JP7207898B2 - 飲食品の嚥下感覚の解析方法および予測方法 - Google Patents
飲食品の嚥下感覚の解析方法および予測方法 Download PDFInfo
- Publication number
- JP7207898B2 JP7207898B2 JP2018153849A JP2018153849A JP7207898B2 JP 7207898 B2 JP7207898 B2 JP 7207898B2 JP 2018153849 A JP2018153849 A JP 2018153849A JP 2018153849 A JP2018153849 A JP 2018153849A JP 7207898 B2 JP7207898 B2 JP 7207898B2
- Authority
- JP
- Japan
- Prior art keywords
- swallowing
- food
- drink
- sensation
- sensory evaluation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000009747 swallowing Effects 0.000 title claims description 519
- 230000035807 sensation Effects 0.000 title claims description 279
- 235000013305 food Nutrition 0.000 title claims description 251
- 238000004458 analytical method Methods 0.000 title claims description 138
- 238000000034 method Methods 0.000 title claims description 72
- 238000011156 evaluation Methods 0.000 claims description 254
- 230000001953 sensory effect Effects 0.000 claims description 158
- 210000003205 muscle Anatomy 0.000 claims description 148
- 230000003183 myoelectrical effect Effects 0.000 claims description 73
- 230000000694 effects Effects 0.000 claims description 30
- 230000003595 spectral effect Effects 0.000 claims description 24
- 238000010219 correlation analysis Methods 0.000 claims description 22
- 238000010801 machine learning Methods 0.000 claims description 20
- 230000009748 deglutition Effects 0.000 claims description 18
- 238000001228 spectrum Methods 0.000 claims description 16
- 238000005259 measurement Methods 0.000 claims description 15
- 238000007619 statistical method Methods 0.000 claims description 12
- 241000167880 Hirundinidae Species 0.000 claims description 11
- 238000004891 communication Methods 0.000 claims description 5
- 230000002159 abnormal effect Effects 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 3
- 235000019615 sensations Nutrition 0.000 description 256
- 235000013361 beverage Nutrition 0.000 description 24
- 230000006461 physiological response Effects 0.000 description 19
- 238000013507 mapping Methods 0.000 description 17
- 238000013528 artificial neural network Methods 0.000 description 14
- 235000008429 bread Nutrition 0.000 description 14
- 235000019640 taste Nutrition 0.000 description 13
- 238000009795 derivation Methods 0.000 description 12
- 239000000796 flavoring agent Substances 0.000 description 12
- 235000019634 flavors Nutrition 0.000 description 12
- 238000000611 regression analysis Methods 0.000 description 12
- 210000003800 pharynx Anatomy 0.000 description 10
- 241000209094 Oryza Species 0.000 description 9
- 235000007164 Oryza sativa Nutrition 0.000 description 9
- 238000010238 partial least squares regression Methods 0.000 description 9
- 235000009566 rice Nutrition 0.000 description 9
- 235000019587 texture Nutrition 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 235000015110 jellies Nutrition 0.000 description 7
- 239000008274 jelly Substances 0.000 description 7
- 235000021110 pickles Nutrition 0.000 description 7
- 230000002123 temporal effect Effects 0.000 description 7
- 235000019589 hardness Nutrition 0.000 description 6
- 239000003264 margarine Substances 0.000 description 6
- 235000013310 margarine Nutrition 0.000 description 6
- 238000012795 verification Methods 0.000 description 6
- 238000013473 artificial intelligence Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 235000013372 meat Nutrition 0.000 description 5
- 238000000513 principal component analysis Methods 0.000 description 5
- 235000014121 butter Nutrition 0.000 description 4
- 230000036461 convulsion Effects 0.000 description 4
- 239000003205 fragrance Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 235000015220 hamburgers Nutrition 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000003340 mental effect Effects 0.000 description 4
- 235000015067 sauces Nutrition 0.000 description 4
- 244000294411 Mirabilis expansa Species 0.000 description 3
- 235000015429 Mirabilis expansa Nutrition 0.000 description 3
- 244000269722 Thea sinensis Species 0.000 description 3
- 235000012970 cakes Nutrition 0.000 description 3
- 235000014171 carbonated beverage Nutrition 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 235000009508 confectionery Nutrition 0.000 description 3
- 239000006071 cream Substances 0.000 description 3
- 235000021186 dishes Nutrition 0.000 description 3
- 238000002567 electromyography Methods 0.000 description 3
- 235000019688 fish Nutrition 0.000 description 3
- 235000011194 food seasoning agent Nutrition 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 235000013536 miso Nutrition 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 210000000214 mouth Anatomy 0.000 description 3
- 239000002304 perfume Substances 0.000 description 3
- 235000002639 sodium chloride Nutrition 0.000 description 3
- 235000013547 stew Nutrition 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 241000251468 Actinopterygii Species 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000238557 Decapoda Species 0.000 description 2
- 241000283073 Equus caballus Species 0.000 description 2
- 235000006468 Thea sinensis Nutrition 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 235000015278 beef Nutrition 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000013136 deep learning model Methods 0.000 description 2
- 230000035622 drinking Effects 0.000 description 2
- 230000007937 eating Effects 0.000 description 2
- 210000003823 hyoid bone Anatomy 0.000 description 2
- 244000144972 livestock Species 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 238000000491 multivariate analysis Methods 0.000 description 2
- 210000001087 myotubule Anatomy 0.000 description 2
- 235000012149 noodles Nutrition 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 235000019685 rice crackers Nutrition 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 210000001189 slow twitch fiber Anatomy 0.000 description 2
- 235000014347 soups Nutrition 0.000 description 2
- 235000013555 soy sauce Nutrition 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 235000021419 vinegar Nutrition 0.000 description 2
- 239000000052 vinegar Substances 0.000 description 2
- 244000291564 Allium cepa Species 0.000 description 1
- 235000010167 Allium cepa var aggregatum Nutrition 0.000 description 1
- 241001310494 Ammodytes marinus Species 0.000 description 1
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 241000237519 Bivalvia Species 0.000 description 1
- 241000238097 Callinectes sapidus Species 0.000 description 1
- 241000283153 Cetacea Species 0.000 description 1
- 241000131500 Chionoecetes opilio Species 0.000 description 1
- 241000555825 Clupeidae Species 0.000 description 1
- 241001149724 Cololabis adocetus Species 0.000 description 1
- 241001137251 Corvidae Species 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- 208000019505 Deglutition disease Diseases 0.000 description 1
- 206010012289 Dementia Diseases 0.000 description 1
- 239000004278 EU approved seasoning Substances 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 240000005856 Lyophyllum decastes Species 0.000 description 1
- 235000013194 Lyophyllum decastes Nutrition 0.000 description 1
- YBHQCJILTOVLHD-YVMONPNESA-N Mirin Chemical compound S1C(N)=NC(=O)\C1=C\C1=CC=C(O)C=C1 YBHQCJILTOVLHD-YVMONPNESA-N 0.000 description 1
- 206010049565 Muscle fatigue Diseases 0.000 description 1
- 241000237536 Mytilus edulis Species 0.000 description 1
- 241000237502 Ostreidae Species 0.000 description 1
- 241000238037 Palinurus vulgaris Species 0.000 description 1
- 241000282376 Panthera tigris Species 0.000 description 1
- 241000263300 Paphia undulata Species 0.000 description 1
- 241000238124 Paralithodes camtschaticus Species 0.000 description 1
- 241000237503 Pectinidae Species 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 241000861914 Plecoglossus altivelis Species 0.000 description 1
- 241000269978 Pleuronectiformes Species 0.000 description 1
- 241000269851 Sarda sarda Species 0.000 description 1
- 241000269821 Scombridae Species 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 244000299461 Theobroma cacao Species 0.000 description 1
- 208000003443 Unconsciousness Diseases 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 235000008452 baby food Nutrition 0.000 description 1
- 235000013527 bean curd Nutrition 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 235000015895 biscuits Nutrition 0.000 description 1
- 238000011237 bivariate analysis Methods 0.000 description 1
- 235000020279 black tea Nutrition 0.000 description 1
- 235000020992 canned meat Nutrition 0.000 description 1
- 235000013736 caramel Nutrition 0.000 description 1
- 235000013351 cheese Nutrition 0.000 description 1
- 235000015218 chewing gum Nutrition 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 235000019219 chocolate Nutrition 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 235000020639 clam Nutrition 0.000 description 1
- 235000013353 coffee beverage Nutrition 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 235000014510 cooky Nutrition 0.000 description 1
- 235000012495 crackers Nutrition 0.000 description 1
- 235000021438 curry Nutrition 0.000 description 1
- 235000021549 curry roux Nutrition 0.000 description 1
- 235000011950 custard Nutrition 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 235000015071 dressings Nutrition 0.000 description 1
- 210000000624 ear auricle Anatomy 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 235000015203 fruit juice Nutrition 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 235000009569 green tea Nutrition 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 235000015092 herbal tea Nutrition 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 235000008960 ketchup Nutrition 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 235000020640 mackerel Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000008268 mayonnaise Substances 0.000 description 1
- 235000010746 mayonnaise Nutrition 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 235000020124 milk-based beverage Nutrition 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 235000020638 mussel Nutrition 0.000 description 1
- 230000001114 myogenic effect Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 235000020333 oolong tea Nutrition 0.000 description 1
- 235000020636 oyster Nutrition 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- NEGYEDYHPHMHGK-UHFFFAOYSA-N para-methoxyamphetamine Chemical compound COC1=CC=C(CC(C)N)C=C1 NEGYEDYHPHMHGK-UHFFFAOYSA-N 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 210000001184 pharyngeal muscle Anatomy 0.000 description 1
- 235000015108 pies Nutrition 0.000 description 1
- 235000015277 pork Nutrition 0.000 description 1
- 235000013606 potato chips Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 235000013324 preserved food Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000011962 puddings Nutrition 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 235000021067 refined food Nutrition 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 235000019512 sardine Nutrition 0.000 description 1
- 235000020637 scallop Nutrition 0.000 description 1
- 235000014102 seafood Nutrition 0.000 description 1
- 230000037152 sensory function Effects 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
- 235000012046 side dish Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000014214 soft drink Nutrition 0.000 description 1
- 208000027765 speech disease Diseases 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 235000019465 surimi Nutrition 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 235000013616 tea Nutrition 0.000 description 1
- 235000015193 tomato juice Nutrition 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 235000012773 waffles Nutrition 0.000 description 1
Images
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Description
工程(A);飲食品の嚥下時におけるヒト咽頭部の筋肉の表面筋電位の波形データを周波数解析することにより、10Hz以下の低周波数帯域を含む周波数帯のスペクトル面積(LS)、及び/又は、100Hz以上の高周波数帯域を含む周波数帯のスペクトル面積(HS)を算出する工程
工程(B);工程(A)で算出されたスペクトル面積を分析する工程
これらの文献に記載の評価方法では、嚥下運動によって得られる特定のデータに注目しているが、このデータ以外について、嚥下運動の測定によって得られる各種類の生理応答データが利用可能かどうかは知られておらず、未知の有用な生理応答データが見過ごされている可能性もあり、嚥下感覚の指標となり得る新たなデータの探索が検討されていた。
[1] 飲食品の嚥下感覚の解析方法であり、
下記の段階(A)および段階(B)を有する、解析方法:
段階(A) 被験者の飲食品の嚥下時における1個以上の嚥下筋の表面筋電位の波形データを解析して、1個以上の嚥下に関するパラメータを算出する段階;
段階(B) 段階(A)で算出した1個以上の嚥下に関するパラメータと、前記飲食品の嚥下感覚の官能評価データとの相関を解析する段階;
ただし、飲食品の嚥下感覚の官能評価データは、前記被験者が嚥下した前記飲食品の嚥下感覚を官能評価して取得されたものである。
[2] 段階(B)の相関解析を統計解析または機械学習により行い、段階(A)で算出した前記嚥下に関するパラメータと前記飲食品の嚥下感覚の官能評価データとの相関関係を表す式を導出して、該式を飲食品の嚥下感覚の評価式として得る、[1]に記載の解析方法。
[3] 段階(B)の相関解析を統計解析または機械学習により行い、段階(A)で算出した前記嚥下に関するパラメータと前記飲食品の嚥下感覚の官能評価データとの相関関係を表すマップを導出して、該マップを飲食品の嚥下感覚のマップとして得る、[1]に記載の解析方法。
[4] 前記段階(A)が下記の段階(C1)および段階(C2)を有する[1]~[3]のいずれか一項に記載の解析方法;
段階(C1) 被験者のオトガイ下部および/または前頸部に筋電位測定電極を装着し、
該筋電位測定電極を用いて前記被験者の飲食品の嚥下時における嚥下筋の筋活動を測定して、表面筋電位の波形データを取得し、波形データを解析して嚥下に関するパラメータを算出する段階。
段階(C2) 段階(C1)で表面筋電位の波形データを取得する際に前記被験者に嚥下した飲食品の嚥下感覚を官能評価させて、前記飲食品の嚥下感覚の官能評価データを取得する段階。
[5] さらに下記の段階(D)を有する[1]~[4]のいずれか一項に記載の解析方法;
段階(D) 表面筋電位の波形データおよび飲食品の嚥下感覚の官能評価データのセットが記録された記録媒体から、表面筋電位の波形データおよび飲食品の嚥下感覚の官能評価データのセットを取得する段階。
[6] さらに下記の段階(E)を有する[1]~[5]のいずれか一項に記載の解析方法:
段階(E) 段階(A)で算出した嚥下に関するパラメータのうち、飲食品の嚥下感覚の官能評価データとの相関が高いパラメータを選択する段階。
[7] 前記段階(A)で算出した嚥下に関するパラメータが、スペクトル面積、スペクトル最大振幅、筋活動時間、パワースペクトル、パワースペクトル密度および中央パワー周波数のうち少なくとも1つである、[1]~[6]のいずれか一項に記載の解析方法。
[8] 前記段階(A)で波形データから算出した嚥下に関するパラメータが、周波数因子である[1]~[6]のいずれか一項に記載の解析方法。
[9] 周波数因子がパワースペクトル密度である[8]に記載の解析方法。
[10] パワースペクトル密度が、周波数25~45Hz、46~80Hz、および81~350Hzの各範囲で算出されたものである、[9]に記載の解析方法。
[11] さらに段階(F1)および/または段階(F2)を有する[1]~[10]のいずれか一項に記載の解析方法。
段階(F1) 段階(B)の解析で用いる飲食品の嚥下感覚の官能評価データの中から異常値の除去を行う段階。
段階(F2) 段階(A)で算出した嚥下に関するパラメータの中から、段階(B)の解析で用いるパラメータを選別する段階。
[12] [1]~[11]のいずれか一項に記載の解析方法を用いて導出した評価式またはマップを用意する段階、
前記評価式またはマップを導出する際に段階(B)の相関関係の解析において用いた嚥下に関するパラメータを、被験者に飲食品を飲食させて[1]~[11]のいずれか一項に記載の段階(A)を行うことによって新たに算出する段階、
前記相関関係を表す式またはマップに、この新たに算出したパラメータを適用する段階、を含む、飲食品の嚥下感覚の予測方法。
[13] 前記相関関係を表す式またはマップが、個人の前記嚥下に関するパラメータと飲食品の嚥下感覚の官能評価データとの相関関係を表すものである、[12]に記載の予測方法。
[14] 前記個人が意思疎通が困難となる前に、[1]~[12]のいずれか一項に記載の解析方法で前記個人の前記嚥下に関するパラメータと飲食品の嚥下感覚の官能評価データとの相関関係を得ておき、
意思疎通が難しくなった後の前記個人が飲食品を嚥下する場合に、前記相関関係の解析に用いた前記嚥下に関するパラメータに関して、該飲食品に対応する嚥下に関するパラメータの値を算出し、
前記相関関係に該パラメータの値を導入して、前記個人にとっての該飲食品の嚥下感覚を予測する、[13]に記載の予測方法。
[15] 飲食品の嚥下感覚の提示方法であり、下記の段階(a)~段階(c)を有する、提示方法:
段階(a) 複数の飲食品について、被験者の飲食品の嚥下時における1個以上の嚥下筋の表面筋電位の波形データを解析して、1個以上の嚥下に関するパラメータを算出する段階;
段階(b) 段階(a)で算出した1個以上の嚥下に関するパラメータを、判別分析を用いて前記飲食品ごとに分類して嚥下パラメータの分布図を作成する段階;
段階(c) 段階(b)で作成した前記分布図の背景に、前記各飲食品の嚥下感覚の官能評価データを反映させ、嚥下感覚の官能評価データの分布を図示する段階;
ただし、飲食品の嚥下感覚の官能評価データは、前記被験者が嚥下した前記飲食品の嚥下感覚を官能評価して取得されたものである。
本発明の解析方法は、飲食品の嚥下感覚の解析方法であり、下記の段階(A)および段階(B)を有する。
段階(A) 被験者の飲食品の嚥下時における1個以上の嚥下筋の表面筋電位の波形データを解析して、1個以上の嚥下に関するパラメータを算出する段階;
段階(B) 段階(A)で算出した1個以上の嚥下に関するパラメータと、前記飲食品の嚥下感覚の官能評価データとの相関を解析する段階;
ただし、飲食品の嚥下感覚の官能評価データは、前記被験者が嚥下した前記飲食品の嚥下感覚を官能評価して取得されたものである。
このような構成により、本発明の解析方法によれば、飲食品の嚥下感覚を生理応答データに基づいて解析できる。生理応答データに基づくため、飲食品の嚥下感覚を正確かつ客観的に担保できる。
いかなる理論に拘泥するものでもないが、本発明の解析方法では、被験者が感じる飲食品の嚥下感覚に応じて無意識で生理応答することに起因する嚥下運動の変化に対応する、「嚥下時」の嚥下筋(本明細書では、嚥下運動に関与する筋肉群に含まれる1種類以上の筋肉を意味する)の表面筋電位の波形データを解析し、さらに、この解析で算出した嚥下に関するパラメータと飲食品の官能評価データとの相関を解析することによって、飲食品の嚥下感覚を生理応答データに基づいて正確かつ客観的に担保できる。
本発明の解析方法で注目する筋肉である嚥下筋は、嚥下運動に関与する限り特に限定されない。通常、表面筋電位計の電極を頸部に貼付すると、嚥下筋の表面筋電位を測定することができる。好ましくは、嚥下筋は頸部の筋肉、より具体的には舌骨上筋群(顎舌骨筋、顎二腹筋、茎突舌骨筋、およびオトガイ舌骨筋を含む筋群)および舌骨下筋群(胸骨甲状筋、甲状舌骨筋、肩甲舌骨筋、および胸骨舌骨筋を含む筋群)から選択される少なくとも1種類、例えば舌骨上筋群および舌骨下筋群である。
本発明によって、生理応答データ(嚥下パラメータ)と嚥下感覚に関する官能評価データとの関係性の把握や予測をすることができる。
以下、本発明の好ましい態様について説明する。
本発明において、「嚥下感覚」とは、嚥下運動によって知覚し得る感覚を意味する。例えば、嚥下感覚は、「飲み込み易さ」、「硬さ」、「柔らかさ」、「喉ごし」、「喉通り」に関する感覚であってよい。より具体的には、「飲み込み易さ」などの嚥下感覚の好ましさの度合い、特に「喉ごし」や「喉通り」に関し「すっきりしている」、「ひっかかりがある」、「通りが悪い」などの感覚および/またはその度合いなどが例示できるが、これらに限定されない。
本発明の解析方法の対象とする飲食品は、特に制限はない。飲食品は、1種類であっても、2種類以上であってもよい。
本発明の解析方法で複数種類の飲食品を用いる場合、解析対象とする飲食品は、被験者が飲食する量(重量および/または体積)が統一されていると、飲食品の嚥下感覚を純粋に評価でき、好ましい。すなわち、被験者が飲食する量に依存して被験者の表面筋電位(筋活動)が変化する可能性を減らすことができる。
また、嚥下感覚に対するフレーバーの添加効果を評価する場合は、フレーバー未添加の飲食品とフレーバー添加した飲食品とで、テクスチャー(粘度、硬さなどの機械的特性)および量(重量および/または体積)が統一されていること、またはフレーバー添加の有無以外に違いがないことが、フレーバー添加効果を純粋に評価でき、好ましい。
コーラ飲料、果汁入り炭酸飲料、乳類入り炭酸飲料などの炭酸飲料類;果汁飲料、野菜飲料、スポーツドリンク、ハチミツ飲料、豆乳、ビタミン補給飲料、ミネラル補給飲料、栄養ドリンク、滋養ドリンク、乳酸菌飲料、乳飲料などのソフト飲料類;緑茶、紅茶、ウーロン茶、ハーブティー、ミルクティー、コーヒー飲料などの嗜好飲料類;チューハイ、カクテルドリンク、発泡酒、果実酒、薬味酒などのアルコール飲料類;などの飲料類;
パン、うどん、ラーメン、中華麺、すし、五目飯、チャーハン、ピラフ、おじや、餃子の皮、シューマイの皮、お好み焼き、たこ焼き、などのパン類、麺類、ご飯類;
糠漬け、梅干、福神漬け、べったら漬け、千枚漬け、らっきょう、味噌漬け、たくあん漬け、及び、それらの漬物の素、などの漬物類;
サバ、イワシ、サンマ、サケ、マグロ、カツオ、クジラ、カレイ、イカナゴ、アユなどの魚類、スルメイカ、ヤリイカ、紋甲イカ、ホタルイカなどのイカ類、マダコ、イイダコなどのタコ類、クルマエビ、ボタンエビ、イセエビ、ブラックタイガーなどのエビ類、タラバガニ、ズワイガニ、ワタリガニ、ケガニなどのカニ類、アサリ、ハマグリ、ホタテ、カキ、ムール貝などの貝類、などの魚介類;
缶詰、煮魚、佃煮、すり身、水産練り製品(ちくわ、蒲鉾、あげ蒲鉾、カニ足蒲鉾など)、フライ、天ぷら、などの魚介類の加工飲食品類;
鶏肉、豚肉、牛肉、羊肉、馬肉などの畜肉類;
カレー、シチュー、ビーフシチュー、ハヤシライスソース、ミートソース、マーボ豆腐、ハンバーグ、餃子、釜飯の素、スープ類、肉団子、角煮、畜肉缶詰などの畜肉を用いた加工飲食品類;
卓上塩、調味塩、醤油、粉末醤油、味噌、粉末味噌、もろみ、ひしお、ふりかけ、お茶漬けの素、マーガリン、マヨネーズ、ドレッシング、食酢、三杯酢、粉末すし酢、中華の素、天つゆ、麺つゆ、ソース、ケチャップ、焼肉のタレ、カレールー、シチューの素、スープの素、だしの素、複合調味料、新みりん、唐揚げ粉・たこ焼き粉などのミックス粉、などの調味料類、など;
その他、チーズ、バターなどの乳製品、野菜の煮物、筑前煮、おでん、鍋物などの煮物類、持ち帰り弁当の具や惣菜類、トマトジュースなどが例示できる。
段階(A)は、上述の通り、被験者の飲食品の嚥下時における1個以上の嚥下筋の表面筋電位の波形データを解析して、1個以上の嚥下に関するパラメータを算出する段階であるが、以下にその具体例を示す。
段階(A)の解析は、飲食品の嚥下時における嚥下筋の活動電位を表面筋電位として計測して得た、表面筋電位の波形データに対して行うことが好ましい。
本発明において、「筋活動時間」とは、時間的因子であって、嚥下時に嚥下筋が活動している時間を表す。「嚥下時」と「非嚥下時」との境界は、解析前の波形データから判別でき、例えば、波形のベースラインの標準偏差よりも有意に大きくなる時点を嚥下開始時点、ベースラインの標準偏差と同等になる時点を嚥下終了時点とすることができる。
「最大振幅(スペクトル最大振幅)」とは、量的因子であって、前記波形データの波の振幅のうち最大振幅であり、嚥下時に発揮された最大筋力を表す。
「積分値(スペクトル面積)」とは、量的因子であって、筋活動量を表し、表面筋電位の波形データの波の総積分値である。
「RMS」とは、量的因子であって、筋活動量を表す。
「パワースペクトル」とは、周波数因子であって、力がどの周波数に分布しているかを表し、単位周波数で規格化する前のパワースペクトルである。
「パワースペクトル密度(PSD)」とは、周波数因子であって、単位周波数(1Hz幅)で規格されたスペクトル関数を表す。
「中央パワー周波数」とは、周波数因子であって、筋疲労の指標として活用され得る。
本発明において、周波数因子を20~45Hz、46~80Hzおよび81~350Hzに分類して算出することが好ましい。また、周波数因子はPSDであることがより好ましい。
以下、段階(C1)および段階(C2)を行う方法と、段階(D)を行う方法を順に説明する。
本発明の解析方法は、下記の段階(C1)および段階(C2)を有することが好ましい。
段階(C1) 被験者のオトガイ下部および/または前頸部に筋電位測定電極を装着し、筋電位測定電極を用いて被験者の飲食品の嚥下時における嚥下筋の筋活動を測定して、表面筋電位の波形データを取得し、波形データを解析して嚥下に関するパラメータを算出する段階。
段階(C2) 段階(C1)で表面筋電位の波形データを取得する際に被験者に嚥下およびした飲食品を官能評価させて、飲食品の嚥下感覚の官能評価データを取得する段階。
段階(C1)は、段階(A)を具体的に行う一例である。
なお、段階(C1)が手順(1)~(3)に相当し、段階(C2)が手順(4)に相当する。
被験者の耳たぶなどにアース用の電極を1カ所、表面筋電位の測定部位(例えば、オトガイ下部および/または前頸部)1~2カ所に1~2対の電極を貼る(図1参照)。
筋肉で発生した電位が、皮下の組織を伝道して体表に到達するまでに1/1000以下に減衰するといわれ、体表で得られる電位の大きさは数十μV~数mVほどである。そのため、測定する表面筋電位は、5μV~5mV程度の範囲が好ましい。
サンプリングする表面筋電位の周波数は0Hz超1000Hz以下の範囲が好ましい。実際に表面筋電図の場合は5~500Hzの範囲に筋活動の情報が多く含まれるとされる(例えば、「バイオメカニズムライブラリー 表面筋電図」(木塚ら、2006年、東京電機大学出版局)を参照)ため、0Hz超500Hz以下の範囲を測定してもよい。
「パワースペクトル」、「PSD」などの周波数因子のパラメータは、特定の周波数の帯域幅ごとに区切って算出することもできる。表面筋電位のデータには、活動した筋繊維のタイプに応じて特定の周波数帯の筋電位が多く含まれる。そのため、持久力を司る筋肉の活動は低周波数帯の「パワースペクトル」、「PSD」に反映され、瞬発力を司る筋肉の活動は高周波数帯の「パワースペクトル」、「PSD」に反映される。例えば、筋繊維タイプを遅筋繊維(すなわちタイプ1繊維)、中間筋繊維(すなわちタイプ2aの速筋繊維)および速筋繊維(すなわちタイプ2bの速筋繊維)に分け、20~45Hzを遅筋周波数帯、46~80Hzを中間筋周波数帯、81Hz以上(例えば81~350Hz、または81~100Hz)を速筋周波数帯として「パワースペクトル」、「PSD」のパラメータをそれぞれの周波数帯で導出することも可能である。
被験者の嚥下筋の表面筋電位を測定して波形データを得ながら、当該被験者に飲食品を飲食させて、嚥下時の嚥下筋の波形データを得る。例えば、生理応答データ収録システムML4856 PowerLab26TおよびMLU260/8 LabChart(登録商標) Pro V8(以上バイオリサーチセンター株式会社製)を使用して表面筋電位の測定および波形データの取得をすることができる。
このパラメータの算出には、LabChart(登録商標) Pro V8(バイオリサーチセンター株式会社製)を使用することができる。周波数因子の算出は高速フーリエ変換(FFT解析)により行うことができる。高速フーリエ変換により、ある特定の周波数帯のパワースペクトル密度などの周波数因子のパラメータが得られる。
この手順(4)は、前述の段階(C2)に相当する。
官能評価アンケートの内容は、本発明の解析方法で解析したい嚥下感覚の内容に応じて任意に設定できるが、飲食品の嚥下感覚の度合いの回答が数値化できるものが好ましい。例えば、飲み込み易さの度合いに応じて点数が増加するものが例示でき、より具体的には、「非常に飲み込み易い」を5点、「飲み込み易い」を3点、「どちらでもない」を0点、「飲み込みづらい」を-3点、「非常に飲み込みづらい」を-5点とするスケールバー、原点を「どちらでもない」、「非常に飲み込みづらい」、または「飲み込み易い」とし、そこからの距離に応じて好ましさの度合いを点数化するスケールバー、ある嚥下感覚(例えば「飲み込み易さ」)について「好き」、「嫌い」を前述のように点数化できるスケールバーなどが例示できるが、これらに限定されない(図2を参照)。
飲食品の嚥下感覚の官能評価データは、表面筋電位の波形データと官能評価データのセットに関するビッグデータが蓄積する前は、表面筋電位の波形データを取得する際に被験者が嚥下した飲食品を嚥下感覚について官能評価して取得されたものであることが好ましい。
なお、本発明の一実施態様において、「データのセット」とは、嚥下感覚の官能評価データと波形データとのセット、すなわち、ある飲食品に関する嚥下感覚の官能評価データと、当該飲食品の嚥下時に取得した波形データとが紐づいている状態のセットを意味し、「データのセットに関するビッグデータ」とはこのセットを多数含むデータの集合を意味する。なお、データのセットは、さらに、波形データを解析して算出した嚥下パラメータも紐づいているものでもよく、さらに、嚥下感覚の官能評価データと波形データとを取得した被験者と紐づいていてもよい。
また、本発明の他の実施態様において、「データのセット」とは、嚥下感覚の官能評価データと嚥下パラメータとのセット、すなわち、ある飲食品に関する嚥下感覚の官能評価データと、当該飲食品の嚥下時に取得した波形データから算出した嚥下パラメータとが紐づいている状態のセットである。さらに、嚥下感覚の官能評価データと波形データとを取得した被験者と紐づいていてもよい。
この手順(4)は、データのセットに関するビッグデータが蓄積し、後述の段階(B)で所望の精度の相関関係を導出できた後は省略することができる。例えば、所望の精度の嚥下感覚の評価式(後述)が得られれば、前記パラメータを当該評価式に導出すれば実際に取得した嚥下感覚の官能評価データと同様の値が得られるので、官能評価データの取得は省略してよい。なお、本明細書では、嚥下感覚の官能評価データ(すなわち官能評価で得られたある嚥下感覚の度合い)を「嚥下感覚の実測値」とも称することがあり、嚥下感覚の評価式(後述)に前記パラメータを導入して得られる値を「嚥下感覚の予測値」とも称することがある。
本発明の解析方法は下記の段階(D)を有することも好ましい。
段階(D) 表面筋電位の波形データおよび飲食品の嚥下感覚の官能評価データのセットが記録された記録媒体から、表面筋電位の波形データおよび飲食品の嚥下感覚の官能評価データのセットを取得する段階。
表面筋電位の波形データと嚥下感覚の官能評価データの複数のセット(例えば、上述のビッグデータ)を蓄積し、少なくともその一部をあらかじめ適当な記録媒体に表面筋電位の波形データおよび飲食品の嚥下感覚の官能評価データのセットを記録しておくことが好ましい。
段階(D)に用いるビッグデータの入手方法としては特に制限は無い。段階(C1)および段階(C2)を繰り返し行った結果を蓄積してビッグデータを作成してもよいし、商業的にビッグデータを入手してもよい。
本発明では、蓄積したビッグデータをもとにして段階(B)で相関解析を行う数を増やすことで、大人数のデータに基づく嚥下感覚の評価式(後述)を得ることで、ある飲食品や集団において多くに好まれる嚥下感覚を予測することができる。
段階(B)は、段階(A)で算出した1個以上の嚥下に関するパラメータと、飲食品の嚥下感覚の官能評価データとの相関を解析する段階である。
ただし、飲食品の嚥下感覚の官能評価データは、被験者が嚥下した飲食品の嚥下感覚を官能評価して取得されたものである。
段階(B)では、上記相関解析を行うことによって、嚥下感覚の官能評価アンケートによって得た官能評価データによって表される嚥下感覚の度合いを客観的に支持することができる。また、段階(B)では、嚥下パラメータの値と嚥下感覚の官能評価データとの相関解析によって相関関係を表す式を得ることができる。この式は、式を得たあとに、新たに算出した嚥下パラメータの値を導入すれば飲食品の嚥下感覚の予測値を導出できる式(嚥下感覚の評価式とも称する)である。嚥下感覚の評価式は、特定の飲食品に対して導出するほか、特定の個人や集団に対して導出してもよい。特定の個人または集団に対する、特定の飲食品の嚥下感覚の評価式でもよいし、特定の個人または集団に対する、複数種類の飲食品の嚥下感覚の評価式でもよい。後者の場合、飲食品の種類が多いほど、個人または集団の一般的な嚥下感覚の好みを表すと考えられる。このように、本発明によって、特定の個人や集団に対して、オーダーメイド的に嚥下感覚の嗜好性の高い飲食品や香料を提供できる。
または、段階(B)の相関解析に基づいて、公知のマッピング手法によって相関関係を表すマップを作成すれば、飲食品の嚥下感覚のマップを導出することもできる。このようなマップは、各飲食品の嚥下感覚の度合いを一見して把握することができるため、飲食品や飲食品素材の広告、商品提案やマーケティングなどに使用することができる。マップの種類は任意であって解析手法や所望の可視化形態に応じて選択できるが、例として等高線マップ、バイプロット図を挙げることができる。
本発明では、段階(B)の解析を統計解析または機械学習により行い、段階(A)で算出したパラメータと飲食品の嚥下感覚の官能評価データとの相関関係を表す式を導出して、該式を飲食品の嚥下感覚の評価式(具体的には、線形または非線形モデル)として得ることが好ましい。本発明において、飲食品の嚥下感覚の評価式(以下、単に評価式と称する場合がある)とは、上述の通り、嚥下パラメータの値と、嚥下感覚の官能評価データとの相関関係を表す式である。この評価式により、生理応答データから、飲食品の嚥下感覚の客観的な度合いを得ることができる。すなわち、評価式が得られた後に、この評価式に新たに算出した嚥下パラメータを導入すると、嚥下感覚の予測値を導出することができる(後述の、嚥下感覚の予測方法に関する記載を参照)。
相関解析による評価式の導出には、統計解析でなく、ニューラルネットワーク等の機械学習を用いることも可能であり、機械学習で得た評価式の方が、精度よく、より簡便に、嚥下パラメータの値から嚥下感覚の度合いの予測が可能である場合もある。解析対象(目的変数および/または説明変数の数、より具体的には、例えば、被験者の人数やパラメータの数など)に応じて、適切な相関解析手法を選択してよい。
統計解析とは、2つまたはそれ以上の変数を含むデータからある傾向を把握可能な、統計学上の理論に基づく解析方法である。以下、統計解析の一例として、回帰分析を利用した評価式の導出について説明する。
回帰分析とは、従属変数(目的変数)と、独立変数(説明変数)の間に評価式(回帰モデル)を当てはめるものであって、本発明では、例えば偏最小二乗(PLS:Partial Least Squares)回帰や重回帰分析を用いることができる。
具体的には、飲食した飲食品に対する「飲み込み易さ」や「喉ごし」などの嚥下感覚の官能評価データ(嚥下感覚の度合いを示す点数)を目的変数と設定し、嚥下パラメータを説明変数と設定して、重回帰分析やPLS回帰分析などの回帰分析を適用することで、飲食品の嚥下感覚の評価式として、上記パラメータと飲食品の嚥下感覚の官能評価データ(嚥下感覚の実測値)との相関を示す回帰モデル(例えば線形モデル、より具体的には後述の実施例に記載の線形評価式など)を導出できる。
回帰分析は、入手可能な任意のソフトウェアで行ってよいが、例えば、探索的データ分析ソフトウェアJMP(登録商標) 13(SAS Institute Japan)を用いて行うことができる。
機械学習は、2つまたはそれ以上の変数を含むデータからある傾向を把握するものであるが、多数の変数を統計的に扱う統計解析に対して、人が明示的に挙動を指示することなしにコンピューターに学習能力を与え、変量間の関係性を解析するものである。
活用できる機械学習としては、「サポートベクターマシン」や「ニューラルネットワーク解析」などがある。ニューラルネットワーク解析としては、階層型ネットワークモデルや、階層型ネットワークモデルの中間層を多数としたディープラーニング(深層学習)モデルを用いることができる。
機械学習を利用した解析の具体的な手法は、段階(A)で算出した嚥下パラメータと、嚥下感覚の官能評価データとの相関が解析できるものであれば特に限定されず、任意の二変量または多変量解析を採用することができる。
飲食した飲食品に対する「飲み込み易さ」や「喉ごし」などの嚥下感覚の官能評価データを目的変数とし、嚥下パラメータを説明変数と設定して、機械学習を適用することで、飲食品の嚥下感覚の評価式を導出することができる。
また、機械学習は、教師なし分析を行っても、教師つき分析を行ってもよい。
機械学習は、入手可能な任意のソフトウェアで行ってよいが、例えば、探索的データ分析ソフトウェアJMP(登録商標) 13(SAS Institute Japan)を用いて行うことができる。AI(人工知能)を利用してもよい。
段階(B)の解析を、統計解析または機械学習により行い、段階(A)で算出した嚥下パラメータと飲食品の嚥下感覚の官能評価データとの相関関係を表すマップを導出して、該マップを飲食品の嚥下感覚のマップとして得る段階としてもよい。具体的には、判別分析、回帰分析、または主成分分析により行い、飲食品の嚥下感覚のマップを導出することができる。
上述の評価式では、予測した嚥下感覚の度合いを数値によって確認することができるが、このマッピングでは、前記パラメータに基づいて導出される嚥下感覚の度合いをマップ中の嚥下感覚の各度合いに応じた領域にプロットすることで可視化することができ、視覚的にも直感的にも分かりやすいという利点がある。なお、マッピングでは実験結果が直感的にイメージしやすい方が好まれるため、見やすさや相関を考慮して鋭意検討を重ねた上で、マッピングの導出に最適と思われるパラメータを選択することができる。
判別分析では、異なるグループに分かれるデータが存在しているとき、新しいデータが得られた際に、どのグループに入るのかを判別するための判別関数(判別式とも称する)を得ることができる。
飲食した飲食品に対する「飲み込み易さ」や「喉ごし」などの嚥下感覚の官能評価データ(すなわち、嚥下感覚の度合いであって、例えば点数)を目的変数と設定し、段階(A)で算出した嚥下パラメータを説明変数と設定して、判別分析を適用し目的変数である官能評価データによってグループ分け(判別)されたプロットを得る。さらに、マッピングツール(例えば、等高線マップ作成ツール)を用いて、当該官能評価データごとに背景色を設定することで、段階(A)で算出した嚥下パラメータと嚥下感覚の官能評価データとの関係性を直感的に見やすく表示した嚥下感覚のマップを導出してもよい。
判別分析は、例えば、探索的データ分析ソフトウェアJMP(登録商標) 13(SAS Institute Japan)を用いて行うことができる。背景色は、適当な色を選択してカラーマップにしてもよく、カラーマップの方が直感的にも見やすい点で好ましい。判別分析の場合は、マップ上で、飲食した飲食品が官能評価データごとにグループ分けされた形で視認できるとともに、背景色によって嚥下感覚の度合いが把握できる。
飲食した飲食品に対する「飲み込み易さ」や「喉ごし」などの嚥下感覚の官能評価データ(すなわち、嚥下感覚の度合いであって、例えば点数)を目的変数と設定し、段階(A)で算出した嚥下パラメータを説明変数と設定して、重回帰分析やPLS回帰分析などの回帰分析を適用した後、マッピングツール(例えば、等高線マップ作成ツール)を用いて、嚥下感覚の官能評価データ(点数)ごとに背景色を設定することで、段階(A)で算出した嚥下パラメータと嚥下感覚の官能評価データとの関係性を直感的に見やすく表示した嚥下感覚のマップを導出することができる。
回帰分析は、例えば、探索的データ分析ソフトウェアJMP(登録商標) 13(SAS Institute Japan)を用いて行うことができる。背景色は、適当な色を選択してカラーマップにしてもよく、カラーマップの方が直感的にも見やすい点で好ましい。
主成分分析は、多数の変数がある場合に、これらの変数を縮約して新たな変数(主成分)を合成して、より少ない変数で解釈可能にするための手法である。
飲食した飲食品に対する「飲み込み易さ」や「喉ごし」などの官能評価データ(すなわち、嚥下感覚の度合いであって、例えば点数)を目的変数と設定し、段階(A)で算出した嚥下パラメータを説明変数と設定して、主成分分析を適用してバイプロット図を得ることで、段階(A)で算出した嚥下パラメータと嚥下感覚の官能評価データとの関係性を直感的に見やすく表示した嚥下感覚のマップを導出することができる。さらに、このバイプロット図において、嚥下感覚の官能評価データごとに図の背景色を設定することで、より見やすい嚥下感覚のマップとすることもできる。
主成分分析は、例えば、探索的データ分析ソフトウェアJMP(登録商標) 13(SAS Institute Japan)等の統計解析ソフトを用いて行うことができる。背景色は、適当な色を選択してカラーマップにしてもよく、カラーマップの方が直感的にも見やすい点で好ましい。
飲食品の嚥下感覚の評価式と同様に、飲食した飲食品に対する「飲み込み易さ」や「喉ごし」などの嚥下感覚の官能評価データを目的変数と設定し、段階(A)で算出した嚥下パラメータを説明変数と設定して、機械学習による解析(例えば、上述の回帰分析、主成分分析、判別分析など)を適用して目的変数と説明変数との相関関係を表す図を作成し、上述の通り嚥下感覚の官能評価データを背景色に反映させることで、飲食品の嚥下感覚のマップを導出することができる。
活用できる機械学習の手法としては、「サポートベクターマシン」や「ニューラルネットワーク解析」などがある。ニューラルネットワーク解析としては、階層型ネットワークモデルや、階層型ネットワークモデルの中間層を多数としたディープラーニング(深層学習)モデルを用いることができる。
本発明では、段階(B)で用いる「段階(A)で算出した嚥下パラメータ」の種類としては特に制限は無く、段階(A)で算出した嚥下パラメータのうち単独のパラメータのみを用いてもよく、2つ以上のパラメータを用いてもよく、すべてのパラメータを用いてもよい。また、波形データから算出したパラメータの場合には、時間的因子、量的因子、周波数因子の3群に分類可能なパラメータのうち、少なくとも1つの群の1以上のパラメータを用いてよく、全ての群の全てのパラメータを用いてもよい。後述の段階(E)、(F1)、(F2)によって、段階(B)で用いるパラメータを選択してもよい。
例えば、段階(B)が、20~45Hzの周波数帯の波形データから算出した舌骨上筋群および/または舌骨下筋群のPSDを、飲食品の嚥下感覚と相関を解析する対象とする段階であることがより好ましく、飲食品の飲み込み易さと「正」の相関を示す指標として分析する段階であることが特に好ましい。
例えば、段階(B)が、46~80Hzの周波数帯の波形データの舌骨上筋群および/または舌骨下筋群のPSDを、飲食品の嚥下感覚との相関解析に使用する段階であってよく、飲食品の飲み込み易さと「正」の相関を示すパラメータであってよい。
本発明の解析方法は、さらに下記の段階(E)を有することが好ましい。
段階(E) 段階(A)で算出した嚥下に関するパラメータのうち、飲食品の嚥下感覚の官能評価データとの相関が高いパラメータを選択する段階。
段階(E)は、段階(B)よりも前に行うことが好ましい。
段階(E)の選択をする主体は、人間、CPU、AI(人工知能)のいずれであってもよい。例えば、AIによって最も相関が高くなるようにパラメータを選択してよい。
本発明の解析方法は、さらに、段階(F1)および/または段階(F2)を有することが好ましい。
段階(F1) 段階(B)の解析で用いる(相関解析の対象とする)飲食品の嚥下感覚の官能評価データの中から、異常値の除去を行う段階。
段階(F2) 段階(A)で算出した嚥下パラメータの中から、段階(B)の解析で用いる(相関解析の対象とする)パラメータを選別する段階。
段階(F1)および/または段階(F2)は、段階(B)よりも前に行うことが好ましい。
これらの段階を行うことで、より精度の高い評価式やマップの導出を行うことができる傾向にある。
例えば、飲食品の嚥下感覚のマップを導出する場合には、判別分析に基づくマッピングがベストモードに近づくように、判別分析の前に段階(F1)および/または段階(F2)による嚥下感覚の官能評価データおよび/または嚥下パラメータの選定を行ってマッピングの最適化を行うことが好ましい。評価式を導出する場合も同様である。
段階(F1)の「異常値の除去」は、具体的には、嚥下感覚の官能評価データの最頻値から一定以上離れた外れ値を除外する方法や、外れ値検定により外れ値と判定された異常値を除外する方法が挙げられる。「異常値の除去」は、外れ値検定による異常値の除去であることが好ましい。
(F1)飲食品の嚥下感覚の官能評価データに関して異常値を除去する段階として、飲食品の嚥下感覚の官能評価データ(点数)のばらつきを確認し、外れ値があった場合には、これを除外する段階であることが好ましい。
段階(F2)として、具体的には、嚥下感覚の官能評価データと段階(A)で算出した嚥下パラメータとの相関係数を算出し、相関が高いパラメータだけに絞る方法や、回帰分析にて飲食品の嚥下感覚の評価式を導くうえで重要と判定されたパラメータに絞る方法などが挙げられる。
また、段階(F2)の解析対象とするパラメータを選別する段階では、段階(E)を行って選択したパラメータのみを用いてもよい。
段階(F2-1) PLS回帰分析によるVIP(variable importance in projection;投影変数の重要度)スコアに基づいてパラメータを選定する段階。
段階(F2-2) 相関係数に基づいてパラメータを選定する段階。
段階(F2-1)では、VIPスコアが0.8以上のパラメータを選定することができる。また、VIPスコアが1.0以上のパラメータを選定することができる。
本発明は、本発明の解析方法で得られた評価式またはマップを用いた、嚥下感覚の予測方法を提供できる。
すなわち、本発明の解析方法を用いて既に導出した評価式またはマップを、(例えば記憶装置などから読み出して)用意する段階と、
この評価式またはマップを導出する際に段階(B)の相関関係の解析において用いた嚥下パラメータ(すなわちこの評価式またはマップの変数)を、被験者に飲食品を嚥下させて本発明の解析方法の段階(A)を行うことによって新たに算出する段階と、
前記相関関係を表す式またはマップに、この新たに算出した嚥下パラメータを適用する段階と、によって、飲食品の嚥下感覚を予測することができる。
上記の予測方法で用いる相関関係が評価式である場合、嚥下パラメータを評価式に代入すれば、嚥下感覚の予測値が算出できる。上記の予測方法で用いる相関関係がマップである場合も同様に、嚥下感覚の予測値が得られ、さらに、嚥下感覚のマップ上の対応する領域にプロットされる。
嚥下パラメータと嚥下感覚の官能評価データとの相関関係を表す評価式またはマップは、特定の飲食品に関するものでも、特定の個人または集団に関するものでもよい。例えば、個人の前記パラメータと嚥下感覚の官能評価データとの相関関係を表すものであってよい。
特定の個人または集団に対する評価式を用いて本発明の予測方法を実施する場合は、この評価式に導入する新たな嚥下パラメータを算出するための飲食品は、当該評価式を導出したものと同じでもよく、異なっていてもよい。すなわち、特定の個人または集団に対する、特定の飲食品に関する評価式を用いる場合には、同じ飲食品であることが好ましいが、特定の個人または集団に対する、多種類の飲食品に関する評価式を用いる場合(このような評価式は、個人または集団の一般的な好みを表すことになる)には、飲食品は同じであっても異なってもよい。
意思疎通が難しくなった後の前記個人が飲食品を嚥下する場合に、前記相関関係の解析に用いた前記嚥下パラメータに関して、該飲食品に対応する嚥下パラメータの値を算出し、
該パラメータの値を前記相関関係に導入して、前記個人にとっての該飲食品の嚥下感覚の度合いを予測することが好ましい。
この方法によって、意思疎通が難しくなった場合でも、個人の嚥下感覚の好みにあわせて飲食品を提供することができる。個人が意思疎通が困難となる例としては、言語障害、認知症などを挙げることができる。
本発明は、飲食品の嚥下感覚の新規な提示方法(本発明の提示方法)を提供できる。
本発明の提示方法は、飲食品の嚥下感覚の提示方法であり、下記の段階(a)~段階(c)を有する、提示方法である:
段階(a) 複数の飲食品について、被験者の飲食品の嚥下時における1個以上の嚥下筋の表面筋電位の波形データを解析して、1個以上の嚥下に関するパラメータを算出する段階;
段階(b) 段階(a)で算出した1個以上の嚥下に関するパラメータを、判別分析を用いて前記飲食品ごとに分類して嚥下パラメータの分布図を作成する段階;
段階(c) 段階(b)で作成した前記分布図の背景に、前記各飲食品の嚥下感覚の官能評価データを反映させ、嚥下感覚の官能評価データの分布を図示する段階;
ただし、飲食品の嚥下感覚の官能評価データは、前記被験者が嚥下した前記飲食品の嚥下感覚を官能評価して取得されたものである。
段階(b)では、段階(a)で算出した1個以上の嚥下に関するパラメータを、判別分析を用いて前記飲食品ごとに分類して嚥下パラメータの分布図を作成する。複数の飲食品を解析対象として判別分析を用いたマッピングを行う場合に、目的変数を解析対象とする飲食品の種類とすることが好ましい。この場合、飲食品の種類を目的変数と設定し、段階(a)で算出した嚥下パラメータを説明変数と設定して、判別分析を適用し、目的変数である飲食品の種類によってグループ分け(判別)されたプロットを得ることが好ましい。目的変数以外に関する段階(b)の判別分析の好ましい態様は、本発明の解析方法における判別分析の好ましい態様と同様である。
段階(c)では、段階(b)で作成した前記分布図の背景に、前記各飲食品の嚥下感覚の官能評価データを反映させ、嚥下感覚の官能評価データの分布を図示する。例えば、マッピングツール(例えば、等高線マップ作成ツール)を用いて、飲食品ごとに分類した飲食品に対する「飲み込み易さ」や「喉ごし」などの嚥下感覚の官能評価データ(すなわち、嚥下感覚の度合いであって、例えば点数)ごとに背景色を設定することで、段階(a)で算出した嚥下パラメータと嚥下感覚の官能評価データとの関係性を直感的に見やすく表示した嚥下感覚のマップを導出することができる。
本発明の提示方法では、特定の飲食品の入手が困難となる前にあらかじめ本発明の提示方法で前記嚥下パラメータ、飲食品の種類、および嚥下感覚の官能評価データが提示された嚥下パラメータの分布図を得ておくことが好ましい。そして、代替候補の飲食品を嚥下する場合に、判別分析に用いた前記嚥下パラメータに関して、代替候補の飲食品に対応する嚥下パラメータの値を算出し、該パラメータの値を前記嚥下パラメータの分布図にマッピングして、該代替候補の飲食品の嚥下感覚の度合いをそれぞれ予測することが好ましい。
「実施例1の実施態様1」
<テクスチャーの異なる飲食品の官能評価データと表面筋電位の波形データの取得(2名)>
様々な硬さの飲食品として、市販の煮込みハンバーグ、おじや、リンゴゼリー、リンゴ風味ゼリー飲料の4種類のテクスチャーの異なる飲食品を用意した。被験者は2名とした。
すなわち、この実施例は、特定の飲食品や個人によらず、広く飲食品一般の嚥下感覚に関する評価式を導出する。
具体的には、以下のように行った。
図1に示すように、被験者のオトガイ下部および前頸部に表面筋電位計の電極を着け、嚥下筋の表面筋電位の測定によって波形データを取得中の(0Hz~1000Hz以下の周波数帯を測定し、解析には0Hz超500Hz以下を用いた)被験者2名に、実験サンプル5gを口に入れて咀嚼させ、一回で嚥下させた。また、被験者には、飲み込んだ後すぐに嚥下感覚に関する官能評価を行わせて、嚥下感覚として「飲み込み易さ」の度合いについて点数付けを行わせ、官能評価データを得た。点数付けでは、図2に示すようなスケールバーを用いて、スケール上で該当すると思われる位置を1カ所記録させた。「飲み込み易さ」の度合いの点数は、スケール左端からの距離とした。
このようにして、飲食品の嚥下時における嚥下筋の表面筋電位の波形データおよび嚥下感覚の官能評価データを得た。
生理応答データ収録システムML4856 PowerLab26T、 MLU260/8 LabChart(登録商標) Pro V8(以上バイオリサーチセンター株式会社製)を用いて、上記表面筋電位の波形データの解析を行った。
まず、上記表面筋電位の波形データから、嚥下パラメータとして、嚥下時の嚥下筋の表面筋電位の時間的因子および量的因子である以下のパラメータを算出した。なお、波形のベースラインの標準偏差よりも有意に大きくなる時点を嚥下開始時点、ベースラインの標準偏差と同等になる時点を嚥下終了時点とした。
(嚥下パラメータ)
嚥下時の筋活動時間(後述の評価式では選択時間幅とも称する);
舌骨下筋群および舌骨上筋群の筋活動量(嚥下時の波形データの積分値であって、後述の評価式では積分とも称する);
舌骨下筋群および舌骨上筋群の最大振幅;
舌骨下筋群および舌骨上筋群の中央パワー周波数;
舌骨下筋群および舌骨上筋群のRMS;
舌骨下筋群および舌骨上筋群の、20-45Hz、46-80Hzおよび81-350Hzの各周波数帯で分類したPSD(パワースペクトル密度);
舌骨下筋群および舌骨上筋群の全周波数帯のPSD(0Hz超500Hz以下)。
(機械学習を用いた嚥下感覚の評価式の導出)
探索的データ分析ソフトウェアJMP(登録商標) 13(SAS Institute Japan)で、上記嚥下パラメータの値、ならびに被験者による飲食品の嚥下感覚の官能評価データの点数を読み込んだ。分析手法として、機械学習のひとつであるニューラルネットワークを選択した。JMP(登録商標) 13では、ニューラルネットワークを作成し、S字型の関数、線形関数の階層化による柔軟な予測モデルを作成することができる。
JMP(登録商標) 13で飲食品の嚥下時における表面筋電位の波形データから算出した嚥下パラメータ(実施例1の段階(A)で算出したパラメータの全て)および飲食品の嚥下感覚の官能評価データを読み込んだ。分析手法としてニューラルネットワークを選択した。次いで、嚥下感覚の官能評価データ(点数)を目的変数として選択し、上記嚥下パラメータを説明変数として選択した。そして、検証法として、除外行の保留、保留、K分割を選択し、分割数を5、隠れノードの数を3と指定した後、診断プロットを実行して得られたグラフを図3に示した。図3は、得られた評価式から導出される「飲み込み易さ」(嚥下感覚)の予測値(図中の「飲み込み易さ予測値」軸の値)がどれだけ実際の官能評価データ(すなわち官能評価点数、「飲み込み易さ」軸の値)と相関があるかを診断した結果を示すプロット(診断プロットとも称する)である。図中、〇印は煮込みハンバーグ、+印はおじや、◇印はリンゴゼリー、×印はリンゴ風味ゼリー飲料を意味する。図3の紙面左側の「学習」と記載されたプロットは、読み込んだデータの一部をランダムに選択して相関解析を行って得たプロットである。図3の紙面右側の「検証」と記載されたプロットは、「学習」プロットに用いなかった残りの嚥下パラメータを「学習」プロットの評価式に導入した場合に得られる予測値のプロットであり、これらの関係は図4~6、10および11でも同様である。
図3の「学習」プロットから、「予測式の保存」を実行し、以下の「飲み込み易さ」の予測値を導出できる、評価式を得た。この評価式は、説明変数(嚥下パラメータ)を導入すると、飲食品の「飲み込み易さ」の度合いの予測値(嚥下感覚の予測値のひとつ)を導出できるものである。なお、図3の「学習」プロットおよび「検証」プロットから分かるように、下記評価式は、評価式に用いなかった嚥下パラメータを代入しても実測値と予測値とが近いため、下記評価式に汎用性があることが確認できる。
また、JMP(登録商標) 13に読み込んだすべてのデータ、すなわち、段階(A)で算出した嚥下パラメータおよび官能評価データを用いて「飲み込み易さ」の予測値(評価式から導出される官能評価の予測点数)と実測値(官能評価で得られた点数)の相関係数を算出したところ、0.84あった。
段階(B)の解析で「PSD all」を評価式の導出に用いなかった以外は上記「実施例1の実施態様1」と同様にして、ニューラルネットワークを利用して「学習」プロットに基づいて評価式を導出し、さらに、すべてのデータを用いて「飲み込み易さ」の予測値と実測値の相関係数を算出したところ、相関係数=0.80であり、同等の精度の評価式が得られた。診断プロットを実行して得られたグラフ(「学習プロット」および「検証プロット」)を図4に、「学習」プロットに基づく評価式を以下にそれぞれ示す。図4中の4種類のシンボルは、図3と同様、〇印は煮込みハンバーグ、+印はおじや、◇印はリンゴゼリー、×印はリンゴ風味ゼリー飲料を意味する。
実施例1の実施態様1の図3(PSD allあり)と実施態様2の図4(PSD allなし)との比較、および相関係数の比較から、評価式の導出において、周波数25~45Hz、46~80Hz、および81~350Hzの各範囲で算出されたパワースペクトル密度を用いる場合、「PSD all」を用いるか否かに関わらず同等の精度の評価式が得られることがわかった。
周波数因子の周波数帯による分類と予測式の精度との関係を確認するため、周波数因子であるPSDを、20-45Hz、46-80Hz、81-350Hzに分類して算出したパラメータを、段階(B)の相関解析で使用するか否かによって嚥下感覚の評価式の精度が変化するかを確認した。
実施例2では、段階(A)で以下の嚥下パラメータを算出し、これらを段階(B)の相関解析で使用した以外は実施例1(4種類のテクスチャーの異なる飲食品)の実施態様1と同様にして本発明の評価式を得た。具体的には、実施例1で使用した嚥下パラメータのうち、「舌骨下筋群および舌骨上筋群の、20-45Hz、46-80Hzおよび81-350Hzの各周波数帯で分類したPSD」を算出しなかった以外は実施例1の実施態様1と同様にして、実施例2の嚥下感覚の評価式を得た。
(実施例2で使用した嚥下パラメータ)
嚥下時の筋活動時間(後述の評価式では選択時間幅とも称する);
舌骨下筋群および舌骨上筋群の筋活動量(嚥下時の波形データの積分値であって、後述の評価式では積分とも称する);
舌骨下筋群および舌骨上筋群の最大振幅;
舌骨下筋群および舌骨上筋群の中央パワー周波数;
舌骨下筋群および舌骨上筋群のRMS;
舌骨下筋群および舌骨上筋群の全周波数帯のPSD(0Hz超500Hz以下)。
診断プロットを実行して得られたグラフ(「学習」プロットおよび「診断」プロット)を図5に、「学習」プロットに基づいて得られた評価式を以下にそれぞれ示す。
このように、段階(A)においてPSDを20-45Hz、46-80Hz、81-350Hzの周波数帯に分類して算出し、段階(B)の相関解析に用いることで、用いない場合よりも評価式の精度を高められると考えられた。
実施例1において、用いる飲食品を以下のパンに代え、被験者を4名とし、算出した嚥下パラメータを以下とした以外は実施例1と同様にして、飲食品の嚥下感覚の評価式を得た。
実験サンプルとして以下の2種類のパンを用意した。
パン1:市販のマーガリン(無香料)を塗ったパン
パン2:長谷川香料株式会社製バターフレーバーで賦香した市販のマーガリンを塗ったパン
図1に示すように、被験者のオトガイ下部および前頸部に表面筋電位計の電極を着け、嚥下筋の表面筋電位の測定によって波形データを取得中の(0Hz超1000Hz以下の周波数帯を測定し、解析には0Hz超500Hz以下を用いた)被験者4名に、各サンプル5gを口に入れて咀嚼させ、一回で嚥下させた。また、被験者には、飲み込んだ後すぐに嚥下感覚に関する官能評価を行わせて、嚥下感覚として「飲み込み易さ」の度合いについて点数付けを行わせ、官能評価データを得た。点数付けでは、図2に示すようなスケールバーを用いて、スケール上で該当すると思われる位置を1カ所記録させた。「飲み込み易さ」の度合いの点数は、スケール左端からの距離とした。
実施例1と同様にして以下の嚥下パラメータを算出した。
(実施例3の段階(A)で算出した嚥下パラメータ)
嚥下時の筋活動時間(後述の評価式では選択時間幅とも称する);
筋活動量(嚥下時の波形データの積分値であって、後述の評価式では積分とも称する);
舌骨下筋群および舌骨上筋群の最大振幅;
舌骨下筋群および舌骨上筋群の中央パワー周波数;
舌骨下筋群および舌骨上筋群のRMS;
舌骨下筋群および舌骨上筋群の、20-45Hz、46-80Hzおよび81-350Hzの各周波数帯で分類したPSD(パワースペクトル密度)。
段階(E)として、上記段階(A)で算出した嚥下パラメータのうち、飲食品の嚥下感覚の官能評価データとの相関が高いパラメータを選択し、段階(B)で用いた。具体的には、段階(B)では以下の嚥下パラメータのみを用いて、実施例1と同様にしてニューラルネットワークによる相関解析を行った。
(段階(B)で用いた嚥下パラメータ)
嚥下時の筋活動時間(後述の評価式では選択時間幅とも称する);
筋活動量(嚥下時の波形データの積分値であって、後述の評価式では積分とも称する);
舌骨上筋群の最大振幅;
舌骨上筋群の中央パワー周波数;
舌骨上筋群のRMS;
舌骨上筋群の、20-45Hz、46-80Hzおよび81-350Hzの各周波数帯で分類したPSD(パワースペクトル密度)。
図6の診断プロットのうち「学習」プロットから、「予測式の保存」を実行し、以下の「飲み込み易さ」の予測値を導出できる、実施例3の評価式を得た。図中、+印はパン1(市販の(無香料)マーガリンを塗布したパン)を、〇印はパン2(賦香マーガリンを塗布したパン)を示す。
以上から、嚥下感覚とは、硬さなどのテクスチャーだけではなく香りの違いによっても変化するものであり、それを本発明の解析方法によって精度よく予測できることが確認できた。
嚥下パラメータのうち、単独でも飲み込み易さの指標として有用であるものを確認するため、実施例3(バターフレーバーの賦香有無の異なるマーガリン塗布食パン)において取得した嚥下パラメータおよび官能評価データを用いて検証を行った。具体的には、被験者に食パンを飲食させつつ筋電データを取得し、段階(A)で嚥下パラメータを算出し、官能評価で「飲み込み易い」または「飲み込みにくい」と回答させ、段階(B)で嚥下パラメータと官能評価データとの相関を確認した。結果を図7に示す。図7に示すように、「オトガイPSD20-45」、「オトガイPSD46-80」、「下筋PSD20-45」、「下筋PSD46-80」は、有用なパラメータであることが確認され、これらは単独でも飲み込み易さの指標として有用であることが確認された。
「実施例5の実施態様1:最初の嚥下時」
<様々な味と温度の飲食品の官能評価データと表面筋電位の波形データの取得(5名)>
本実施例では、実験サンプルとして以下の4種類の飲料サンプル1~4を選択した。飲料サンプル1~4は、糖類、クエン酸、食塩、ビタミンCを溶解させた糖酸水溶液であり、表1に記載の糖度および酸度、ならびに温度が異なる以外は同一のものとした。
飲料サンプル1:タイプA常温(液温約20℃)
飲料サンプル2:タイプB常温(液温約20℃)
飲料サンプル3:タイプA冷蔵(液温約4℃)
飲料サンプル4:タイプB冷蔵(液温約4℃)
試料の飲料を全量嚥下するまでに、嚥下が数回行われ、嚥下回数は被験者によって異なる場合がある。そこで、実施例5の実施態様1では、最初の嚥下時に計測された表面筋電位から嚥下パラメータを算出した。
最初の嚥下について、実施例1と同様にして段階(A)を行った。算出した嚥下パラメータの種類は、以下のとおりとした。
(嚥下パラメータ)
嚥下時の筋活動時間(後述の評価式では選択時間幅とも称する);
舌骨上筋群の筋活動量(嚥下時の波形データの積分値であって、後述の評価式では積分とも称する);
舌骨上筋群の最大振幅;
舌骨上筋群の中央パワー周波数;
舌骨上筋群のRMS;
舌骨上筋群の、20-45Hz、46-80Hzおよび81-350Hzの各周波数帯で分類したPSD(パワースペクトル密度)。
次いで、段階(B)として、これらの嚥下パラメータを使用して、解析手法として統計解析のひとつであるPLS回帰分析を行い、本発明の嚥下感覚の評価式を得た。診断プロットを実行して得られたグラフを図8に、評価式を以下にそれぞれ示す。図8では、縦軸は嚥下感覚に関する官能評価データ(点数)を、横軸は評価式から導出できる嚥下感覚の予測値を意味する。この評価式は、喉ごしのよさ(すっきり感)の予測値と実測値の相関係数=0.76であった。
次いで実施例5の実施態様2では、最後の嚥下時に計測された表面筋電位から嚥下パラメータを算出した。
最後の嚥下についても、最初の嚥下と同様にして、下記に示す評価式を得た。図9はこの評価式に関する図であり、縦軸は嚥下感覚に関する官能評価データ(点数)を、横軸は上記評価式から導出できる嚥下感覚の予測値を意味する。相関係数は0.74であった。
「実施例6の実施態様1:最初の嚥下時」
4種類の飲料について行った実施例5の実施態様1(最初の嚥下の場合)において、段階(B)でPLS回帰分析に代えて機械学習のひとつであるニューラルネットワークを用いて行った以外は実施例5の実施態様1と同様にして、嚥下感覚の評価式を導出した。診断プロットを実行して得られたグラフ(「学習プロット」および「検証プロット」)を図10に、「学習」プロットに基づいて得られた評価式を以下にそれぞれ示す。図10において、縦軸は嚥下感覚に関する官能評価データ(点数)を、横軸は評価式から導出できる嚥下感覚の予測値を意味する。実施例1~3と同様にして、すべての嚥下パラメータおよび官能評価データを用いて相関解析を行ったところ、嚥下感覚の予測値と実測値の相関係数=0.94であった。
さらに、4種類の飲料について行った実施例5の実施態様2(最後の嚥下の場合)において、段階(B)でPLS回帰分析に代えて機械学習のひとつであるニューラルネットワークを用いて行った以外は実施例5の実施態様2と同様にして、嚥下感覚の評価式を導出した。診断プロットを実行して得られたグラフ(「学習」プロットおよび「検証」プロット)を図11に、「学習」プロットに基づいて得られた式を以下にそれぞれ示す。図11において、縦軸は嚥下感覚に関する官能評価データ(点数)を、横軸は上記評価式から導出できる嚥下感覚の予測値を意味する。実施例1~3と同様にして、すべての嚥下パラメータおよび官能評価データを用いて相関解析を行ったところ、嚥下感覚の予測値と実測値の相関係数=0.94であった。
段階(A)の嚥下パラメータの算出に用いるデータを、実施例5の最初の嚥下または最後の嚥下に代えて、最後から1個前の嚥下、またはすべての嚥下の平均値とした以外は実施例5と同様にして、PLS回帰分析による嚥下感覚の評価式の導出を行った。すべての嚥下の平均値は、最初の嚥下から最後の嚥下までに行われた嚥下の回数で、各嚥下パラメータを除算すること(すなわち単純平均)で算出した。その結果、以下の評価式が得られた。相関係数は、最後から1個前の嚥下の場合で0.77、すべての嚥下の平均の場合で0.75であった。
上述の実施例5において、4種類の飲料に関する官能評価データとして、官能評価において度合いの点数化ではなく喉ごしのすっきり感が「弱い」、「中程度」、「強い」の3種類から選択させた以外は実施例5と同様にして、判別分析によるおいしさのマッピングを行った。
探索的データ分析ソフトウェアJMP(登録商標) 13で、まず、段階(A)で算出した嚥下パラメータおよび段階(C2)で得た飲食品の官能評価データを読み込んだ。多変量解析として判別分析(教師あり学習)を選択した。
共変量として上述の嚥下パラメータを、分類を試みたいカテゴリとして官能評価データ(すなわち「喉ごしのすっきり感」の度合いを表す「弱い」、「中程度」、「強い」の三択)を選択した。
設定した判別法(「線形」、「等しい共分散行列」)で判別分析を実行した。判別分析で得られた2つの正準スコアを縦軸と横軸にプロットしたものを図12に示す。図12中、+印は喉ごしのすっきり感が「弱い」(「すっきり弱」)を、◇印は喉ごしのすっきり感が「中程度」(「すっきり中」)を、〇印は喉ごしのすっきり感が「強い」(「すっきり強」)を示す。図12の円は、上記ソフトウェアによって描画した、嚥下感覚(喉ごしのすっきり感)の「弱い」、「中程度」、または「強い」の場合にプロットされる可能性の高いエリアを示すものである。この判別分析で得られた判別式に、別途被験者に飲食品を嚥下させて算出した嚥下パラメータを導入すれば、当該飲食品の喉ごしのすっきり感の度合いが「弱い」、「中程度」、「強い」のいずれかに分類されるかを判別した結果が得られる。
なお、上述の実施例5の実施態様1の判別式に、被験者に飲食品を嚥下させて算出した嚥下パラメータを導入すれば、その飲食品の嚥下感覚の予測値に対応する正準スコアが図12のマップ上にプロットされ、判別の様子を可視化することができる。このように、本発明は、当該飲食品の嚥下感覚を予測し、かつその予測を直感的に見やすく示せるマップを得ることができる。
また、さらに、得られた正準プロットを使用して等高線マップを作成してもよい。すなわち、グラフメニューの「等高線図」を選択することで正準プロットの背景を官能評価データ(点数)ごとに濃淡分けして、判別分析を用いた「嚥下感覚」のマップに反映することができる。
マッピングは、官能評価データをよく反映して直感的にデータを把握できるものが好ましいので、官能評価データとよく照らし合わせたうえで最適と思われる解析手法を選択することが好ましい。例えば、3次元のマップを作成してもよい。
実施例102では、判別分析において実施例101とは異なる観点による分類を行い、本発明の飲食品の嚥下感覚の提示方法を行った。
本実施例の実施態様1では、実施例5の4種類の飲料の嚥下パラメータおよび官能評価データを用い、段階(a)を省略した。
実施例101の判別分析において、官能評価データによる分類に代えて、段階(b)として実施例5の4種類の飲料の嚥下パラメータを飲食品の種類(4種類の飲料)による分類を行って、正準プロットを作成した。
次いで、段階(c)としてグラフメニューの「等高線図」を選択することで、正準プロットの背景を、実施例5の4種類の飲料の官能評価データごとに濃淡分けして、判別分析を用いた「嚥下感覚」のマップを得た。
得られた結果を図13(A)および(B)に示す。図13(A)は正準プロットであり、飲食品ごとに分類した、嚥下パラメータの分布図に相当する。図13(B)は、嚥下パラメータの分布図の背景色を、官能評価データごと(すなわち飲み込み易さの度合い)に濃淡分けした嚥下感覚のマップである。図13(B)では、背景の色が濃いほど、飲み込み易い(すっきり感が強い)ことを表している。このような処理によって、各飲食品の嚥下感覚を直感的に把握しやすいマップを導出することができる。
また、実施例102の実施態様2では、実施例5(4種類の飲料)にて取得した嚥下パラメータおよび官能評価データを用い、飲食品の種類による分類を行って、3次元の判別分析を行った。その結果を図14に示す。図14では、上記実施例102の実施態様1における4種類の飲料の場合とは異なり、判別分析における次元圧縮を3次元とした。すなわち、判別分析における次元圧縮を上記実施例102の実施態様1における4種類の飲料のように2次元にしても、この実施態様2のように3次元にしてもよく、判別の基準が直感的に分かりやすく表示できているものを適宜選択すればよい。
本発明の解析方法によれば、特定の個人や集団に対して、好ましい嚥下感覚(例えば、飲み込み易い)の飲食品の嚥下感覚を客観的に支持するデータを導出してもよい。このようなデータを用いると、特定の個人や集団に対して、オーダーメイド的に好ましい嚥下感覚や飲食品や香料を提供することができ、産業上の利用性が高い。
本発明の解析方法によれば、ビッグデータをもとにして、万人に好まれる嚥下感覚を予測することができ、産業上の利用性が高い。
本発明の嚥下感覚の予測方法によれば、個人の嚥下感覚の好みにあわせて飲食品を提供することができ、産業上の利用可能性が高い。特に高齢者などの場合において意思疎通が難しくなった場合でも、本人の好む嚥下感覚の飲食品を含む食事を提供できれば、食べる意欲も向上し、健康状態にも良い影響を与える可能性がある。
Claims (14)
- 飲食品の嚥下感覚の解析方法であり、
下記の段階(A)および段階(B)を有する、解析方法:
段階(A) 被験者の飲食品の嚥下時における1個以上の嚥下筋の表面筋電位の波形データを解析して、1個以上の嚥下に関するパラメータを算出する段階;
段階(B) 段階(A)で算出した1個以上の嚥下に関するパラメータと、前記飲食品の嚥下感覚の官能評価データとの相関を解析する段階;
ただし、飲食品の嚥下感覚の官能評価データは、前記被験者が嚥下した前記飲食品の嚥下感覚を官能評価して取得されたものであり、
前記段階(A)で波形データから算出した嚥下に関するパラメータが、周波数20~45Hz、46~80Hz、および81~350Hzの各範囲で算出されたパワースペクトル密度を含む。 - 段階(B)の相関解析を統計解析または機械学習により行い、段階(A)で算出した前記嚥下に関するパラメータと前記飲食品の嚥下感覚の官能評価データとの相関関係を表す式を導出して、該式を飲食品の嚥下感覚の評価式として得る、請求項1に記載の解析方法。
- 段階(B)の相関解析を統計解析または機械学習により行い、段階(A)で算出した前記嚥下に関するパラメータと前記飲食品の嚥下感覚の官能評価データとの相関関係を表すマップを導出して、該マップを飲食品の嚥下感覚のマップとして得る、請求項1に記載の解析方法。
- 前記段階(A)が下記の段階(C1)および段階(C2)を有する請求項1~3のいずれか一項に記載の解析方法;
段階(C1) 被験者のオトガイ下部および/または前頸部に筋電位測定電極を装着し、
該筋電位測定電極を用いて前記被験者の飲食品の嚥下時における嚥下筋の筋活動を測定して、表面筋電位の波形データを取得し、波形データを解析して嚥下に関するパラメータを算出する段階。
段階(C2) 段階(C1)で表面筋電位の波形データを取得する際に前記被験者に嚥下した飲食品の嚥下感覚を官能評価させて、前記飲食品の嚥下感覚の官能評価データを取得する段階。 - さらに下記の段階(D)を有する請求項1~4のいずれか一項に記載の解析方法;
段階(D) 表面筋電位の波形データおよび飲食品の嚥下感覚の官能評価データのセットが記録された記録媒体から、表面筋電位の波形データおよび飲食品の嚥下感覚の官能評価データのセットを取得する段階。 - さらに下記の段階(E)を有する請求項1~5のいずれか一項に記載の解析方法:
段階(E) 段階(A)で算出した嚥下に関するパラメータのうち、飲食品の嚥下感覚の官能評価データとの相関が高いパラメータを選択する段階。 - 前記段階(A)で算出した嚥下に関するパラメータが、さらに、スペクトル面積、スペクトル最大振幅、筋活動時間、パワースペクトルおよび中央パワー周波数のうち少なくとも1つを含む、請求項1~6のいずれか一項に記載の解析方法。
- さらに段階(F1)および/または段階(F2)を有する請求項1~7のいずれか一項に記載の解析方法。
段階(F1) 段階(B)の解析で用いる飲食品の嚥下感覚の官能評価データの中から異常値の除去を行う段階。
段階(F2) 段階(A)で算出した嚥下に関するパラメータの中から、段階(B)の解析で用いるパラメータを選別する段階。 - 請求項1~8のいずれか一項に記載の解析方法を用いて導出した評価式またはマップを用意する段階、
前記評価式またはマップを導出する際に段階(B)の相関関係の解析において用いた嚥下に関するパラメータを、被験者に飲食品を飲食させて請求項1~8のいずれか一項に記載の段階(A)を行うことによって新たに算出する段階、
前記相関関係を表す式またはマップに、この新たに算出したパラメータを適用する段階、を含む、飲食品の嚥下感覚の予測方法。 - 前記相関関係を表す式またはマップが、個人の前記嚥下に関するパラメータと飲食品の嚥下感覚の官能評価データとの相関関係を表すものである、請求項9に記載の予測方法。
- 前記個人が意思疎通が困難となる前に、前記個人の前記嚥下に関するパラメータと飲食品の嚥下感覚の官能評価データとの相関関係を得ておき、
意思疎通が難しくなった後の前記個人が飲食品を嚥下する場合に、前記相関関係の解析に用いた前記嚥下に関するパラメータに関して、該飲食品に対応する嚥下に関するパラメータの値を算出し、
前記相関関係に該パラメータの値を導入して、前記個人にとっての該飲食品の嚥下感覚を予測する、請求項10に記載の予測方法。 - 飲食品の嚥下感覚の提示方法であり、
下記の段階(a)~段階(c)を有する、提示方法:
段階(a) 複数の飲食品について、被験者の飲食品の嚥下時における1個以上の嚥下筋の表面筋電位の波形データを解析して、1個以上の嚥下に関するパラメータを算出する段階;
段階(b) 段階(a)で算出した1個以上の嚥下に関するパラメータを、判別分析を用いて前記飲食品ごとに分類して嚥下パラメータの分布図を作成する段階;
段階(c) 段階(b)で作成した前記分布図の背景に、前記各飲食品の嚥下感覚の官能評価データを反映させ、嚥下感覚の官能評価データの分布を図示する段階;
ただし、飲食品の嚥下感覚の官能評価データは、前記被験者が嚥下した前記飲食品の嚥下感覚を官能評価して取得されたものである。 - 請求項1~12のいずれか一項に記載の方法をコンピューターに実行させるためのプログラム。
- 請求項13に記載のプログラムを記録したコンピューター読み取り可能な記録媒体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018153849A JP7207898B2 (ja) | 2018-08-20 | 2018-08-20 | 飲食品の嚥下感覚の解析方法および予測方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018153849A JP7207898B2 (ja) | 2018-08-20 | 2018-08-20 | 飲食品の嚥下感覚の解析方法および予測方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020028315A JP2020028315A (ja) | 2020-02-27 |
JP7207898B2 true JP7207898B2 (ja) | 2023-01-18 |
Family
ID=69622383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018153849A Active JP7207898B2 (ja) | 2018-08-20 | 2018-08-20 | 飲食品の嚥下感覚の解析方法および予測方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7207898B2 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090030346A1 (en) | 2004-08-05 | 2009-01-29 | Sapporo Breweries Limited | Device and method for measuring continuous swallowing motion |
JP2009039516A (ja) | 2007-07-18 | 2009-02-26 | Kirin Holdings Co Ltd | 嚥下感覚の簡易測定方法 |
JP2016052516A (ja) | 2014-09-03 | 2016-04-14 | 株式会社明治 | 食感推定方法、食品製造方法、咀嚼訓練方法および食感推定装置 |
JP2017104465A (ja) | 2014-12-27 | 2017-06-15 | 三栄源エフ・エフ・アイ株式会社 | 飲食物の嚥下感覚の評価方法 |
-
2018
- 2018-08-20 JP JP2018153849A patent/JP7207898B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090030346A1 (en) | 2004-08-05 | 2009-01-29 | Sapporo Breweries Limited | Device and method for measuring continuous swallowing motion |
JP2009039516A (ja) | 2007-07-18 | 2009-02-26 | Kirin Holdings Co Ltd | 嚥下感覚の簡易測定方法 |
JP2016052516A (ja) | 2014-09-03 | 2016-04-14 | 株式会社明治 | 食感推定方法、食品製造方法、咀嚼訓練方法および食感推定装置 |
JP2017104465A (ja) | 2014-12-27 | 2017-06-15 | 三栄源エフ・エフ・アイ株式会社 | 飲食物の嚥下感覚の評価方法 |
Non-Patent Citations (1)
Title |
---|
Kayanuma Y. et al.,A predictive model based on surface electromyography to assess the easiness of deglutition of dysphagia diets,Journal of Food Processing and Technology,米国,2016年,Vol.7 Issue7,604 |
Also Published As
Publication number | Publication date |
---|---|
JP2020028315A (ja) | 2020-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7075804B2 (ja) | 飲食品の風味の好ましさの解析方法および予測方法 | |
De Wijk et al. | Autonomic nervous system responses on and facial expressions to the sight, smell, and taste of liked and disliked foods | |
Teucher et al. | Dietary patterns and heritability of food choice in a UK female twin cohort | |
Wadhera et al. | Perceived recollection of frequent exposure to foods in childhood is associated with adulthood liking | |
Mishra et al. | Longitudinal changes in dietary patterns during adult life | |
Miller | The eating quality of meat: V Sensory evaluation of meat | |
Okubo et al. | Relative validity of dietary patterns derived from a self-administered diet history questionnaire using factor analysis among Japanese adults | |
Paulsen et al. | Preference mapping of salmon–sauce combinations: The influence of temporal properties | |
Fiszman et al. | The dynamics of texture perception of hard solid food: A review of the contribution of the temporal dominance of sensations technique | |
JP7195388B2 (ja) | 飲食品の風味の評価用システムおよび飲食品の風味の評価方法 | |
JP4702860B2 (ja) | 嚥下感覚の簡易測定方法 | |
JP6580425B2 (ja) | 食感推定方法、食品製造方法、および食感推定装置 | |
WO2017146005A1 (ja) | 嗅覚の判別方法 | |
Wilson et al. | Comparison of physical chewing measures to consumer typed Mouth Behavior | |
Nakatsu et al. | A trial of human electromyography to evaluate texture of softened foodstuffs prepared with freeze-thaw impregnation of macerating enzymes | |
Borazon et al. | Relationship of PROP (6-n-propylthiouracil) taster status with body mass index, food preferences, and consumption of Filipino adolescents | |
Muñoz et al. | Factors affecting perception and acceptance of food texture by American consumers | |
JP7207898B2 (ja) | 飲食品の嚥下感覚の解析方法および予測方法 | |
Di Monaco et al. | Temporal dominance of sensations and dynamic liking evaluation of polenta sticks | |
Hort et al. | Time‐dependent measures of perception: An introduction | |
JP7281367B2 (ja) | 飲食品評価装置および飲食品評価方法 | |
Tepper | 6-n-Propylthiouracil as a genetic taste marker for fat intake, obesity, and chronic disease risk: current evidence and future promise | |
Ioannides et al. | Electromyography of the masticatory muscles can detect variation in the mechanical and sensory properties of apples | |
Nute | Sensory assessment of poultry meat quality | |
Nachtsheim et al. | The influence of oral phenotypic markers and fat perception on fat intake during a breakfast buffet and in a 4-day food record |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210707 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20210707 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220708 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220726 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220907 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221227 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230105 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7207898 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |