JP5422311B2 - 回転陽極型x線管および回転陽極型x線管装置 - Google Patents

回転陽極型x線管および回転陽極型x線管装置 Download PDF

Info

Publication number
JP5422311B2
JP5422311B2 JP2009207424A JP2009207424A JP5422311B2 JP 5422311 B2 JP5422311 B2 JP 5422311B2 JP 2009207424 A JP2009207424 A JP 2009207424A JP 2009207424 A JP2009207424 A JP 2009207424A JP 5422311 B2 JP5422311 B2 JP 5422311B2
Authority
JP
Japan
Prior art keywords
ray tube
fixed shaft
target
rotating cylinder
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009207424A
Other languages
English (en)
Other versions
JP2011060517A (ja
Inventor
千治 田所
安孝 伊藤
仁志 服部
良一 高橋
哲也 米澤
浩典 中牟田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Electron Tubes and Devices Co Ltd
Original Assignee
Toshiba Corp
Toshiba Electron Tubes and Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electron Tubes and Devices Co Ltd filed Critical Toshiba Corp
Priority to JP2009207424A priority Critical patent/JP5422311B2/ja
Priority to US12/875,559 priority patent/US8582722B2/en
Publication of JP2011060517A publication Critical patent/JP2011060517A/ja
Application granted granted Critical
Publication of JP5422311B2 publication Critical patent/JP5422311B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/101Arrangements for rotating anodes, e.g. supporting means, means for greasing, means for sealing the axle or means for shielding or protecting the driving
    • H01J35/1017Bearings for rotating anodes
    • H01J35/104Fluid bearings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/10Drive means for anode (target) substrate
    • H01J2235/1046Bearings and bearing contact surfaces
    • H01J2235/106Dynamic pressure bearings, e.g. helical groove type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/10Drive means for anode (target) substrate
    • H01J2235/108Lubricants
    • H01J2235/1086Lubricants liquid metals

Landscapes

  • Sliding-Contact Bearings (AREA)
  • X-Ray Techniques (AREA)

Description

本発明は、ターゲットを回転可能に支持する動圧すべり軸受が設けられた回転陽極型X線管および、このX線管を有する回転陽極型X線管装置に関する。
回転陽極型X線管装置は、CT装置に代表される医療診断システム、工業診断システム等に用いられている。この回転陽極型X線管装置は、X線を放射する回転陽極型X線管と、ステータコイルと、これらの回転陽極型X線管及びステータコイルを収容した筐体と、によって構成されている。
従来の回転陽極型X線管の一形態は、以下の通りである。すなわち、一部にフランジ部を有する固定軸と、この軸に回転可能に設けられた回転陽極と、この回転陽極に対向配置された陰極と、これらを収容し、一部が開口する真空外囲器と、によって構成されている。なお、この回転陽極X線管は、固定軸が、真空外囲器の一側面に支持された片持ち構造である。
回転陽極は、固定軸の先端からフランジ部までを、隙間を有して覆うように設けられた有底筒状の回転円筒と、この回転円筒の先端に設けられた円盤状のターゲット(陽極)と、回転円筒の側面に設けられたモータロータと、回転円筒の開口部分に設けられたスラストリングと、によって構成されている。なお、ターゲットと回転円筒との間には、継手部が設けられる場合もある。
固定軸と回転円筒との隙間には、液体金属が充填されている。この液体金属は、回転陽極の回転時に動圧すべり軸受の潤滑剤となる。そして、この動圧すべり軸受に発生する動圧効果によって、回転陽極は回転可能に支持される。
ここで、動圧すべり軸受は、回転陽極の半径方向を支持するためのラジアル軸受と、回転陽極の軸方向を支持するためのスラスト軸受があり、それぞれの軸受を構成する一部には、動圧効果を発生させるための溝が設けられている。
このような従来の回転陽極型X線管装置において、ステータコイルによりモータロータに磁界を発生させ、これにより回転陽極を回転させる。この状態で、陰極からターゲットに向かって電子ビームを照射する。これにより、ターゲットに電子が衝突すると、真空外囲器に設けられた開口窓から外部にX線が放出される。
電子ビームがターゲットに照射されることによりX線が発生するが、このとき同時に熱も発生する。従って、ターゲット、特に、電子が衝突する電子衝突面(焦点)は局所的に高温になり、そのままだと熱衝撃によって電子衝突面の表面は瞬時に破壊される。このため、上述の回転陽極は、ターゲットを回転させることにより、ターゲットへの熱入力を分散させ、表面の致命的な破損を防止している。
以上に述べたように、ターゲット(陽極)を回転させるX線管を回転陽極型X線管と称すが、以下の説明においては、単にX線管と称す。
このX線管においても、電子ビームの照射が一定時間連続して行われると、ターゲットに熱が蓄積され、ターゲットの熱容量を超えると、次第に電子衝突面の温度が上昇するため、許容温度を超えると、表面が損傷し始めるという問題がある。この問題は、ターゲットを大型化して熱容量を増やすことにより解決される。しかし、ターゲットの大型化に伴ってX線管が大型化、高重量化、高コスト化するため、ターゲットの大型化により上述の問題を解決することは、好ましい方法ではない。
そこで、ターゲットを冷却する技術の開発が進められている。ターゲットの冷却には、輻射による冷却と、動圧すべり軸受の潤滑剤である液体金属を熱伝達媒体として利用することにより、回転陽極から固定軸に熱を伝達して固定軸内を流れる冷却液によって熱を取り去る方法と、がある。これらの方法のうち、熱伝達によってターゲットを冷却する方法は、輻射によるターゲットの冷却と比べて高い冷却効率が望める。従って、近年では、ターゲットを熱伝達によって冷却することができるX線管が主流である(特許文献1等を参照)。
なお、上述のX線管は、固定軸が真空外囲器の一側面に支持された片持ち構造であったが、特許文献2には、固定軸が真空外囲器の対向する両側面に支持された両持ち構造のX線管も開示されている。この両持ち構造のX線管は、片持ち構造のX線管と比較して、冷却流体の流れを一方向にでき、同じ流量の冷却流体を流すのに小さい流路径で済むため、固定軸の曲げ剛性を高めることができるという利点がある。さらに、固定軸が両端で支持されているため、固定軸に高負荷が作用した場合に、曲げ変形しにくいという利点がある。
以上に説明した特許文献1、2に記載されたX線管は、動圧効果により回転陽極が支持されるが、動圧効果を生じさせるためには、軸受部となる固定軸と回転円筒とが近接配置される必要がある。しかし、ターゲットの温度上昇によって回転円筒が高温になると、回転円筒の熱膨張により、動圧すべり軸受の隙間が拡大するため、軸受の負荷能力が低下し正常な回転運動ができなくなるという問題がある。そこで、固定軸および回転円筒のうち、軸受を構成する箇所についてはこれらを近接させ、軸受以外の箇所においては、固定軸と回転円筒との隙間を広くすることにより熱伝達部を設け、この熱伝達部にも液体金属が充填されることにより、動圧すべり軸受での熱伝達を極力避け、別途設けられた熱伝達部に介在する液体金属を介してターゲットの熱を固定軸内の冷却流体に伝達し、ターゲットを冷却する構成が知られている(特許文献3等を参照)。これによれば、熱伝達は主に熱伝達部において行われるため、動圧すべり軸受の隙間の拡大が抑制される。従って、動圧すべり軸受の負荷能力の低下を抑制することができる。
ところで、X線管装置が搭載されて使用されるCT装置において、人間等の被検査対象を中心としてX線管装置を公転させながら被検査対象にX線を照射するヘリカルスキャンの高速化に伴い、X線管装置内に搭載されるX線管には、耐G性能の向上が求められている。ここで、耐G性能の向上とは、高速スキャンによってX線管が遠心力を受けた場合であっても、固定軸が曲げ変形し難くすることをいう。耐G性能が低い場合、遠心力が作用した回転陽極を支持することにより、固定軸が曲げ変形し、軸受を構成する回転陽極と固定軸とが相対的に大きく傾くと、軸受端部で回転陽極と固定軸とが接触し、良好な回転性能が得られなくなる。従って、耐G性能を向上させることにより、回転陽極の回転性能を良好に維持することができる。
X線管に遠心力が作用した場合であっても、良好な回転性能を維持するためには、十分な曲げ剛性を有した固定軸を用いることにより、耐G性能を向上させればよい。
一方で、X線管には、X線の高出力化も求められている。しかし、高出力化に伴って、ターゲットの発熱量は増大する。従って、高出力化に伴って、高い熱伝達効率でターゲットを冷却する機能が必要不可欠となる。従来の特許文献1乃至3に記載されたX線管において、熱伝達効率を上げるためには、固定軸全体の肉厚を薄く形成すればよい。しかし、このように肉厚を薄くすることにより、固定軸の剛性が低下するため、十分な耐G性能が得られなくなる。すなわち、従来の特許文献1乃至3に記載されたX線管においては、耐G性能の向上と高出力化とを同時に実現することは困難である。
また、従来の特許文献3に記載された従来のX線管においては、熱伝達部にも液体金属を介在させるため、軸受以外にも液体金属による粘性抵抗が発生する領域が増し、摩擦損失が増大する。従って、陽極を高速回転させるために、モータの回転トルクを増大させる必要がある。モータの回転トルクは、ステータコイルが発生させる磁界の強さで決まるため、さらに強い磁界を発生させるためには、ステータコイルを大型化しなければならない。ステータコイルの大型化にともない、このX線管を具備するX線管装置が大きくなるため、X線管装置の重量は大幅に増大する。CT装置のヘリカルスキャンの高速化が進む中で、CT装置の架台に搭載される機器は軽量化が求められており、X線管装置についても小型化、軽量化の要求が高まっていることから、X線管装置の大型化や重量の増大は問題となる。
さらに、熱伝達部に介在する液体金属の摩擦熱によって、回転機構の総発熱量が増える。従って、X線の出力を小さくする、若しくは、熱伝達部の肉厚をさらに薄肉に形成することによって更なる冷却機構を具備させる必要がある。すなわち、耐G性能の向上と高出力化とを同時に実現することはさらに困難である。
これに加えて、動圧すべり軸受のように潤滑剤を軸受内に引き込み留めるような溝を有していない熱伝達部では、熱伝達媒体である液体金属が想定した熱伝達領域に存在しない可能性があるため、冷却性能が大きくばらつく懸念があり、冷却性能の信頼性が低いという問題がある。
特許第3467292号公報 米国特許第5838763号公報 特許第4112829号公報
上述したように、従来のX線管においては、耐G性能の向上と高出力化とを同時に実現することは困難である。これに加えて、動圧すべり軸受以外に別途熱伝達部が設けられた従来のX線管においては、このX線管を具備するX線管装置が大型化し、重量が増大するという問題がある。
そこで、本発明は、耐G性能に優れ、高出力が可能な回転陽極型X線管若しくは、耐G性能に優れ、小型、軽量で高出力が可能な回転陽極型X線管装置を提供することを目的とする。
本発明による回転陽極型X線管は、複数の径大部を一部に有し、冷却流体が流れる流路が内部に設けられた固定軸と、この固定軸の前記複数の径大部の肉厚をそれぞれ薄肉に形成することにより、前記流路の一部の流路径がそれぞれ拡大されて設けられた複数の冷却槽と、前記固定軸のうち前記複数の径大部を含む領域を液体金属を介して覆うことにより、前記固定軸に回転可能に支持された回転円筒と、この回転円筒の外周面に設けられた中空円板状のターゲットと、前記ターゲットに対向配置された陰極と、前記固定軸、前記回転円筒、前記ターゲット、および前記陰極を内部に収納し、前記固定軸を支持する真空外囲器と、を具備することを特徴とするものである。
また、本発明による回転陽極型X線管は、複数の径大部を一部に有し、冷却流体が流れる流路が内部に設けられた固定軸と、この固定軸の前記複数の径大部、およびこれらの前記径大部の間の前記固定軸の肉厚を薄肉に形成することにより、前記流路の一部の流路径が拡大されて設けられた冷却槽と、前記固定軸のうち前記複数の径大部を含む領域を液体金属を介して覆うことにより、前記固定軸に回転可能に支持された回転円筒と、この回転円筒の外周面に設けられた中空円板状のターゲットと、前記ターゲットに対向配置された陰極と、前記固定軸、前記回転円筒、前記ターゲット、および前記陰極を内部に収納し、前記固定軸を支持する真空外囲器と、を具備することを特徴とするものである。
また、本発明による回転陽極型X線管は、径大部を一部に有し、冷却流体が流れる流路が内部に設けられた固定軸と、この固定軸の径大部の肉厚を薄肉に形成することにより、前記流路の一部の流路径が拡大されて設けられた冷却槽と、前記固定軸のうち前記径大部を含む領域を液体金属を介して覆うことにより、前記固定軸に回転可能に支持された回転円筒と、この回転円筒の外周面に設けられた中空円板状のターゲットと、前記ターゲットに対向配置された陰極と、前記固定軸、前記回転円筒、前記ターゲット、および前記陰極を内部に収納し、前記固定軸を支持する真空外囲器と、を具備し、前記冷却槽は、内部に、前記固定軸と中心軸が同じになるようにして前記固定軸の一部に形成された中実円柱部を有し、前記径大部は、この中実円柱部との間に一定の隙間を有して設けられた筒状の薄肉部により構成され、前記中実円柱部は、この両側面に、前記中実円柱部と前記薄肉部との隙間と、前記薄肉円筒部以外の前記固定軸の流路とを連結する放射状の溝が設けられていることを特徴とするものである。
本発明によれば、冷却流体を流す流路を内部に有する固定軸のうち、動圧すべり軸受の一部を構成する箇所のみを薄肉に形成し、これによって、流路の一部に冷却槽を設けている。これにより、耐G性能に優れ、高出力が可能な回転陽極型X線管を提供することができる。
また、上述のX線管は、回転円筒の熱が、薄肉に形成された箇所を含む動圧すべり軸受を介して冷却槽に伝達されるため、動圧すべり軸受以外に、別途熱を伝達する熱伝達部を設ける必要はない。従って、このX線管を具備することにより、耐G性能に優れ、小型、軽量で高出力が可能な回転陽極型X線管装置を提供することができる。
本発明の第1の実施形態の回転陽極型X線管装置を示す断面図である。 ラジアル軸受を拡大して示す半断面図である。 図1に示す固定軸のフランジ部の一側面を、固定軸の軸方向から見た半断面図である。 本発明の第2の実施形態の回転陽極型X線管装置を示す断面図である。 本発明の第3の実施形態の回転陽極型X線管装置の要部であって、回転陽極の回転時の断面図である。 本発明の第4の実施形態の回転陽極型X線管装置の要部であって、回転陽極の回転時の断面図である。 本発明の第5の実施形態の回転陽極型X線管装置の要部であって、回転陽極の回転時の断面図である。 本発明の第6の実施形態の回転陽極型X線管装置の要部であって、回転陽極の回転時の断面図である。 本発明の第7の実施形態の回転陽極型X線管装置の要部であって、回転陽極の回転時の断面図である。 本発明の第8の実施形態の回転陽極型X線管装置の要部であって、回転陽極の回転時の断面図である。 図10の破線A−A´に沿った断面図である。 図10の破線B−B´に沿った断面図である。 図10の破線C−C´に沿った断面図である。 図2に示されるラジアル軸受の変形例を拡大して示す半断面図である。
以下に、本発明の実施形態の回転陽極型X線管装置について詳細に説明する。
(第1の実施形態)
図1は、第1の実施形態の回転陽極型X線管装置であって、後述する回転陽極の回転時の断面図である。図1に示すように、本実施形態の回転陽極型X線管装置(以下、X線管装置と称す)は、X線を放射する回転陽極型X線管11(以下、X線管11と称す)と、ステータコイル12と、これらのX線管11及びステータコイル12を収容した筐体(図示せず)と、によって構成されている。
X線管11は、固定軸13と、この軸13に回転可能に設けられた回転陽極14と、回転陽極14が有するターゲット15に対向配置された陰極16と、これらを収容し、一部に開口窓17を有する真空外囲器18と、によって構成されている。このX線管11は、固定軸13が、真空外囲器18の対向する両側面に支持された両持ち構造であり、陰極16は、真空外囲器18の側面に形成されている。
固定軸13は、この軸方向に沿っていずれか一方に冷却流体を流す流路30を内部に有する筒型の形状である。この固定軸13は、他の箇所よりそれぞれ径大に設けられた第1の径大部26−1および、第2の径大部26−2を有している。このうち、第2の径大部26−2の外周面上には、フランジ部13−1が設けられている。
また、固定軸13の内部に設けられた流路30は、一部に、他より流路径が拡大された冷却槽31を有している。この冷却槽31は、第1の径大部26−1を薄肉に形成することにより設けられている。
回転陽極14は、内径がほぼ一定である筒状の回転円筒19と、この回転円筒19の一方の端部近傍に設けられた中空円板状のターゲット15(陽極)と、回転円筒19の他方の端部に設けられた円筒状のモータロータ20と、回転円筒19の一方の端部を、固定軸13との間にわずかな隙間を有して塞ぐように設けられた環状のシール21と、回転円筒19の他方の端部を、固定軸13との間にわずかな隙間を有して塞ぐように設けられた環状のスラストリング22と、によって構成されている。
回転円筒19は、他方の端部が、固定軸13のフランジ部13−1に対応したフランジ部19−1により構成されている。すなわち、モータロータ20は、回転円筒19のフランジ部19−1に設けられており、また、スラストリング22は、回転円筒19のフランジ部19−1を塞ぐように設けられている。
この回転円筒19とターゲット15とは、本実施形態においては、互いに熱を伝わり易くさせるために、一体部品となっている。しかし、回転円筒19とターゲット15とは、両方が拡散接合されたものであってもよい。
このような回転円筒19を有する回転陽極14は、固定軸13の第1の径大部26−1と第2の径大部26−2とを含む領域を、固定軸13との間に隙間を有して覆うように設けられている。さらに、回転陽極14は、ターゲット15が、固定軸13に設けられた第1の径大部26−1の近傍に位置するように設けられる。
固定軸13と回転陽極14との隙間には、液体金属23が充填されている。この液体金属23は、回転陽極14が固定軸13を軸として回転する時に、回転陽極14を支持する動圧すべり軸受の潤滑剤となるものであり、例えば、ガリウムやガリウムを主成分としたガリウム合金等が主に使用される。
なお、この液体金属23は、回転陽極14が回転していない場合には下方に溜まり、主に固定軸13の第1の径大部26−1と第2の径大部26−2との間の液体金属貯蔵部28に貯蔵される。
ここで、回転陽極14を支持する動圧すべり軸受は、回転陽極14の半径方向を支持する第1、第2のラジアル軸受24−1、24−2と、回転陽極14の軸方向を支持するための第1、第2のスラスト軸受25−1、25−2と、がある。
第1のラジアル軸受24−1は、第1の径大部26−1、この第1の径大部26−1に対向する回転円筒19の一部、および、これらの間に介在する液体金属23によって構成される。同様に、第2のラジアル軸受24−2は、第2の径大部26−2のうちフランジ部13−1を除いた一部、この第2の径大部26−2の一部に対向する回転円筒19の一部、および、これらの間に介在する液体金属23によって構成される。
すなわち、回転陽極14が回転することにより、静止時に下方に溜まっていた液体金属23は、回転陽極14の回転とともに回転陽極14の回転方向に沿って流れることで生じる遠心力が作用し、回転円筒19内面全周に張り付いた状態となる。第1、第2のラジアル軸受24−1、24−2では、回転陽極14の回転とともにこの液体金属23が流れることによって生じる動圧効果により、回転陽極14の半径方向は支持される。なお、第1の径大部26−1および第2の径大部26−2には、動圧効果を生み出すための溝が設けられているが、この溝は、第1のラジアル軸受24−1、第2のラジアル軸受24−2をそれぞれ構成する回転円筒19の一部に設けられていても、同様の効果を有する。動圧効果を生みだす溝の形状およびパターンについては、後述する。
また、第1のスラスト軸受25−1は、固定軸13のフランジ部13−1の一方の側面、このフランジ部13−1の側面に対向する回転円筒19の一部、および、これらの間に介在する液体金属23によって構成される。同様に、第2のスラスト軸受25−2は、固定軸13のフランジ部13−1の他方の側面、このフランジ部13−1の側面に対向するスラストリング22、および、これらの間に介在する液体金属23によって構成される。
すなわち、回転陽極14が回転することにより、第1、第2のスラスト軸受25−1、25−2を構成するそれぞれの液体金属23は、回転陽極14の回転方向に沿って流れる。この液体金属23が流れることによって生じる動圧効果により、回転陽極14の軸方向は支持される。なお、固定軸13のフランジ部13−1の両側面には、動圧効果を生み出すための溝が設けられているが、この溝は、第1のスラスト軸受25−1を構成する回転円筒19の一部、および、第2のスラスト軸受25−2を構成するスラストリング22にそれぞれ設けられていても、同様の効果を有する。動圧効果を生みだす溝の形状およびパターンについては、後述する。
ここで、動圧すべり軸受24−1、24−2、25−1、25−2をそれぞれ構成する第1、第2の径大部26−1、26−2および固定軸13のフランジ部13−1の両側面にそれぞれ設けられる溝について説明する。図2は、第1のラジアル軸受24−1を拡大して示す半断面図である。図2に示すように、第1の径大部26−1は、溝が形成されない平面部32と、この平面部32の両側に形成された一対の溝部33と、によって構成されている。このうち、一対の溝部33には、複数のハ字形状の溝34が、固定軸13の第1の径大部26−1の周面上に一定間隔のパターンで設けられている。すなわち、複数の溝34は、それぞれ、回転陽極14が回転する時に、平面部32に液体金属23を送り込むような溝形状とパターンとを有している。
図2に示される複数の溝34を設けることにより、回転陽極14の回転時には、複数の溝34によって液体金属23が平面部32に送り込まれる。これにより、液体金属23は、確実に第1の径大部26−1と回転円筒19との間に介在させることができる。従って、第1のラジアル軸受24−1においては、確実に動圧効果が生まれる。さらに、平面部32には、遠心力によって回転陽極14が固定軸13に対して偏心し、回転円筒19と平面部32との隙間が狭くなることによって生じるくさび効果によって、流体潤滑膜が形成され回転円筒19と平面部32との隙間を広げる方向に圧力を発生させる。すなわち、回転陽極14は、溝の動圧効果による圧力およびくさび効果による圧力により、安定して回転可能に支持される。
図2に示される第1の径大部26−1に設けられた溝形状とパターンとは、第2の径大部26−2にも同様に設けられている。従って、第2のラジアル軸受24−2においても、確実に動圧効果が生まれる。
なお、このような回転陽極14の支持は、ヘリカルスキャン方式のCT装置に搭載して使用するX線管11のように、回転陽極14に大きな遠心力が作用する場合には特に有効である。
図3は、固定軸13のフランジ部13−1の一側面を固定軸13の軸方向から見た半断面図である。図3に示すように、固定軸13のフランジ部13−1の一側面には、複数のV字形状の溝35が、回転陽極14(図3においては図示せず)の回転方向に沿って一定間隔のパターンで設けられている。すなわち、複数のV字状の溝35は、回転陽極14(図3においては図示せず)が回転するとき、固定軸13のフランジ部13−1と回転円筒19(図3においては図示せず)との間に液体金属23(図3においては図示せず)を送り込むように設けられている。
再び図1を参照して説明すると、図3に示されるような溝形状とパターンとを設けることにより、回転陽極14の回転時には、図3に示される複数のV字状の溝35によって、固定軸13のフランジ部13−1の一方の側面と回転円筒19との間に液体金属23が送り込まれる。これにより、液体金属23は、確実に固定軸13のフランジ部13−1と回転円筒19との間に介在させることができる。従って、第1のスラスト軸受25−1においても、確実に動圧効果が生まれる。なお、このような溝形状とパターンとは、固定軸13のフランジ部13−1の他方の側面にも同様に設けられている。従って、第2のスラスト軸受25−2においても、確実に動圧効果が生まれる。第1のスラスト軸受25−1は、フランジ部13−1を基準にターゲット側軸方向に動圧効果を生じさせ、第2のスラスト軸受25−2は、フランジ部13−1を基準に反ターゲット側軸方向に動圧効果を生じさせる。第1、第2のスラスト軸受25−1、25−2は、両軸受が同等の動圧効果を生むことで、両側から回転陽極14を軸方向に支持している。
以上に、第1、第2のラジアル軸受24−1、24−2および第1、第2のスラスト軸受25−1、25−2についてそれぞれ説明したが、図1に示すように、第1のラジアル軸受24−1をターゲット15に設けた場合、第1のラジアル軸受24−1は、高温のターゲット15と冷却槽31内の低温の冷却流体との間に位置する。従って、第1のラジアル軸受24−1は温度勾配を有し、この温度勾配が所望の温度勾配より大きくなる場合がある。このとき、回転側である回転円筒19は、固定側である固定軸13に比べて高温になるため、回転円筒19の熱膨張量は大きくなり、第1のラジアル軸受24−1の隙間が拡大する。このような場合、第1のラジアル軸受24−1における動圧すべり軸受の負荷能力が低下し、回転陽極14は、良好な回転運転ができなくなる。このように、第1のラジアル軸受24−1の温度勾配が所望の温度勾配より大きくなる場合には、回転円筒19の材料として、固定軸13の材料よりも線膨張係数の小さい材料を選定することにより、第1のラジアル軸受24−1の隙間の拡大は抑制される。例えば、回転円筒19の材料をモリブデン、モリブデン合金とし、固定軸13の材料を鉄、鋼、鉄-ニッケル合金、鉄-クロム合金、鉄-ニッケル-クロム合金のように鉄を主成分とした鉄系金属とすることにより、第1のラジアル軸受24−1の隙間の拡大は抑制される。
このようなX線管装置において、ステータコイル12によりモータロータ20に磁界を発生させ、これにより回転陽極14を回転させる。このとき、陰極16からターゲット15に向かって電子ビームを照射する。これにより、ターゲット15に電子が衝突すると、真空外囲器18に設けられた開口窓17から外部にX線が放出される。このとき、熱が発生する。この熱は、ターゲット15から回転円筒19に伝達される。ここで、第1のラジアル軸受24−1は、この軸受24−1を構成する第1の径大部26−1が薄肉に形成されており、高い熱伝達効率を有するため、熱伝達部として機能する。従って、回転円筒19に伝達された熱は、第1のラジアル軸受24−1を介して冷却槽31内の冷却流体へと伝達され、冷却流体の移動とともに、熱もX線管11の外部に伝達される。このようにして、ターゲット15は冷却される。
以上に説明した第1の実施形態に係るX線管11によれば、固定軸13は、この内部に、第1の径大部26−1のみを薄肉に形成することにより流路径の一部が拡大された冷却槽31を有している。従って、固定軸13の曲げ剛性を劣化させることなく、熱伝達効率を向上させることができる。これにより、耐G性能に優れ、高出力が可能な信頼性の高い回転陽極型X線管11を提供することができる。これにより、CT装置のヘリカルスキャンによる遠心力が回転陽極14に作用しても、動圧すべり軸受24−1、24−2、25−1、25−2は良好な回転性能を維持することができる。
さらに、回転円筒19の熱は、軸受機能に加えて、熱伝達部としても機能する第1のラジアル軸受24−1を介して冷却槽31に伝達されるため、従来のように、動圧すべり軸受24−1、24−2、25−1、25−2以外の箇所に、別途熱を伝達させる熱伝達部を設ける必要がない。従って、液体金属23による粘性抵抗が発生する領域は、熱伝達部を有する従来のX線管と比較して、少なくすることができる。よって、液体金属23による摩擦損失が低減されるため、液体金属23に発生する摩擦熱を最小限に抑えることができ、さらに、この摩擦損失を補償するためにステータコイル12を大型化する必要がない。従って、このX線管11を具備することにより、耐G性能に優れ、小型、軽量で高出力が可能な回転陽極型X線管装置を提供することができる。
上述の効果に加えて、第1の実施形態のX線管11においては、熱伝達部として機能する第1のラジアル軸受24−1の一構成要素である第1の径大部26−1には、例えば図2に示されるように、第1のラジアル軸受24−1の隙間に確実に液体金属23を介在させることができる溝が形成されている。従って、上述の回転陽極型X線管11および、回転陽極型X線管装置の冷却性能の信頼性を向上させることができる。
さらに、第1の実施形態のX線管11において、他の各動圧すべり軸受24−2、25−1、25−2の一構成要素である第2の径大部26−2、固定軸13のフランジ部13−1には、例えば図2、図3に示されるように、他の各軸受24−2、25−1、25−2の隙間にも、確実に液体金属23を介在させることができる溝が形成されている。従って、各軸受24−1、24−2、25−1、25−2に確実に動圧効果を発生させることができるため、回転陽極14の支持の信頼性を向上させることもできる。
さらに、第1、第2の径大部26−1、26−2には、図2に示されるように、平面部32と、この平面部32に液体金属23を送り込む溝形状とパターンとを有する溝部33とが形成されている。このとき、回転陽極14は、この平面部32に形成される流体潤滑膜によっても支持される。さらに、凹凸がない平面部32により、熱伝達効率を向上させる。従って、回転陽極14の支持の信頼性をさらに向上させることができると同時に、上述のX線管11若しくは、X線管装置の更なる高出力が可能である。
(第2の実施形態)
図4は、第2の実施形態の回転陽極型X線管装置であって、回転陽極38の回転時の断面図である。このX線管装置の説明においては、第1の実施形態のX線管装置と異なる箇所について説明する。
図4に示すように、第2の実施形態のX線管装置は、第1の実施形態のX線管装置と比較して、固定軸36が真空外囲器18の一側面に支持された片持ち構造のX線管37を有する点が異なっている。すなわち、第2の実施形態に係るX線管37において、固定軸36の一端は、真空外囲器18内に位置している。
この第2の実施形態に係るX線管37において、固定軸36は、この軸方向に沿って冷却流体を循環させる流路40を内部に有する有底筒型の形状である。この固定軸36は、他の箇所よりそれぞれ径大に設けられた第1の径大部26−1および、第2の径大部26−2を有している。このうち、第1の第1の径大部26−1は、固定軸36の一端に設けられている。また、第2の径大部26−2は、第1の径大部26−1と離間した位置に設けられている、なお、第2の径大部26−2の外周面上には、フランジ部36−1が設けられている。
また、固定軸13の内部に設けられた流路40は、一部に、他より流路径が拡大された冷却槽41を有している。この冷却槽41は、第1の径大部26−1を薄肉に形成することにより設けられている。
さらに、流路40は、冷却流体を固定軸36の端部まで流入させる流入路40−1と、この流入路40−1の周囲を覆うように形成され、冷却流体を固定の端部から外部に流出させる流出路40−2と、を有しており、これらの流入路40−1と流出路40−2とは、固定軸36の端部に設けられた冷却槽41によって接合されている。
回転陽極38は、固定軸36のフランジ部36−1に対応したフランジ部39−1を有し、内径がほぼ一定の有底筒状の回転円筒39と、この回転円筒39の底部近傍に設けられた中空円板状のターゲット15(陽極)と、回転円筒39のフランジ部39−1に設けられた円筒状のモータロータ20と、回転円筒39のフランジ部39−1を、固定軸36との間にわずかな隙間を有して塞ぐように設けられた環状のスラストリング22と、によって構成されている。
回転円筒39は、固定軸36の一端および、第1の径大部26−1と第2の径大部26−2とを含む領域を、固定軸36との間に隙間を有して覆うように設けられている。さらに、このような回転円筒39を有する回転陽極38は、ターゲット15が、第1の径大部26−1の近傍に位置するように設けられる。
なお、回転陽極38の支持機構は、第1の実施形態と同様である。すなわち、回転陽極38は、第1の実施形態と同様に構成された動圧すべり軸受24−1、24−2、25−1、25−2によって回転可能に支持されている。
このような第2の実施形態に係るX線管37若しくはX線管装置であっても、第1の実施形態と同様の効果を得ることができる。すなわち、耐G性能に優れ、高出力が可能な回転陽極型X線管37を提供することができる。また、このX線管37を具備することにより、耐G性能に優れ、小型、軽量で高出力が可能な回転陽極型X線管装置を提供することができる。さらに、これらのX線管37若しくはX線管装置の冷却性能の信頼性を向上させることができる。これらに加えて、回転陽極38の支持の信頼性も向上させることができる。
なお、第2の実施形態におけるX線管37は、固定軸36が真空外囲器18の一側面に支持された片持ち構造であるため、第1の実施形態における両持ち構造のX線管11と比較して、耐G性能は劣る。しかし、この片持ち構造のX線管37は、回転陽極38に作用する遠心力が小さい場合のX線管装置に適用することにより、耐G性能に優れ、小型、軽量で高出力が可能な信頼性の高い回転陽極型X線管装置を提供することができる。
以降の各実施形態に係るX線管装置は、第1の実施形態のX線管装置と比較して、各X線管が有する固定軸および回転陽極以外の各構成(筐体、ステータコイル12、真空外囲器18および陰極16)は、全て同様の構成であるため、同様の構成については説明を省略するとともに図示も省略する。
(第3の実施形態)
図5は、第3の実施形態に係るX線管装置の要部であって、回転陽極の回転時の断面図である。図5に示すように、第3の実施形態に係るX線管装置は、第1の実施形態のX線管装置と比較して、固定軸45の内部に設けられた流路47は、他より流路径が拡大された冷却槽48を有しており、この冷却槽48は、第1の径大部26−1、第2の径大部26−2および、これらの間の固定軸45の肉厚を、一様に薄肉に形成することにより設けられている点が異なる。すなわち、第1の実施形態と比較して、冷却槽48の固定軸45の軸方向の長さが拡大されて設けられている点が異なる。
なお、回転陽極14の支持機構は、第1の実施形態と同様である。すなわち、回転陽極14は、第1の実施形態と同様に構成された動圧すべり軸受24−1、24−2、25−1、25−2によって回転可能に支持されている。
このような第3の実施形態に係るX線管49若しくはX線管装置であっても、第1の実施形態と同様に、耐G性能に優れ、高出力が可能な回転陽極型X線管49を提供することができる。また、このX線管49を具備することにより、耐G性能に優れ、小型、軽量で高出力が可能な回転陽極型X線管装置を提供することができる。さらに、これらのX線管49若しくはX線管装置の冷却性能の信頼性を向上させることができる。これらに加えて、回転陽極14の支持の信頼性も向上させることができる。
さらに、第3の実施形態に係るX線管49若しくはX線管装置によれば、第1の実施形態と比較して、冷却槽48が、固定軸45の軸方向に拡大されて設けられているため、回転円筒19が有する熱を冷却槽48に伝達する箇所が増す。よって、第1の実施形態に係るX線管11若しくはX線管装置と比較して、熱伝達効率を向上させることができる。従って、より高出力が可能な回転陽極型X線管49若しくは、回転陽極型X線管装置を提供することができる。
これに加えて、第3の実施形態に係るX線管49若しくはX線管装置によれば、冷却槽48が固定軸45の軸方向に拡大されて設けられているため、冷却流体の流れがスムースになる。よって、熱伝達効率をさらに向上させることができる。従って、さらに高出力が可能な回転陽極型X線管49若しくは、回転陽極型X線管装置を提供することができる。
なお、この構成は、ターゲット15からの発熱に加えて、回転円筒19が高速回転することによって、第2のラジアル軸受24−2自身の発熱量が大きくなる場合には有効である。
(第4の実施形態)
図6は、第4の実施形態に係るX線管装置の要部であって、回転陽極の回転時の断面図である。図6に示すように、第4の実施形態に係るX線管装置は、第1の実施形態のX線管装置と比較して、固定軸50の内部に設けられた流路53は、他より流路径が拡大された冷却槽53を有しており、この冷却槽53は、第1の径大部26−1、第2の径大部26−2および、これらの間の固定軸50の肉厚を、ターゲット15に近づくに従って、階段状に薄肉に形成することにより設けられている点が異なる。すなわち、冷却槽53は、第1の径大部26−1の肉厚が、第2の径大部26−2の肉厚よりも薄くなるように形成することにより、ターゲット15に近づくに従って、階段状に流路径が拡大されて設けられている。
なお、回転陽極14の支持機構は、第1の実施形態と同様である。すなわち、回転陽極14は、第1の実施形態と同様に構成された動圧すべり軸受24−1、24−2、25−1、25−2によって回転可能に支持されている。
このような第4の実施形態に係るX線管54若しくはX線管装置であっても、第1の実施形態と同様に、耐G性能に優れ、高出力が可能な回転陽極型X線管54を提供することができる。また、このX線管54を具備することにより、耐G性能に優れ、小型、軽量で高出力が可能な回転陽極型X線管装置を提供することができる。さらに、これらのX線管54若しくはX線管装置の冷却性能の信頼性を向上させることができる。これらに加えて、回転陽極14の支持の信頼性も向上させることができる。
また、冷却槽53が固定軸50の軸方向に向かって拡大されて設けられているため、第3の実施形態に係るX線管49若しくはX線管装置と同様に、より高出力が可能な回転陽極型X線管54若しくは、回転陽極型X線管装置を提供することができる。
これに加えて、第4の実施形態に係るX線管54若しくはX線管装置によれば、第3の実施形態に係るX線管49若しくはX線管装置と比較して、第2の径大部26−2の肉厚が厚く形成された場合、より耐G性能に優れた回転陽極型X線管54若しくは回転陽極型X線管装置を提供することができる。
また、第3の実施形態に係るX線管49若しくはX線管装置と比較して、第1の径大部24−2の肉厚が薄く形成された場合、より冷却性能を向上させることができるため、より高出力が可能な回転陽極型X線管54若しくは回転陽極型X線管装置を提供することができる。
なお、この構成は、例えば、ターゲット15および第1、第2のラジアル軸受24−1、24−2において熱が発生するが、ターゲット15および第1のラジアル軸受24−1に発生する熱量の総和が、第2のラジアル軸受24−2に発生する熱量に比べて多い場合等、ターゲット15に近いほど高い熱伝達効率が必要な場合には、特に有効である。
(第5の実施形態)
図7は、第5の実施形態のX線管装置の要部であって、回転陽極の回転時の断面図である。図7に示すように、第5の実施形態のX線管装置は、第1の実施形態のX線管装置と比較して、固定軸42の内部に設けられた流路43は、第1の実施形態と同じ箇所に、同様に設けられた第1の冷却槽31−1の他に、この第1の冷却槽31−1と離間する位置にも、他より流路径が拡大された第2の冷却槽31−2を有している点が異なる。なお、第2の冷却槽31−1は、第2の径大部26−2を薄肉に形成することにより設けられている。
この構成は、言い換えれば、第4の実施形態における冷却槽53の中間部分を肉厚化することにより、第4の実施形態における冷却槽53を第1の冷却槽31−1と第2の冷却槽31−2とに分断された構成である。
第1の冷却槽31−1は、第2の冷却槽31−2と比較して、より薄肉に形成することにより設けられており、これにより、第2の冷却槽31−2より熱伝達効率が向上される。これは、ターゲット15により近いほど、より高い熱伝達効率が要求されるためである。
上述の構成の場合、固定軸42の内部を流れる冷却流体が流れる方向はどちらの方向であってもよいが、図7に示すように、図面左から右方向に冷却流体が流れる方が好ましい。これは、ターゲット15に近い第1の冷却槽31−1において高温になった冷却流体を、速やかに固定軸42外に排出することができるためである。これについては、上述の第1、第3、第4の各実施形態および、後述する第6、第7、第8の各実施形態においても同様である。
なお、回転陽極14の支持機構は、第1の実施形態と同様である。すなわち、回転陽極14は、第1の実施形態と同様に構成された動圧すべり軸受24−1、24−2、25−1、25−2によって回転可能に支持されている。
このような第5の実施形態に係るX線管44若しくはX線管装置であっても、第1の実施形態と同様に、耐G性能に優れ、高出力が可能な回転陽極型X線管44を提供することができる。また、このX線管44を具備することにより、耐G性能に優れ、小型、軽量で高出力が可能な回転陽極型X線管装置を提供することができる。さらに、これらのX線管44若しくはX線管装置の冷却性能の信頼性を向上させることができる。これらに加えて、回転陽極14の支持の信頼性も向上させることができる。
さらに、第5の実施形態に係るX線管44若しくはX線管装置によれば、第1の実施形態と比較して、第2の径大部26−2も薄肉に形成されているため、回転円筒19が有する熱を伝達する箇所が増す。よって、第1の実施形態に係るX線管11若しくはX線管装置と比較して、熱伝達効率を向上させることができる。従って、より高出力が可能な回転陽極型X線管44若しくは、回転陽極型X線管装置を提供することができる。
なお、この構成は、第3、第4の実施形態における冷却性能をほぼ維持しつつ、さらに耐G性能を向上させたい場合には有効である。
(第6の実施形態)
図8は、第6の実施形態に係るX線管装置の要部であって、回転陽極の回転時の断面図である。図8に示すように、第6の実施形態に係るX線管装置は、第1の実施形態のX線管装置と比較して、ターゲット55の付根に円周状の切り欠き部56を有している点が異なる。
この切り欠き部56は、ターゲット55の熱膨張による変形に起因して回転円筒19が変形することを抑制するように作用する。すなわち、ターゲット55は、電子が衝突する電子衝突面55−1が電子衝突により局所的に高温になるため、電子衝突面55−1が局所的に大きく熱膨張する。これにより、ターゲット55は図8の矢印aで示す方向に反り返るように熱変形する。このようにターゲット55が熱変形した場合、切り欠き部56が設けられない場合には回転円筒19も変形するが、この切り欠き部56を設けることによりターゲット55が曲げに対して柔構造となるため、ターゲット55の熱膨張による変形により回転円筒19が変形することを抑制する。
なお、回転陽極58の支持機構は、第1の実施形態と同様である。すなわち、回転陽極58は、第1の実施形態と同様に構成された動圧すべり軸受24−1、24−2、25−1、25−2によって回転可能に支持されている。
このような第6の実施形態に係るX線管57若しくはX線管装置であっても、第1の実施形態と同様に、耐G性能に優れ、高出力が可能な回転陽極型X線管57を提供することができる。また、このX線管57を具備することにより、耐G性能に優れ、小型、軽量で高出力が可能な回転陽極型X線管装置を提供することができる。さらに、これらのX線管57若しくはX線管装置の冷却性能の信頼性を向上させることができる。これらに加えて、回転陽極58の支持の信頼性も向上させることができる。
さらに、第6の実施形態に係るX線管57若しくは、回転陽極型X線管装置においては、ターゲット55に円周状の切り欠き部56が設けられるため、ターゲット55の熱膨張による変形により回転円筒19が変形することが抑制される。反対に、例えば図1に示すターゲット15のように、切り欠き部56が設けられない場合には、ターゲット15の変形に起因して回転円筒19も変形する。この場合、第1のラジアル軸受24−1の隙間が拡大し、軸受の負荷能力が低下するため、回転陽極14の良好な回転運転が阻害される。すなわち、ターゲット55に円周状の切り欠き部56を設けることにより、回転円筒19が変形することが抑制され、回転陽極58の良好な回転運転が維持されるため、より高出力化が可能な回転陽極型X線管57若しくは、回転陽極型X線管装置を提供することができる。
上述のように、この構造は、回転陽極型X線管57若しくは、回転陽極型X線管装置をより高出力化する場合には有効である。すなわち、高出力化に伴って、ターゲット55は非常に高温になるが、このターゲット55を冷却するための冷却槽31は、第1の径大部26−1の肉厚を薄く形成することにより設けられるが、耐G性能が維持される程度までしか薄肉にすることができない。このような場合には、第1のラジアル軸受24−1によるターゲット55の冷却と同時に、ターゲット55の変形に起因する回転円筒19の変形も抑制する必要があり、このような場合には、切り欠き部56を設けることは有効である。また、切り欠きの部56の位置は、上述の効果が得られる位置であればターゲット55の付根に限定するものではない。
(第7の実施形態)
図9は、第7の実施形態に係るX線管装置の要部であって、回転陽極の回転時の断面図である。図9に示すように、第7の実施形態に係るX線管装置は、第1の実施形態のX線管装置と比較して、ターゲット59の肉厚を厚く形成し、さらに、ターゲット59の外周から回転円筒19との付根にかけてさらに厚く形成している点が異なる。
このようにターゲット59を厚く形成することによっても、ターゲット59の熱膨張による変形に起因する回転円筒19の変形は抑制される。すなわち、ターゲット59を厚く形成することにより、ターゲット59の剛性は高められる。従って、ターゲット59の熱膨張による変形に起因する回転円筒19の変形は抑制される。
なお、回転陽極61の支持機構は、第1の実施形態と同様である。すなわち、回転陽極61は、第1の実施形態と同様に構成された動圧すべり軸受24−1、24−2、25−1、25−2によって回転可能に支持されている。
このような第7の実施形態に係るX線管60若しくはX線管装置であっても、第1の実施形態と同様に、耐G性能に優れ、高出力が可能な回転陽極型X線管60を提供することができる。また、このX線管60を具備することにより、耐G性能に優れ、小型、軽量で高出力が可能な回転陽極型X線管装置を提供することができる。さらに、これらのX線管60若しくはX線管装置の冷却性能の信頼性を向上させることができる。これらに加えて、回転陽極61の支持の信頼性も向上させることができる。
さらに、第7の実施形態に係るX線管60若しくはX線管装置においては、ターゲット59の肉厚が厚く形成されているため、ターゲット59の熱膨張による変形により回転円筒19が変形することが抑制される。これにより、回転陽極61の良好な回転運転が維持されるため、より高出力化が可能な回転陽極型X線管60若しくは、回転陽極型X線管装置を提供することができる。
この構造も、回転陽極型X線管60若しくは、回転陽極型X線管装置をより高出力化する場合には有効である点は、第6の実施形態と同様である。
(第8の実施形態)
図10は、第8の実施形態に係るX線管装置の要部であって、回転陽極の回転時の断面図である。図10に示すように、第8の実施形態に係るX線管装置は、第1の実施形態のX線管装置と比較して、冷却槽71の構造が異なる。
第8の実施形態に係るX線管装置において、冷却槽71の内部には、固定軸62よりも径が小さい中実円柱部64が設けられている。さらに、冷却槽71は、中実円柱部64の外周面との間に一定の隙間を有するように、筒状の薄肉部65を設けることによって形成されている。なお、この薄肉部65は、第1のラジアル軸受24−1を構成する一要素となるものであり、第1の実施形態の第1の径大部26−1と同様に、外径が他よる径大になるように設けられる。これにより、本実施形態における第1のラジアル軸受24−1は、薄肉部65、この薄肉部65に対向する回転円筒19の一部、および、これらの間に介在する液体金属23によって構成される。
中実円柱部64は、この中心軸が、固定軸62の中心軸と同じになるようにして固定軸62の一部に形成されている。また、このように形成された、中実円柱部64の両端面には、放射状の孔66が設けられている。
薄肉部65は、固定軸62と異なる部品で構成される。しかし、薄肉部65は、固定軸62を構成する材料と同一材料によって形成されてもよいし、異なる材料によって形成されてもよい。
このような冷却槽71を含む流路67は、冷却槽71以外の第1の流路67−1と、中実円柱部64の両端面に設けられた放射状の孔66と、中実円柱部64と薄肉部65との隙間である第2の流路67−2と、によって構成される。なお、第1の流路67−1と第2の流路67−2とは、放射状の孔66によって連結されている。
ここで、上述の流路67について、さらに詳しく説明する。図11は、図10の破線A−A´に沿った断面図、図12は、図10の破線B−B´に沿った断面図、図13は、図10の破線C−C´に沿った断面図である。中実円柱部64に設けられた放射状の孔66は、図11、図12に示すように、中実円柱部64の中心軸から外周面方向にかけて、複数設けられている。そして、これらの放射状の孔66は、孔66の断面積の合計が、第1の流路67−1の断面積と等しくなるように構成されている。
さらに、図13に示すように、第2の流路67−2は、この隙間の断面積が、第1の流路67−1の断面積と等しくなるように構成されている。
すなわち、流路67は、任意の断面において常に断面積が一定になるように設けられている。
なお、回転陽極14の支持機構は、第1の実施形態と同様である。すなわち、回転陽極61は、第1の実施形態と同様に構成された動圧すべり軸受24−1、24−2、25−1、25−2によって回転可能に支持されている。
このような第8の実施形態に係るX線管68若しくはX線管装置であっても、第1の実施形態と同様に、耐G性能に優れ、高出力が可能な回転陽極型X線管37を提供することができる。また、このX線管68を具備することにより、耐G性能に優れ、小型、軽量で高出力が可能な回転陽極型X線管装置を提供することができる。さらに、これらのX線管68若しくはX線管装置の冷却性能の信頼性を向上させることができる。これらに加えて、回転陽極14の支持の信頼性も向上させることができる。
さらに、第8の実施形態に係るX線管68若しくはX線管装置においては、冷却槽71の内部に中実円柱部64が設けられているため、より耐G性能に優れた回転陽極型X線管68若しくは、回転陽極型X線管装置を提供することができる。
これに加えて、第8の実施形態に係るX線管68若しくはX線管装置においては、流路67が、任意の断面において常に断面積が一定になるように設けられている。従って、スムースに冷却流体を流入、排出することができ、高温な冷却流体が、冷却槽71において淀むことがない。従って、熱伝達効率をさらに向上させ、高出力が可能な回転陽極型X線管68若しくは、回転陽極型X線管装置を提供することができる。
なお、この構造は、CT装置に搭載され、ヘリカルスキャンによる遠心力がX線管に作用するような、高い耐G性能が要求される場合には有効である。
以上に、本発明の実施形態について説明した。しかし、本発明は、上述の各実施形態に限定されるものではない。例えば、図1、図4、図8、図9、図10にそれぞれ示される各実施形態において、固定軸13、36、50、62のうち、薄肉に形成される第1の径大部26−1は、ターゲット15、55、59の近傍に設けられていた。これは、ターゲット15、55、59からの発熱量が多い場合には有効である。しかし、例えば、回転円筒19、39が高速回転する場合等、第2のラジアル軸受24−2からの発熱量が多い場合には、第2の径大部26−2を、薄く形成してもよい。このように、固定軸13、36、50、62のうち、薄肉に形成される箇所は、発熱量が多い箇所の近傍に設けられることが好ましい。
上述の他にも、薄肉に形成される箇所は、動圧すべり軸受を構成する一要素となるように設けられれば、いずれの箇所に設けられてもよい。例えば、第1の実施形態に係るX線管11において、回転円筒19に覆われる固定軸13の全体が、他より径大に設けられた構造の場合、この径大部と、回転円筒19と、これらの間に介在する液体金属23と、によって、ラジアル軸受が構成される。この場合、薄肉に形成される箇所は、径大部のいずれの箇所であってもよい。
また、第1の径大部26−1、第2の径大部26−2等、薄肉に形成される箇所の肉厚および、薄肉に形成される箇所の長さは、熱伝達効率と耐G性能とを考慮して、共に所望の特性が得られる程度であればよく、肉厚および長さは限定されない。従って、例えば図5に示される第3の実施形態のX線管装置のように、第1の冷却槽31−1と第2の冷却槽31−2とを有する構造において、これらの冷却槽31−1、31−2の中央の位置にターゲット15が位置する場合、第1の径大部26−1の肉厚と、第2の径大部26−2の肉厚とが、同程度になるように形成することにより、互いに同程度の熱伝達効率を有するように形成してもよい。
これにより、冷却槽31、41、48、53、第1、第2の冷却槽31−1、31−2の形状および大きさも、熱伝達効率と耐G性能とを考慮して、共に所望の特性が得られる程度であればよく、形状および大きさは限定されない。例えば、冷却槽31、41、48、53、第1、第2の冷却槽31−1、31−2は、各冷却槽31、41、48、53、31−1、31−2の側面がテーパ状に広がる形状であってもよい。このようにテーパ状に形成することにより、冷却流体の流れがスムースになるため、圧力損失を低減できるとともに、各冷却槽31、41、48、53、31−1、31−2において、高温の冷却流体が淀むことがなくなるため、熱伝達効率を向上させることができる。
また、第1、第2のラジアル軸受24−1、24−2に動圧効果を発生させる溝形状とパターンとは、図2に示される溝形状とパターンとに限定されるものではない。例えば、平面部32が設けられない溝形状とパターンとであってもよい。図14は、第1の径大部69−1に設けられる溝形状とパターンの変形例を拡大して示す側面図である。図14に示すように、第1の径大部69−1には、複数のV字形状の溝70が回転陽極14の回転方向に沿って一定間隔のパターンで設けられている。この場合、第1の径大部69−1と回転円筒19との間において、特にV字状の溝70の中央近傍に液体金属23を送り込むため、この部分に確実に動圧効果を生じさせることができる。しかし、平面部32は設けられないため、くさび効果による圧力は生じない。従って、図2に示される第1のラジアル軸受24−1と比較して、遠心力作用時の回転陽極14の支持の信頼性は低下する。しかし、軸受に高い負荷能力が必要ないX線管の場合には、図14に示される溝形状とパターンとを有する第1の径大部69−1を一要素とする第1のラジアル軸受が適用されてもよい。
また、第1、第2の径大部26−1、26−2、69−1には、図2、図14に示されるような溝34、70が設けられなくてもよい。この場合、回転陽極14は、主に、くさび効果による圧力により、固定軸13に回転可能に支持される。
また、固定軸13、36、42、45、50、62のフランジ部13−1、36−1、42−1、45−1、50−1、62−1に設けられる溝形状とパターンとは、必ずしも図3に示される溝形状とパターンとである必要はなく、例えば、フランジ部13−1、36−1、42−1、45−1、50−1、62−1には、中心から外部方向に向かって放射状に設けられた溝形状とパターンとが設けられていてもよい。
また、第3乃至第8の実施形態に係るX線管装置は、両持ち構造であったが、これらをそれぞれ片持ち構造としてもよい。この場合、両持ち構造のX線管装置と比較すれば耐G性能は劣る。しかし、高い耐G性能が要求されないX線管装置に適用すれば、各実施形態における効果を得ることができる。
11、37、44、49、54、57、60、68・・・回転陽極型X線管(X線管)
12・・・ステータコイル
13、36、42、45、50、62・・・固定軸
13−1、36−1、42−1、45−1、50−1、62−1・・・フランジ部
14、38、58、61・・・回転陽極
15、55、59・・・ターゲット
16・・・陰極
17・・・開口窓
18・・・真空外囲器
19、39・・・回転円筒
19−1、39−1・・・フランジ部
20・・・モータロータ
21・・・シール
22・・・スラストリング
23・・・液体金属
24−1・・・第1のラジアル軸受
24−2・・・第2のラジアル軸受
25−1・・・第1のスラスト軸受
25−2・・・第2のスラスト軸受
26−1、69−1・・・第1の径大部
26−2・・・第2の径大部
28・・・液体金属貯蔵部
30、40、43、47、52、67・・・流路
31、41、48、53、71・・・冷却槽
31−1・・・第1の冷却槽
31−2・・・第2の冷却槽
32・・・平面部
33・・・溝部
34・・・溝
35・・・V字状の溝
40−1・・・流入路
40−2・・・流出路
55−1・・・電子衝突面
56・・・切り欠き部
64・・・中実円柱部
65・・・薄肉部
66・・・放射状の孔
67−1・・・第1の流路
67−2・・・第2の流路
70・・・フランジ部に設けられるV時状の溝

Claims (6)

  1. 複数の径大部を一部に有し、冷却流体が流れる流路が内部に設けられた固定軸と、
    この固定軸の前記複数の径大部の肉厚をそれぞれ薄肉に形成することにより、前記流路の一部の流路径がそれぞれ拡大されて設けられた複数の冷却槽と、
    前記固定軸のうち前記複数の径大部を含む領域を液体金属を介して覆うことにより、前記固定軸に回転可能に支持された回転円筒と、
    この回転円筒の外周面に設けられた中空円板状のターゲットと、
    前記ターゲットに対向配置された陰極と、
    前記固定軸、前記回転円筒、前記ターゲット、および前記陰極を内部に収納し、前記固定軸を支持する真空外囲器と、
    を具備することを特徴とする回転陽極型X線管。
  2. 前記複数の冷却槽は、前記ターゲットに近いほど、前記径大部の肉厚が薄く形成されたことを特徴とする請求項1に記載の回転陽極型X線管。
  3. 複数の径大部を一部に有し、冷却流体が流れる流路が内部に設けられた固定軸と、
    この固定軸の前記複数の径大部、およびこれらの前記径大部の間の前記固定軸の肉厚を薄肉に形成することにより、前記流路の一部の流路径が拡大されて設けられた冷却槽と、
    前記固定軸のうち前記複数の径大部を含む領域を液体金属を介して覆うことにより、前記固定軸に回転可能に支持された回転円筒と、
    この回転円筒の外周面に設けられた中空円板状のターゲットと、
    前記ターゲットに対向配置された陰極と、
    前記固定軸、前記回転円筒、前記ターゲット、および前記陰極を内部に収納し、前記固定軸を支持する真空外囲器と、
    を具備することを特徴とする回転陽極型X線管。
  4. 前記冷却槽は、ターゲットに近づくに従って階段状に前記流路径が拡大されて設けられたことを特徴とする請求項3に記載の回転陽極型X線管。
  5. 径大部を一部に有し、冷却流体が流れる流路が内部に設けられた固定軸と、
    この固定軸の径大部の肉厚を薄肉に形成することにより、前記流路の一部の流路径が拡大されて設けられた冷却槽と、
    前記固定軸のうち前記径大部を含む領域を液体金属を介して覆うことにより、前記固定軸に回転可能に支持された回転円筒と、
    この回転円筒の外周面に設けられた中空円板状のターゲットと、
    前記ターゲットに対向配置された陰極と、
    前記固定軸、前記回転円筒、前記ターゲット、および前記陰極を内部に収納し、前記固定軸を支持する真空外囲器と、
    を具備し、
    前記冷却槽は、内部に、前記固定軸と中心軸が同じになるようにして前記固定軸の一部に形成された中実円柱部を有し、
    前記径大部は、この中実円柱部との間に一定の隙間を有して設けられた筒状の薄肉部により構成され、
    前記中実円柱部は、この両側面に、前記中実円柱部と前記薄肉部との隙間と、前記薄肉円筒部以外の前記固定軸の流路とを連結する放射状の溝が設けられていることを特徴とする回転陽極型X線管。
  6. 前記固定軸の流路の断面積、前記中実円柱部と前記薄肉部との隙間の断面積、および前記中実円柱部の両端に設けられた放射状の溝の断面積の総和は、等しいことを特徴とする請求項5に記載の回転陽極型X線管。
JP2009207424A 2009-09-08 2009-09-08 回転陽極型x線管および回転陽極型x線管装置 Active JP5422311B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009207424A JP5422311B2 (ja) 2009-09-08 2009-09-08 回転陽極型x線管および回転陽極型x線管装置
US12/875,559 US8582722B2 (en) 2009-09-08 2010-09-03 Rotary anode X-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009207424A JP5422311B2 (ja) 2009-09-08 2009-09-08 回転陽極型x線管および回転陽極型x線管装置

Publications (2)

Publication Number Publication Date
JP2011060517A JP2011060517A (ja) 2011-03-24
JP5422311B2 true JP5422311B2 (ja) 2014-02-19

Family

ID=43647773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009207424A Active JP5422311B2 (ja) 2009-09-08 2009-09-08 回転陽極型x線管および回転陽極型x線管装置

Country Status (2)

Country Link
US (1) US8582722B2 (ja)
JP (1) JP5422311B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4243051A1 (en) * 2022-03-08 2023-09-13 Koninklijke Philips N.V. Rotary anode x-ray source
WO2023169908A1 (en) * 2022-03-08 2023-09-14 Koninklijke Philips N.V. Rotary anode x-ray source

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6158007B2 (ja) * 2013-09-18 2017-07-05 東芝電子管デバイス株式会社 回転陽極型x線管
CN105006415B (zh) * 2015-08-18 2017-04-05 上海宏精医疗器械有限公司 一种x射线管旋转阳极装置
WO2017161376A1 (en) * 2016-03-18 2017-09-21 Varex Imaging Corporation Magnetic lift device for an x-ray tube
US10283312B2 (en) 2016-08-30 2019-05-07 General Electric Company System and method for reducing relative bearing shaft deflection in an X-ray tube
JP7070976B2 (ja) * 2017-07-19 2022-05-18 キヤノン電子管デバイス株式会社 すべり軸受構造およびこの軸受構造を用いた回転陽極x線管
US10748736B2 (en) 2017-10-18 2020-08-18 Kla-Tencor Corporation Liquid metal rotating anode X-ray source for semiconductor metrology
JP7066568B2 (ja) * 2018-08-06 2022-05-13 キヤノン電子管デバイス株式会社 回転陽極x線管及び回転陽極x線管装置
US11017977B1 (en) * 2020-01-24 2021-05-25 GE Precision Healthcare LLC Liquid metal bearing assembly and method for operating said liquid metal bearing assembly
US11719652B2 (en) 2020-02-04 2023-08-08 Kla Corporation Semiconductor metrology and inspection based on an x-ray source with an electron emitter array
AT17209U1 (de) * 2020-02-20 2021-09-15 Plansee Se RÖNTGENDREHANODE MIT INTEGRIERTER FLÜSSIGMETALLLAGER-AUßENSCHALE
JP7399768B2 (ja) 2020-03-25 2023-12-18 キヤノン電子管デバイス株式会社 すべり軸受ユニット及び回転陽極型x線管
US11955308B1 (en) * 2022-09-22 2024-04-09 Kla Corporation Water cooled, air bearing based rotating anode x-ray illumination source

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247390A (en) * 1975-10-14 1977-04-15 Nippon Telegr & Teleph Corp <Ntt> Rotary target
GB1527894A (en) * 1975-10-15 1978-10-11 Mullard Ltd Methods of manufacturing electronic devices
JPH04112829A (ja) 1990-08-30 1992-04-14 Mect Corp 腎疾患治療薬
DE4227495A1 (de) 1992-08-20 1994-02-24 Philips Patentverwaltung Drehanoden-Röntgenröhre mit Kühlvorrichtung
DE19630351C1 (de) * 1996-07-26 1997-11-27 Siemens Ag Röntgenröhre mit einem Gleitlager
JP2001325908A (ja) * 2000-03-09 2001-11-22 Toshiba Corp 回転陽極型x線管
JP2002184334A (ja) * 2000-12-18 2002-06-28 Toshiba Corp 回転陽極型x線管
JP2003077412A (ja) * 2001-08-31 2003-03-14 Toshiba Corp 回転陽極型x線管
JP4112829B2 (ja) * 2001-08-29 2008-07-02 株式会社東芝 回転陽極型x線管
JP2003272548A (ja) * 2002-03-15 2003-09-26 Toshiba Corp 回転陽極型x線管
JP4231706B2 (ja) * 2002-06-04 2009-03-04 株式会社日立メディコ X線管装置及びそれを用いたx線ct装置
JP5461400B2 (ja) * 2007-08-16 2014-04-02 コーニンクレッカ フィリップス エヌ ヴェ 回転陽極型の高出力x線管構成に対する陽極ディスク構造のハイブリッド設計
JP2009081069A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 回転陽極型x線管
JP2009130035A (ja) 2007-11-21 2009-06-11 Toshiba Corp 半導体装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4243051A1 (en) * 2022-03-08 2023-09-13 Koninklijke Philips N.V. Rotary anode x-ray source
WO2023169908A1 (en) * 2022-03-08 2023-09-14 Koninklijke Philips N.V. Rotary anode x-ray source

Also Published As

Publication number Publication date
US8582722B2 (en) 2013-11-12
US20110058654A1 (en) 2011-03-10
JP2011060517A (ja) 2011-03-24

Similar Documents

Publication Publication Date Title
JP5422311B2 (ja) 回転陽極型x線管および回転陽極型x線管装置
EP2043129A2 (en) Rotary anode x-ray tube
US9972472B2 (en) Welded spiral groove bearing assembly
US8073098B2 (en) Air bearing to support a body
US10468223B2 (en) System and method for reducing relative bearing shaft deflection in an X-ray tube
US11037752B2 (en) Spiral groove bearing assembly with minimized deflection
JP5529152B2 (ja) 回転可能な陽極及び液体ヒート・シンクを含むx線管
CN102187423B (zh) X射线管内的轴承
JP5988823B2 (ja) 回転陽極x線管装置およびx線撮像装置
JP7134848B2 (ja) 内部冷却チャネルを有するx線管用のスラストフランジ
US20230272819A1 (en) Hydrodynamic bearing system and method for operating said hydrodynamic bearing system
JP4810069B2 (ja) X線管内の液体金属ガスケット
EP3358208B1 (en) Ring seal for liquid metal bearing assembly
US20190103244A1 (en) Cooling Spiral Groove Bearing Assembly
US11920630B2 (en) Self-lubricated sliding bearing
Hattori et al. Proposal of a high rigidity and high speed rotating mechanism using a new concept hydrodynamic bearing in X-Ray tube for high speed computed tomography
JP4421126B2 (ja) 回転陽極型x線管

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5422311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350