたは複数の要素が存在することを意味することを意図している。「含む(comprising)」、「含む(including)」および「有する(having)」という用語は、包括的であることを意図し、記載の要素以外にもさらなる要素が存在してもよいことを意味する。さらに、以下の説明における任意の数値例は非限定的なものであり、したがって付加的な数値、範囲および百分率は開示する実施形態の範囲内である。
本明細書に開示された実施形態は、ベアリング(液体金属ベアリング、ボールベアリング、ジャーナルベアリング、螺旋溝ベアリングなど)のシャフトの表面に沿った曲げモーメント(ひいてはベアリングスリーブに対する撓み)を最小にする支持機構を提供する。特定の実施形態では、支持機構は、シャフトの一端または両端に隣接する凹部(例えば、レリーフアンダーカット)を含むことができる。他の実施形態では、支持機構は、シャフト内に形成されたキャビティを含むことができる。特定の実施形態では、支持機構は、シャフトの長手方向の長さに沿って延在するシャフト内に配置された二次シャフトを含むことができる。支持機構は、二次シャフトから半径方向に延在し、相対的な撓みを低減するように最適化された位置でシャフトの内面に接触する1つまたは複数の突起を含むことができる。シャフト内に配置された二次シャフトを有する特定の実施形態では、二次シャフトとシャフトとの間で二次シャフトの周りに1つまたは複数の環状支持構造体を配置することができる。環状支持構造体は、シャフトのロータ動力学、ひいてはベアリングの制御を可能にするために利用することができる。特定の実施形態では、環状支持構造体は、真空をシールし、シャフトの端部の荷重を低減するために、シャフトの周りに(例えばシャフトとシャフトの端部のX線管のエンベロープとの間に)配置することができる。開示する実施形態は、シャフトの表面に沿った曲げモーメントを最小にすることによって、ベアリングスリーブに対するシャフトの撓み(すなわち、相対的な撓み)を最小にすることができる。これは、シャフトとベアリングスリーブとの間の擦れを最小化または排除する結果となり得る。さらに、シャフトの使用可能な最大偏心量および荷重運搬能力を高めることができる。
本開示では、ベアリング(液体金属ベアリング、ボールベアリング、ジャーナルベアリング、螺旋溝ベアリングなど)のシャフト表面に沿った曲げモーメント(ひいてはベアリングスリーブに対する相対的な撓み)を最小にする支持機構を使用することができる、非限定的な実施形態が図1に関して説明されている。支持機構の変形例を、図4~図10および図19に関して説明する。支持機構はX線管に関して説明されているが、支持機構は他の装置および/または用途でベアリングと共に使用されてもよいことに留意されたい。前述したことを念頭に置いて、図1は、本手法による、ベアリング(液体金属ベアリング、ボールベアリング、ジャーナルベアリング、螺旋溝ベアリングなど)のシャフト(例えば、固定部材)の表面に沿った曲げモーメント(ひいては、ベアリングスリーブ(例えば、回転部材)に対する相対的な撓み)を最小にする支持機構を含むことができるX線管10の一実施形態を示す。図示する実施形態では、X線管10は、アノードアセンブリ12およびカソードアセンブリ14を含む。X線管10は、高電圧が存在し得る環境と比較して、比較的低い圧力(例えば、真空)の領域を画定するエンベロープ16内のアノードアセンブリおよびカソードアセンブリによって支持される。エンベロープ16は、エンベロープ16を取り囲むオイルなどの冷却媒体で満たされたケーシング(図示せず)内にあってもよい。冷却媒体はまた、高電圧絶縁を提供してもよい。
アノードアセンブリ12は、一般に、動作中にアノード20を回転させるために、ロータ18と、ロータ18を少なくとも部分的に囲むX線管10の外側のステータ(図示せず)と、を含む。アノード20はベアリング22によって回転するように支持され、ベアリング22が回転するとアノード20を回転させる。アノード20は、円盤状などの環状形状をしており、その中央にベアリング22を受け入れるための環状の開口部を有している。一般に、ベアリング22は、シャフト24などの固定部分と、アノード20が取り付けられるベアリングスリーブ26などの回転部分と、を含む。シャフト24は、ここでは固定シャフトの文脈で説明しているが、本手法は、シャフト24が回転シャフトである実施形態にも適用可能であることに留意されたい。このような構成では、シャフトが回転するとX線ターゲットが回転することに留意されたい。特定の実施形態では、ベアリング22は、ジャーナルベアリング、ボールベアリング、または螺旋溝ベアリングであってもよい。前述のことを念頭に置いて、一実施形態では、ベアリング22は、ベアリングスリーブ26とシャフト24との間に配置された液体金属潤滑剤を有することができる。実際、ベアリング22のいくつかの実施形態は、2009年3月25日に出願された米国特許出願第12/410518号「INTERFACE FOR LIQUID METAL BEARING AND METHOD OF MAKING SAME」に記載されているものに準拠することができ、上記出願の全開示は、すべての目的のためにその全体が参照により本明細書に組み入れられる。シャフト24は、任意選択的に冷媒流路28を含むことができ、冷媒流路28を通ってオイルなどの冷媒が流れて、ベアリング22を冷却することができる。図示する実施形態では、冷媒流路28は、ストラドル構成として示されているX線管10の長手方向の長さに沿って延在する。しかし、他の実施形態では、冷媒流路28は、例えば、撮像システムに配置されたときにX線管10がカンチレバーで支持される構成などでは、X線管10の一部のみを通って延在してもよいことに留意されたい。
動作中、有利なことに、ベアリング22の回転により、ターゲットまたは焦点面30が形成されたアノード20の前方部分を、電子ビーム32によって連続的ではなく周期的に打撃することが可能になる。そのような定期的な衝撃は、1つまたは複数のアノード故障モード(例えば、ひび割れ、変形、破裂)をもたらす可能性のある、結果的に生じる熱エネルギーが、集中せずに分散することを可能にする。一般的に、アノード20は高速(例えば、100~200Hz)で回転することができる。アノード20は、タングステン、モリブデン、銅などのいくつかの金属もしくは複合材料、または電子が衝突したときにBremsstrahlung(すなわち、減速放射)に寄与する任意の材料を含むように製造することができる。アノードの表面材料は、通常、アノード20に衝突する電子によって生じる熱に耐えるように、比較的高い耐熱値を有するように選択される。さらに、カソードアセンブリ14とアノード20との間の空間は、他の原子との電子衝突を最小にし、電位を最大にするために排気されてもよい。いくつかのX線管では、カソードアセンブリ14とアノード20との間に160kVを超える電圧が生成され、カソードアセンブリ14によって放出された電子がアノード20に引き寄せられる。
電子ビーム32は、カソードアセンブリ14、より具体的には、一連の電気リード線36を介して1つまたは複数の電気信号を受け取るカソード34によって生成される。電気信号は、1つまたは複数のエネルギーで1つまたは複数の周波数でカソード34に電子ビーム32を放出させるタイミング/制御信号であってもよい。さらに、電気信号は、カソード34とアノード20との間の電位を少なくとも部分的に制御することができる。カソード34は、中央絶縁シェル38を含み、そこからマスク40が延在する。マスク40はリード線36を囲み、リード線36はマスク40の端部に取り付けられたカソードカップ42まで延在する。いくつかの実施形態では、カソードカップ42は、電子ビーム32を形成するためにカップ42内の熱電子フィラメントから放出された電子を集束する静電レンズとして働く。
制御信号がリード線36を介してカソード34に伝達されると、カップ42内の熱電子フィラメントが加熱され、電子ビーム32が生成される。ビーム32は、アノード20の焦点面30に衝突し、X線放射46を生成し、X線放射46は、X線管10のX線開口部48の外へ向きを変える。X線放射46の方向および向きは、X線管10の外部で生成される磁場によって、またはカソード34での静電手段などによって制御することができる。生成される場は、一般に、X線放射46を、図示する円錐形のビームなどの集束ビームに成形することができる。X線放射46は、管10を出て、一般に、検査手順の間、関心対象に向かって導かれる。
上述したように、X線管10は、X線放射源がガントリ上の関心対象の周りを回転するCT撮像システムなど、X線管10が患者に対して変位するシステムで用いることができる。X線管10がガントリに沿って回転すると、遠心力などの様々な力がベアリング22に働く。シャフト上の荷重(例えば、半径方向荷重)は、状況によっては、シャフト24の表面に沿って曲げモーメントを生じさせ、シャフト24のベアリングスリーブ26に対する曲げおよび撓み(すなわち相対的な撓み)をもたらす。この相対的な撓みにより、シャフト24がスリーブ26と擦れて、シャフト24とスリーブ26の両方が経時的に摩耗することがある。曲げモーメントによる相対的な撓みの影響を緩和するために、本実施形態は、X線管10の動作中にベアリング22のシャフト24の表面に沿う曲げモーメント(ひいては相対的な撓み)を最小にする1つまたは複数の支持機構を提供する。
図2は、曲げモーメントを最小にするための支持機構がない場合のX線管10の動作中のベアリング22のシャフト24への荷重の影響を示す概略図である。図2は、X線管10の動作中に荷重49(例えば、半径方向荷重)を受ける可能性があるシャフト24に沿った位置の非限定的な例を示す。これらの荷重49の位置は、ベアリング22およびX線管10の両方の動作条件および機械的構造に応じて、シャフト24に沿って変化してもよいことに留意されたい。図2はまた、せん断図50、曲げモーメント図52、および相対的な撓み図54を示す。せん断図50は、シャフト24(支持機構がない場合)が、その長手方向の長さに沿って、シャフト24の一部を一方向に移動させ、シャフト24の他の部分を別の方向に移動させるせん断力(すなわち、整列していない力)を受けることを示す。モーメント図52は、シャフト24(支持機構がない場合)が、長手方向の長さに沿って、シャフト24を屈曲させる曲げモーメントを受けることを示す。相対的な撓み図54は、シャフト24(支持機構がない場合)が、その長手方向の長さに沿って、せん断力および曲げモーメントに起因する撓み(例えば、ベアリングスリーブ26に対する相対的な撓み)を受け、それによってシャフト24がベアリングスリーブ26にこすりつけられることを示している。
図3は、曲げモーメントを最小にするための支持機構がある場合のX線管10の動作中のベアリング22のシャフト24への荷重の影響を示す概略図である。これらの支持機構は、以下でより詳細に説明するが、シャフト24の一端または両端に隣接してシャフト24内に形成された凹部(例えば、レリーフアンダーカット)、シャフト24内に形成されたキャビティ、またはシャフト24の長手方向の長さに沿って延在するシャフト24内に配置された二次シャフトを含むことができる。二次シャフトを利用する特定の実施形態では、ベアリング22(図19を参照)のロータ動力学を調整または制御するために、二次シャフトの周りに1つまたは複数の環状支持構造体を配置することができる。他の実施形態では、二次シャフトを利用して、シャフト24の端部の周りに(例えば、シャフトとエンベロープ16との間に)1つまたは複数の環状支持構造体を配置して、真空をシールし、シャフト24の端部の荷重を低減することができる。図3は、X線管10の動作中に荷重49(例えば、半径方向荷重)を受ける可能性があるシャフト24に沿った位置(例えば、図2と同じ位置)の非限定的な例を示す。支持機構56の位置を三角形で示している。これらの荷重49の位置ならびに支持機構56の数および位置は、ベアリング22およびX線管10の両方の動作条件および機械的構造に応じて、シャフト24に沿って変化してもよいことに留意されたい。図3はまた、せん断図58、曲げモーメント図60、および相対的な撓み図62を示す。せん断図58は、シャフト24(支持機構56がある場合)が、その長手方向の長さに沿ってせん断力(すなわち、整列していない力)を受けていないことを示している。モーメント図60は、シャフト24(支持機構56がある場合)が長手方向の長さに沿って曲げモーメントを受けていないことを示している。相対的な撓み図62は、シャフト24(支持機構56がある場合)が、せん断力および曲げモーメントが存在しないことに起因して、その長手方向の長さに沿って撓み(例えば、ベアリングスリーブ26に対する相対的な撓み)を受けていないことを示している。特定の実施形態では、支持機構56は、シャフト24の長手方向の長さに沿って作用するせん断力および曲げモーメントを最小にして、シャフトがベアリングスリーブ26に接触または擦れないようにすることができる。支持機構56は、シャフト24の使用可能な最大偏心量および荷重運搬能力を高めることができる。
図4は、シャフト24内の支持機構56(例えば、凹部)を有するX線管10内のベアリング22の一実施形態の概略図である。ベアリング22は、ベアリング22、シャフト24、二次シャフト、および/またはベアリングスリーブ26の長手方向軸70に対する軸方向64、半径方向66、および円周方向68を参照することによって、この図および後の図で説明することができる。一般に、シャフト24およびベアリングスリーブ26は、図1で説明した通りである。図4に示すように、第1の凹部72(例えば、レリーフアンダーカット)は、シャフト24の第1の端部74に隣接してシャフト24内に形成され、第2の凹部76(例えば、レリーフアンダーカット)は、シャフト24の第2の端部78に隣接してシャフト24内に形成される。第1および第2の凹部72、76は、シャフト24の長手方向軸70に対して軸方向64(例えば、部分的に)および円周方向68の両方に延在する。特定の実施形態では、凹部72、76は、長手方向軸70の周りで円周方向68に360°延在してもよい。他の実施形態では、凹部72、76は、長手方向軸70の周りに部分的にのみ延在してもよい。特定の実施形態では、複数の凹部は、同じ軸方向位置で長手方向軸70の周りに部分的に延在してもよい。特定の実施形態では、シャフト24は、シャフト24の単一の端部に隣接する単一の凹部(または単一の軸方向位置にある複数の凹部)のみを含んでもよい。凹部72、76は、シャフト24の表面に沿った曲げモーメントを最小化または緩和して、シャフト24が曲がらないようにする(したがって、相対的な撓みを最小にする)。
図5は、シャフト24内の支持機構56(例えば、キャビティ)を有するX線管10内のベアリング22の一実施形態の概略図である。一般に、シャフト24およびベアリングスリーブ26は、図1で説明した通りである。図5に示すように、凹部72、76に加えて、キャビティ80がシャフト24内に形成(例えば、鋳造)される。キャビティ80は、シャフト24の長手方向軸70に対して軸方向64および円周方向68の両方に延在する。特定の実施形態では、キャビティ80は、長手方向軸70の周りで円周方向68に360°延在してもよい。他の実施形態では、キャビティ80は、長手方向軸70の周りに部分的にのみ延在してもよい。特定の実施形態では、複数のキャビティは、同じ軸方向位置で長手方向軸70の周りに部分的に延在してもよい。特定の実施形態では、共に結合されたときにキャビティ80を画定する、キャビティ80を部分的に画定するそれぞれの端部を各々有する2つのシャフトピースを共に結合することによって、キャビティ80をシャフト24内に形成することができる。キャビティ80は、シャフト24の表面に沿った曲げモーメントを最小化または緩和して、シャフト24が曲がらないようにする(したがって、相対的な撓みを最小にする)。特に、キャビティ80は(凹部72、76と共に)、凹部72、76のみよりも相対的な撓みをさらに低減することができる。
図6は、図4および図5の線6-6に沿った、シャフト24内の支持機構56(例えば、凹部72、76またはキャビティ80)の一実施形態の断面図である。図6に示すように、凹部72、76またはキャビティ80は、シャフト24内の長手方向軸70の周りで円周方向68に360°延在する。特定の実施形態では、凹部72、76またはキャビティ80(例えば、特定の軸方向位置にある単一の凹部またはキャビティ)は、シャフト24内の長手方向軸70の周りで円周方向68にのみ延在してもよい。
図7は、図4および図5の線6-6に沿った、シャフト24内の支持機構56(例えば、複数の凹部72、76、またはキャビティ80)の一実施形態の断面図である。図6に示すように、複数の凹部72、76またはキャビティ80の各々は、単一の軸方向位置でシャフト24内の長手方向軸70の周りで部分的に円周方向68にのみ延在する。単一の軸方向位置における複数の凹部72、76またはキャビティ80の数は、2~10または他の任意の数の間で変化してもよい。
図8は、シャフト24内の支持機構56(例えば、二次シャフト82)を有するX線管10内のベアリング22の一実施形態の概略図である。図8に示すように、二次シャフト82は、シャフト24の長手方向の長さに沿ってシャフト24内に配置されている。二次シャフト82は、一体に形成されている。特定の実施形態では、二次シャフト82は、互いに接合された2つの部品からなる(図9を参照)。二次シャフト82は、X線管10の様々な部品(例えば、ステータカバー、カソードハウジングなどの上のバス)によって支持されてもよい。シャフト24は、ベアリング22の中央部分90に隣接する2つの異なる軸方向位置86、88(例えば、長手方向軸70に対する)に突起84を含む。突起84は、二次シャフト82の外面92から半径方向66に延在し、相対的な撓みを低減するように最適化された位置でシャフト24の内面94と接触する。特定の実施形態では、突起84は、小さな半径方向荷重の下で逆方向の撓みを生成して、より高い半径方向荷重下でのベアリングの撓みを最適化するように構成される。特定の実施形態では、これらは、(例えば、シャフト24、ベアリングスリーブ26、およびシャフト24とベアリングスリーブ26との間に配置された液体金属ベアリング材料の両方に作用する遠心力のために)最も高い流体力学的圧力を受ける場所であってもよい。さらに、突起84の数および位置ならびに剛性は、ベアリング22のロータ動力学を調整または制御するように変化してもよい。各突起84は、長手方向軸70に対して円周方向68および軸方向64の両方に延在する。特定の実施形態では、各突起84は、長手方向軸70に対して二次シャフト82の周りに円周方向68に360度延在する。他の実施形態では、各突起84は、長手方向軸70に対して二次シャフト82の周りで部分的にのみ円周方向68に延在する。特定の実施形態では、突起84を有する軸方向位置の数は、1~10または他の任意の数の間で変化してもよい。特定の実施形態では、各軸方向位置は、単一の突起84を有してもよい。他の実施形態では、各軸方向位置は、長手方向軸70に対して二次シャフト82の周りに部分的に円周方向68にそれぞれ延在する複数の突起84を含んでもよい。特定の実施形態では、二次シャフト82は(突起84の代わりに)、二次シャフト82の周りに(例えば、シャフト24と二次シャフト82との間に)配置された1つまたは複数の環状支持構造体を含む。環状支持構造体の数および位置ならびに剛性は、ベアリング22のロータ動力学を調整または制御するように変化してもよい。二次シャフト82は、X線管10の動作中の半径方向荷重による相対的な撓みを吸収するように構成される。二次シャフト82は、シャフト24の表面に沿った曲げモーメントを最小化または緩和して、シャフト24が曲がらないようにする(したがって、相対的な撓みを最小にする)。
図9は、シャフト24内の支持機構56(例えば、2つの部品からなる二次シャフト82)を有するX線管10内のベアリング22の一実施形態の概略図である。一般に、二次シャフト82は、二次シャフトがそれぞれの端部100、102で互いに固定された2つの部品96、98からなる点を除いて、図2で上述した通りである。特定の実施形態では、2つの部品96、98は、互いに結合されなくてもよい。
上述したように、二次シャフト82を利用する実施形態では、シャフト24とエンベロープ(図示せず)との間でシャフト24の周りに(例えば、シャフト24の端部に隣接して)1つまたは複数の環状支持構造体を配置することができる。図10は、シャフト24内およびシャフト24上の支持機構56(例えば、突起84を有する二次シャフト82)を有するX線管10内のベアリング22の一実施形態の概略図である。図8に示すように、二次シャフト82は、シャフト24の長手方向の長さに沿ってシャフト24内に配置されている。二次シャフト82は、上述のように突起84を有する。図示するように、二次シャフト82は単一部品からなる。特定の実施形態では、二次シャフト82は、互いに接合された2つの部品からなる(図9を参照)。二次シャフト82は、X線管10の様々な部品(例えば、ステータカバー、カソードハウジングなどの上のバス)によって支持されてもよい。環状支持構造体104は、シャフト24の端部109、111に隣接する2つの異なる軸方向位置106、108(例えば、長手方向軸70に対する)で、シャフト24の周りに円周方向68に配置される。環状支持構造体104は、シャフト24の外面113から半径方向66に延在する。環状支持構造体104は、シール真空を提供しながら、シャフト24の端部109、111上の荷重を低減することができる。特定の実施形態では、環状支持構造体104の数およびシャフト24に沿った軸方向位置は変化してもよい。特定の実施形態では、突起84の代わりに、二次シャフト82(図19を参照)は、二次シャフト82の周りに(例えば二次シャフト82とベアリングスリーブ26との間に)配置された、ベアリング22のロータ動力学の調整または制御を可能にする環状支持構造体104を含む。環状支持構造体104の数および軸方向の位置(例えば、二次シャフト82に沿った)ならびに剛性(例えば、異なる軸方向の位置における)は変化してもよい。以下の図11~図18に記載の環状支持構造体は、放電加工、モールド、従来の機械加工、または積層造形法により作製することができる。
図11および図12は、それぞれ環状支持構造体104の一実施形態の端面図および側面図である。環状支持構造体104は、外側リングまたはシリンダ112内に同心配置で配置された内側リングまたはシリンダ110を含む。複数の可撓性要素114(例えば、ばね)が、内側リング110と外側リング112との間に半径方向66に配置されている。可撓性要素114は、長手方向軸70の周りに円周方向68に配置され、外側リング112の内面116と内側リング110の外面118との間で半径方向66に延在する。可撓性要素114の数は、1~30または他の任意の数の範囲であってもよい。可撓性要素114は、長手方向軸70に対して単一または複数の軸方向位置120に配置されてもよい。特定の実施形態では、図11に示すように、突起またはハードストップ122が内側リング110から外側リング112に向かって半径方向66に延在する。突起122は、外側リング112に対する内側リング110の半径方向の移動を制限する。特定の実施形態では、突起122は、外側リング112から内側リング110に向かって半径方向66に延在する。図12に示すように、環状支持構造体104の一方または両方の側面126、128には、1つまたは複数のシール124が配置される。シール124は可撓性である。特定の実施形態では、シール124は、可撓性要素114よりも低い剛性を有してもよい。特定の実施形態では、シール124は、環状支持構造体104が、環状支持構造体がその間に配置される構造体間に密封真空を提供することを助けることを可能にする。
図13および図14は、それぞれ環状支持構造体104(例えば、蛇行した可撓性要素を有する)の一実施形態の端面図および部分斜視図である。環状支持構造体104は、可撓性要素114が蛇行形状を有することを除いて、図11および図12に一般的に記載した通りである。図示するように、蛇行形状の可撓性要素114は、長手方向軸70の周りに円周方向68に360°延在する単一構造体130の一部である。単一構造体130は、複数の蛇行形状の可撓性要素114を含む。構造体130は、側面126から側面128まで軸方向64に延在する。図示するように、内側リング110、外側リング112、および構造体130は、共に一体化されて単一の構造体を形成する。図14に示すように、シール124は、環状支持構造体104の側面128に配置される。特定の実施形態では、1つまたは複数のシール124は、環状支持構造体104の一方または両方の側面126、128上に配置されてもよい。シール124は、図11および図12で上述した通りである。
図15および図16は、それぞれ環状支持構造体104(例えば、単一の可撓性要素を有する)の一実施形態の部分斜視図および横断面図である。環状支持構造体104は、環状支持構造体104が単一の可撓性要素114を含むことを除いて、図11および図12に一般的に記載した通りである。図示するように、可撓性要素114は環状に形成されている。可撓性要素114は、外側リング112を越えて軸方向64に延在し、内側リング110を越えて反対の軸方向64に延在する。図示するように、内側リング110、外側リング112、および可撓性要素114は、共に一体化されて単一の構造体を形成する。特定の実施形態では、図17および図18に示すように、可撓性要素114および内側リング110の両方は、リブ132を含む。特定の実施形態では、可撓性要素または内側リング110のみがリブ132を含む。図18に示すように、シール134(例えば、環状シール)が可撓性要素114と内側リング110との間に配置され、密封真空を提供することができる。
開示した実施形態の技術的効果は、ベアリング(液体金属ベアリング、ボールベアリング、ジャーナルベアリング、螺旋溝ベアリングなど)のシャフトの表面に沿った曲げモーメント(ひいてはベアリングスリーブに対する相対的な撓み)を最小にする支持機構を含む。特定の実施形態では、支持機構は、シャフトの一端または両端に隣接する凹部(例えば、レリーフアンダーカット)を含むことができる。他の実施形態では、支持機構は、シャフト内に形成されたキャビティを含むことができる。特定の実施形態では、支持機構は、固定部材の長手方向の長さに沿って延在するシャフト内に配置された二次シャフトを含むことができる。二次シャフトは、シャフトから半径方向に延在し、相対的な撓みを低減する最適な位置でシャフトの内面に接触する1つまたは複数の突起を含むことができる。特定の実施形態では、1つまたは複数の環状支持構造体は、ベアリングのロータ動力学の制御を可能にするために、二次シャフトの周りに配置されてもよい。開示する実施形態は、シャフトの表面に沿った曲げモーメントを最小にすることによって、ベアリングスリーブに対するシャフトの撓み(すなわち、相対的な撓み)を最小にすることができる。これは、シャフトとベアリングスリーブとの間の擦れを最小化または排除する結果となり得る。さらに、シャフトの使用可能な最大偏心量および荷重運搬能力を高めることができる。
本明細書は、主題を開示するために実施例を用いており、最良の形態を含んでいる。また、いかなる当業者も本主題を実施することができるように実施例を用いており、任意のデバイスまたはシステムを製作し使用し、任意の組み込まれた方法を実行することを含んでいる。主題の特許可能な範囲は、特許請求の範囲によって定義され、当業者が想到するその他の実施例を含むことができる。そのような他の実施例は、特許請求の範囲の文言と異ならない構造体要素を有する場合、または、特許請求の範囲の文言と実質的な差のない等価の構造体要素を含む場合に、特許請求の範囲内にあることが意図されている。
10 X線管
12 アノードアセンブリ
14 カソードアセンブリ
16 エンベロープ
18 ロータ
20 アノード
22 ベアリング
24 シャフト
26 ベアリングスリーブ
28 冷媒流路
30 焦点面
32 電子ビーム
34 カソード
36 電気リード線
38 中央絶縁シェル
40 マスク
42 カソードカップ
46 X線放射
48 X線開口部
49 荷重
50 せん断図
52 曲げモーメント図
54 相対的な撓み図
56 支持機構
58 せん断図
60 曲げモーメント図
62 相対的な撓み図
64 軸方向
66 半径方向
68 円周方向
70 長手方向軸
72 第1の凹部
74 第1の端部
76 第2の凹部
78 第2の端部
80 キャビティ
82 二次シャフト
84 突起
86 軸方向位置
88 軸方向位置
90 中央部分
92 外面
94 内面
96 部品
98 部品
100 端部
102 端部
104 環状支持構造体
106 軸方向位置
108 軸方向位置
109 端部
110 内側リング
111 端部
112 外側リング
113 外面
114 可撓性要素
116 内面
118 外面
120 軸方向位置
122 ハードストップ、突起
124 シール
126 側面
128 側面
130 単一構造体
132 リブ
134 シール

Claims (18)

  1. X線管(10)であって、
    アノード(20)に結合するように構成されたベアリング(22)を含み、前記ベアリング(22)は、
    固定部材と、
    前記固定部材の外側に設けられ、前記X線管(10)の動作中に前記固定部材に対して回転するように構成された回転部材と、
    前記固定部材内に存在し、前記固定部材の表面に沿った曲げモーメントを最小にして、前記X線管(10)の動作中の半径方向荷重に起因する前記回転部材に対する前記固定部材の撓みを減少させるように構成された支持機構(56)であって、前記固定部材の長手方向の長さに沿って前記固定部材内に配置されたシャフト(82)を含む、支持機構(56)と、を含み、
    前記シャフト(82)が、前記シャフト(82)の外面から前記固定部材の長手方向軸(70)に対して円周方向(68)および半径方向(66)の両方に延在する1つまたは複数の突起(84)を含み、
    前記1つまたは複数の突起(84)が、前記固定部材の内面(94、116)に接触し、曲げモーメントを最小にする位置で前記固定部材を半径方向(66)に支持する、X線管(10)。
  2. X線管(10)であって、
    アノード(20)に結合するように構成されたベアリング(22)を含み、前記ベアリング(22)は、
    固定部材と、
    前記固定部材の外側に設けられ、前記X線管(10)の動作中に前記固定部材に対して回転するように構成された回転部材と、
    前記固定部材内に存在し、前記固定部材の表面に沿った曲げモーメントを最小にして、前記X線管(10)の動作中の半径方向荷重に起因する前記回転部材に対する前記固定部材の撓みを減少させるように構成された支持機構(56)であって、前記支持機構(56)は、前記固定部材の軸方向における第1の端部(74)内に形成された第1の凹部(72)を含み、前記第1の凹部(72)は、前記固定部材の長手方向軸(70)に対して円周方向(68)および軸方向(64)の両方に延在する、支持機構(56)と
    を含む、X線管(10)。
  3. 前記支持機構(56)は、前記固定部材の軸方向における第2の端部(78)内に形成された第2の凹部(76)を含み、前記第2の凹部(76)は、前記固定部材の前記長手方向軸(70)に対して前記円周方向(68)および前記軸方向(64)の両方に延在する、請求項2に記載のX線管(10)。
  4. X線管(10)であって、
    アノード(20)に結合するように構成されたベアリング(22)を含み、前記ベアリング(22)は、
    固定部材と、
    前記固定部材の外側に設けられ、前記X線管(10)の動作中に前記固定部材に対して回転するように構成された回転部材と、
    前記固定部材内に存在し、前記固定部材の表面に沿った曲げモーメントを最小にして、前記X線管(10)の動作中の半径方向荷重に起因する前記回転部材に対する前記固定部材の撓みを減少させるように構成された支持機構(56)であって、前記支持機構(56)は、固定部材内に配置された少なくとも1つのキャビティ(80)を含み、前記少なくとも1つのキャビティ(80)は、前記固定部材の長手方向軸(70)に対して円周方向(68)および軸方向(64)の両方に延在する、支持機構(56)と
    を含む、X線管(10)。
  5. 前記シャフト(82)が、前記シャフトと前記固定部材との間で前記シャフト(82)の周りに配置された少なくとも1つの環状支持構造体(104)を含む、請求項1に記載のX線管(10)。
  6. 前記1つまたは複数の突起(84)は、異なる軸方向位置に第1の突起および第2の突起を含む、請求項1記載のX線管(10)。
  7. 前記シャフト(82)は、単一の部品(96、98)または2つの部品(96、98)を含む、請求項1に記載のX線管(10)。
  8. 少なくとも2つの環状支持構造体(104)が、前記シャフト(82)と前記固定部材との間で前記シャフト(82)の周りに配置され、前記少なくとも2つの環状支持構造体(104)が異なる軸方向位置に配置され、前記環状支持構造体(104)は、前記ベアリング(22)のロータ動力学を制御するように構成される、請求項1に記載のX線管(10)。
  9. 前記少なくともつの環状支持構造体(104)は、外側リング(112)と、内側リング(110)と、前記外側リング(112)と前記内側リング(110)との間に半径方向(66)に配置された少なくとも1つの可撓性要素(114)と、を含む、請求項8に記載のX線管(10)。
  10. 前記少なくともつの環状支持構造体(104)は、前記内側リング(110)から前記外側リング(112)に向かって半径方向(66)に延在する突起(122)を含み、前記突起(122)は、前記外側リング(112)に対する前記内側リング(110)の半径方向(66)の移動を制限するように構成される、請求項9に記載のX線管(10)。
  11. 前記少なくともつの環状支持構造体(104)は、前記環状支持構造体(104)の側面に配置された少なくとも1つのシール(124)を含む、請求項8に記載のX線管(10)。
  12. X線管(10)であって、
    アノード(20)に結合するように構成されたベアリング(22)を含み、前記ベアリング(22)は、
    固定部材と、
    前記固定部材の外側に設けられ、前記X線管(10)の動作中に前記固定部材に対して回転するように構成された回転部材と、
    前記固定部材の長手方向の長さに沿って前記固定部材内に配置されたシャフト(82)と、を含み、
    前記シャフト(82)は、前記固定部材の表面に沿った曲げモーメントを最小にして、前記X線管(10)の動作中の半径方向荷重に起因する前記回転部材に対する前記固定部材の撓みを減少させるように構成され、
    前記シャフト(82)が、前記シャフト(82)の外面から前記固定部材の長手方向軸(70)に対して円周方向(68)および半径方向(66)の両方に延在する1つまたは複数の突起(84)を含み、
    前記1つまたは複数の突起(84)が、前記固定部材の内面(94、116)に接触し、曲げモーメントを最小にする位置で前記固定部材を半径方向(66)に支持する、X線管(10)。
  13. 前記シャフト(82)は、前記半径方向荷重による相対的な撓みを吸収するように構成される、請求項12に記載のX線管(10)。
  14. 少なくとも2つの環状支持構造体(104)が、前記シャフト(82)と前記固定部材との間で前記シャフト(82)の周りに配置され、前記少なくとも2つの環状支持構造体(104)が異なる軸方向位置に配置され、前記環状支持構造体(104)は、前記ベアリング(22)のロータ動力学を制御するように構成される、請求項12に記載のX線管(10)。
  15. X線管(10)の製造方法であって、
    固定部材と、前記固定部材の外側に設けられ、前記X線管(10)の動作中に前記固定部材に対して回転するように構成された回転部材と、を含むベアリング(22)を含むX線管(10)において、前記固定部材の表面に沿った曲げモーメントを最小にして、前記X線管(10)の動作中の半径方向荷重に起因する前記回転部材に対する前記固定部材の撓みを減少させるように構成された支持機構(56)を前記ベアリング(22)の前記固定部材内に配置するステップを含み、
    前記支持機構(56)はシャフト(82)を有しており、前記シャフト(82)が、前記シャフト(82)の外面から前記固定部材の長手方向軸(70)に対して円周方向(68)および半径方向(66)の両方に延在する1つまたは複数の突起(84)を含み、前記1つまたは複数の突起(84)が、前記固定部材の内面(94、116)に接触し、曲げモーメントを最小にする位置で前記固定部材を半径方向(66)に支持し、
    前記支持機構(56)を前記ベアリング(22)の前記固定部材内に配置するステップが、前記固定部材の長手方向の長さに沿って前記固定部材内に前記シャフト(82)を配置するステップを含む、方法。
  16. X線管(10)の製造方法であって、
    固定部材と、前記固定部材の外側に設けられ、前記X線管(10)の動作中に前記固定部材に対して回転するように構成された回転部材と、を含むベアリング(22)を含むX線管(10)において、前記固定部材の表面に沿った曲げモーメントを最小にして、前記X線管(10)の動作中の半径方向荷重に起因する前記回転部材に対する前記固定部材の撓みを減少させるように構成された支持機構(56)を前記ベアリング(22)の前記固定部材内に配置するステップを含み、
    前記支持機構(56)を前記ベアリング(22)の前記固定部材内に配置するステップは、前記固定部材の軸方向における少なくとも一端に凹部、または、前記固定部材内に少なくとも1つのキャビティ(80)を形成するステップを含み、
    前記凹部および前記少なくとも1つのキャビティ(80)は、前記固定部材の長手方向軸(70)に対して円周方向(68)および軸方向(64)の両方に延在する、方法。
  17. 前記シャフト(82)が、前記シャフトと前記固定部材との間で前記シャフト(82)の周りに配置された少なくとも1つの環状支持構造体(104)を含む、請求項15に記載の方法。
  18. 前記シャフト(82)と前記固定部材との間で前記シャフト(82)の周りに少なくとも2つの環状支持構造体(104)を配置するステップを含み、
    前記少なくとも2つの環状支持構造体(104)が異なる軸方向位置に配置され、前記環状支持構造体(104)は、前記ベアリング(22)のロータ動力学を制御するように構成される、請求項15に記載の方法。
JP2017163987A 2016-08-30 2017-08-29 X線管内の相対的なベアリングシャフトの撓みを減少させるためのシステムおよび方法 Active JP7214336B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/251,854 US10283312B2 (en) 2016-08-30 2016-08-30 System and method for reducing relative bearing shaft deflection in an X-ray tube
US15/251,854 2016-08-30

Publications (2)

Publication Number Publication Date
JP2018067529A JP2018067529A (ja) 2018-04-26
JP7214336B2 true JP7214336B2 (ja) 2023-01-30

Family

ID=61166661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017163987A Active JP7214336B2 (ja) 2016-08-30 2017-08-29 X線管内の相対的なベアリングシャフトの撓みを減少させるためのシステムおよび方法

Country Status (3)

Country Link
US (2) US10283312B2 (ja)
JP (1) JP7214336B2 (ja)
DE (1) DE102017118924B4 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10283312B2 (en) * 2016-08-30 2019-05-07 General Electric Company System and method for reducing relative bearing shaft deflection in an X-ray tube
US10714297B2 (en) * 2018-07-09 2020-07-14 General Electric Company Spiral groove bearing assembly with minimized deflection
EP3626984A1 (en) * 2018-09-20 2020-03-25 Koninklijke Philips N.V. Self-lubricated sliding bearing
DE102018220108B4 (de) * 2018-11-23 2023-06-29 Minebea Mitsumi Inc. Drehanodenlagerung und Drehanode für eine Röntgenröhre und Verfahren zum Herstellen einer Drehanodenlagerung einer Röntgenröhre

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050089144A1 (en) 2003-08-29 2005-04-28 Harunobu Fukushima Rotary anode type X-ray tube

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3055083A (en) 1960-07-15 1962-09-25 Benninger Ag Maschf Poor-deflection type roller
US4222618A (en) 1978-12-29 1980-09-16 Mechanical Technology Incorporated Compliant hydrodynamic fluid bearing with resilient support matrix
US5660481A (en) 1987-05-29 1997-08-26 Ide; Russell D. Hydrodynamic bearings having beam mounted bearing pads and sealed bearing assemblies including the same
US5140624A (en) * 1991-04-05 1992-08-18 General Electric Company Apparatus for rotatably supporting an x-ray tube anode
DE19630351C1 (de) 1996-07-26 1997-11-27 Siemens Ag Röntgenröhre mit einem Gleitlager
JP2009238477A (ja) 2008-03-26 2009-10-15 Toshiba Corp 回転陽極型x線管
US7933382B2 (en) 2009-03-25 2011-04-26 General Electric Company Interface for liquid metal bearing and method of making same
JP5422311B2 (ja) 2009-09-08 2014-02-19 株式会社東芝 回転陽極型x線管および回転陽極型x線管装置
US10283312B2 (en) * 2016-08-30 2019-05-07 General Electric Company System and method for reducing relative bearing shaft deflection in an X-ray tube
US10533608B2 (en) * 2017-02-07 2020-01-14 General Electric Company Ring seal for liquid metal bearing assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050089144A1 (en) 2003-08-29 2005-04-28 Harunobu Fukushima Rotary anode type X-ray tube

Also Published As

Publication number Publication date
US20180061611A1 (en) 2018-03-01
DE102017118924B4 (de) 2023-10-19
US20190139732A1 (en) 2019-05-09
US10468223B2 (en) 2019-11-05
US10283312B2 (en) 2019-05-07
JP2018067529A (ja) 2018-04-26
DE102017118924A1 (de) 2018-03-01

Similar Documents

Publication Publication Date Title
US10468223B2 (en) System and method for reducing relative bearing shaft deflection in an X-ray tube
JP5422311B2 (ja) 回転陽極型x線管および回転陽極型x線管装置
US9449783B2 (en) Enhanced barrier for liquid metal bearings
EP1292964B1 (en) Drive assembly for an x-ray tube having a rotating anode
US11037752B2 (en) Spiral groove bearing assembly with minimized deflection
JP7134848B2 (ja) 内部冷却チャネルを有するx線管用のスラストフランジ
US20170084420A1 (en) Rotary-anode type x-ray tube
EP3358208B1 (en) Ring seal for liquid metal bearing assembly
US12078203B2 (en) Hydrodynamic bearing system and method for operating said hydrodynamic bearing system
JP4810069B2 (ja) X線管内の液体金属ガスケット
JP6169576B2 (ja) 回転陽極型x線管装置及びx線撮影装置
KR20170102311A (ko) 회전 양극형 x선관
JP6416593B2 (ja) 回転陽極x線管装置およびx線撮像装置
WO2023228430A1 (ja) 回転陽極型x線管
CN102468101A (zh) X射线管热传递方法及系统
CN115376871A (zh) X射线管及x射线发生装置
JP2017188222A (ja) 回転陽極型x線管装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210520

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230118

R150 Certificate of patent or registration of utility model

Ref document number: 7214336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150