JP7203443B2 - 量子コンピュータでの相関したフェルミオン状態の準備 - Google Patents

量子コンピュータでの相関したフェルミオン状態の準備 Download PDF

Info

Publication number
JP7203443B2
JP7203443B2 JP2020534214A JP2020534214A JP7203443B2 JP 7203443 B2 JP7203443 B2 JP 7203443B2 JP 2020534214 A JP2020534214 A JP 2020534214A JP 2020534214 A JP2020534214 A JP 2020534214A JP 7203443 B2 JP7203443 B2 JP 7203443B2
Authority
JP
Japan
Prior art keywords
quantum circuit
qubits
qubit
linear chain
gates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020534214A
Other languages
English (en)
Other versions
JP2021507401A5 (ja
JP2021507401A (ja
Inventor
ダレール-デマー,ピエール-リュック
フォンタルボ,ジョナサン,ロメロ
アスプル-グジック,アラン
ヴェイス,リボール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harvard College
Original Assignee
Harvard College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harvard College filed Critical Harvard College
Publication of JP2021507401A publication Critical patent/JP2021507401A/ja
Publication of JP2021507401A5 publication Critical patent/JP2021507401A5/ja
Application granted granted Critical
Publication of JP7203443B2 publication Critical patent/JP7203443B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、空軍科学研究所により与えられた認可番号FA9550-12-1-0046に基づく政府の支援を受けて行われた。政府は本発明に対して一定の権利を有する。
関連出願の相互参照
本願は、2017年12月21日に出願された米国仮出願第62/608,972号の利益を主張し、それは、その全体が参照により本明細書に組み込まれる。
本開示の実施形態は、ユニバーサル量子シミュレータに関し、より具体的には、相関したフェルミオンシステムの基底状態を決定するために量子コンピュータ上で相関したフェルミオン状態を準備することに関する。
本開示の実施形態によると、相関したフェルミオンシステムの基底状態を決定するように量子回路を構成する方法及びコンピュータプログラム製品が提供される。様々な実施形態で、量子回路はキュービットの線形鎖と、層状に配置された複数のマッチゲートとを含む。各マッチゲートは、線形鎖内の近傍のキュービットで2キュービット回転を実行するように構成されている。様々な実施形態では、方法は線形鎖の各キュービットの初期状態を提供することと、量子回路を初期値に適用することにより、キュービットの線形鎖上に仮設を準備することとを含み、その仮設は、フェルミオン状態に対応している。いくつかの実施形態では、フェルミオン状態はガウス型である。
いくつかの実施形態では、量子回路は、層状に配置された複数の2キュービットゲートをさらに含む。層は、直列に配置され、ブロックを形成する。各ゲートは、線形鎖内の近傍のキュービットで2キュービット回転を実行するように構成されている。回転はZZ回転を含む。いくつかのこのような実施形態では、フェルミオン状態が非ガウス型である。いくつかの実施形態では、量子回路が少なくとも2つのブロックを含む。
いくつかの実施形態では、キュービットの線形鎖が8キュービットを含む。いくつかの実施形態では、量子回路は、線形鎖内の第1の数のキュービットと、第2の数のマッチゲート層とを含み、第2の数は、第1の数の半分以下である。いくつかの実施形態では、量子回路は、線形鎖における第1の数のキュービットと、ブロックにおける第2の数の層とを含み、第2の数は、第1の数の半分以下である。
いくつかの実施形態では、初期状態が準粒子真空状態に対応する。いくつかの実施形態では、量子回路は、ブロックの前に、線形鎖の各キュービットに対して回転を実行するように構成されたゲートをさらに備える。
いくつかの実施形態では、複数のマッチゲートが2つの連続するグループに配置され、各グループのマッチゲートが並列に適用される。いくつかの実施形態では、複数の2キュービットゲートが2つの連続するグループに配置され、各グループのゲートが並列に適用される。
本開示の実施形態によると、相関したフェルミオンシステムの基底状態を決定するための量子回路が提供される。様々な実施形態で、量子回路はキュービットの線形鎖と、層状に配置された複数のマッチゲートとを含む。各マッチゲートは、線形鎖内の近傍のキュービットで2キュービット回転を実行するように構成されている。
いくつかの実施形態では、量子回路は、層状に配置された複数の2キュービットゲートを含む。層は、直列に配置され、ブロックを形成する。各ゲートは、線形鎖内の近傍のキュービットで2キュービット回転を実行するように構成されている。回転はZZ回転を含む。いくつかの実施形態では、量子回路が少なくとも2つのブロックを含む。
いくつかの実施形態では、キュービットの線形鎖が8キュービットを含む。いくつかの実施形態では、量子回路は、線形鎖内の第1の数のキュービットと、第2の数のマッチゲート層とを含み、第2の数は、第1の数の半分以下である。いくつかの実施形態では、量子回路は、線形鎖に第1の数のキュービットと、ブロックに第2の数の層とを備え、第2の数は、第1の数の半分以下である。
いくつかの実施形態では、量子回路は、ブロックの前に、線形鎖の各キュービットに対して回転を実行するように構成されたゲートをさらに備える。
いくつかの実施形態では、複数のマッチゲートが2つの連続するグループに配置され、各グループのマッチゲートが並列に適用される。いくつかの実施形態では、複数の2キュービットゲートが2つの連続するグループに配置され、各グループのゲートが並列に適用される。
本開示の実施形態によると、相関したフェルミオンシステムの基底状態を決定する方法及びコンピュータプログラム製品である。様々な実施形態で、量子回路は、複数の構成パラメータを有する。量子回路はキュービットの線形鎖と、層状に配置された複数のマッチゲートとを含む。各マッチゲートは、線形鎖内の近傍のキュービットで2キュービット回転を実行するように構成されている。線形鎖の各キュービットの初期状態を提供する。量子回路を初期値に適用することにより、キュービットの線形鎖上に仮設を準備する。仮設はフェルミオン状態に対応する。量子回路を使用して、相関したフェルミオンシステムの第1のエネルギー値を決定する。第1のエネルギー値に基づいて、複数の構成パラメータを調整する。量子回路を使用して、相関したフェルミオンシステムの第2のエネルギー値を決定する。構成パラメータは、第2のエネルギー値を最小化するように調整される。
いくつかの実施形態では、複数の構成パラメータを調整することは、古典的な計算ノードを使用して複数の構成パラメータを最適化することを含む。いくつかの実施形態では、第1のエネルギー値が、構成パラメータの関数である。関数は勾配を有する。方法は、勾配を決定することをさらに含む。
いくつかの実施形態では、フェルミオン状態はガウス型である。
いくつかの実施形態では、量子回路は、層状に配置された複数の2キュービットゲートをさらに含む。層は、直列に配置され、ブロックを形成する。各ゲートは、線形鎖内の近傍のキュービットで2キュービット回転を実行するように構成されている。回転はZZ回転を含む。いくつかのこのような実施形態では、フェルミオン状態が非ガウス型である。
いくつかの実施形態では、量子回路が少なくとも2つのブロックを含む。いくつかの実施形態では、キュービットの線形鎖が8キュービットを含む。
いくつかの実施形態では、量子回路は、線形鎖内に第1の数のキュービットと、第2の数のマッチゲート層とを備え、第2の数は、第1の数の半分以下である。いくつかの実施形態では、量子回路は、線形鎖に第1の数のキュービットと、ブロックに第2の数の層とを備え、第2の数は、第1の数の半分以下である。
いくつかの実施形態では、初期状態が準粒子真空状態に対応する。
いくつかの実施形態では、量子回路は、ブロックの前に、線形鎖の各キュービットに対して回転を実行するように構成されたゲートをさらに備える。
いくつかの実施形態では、複数のマッチゲートが2つの連続するグループに配置され、各グループのマッチゲートが並列に適用される。いくつかの実施形態では、複数の2キュービットゲートが2つの連続するグループに配置され、各グループのゲートが並列に適用される。
本開示の実施形態による量子回路の概略図である。 本開示の実施形態による量子回路の概略図である。 本開示の実施形態による量子回路の概略図である。 本開示の実施形態による量子回路の概略図である。 本開示の実施形態による量子回路の概略図である。 本開示の実施形態による量子回路の概略図である。 本開示の実施形態による量子回路の概略図である。 本開示の実施形態による量子回路の概略図である。 本開示の実施形態による量子回路の概略図である。 本開示の実施形態による量子回路の概略図である。 本開示の実施形態による量子回路の基底状態の忠実度のプロットである。 本開示の実施形態による量子回路の基底状態の忠実度のプロットである。 本開示の実施形態による量子回路の基底状態の忠実度のプロットである。 本開示の実施形態による量子回路の基底状態の忠実度のプロットである。 本開示の実施形態による量子回路の基底状態の忠実度のプロットである。 本開示の実施形態による量子回路の基底状態の忠実度のプロットである。 本開示の実施形態による、相関したフェルミオンシステムの基底状態を決定するように量子回路を構成する方法を示すフローチャートである。 本開示の実施形態による、相関したフェルミオンシステムの基底状態を決定する方法を示すフローチャートである。 本発明の実施形態によるコンピューティングノードを示す。
量子シミュレータは、実験室で研究するのが難しく、古典的なコンピュータでモデル化することは計算上不可能である量子システムの研究を可能にする量子コンピュータである。多くの粒子の量子システムは、次元が粒子数において指数関数的に大きいヒルベルト空間によって記述される。したがって、そのようなシステムのシミュレーションは、古典的なコンピュータで指数関数的な時間を必要とする。しかし、多くの粒子の量子システムは、元のシステムにおける粒子の数のオーダーの複数の量子ビットを使用する量子コンピュータによってシミュレートされ得る。量子シミュレータは、超低温量子ガスのシステム、トラップされたイオン、フォトニックシステム、超伝導回路など、様々な基礎となる量子コンピュータのプラットフォームに実装できる。
高レベルでは、量子シミュレーションは、ハミルトニアンの最低エネルギー状態を計算することに向けられている。ハミルトニアンは、電子や原子核などの粒子間の相互作用を記述する量子力学的エネルギー演算子である。分子ハミルトニアンの最低エネルギー状態は、分子の構造と、それが他の分子とどのように相互作用するかを決定する。量子回路は、ハミルトニアンの試行の基底状態で準備される。測定は、準備された試行状態のエネルギーを評価するために実行される。測定されたエネルギー値は、さらにエネルギーを削減するために、量子プロセッサを駆動する次の量子回路を生成する古典的な最適化ルーチンに送られる。最小のエネルギーが必要な精度で得られるまで、反復が実行される。
物質の巨視的特性は、その巨大な成分がほとんどフェルミオンであるその微視的量子構成要素から現れる。相互作用する多数のフェルミオンの挙動を理解してモデル化することは、物理学と化学の中心的かつ基本的な問題である。多体状態を表すために必要なメモリは粒子の数で指数関数的に増加するため、フェルミオンモデリングに対処するには、計算リソースへの法外な投資が必要である。したがって、量子コンピュータは、量子システムのシミュレーションを大幅に改善する。量子シミュレーションは、薬物、肥料、触媒などの新しい分子の設計に有用である。同様に、超伝導及びトポロジカル材料の設計にも有用である。
変分量子固有ソルバー(VQE)は、量子シミュレーションのための状態を準備し、所望のオブザーバブルを測定するように設計されたクラスの量子アルゴリズムである。しかし、現代の量子コンピュータのVQEは、ノイズと有限の実験精度の結果として、コヒーレンスが制限されている。したがって、量子シミュレーション及び状態準備のための低深度回路が所望されている。VQEは、多体フェルミオン・ハミルトニアンの基底状態を近似するための仮設としてユニタリ結合クラスターを使用できるリソース効率の良いアプローチを提供する。しかし、VQEプロシージャの初期状態は、従来のハートリー・フォック計算からエンタングルメントが抽出されていない単一の参照の積の状態である。
一般に、ガウス状態は、コヒーレント状態(従来のレーザーからの光パルスの状態など)または1つのモードまたは2つのモードのスクイーズな真空状態であり得る。より具体的には、状態がガウス関数で表現されている場合、例えば、位相空間の分布関数やガウス形式のフォック空間の密度演算子などである場合、状態はガウス型である。
変分量子アルゴリズムは、量子状態(変分仮設)を準備するためのパラメータ化された手順(通常はパラメータ化された量子回路)を含む。目的関数を測定し、古典的な最適化ルーチンを使用して新しいパラメータを提案することにより、変分仮設は繰り返し改善される。通常、測定の目的は、現在の量子状態のエネルギーの期待値である。一般に、変分アルゴリズムでは、ハミルトニアンの期待値を最小化するために選択されたパラメータθで記述される基底状態のため仮設
Figure 0007203443000001
を準備する。仮設は、パラメータ化された量子回路を適切な参照状態に適用することによって準備できる。参照状態は、問題の平均場の解になるように選択できる。
本開示は、より一般的なフェルミオン・ガウス状態でアルゴリズムを初期化することを可能にする。このガウス参照状態は、量子マッチゲートの線形深度回路で準備できる。利用可能なゲートのセットを最近傍の位相結合で補強することにより、相関のあるフェルミオンシステムの基底状態を正確に準備できる低深度回路の仮設を提供する。これにより、VQEの適用範囲が、超伝導体、原子核、及びトポロジカル材料などの強いペアリングの相関を持つシステムに拡張される。
本開示は、2キュービットゲートの線形深度ブロックから構成される変分サイクルを体系的に追加することにより、ペアリングの相互作用の相関したフェルミオンの基底状態を準備するために使用できる新しいタイプの低深度のVQE仮設を提供する。
以下では、フェルミオンの強い相関問題の定式化を、第2の量子化の文脈で説明する。ボゴリューボフ結合クラスター理論の単一バージョンが提示される。一般化されたハートリー・フォック(GHF)参照状態をフェルミオン・ガウス状態として計算する方法について説明する。線形深度回路を使用して、量子コンピュータで純粋なフェルミオン・ガウス状態を正確に準備する方法について説明する。マッチゲート回路と追加の最近傍位相結合からなる低深度回路仮設(LDCA)について説明する。数値のベンチマークは、凝縮物質におけるフェルミ・ハバード・モデルの原型的な例と量子化学におけるシクロブタジエンの自動化反応のLCDA仮設に提供され、強い相関のシステムの正確な基底状態を説明する可能性を示す。
本明細書で使用される場合、量子ゲート(または量子論理ゲート)は、少数のキュービットで動作する基本的な量子回路である。古典的な論理ゲートが従来のデジタル回路を形成するのと同様に、古典的な計算との類似性により、量子ゲートは量子回路を形成する。量子論理ゲートはユニタリ行列で表される。古典的な論理ゲートが1ビットまたは2ビットで動作するように、様々な一般的な量子ゲートが1または2キュービットの空間で動作する。行列として、量子ゲートは2n×2nサイズのユニタリ行列で表すことができ、式中nはキュービットの数である。ゲートが作用する変数、量子状態は、2nの複素次元のベクトルである。基本ベクトルは、測定された場合に起こり得る結果を示し、量子状態はこれらの結果の線形結合である。特定の量子状態に対するゲートの作用は、状態を表すベクトルにゲートを表す行列を掛けることによって求められる。
上述のように、ゲートは、任意の数のキュービットで動作することができるが、1キュービットゲート及び2キュービットゲートが一般的である。1キュービットゲートの例には、単一のキュービットに作用し、キュービットのブロッホ球のX軸、Y軸、またはZ軸の周りの回転に対応するパウリX、Y、及びZゲートが含まれる。2キュービットゲートの1つの例は、式24の4×4の行列によって定義されるマッチゲートである。追加の2キュービットゲートは、4×4のユニタリ行列によって、またはそれらの構成要素の回転によって定義できることが理解される。
量子コンピュータの様々な物理的実施形態は、本開示による使用に適している。一般に、量子コンピューティングの基本的なデータストレージユニットは、量子ビット、すなわちキュービットである。キュービットは、古典的なデジタルコンピュータシステムビットの量子コンピューティングアナログである。古典的なビットは、任意の時点で、2進数の0または1に対応する2つの可能な状態の1つを占めると見なされる。対照的に、キュービットは、量子力学的特性を持つ物理コンポーネントによってハードウェアに実装される。各ユニットには、無限の数の異なる潜在的な量子力学的状態がある。キュービットの状態が物理的に測定されると、測定により2つの異なる基底状態のいずれかが生成される。したがって、単一のキュービットは、これらの2キュービット状態の1、0、または任意の量子の重ね合わせを表すことができる。キュービットのペアは、4つの状態の任意の量子の重ね合わせにすることができる。3キュービットは、8つの状態の任意の重ね合わせにすることができる。本明細書ではキュービットは数学的対象として特徴付けられるが、それぞれは、トラップされたイオン、光キャビティ、個々の素粒子、分子、またはキュービットの挙動を示す分子の集合体など、いくつかの異なる物理的実装を使用して実装できる物理的キュービットに対応する。
古典的なゲートとは対照的に、キュービットの状態ベクトルを変化させる可能な単一のキュービット量子ゲートが無限に存在する。したがって、キュービット状態ベクトルの状態の変化は、回転と呼ばれる。回転、状態変化、または単一キュービット量子ゲート操作は、複雑な要素を持つユニタリの2×2行列によって数学的に表すことができる。回転はヒルベルト空間内のキュービットの回転に対応し、これはブロッホ球の回転として概念化できる。
量子回路は、一連の量子ゲートとして特定することができる。量子回路を概念化するには、コンポーネント量子ゲートに対応する行列をシンボルシーケンスで指定された順序で乗算し得て、n個のキュービットで同じ全体的な状態変化を表す2n×2n複素行列を生成する。したがって、量子回路は、結果として生じる単一の演算子として表すことができる。ただし、構成ゲートの観点から量子回路を設計すると、設計を標準的なゲートのセットに準拠させることができるため、展開がさらに容易になる。したがって、量子回路は、量子コンピュータの物理回路の設計に対応する。
所与の変分量子回路は、適切なデバイス固有の方法でパラメータ化され得る。より一般的には、量子回路を構成する量子ゲートは、関連する複数の調整パラメータを有することができる。例えば、光スイッチングに基づく実施形態では、調整パラメータは、個々の光学要素の角度に対応し得る。
本明細書では、量子化学、凝縮物質、及び核物理学で見られるフェルミオン・ハミルトニアンの基底状態の定義が提供される。ボゴリューボフ単一結合クラスター(BUCC)理論が、基底状態の問題に対する変分的仮設として提供されている。一般化されたハートリー・フォック(GHF)理論の形式は、BUCC最適化手法の開始点として提供される。GHFは、マッチゲートを使用して量子プロセッサ上で準備され、フェルミオン・ハミルトニアンの基底状態を高精度で準備するために使用できる低深度回路仮設(LDCA)が提供される。
量子化学、凝縮物質及び核構造物理学における多くのシステムは、式1の形の第2の量子化ハミルトニアンによって記述される相互作用するフェルミオン(例えば、電子、核子)の集合によってモデル化することができる。
Figure 0007203443000002
一般に、p、q、…、uのインデックスは、Mフェルミオンモードを定義するすべての関連する量子数(例えば、位置、運動量、バンド数、スピン、角運動量、アイソスピンなど)にわたって実行される。フェルミオンモード演算子は、正準反交換関係
Figure 0007203443000003
に従う。運動エネルギー項tpqと相互作用vpqrsはほとんどの理論で偏在しているが、ペアリング項Δpqは平均場超伝導のコンテキストでしばしば現れ、3体相互作用項wpqrstuは現象論的に核物理学に導入できる。
様々な観測可能な量を計算するための前提条件として、ハミルトニアン(式1)の基底状態
Figure 0007203443000004
この最小化が分析的にも数値的にも正確な方法でも実行できない場合、変分的仮設などの近似的な方法に頼らなければならない。そのような仮設の1つであるBUCC法について以下に説明する。
結合クラスター法は、ab initioで量子化学の計算で使用され、ハートリー・フォック法よりも高い精度で相関する多体状態を記述する。ボゴリューボフ及び準粒子ベースの結合クラスター法は、これらの方法の適用範囲を、平均場ペア状態のシステムに拡張する。ボゴリューボフ結合クラスター理論のユニタリ版の形式を本明細書に提示する。
正準反交換関係を保存するフェルミオン生成・消滅演算子に作用する最も一般的な線形変換は、ボゴリューボフ変換である。この変換では、準粒子演算子
Figure 0007203443000005
この変換は、
Figure 0007203443000006
二次ハミルトニアン(すべてのvpqrs=0及びwpqrstu=0)の基底状態は、式5のような積の状態であり、式中
Figure 0007203443000007
準粒子クラスター演算子T=T1+T2+T3+…を定義することができる。Tnは式6のものとして定義される。
Figure 0007203443000008
式6
Figure 0007203443000009
BUCC仮設を変動的に最適化するために、準粒子演算子が一般に総粒子数を保存しないので、式9のような粒子の数が一定に保たれるべきであるという制約を受けて、式8のものとしてエネルギーを最小にする角度θを見出すことを図る。以下に述べるように、量子化アルゴリズムの実装の詳細とともに、一般化されたハートリー・フォック理論から参照状態を計算する方法が提示されている。
Figure 0007203443000010
以下に述べるように、ボゴリューボフ行列(式4)を取得し、参照状態(式5)を定義するために使用することができる。様々な実施形態において、方法は、以下に記載されるフェルミオン・ガウス状態の理論に依拠している。自己無撞着ループのない基底状態の共分散行列を取得する方法が提示される。フェルミオン・ガウス状態は、超伝導の平均場理論で見られるハートリー・フォック理論及びBardeen-Cooper-Schrieer(BCS)状態からのスレーター行列式のファミリーを含み、量子コンピュータ上で準備できるため、量子シミュレーションの有用な出発点である。
Mのフェルミオンモードの場合、式10のように、位置及び運動量演算子のフェルミオン類似体として2Mのマヨラナ演算子を定義するのが好都合である。
Figure 0007203443000011
本明細書では、式を明確にするために、拡張インデックス表記(1から2Mまで)またはA、Bの上付きの表記を交換可能に使用する。それらの整流関係は、
Figure 0007203443000012
この場合、1は、M×M単位行列である。一般的なフェルミオン・ガウス状態は、式12のものとしてフェルミオン演算子の二次的な積の指数の形をしている。式中、Zは正規化係数であり、GはGT=-Gのような実反対称行列である。
Figure 0007203443000013
それは、
Figure 0007203443000014
一般に、純度は、
Figure 0007203443000015
そこから、単一粒子密度演算子
Figure 0007203443000016
行列
Figure 0007203443000017
以下に説明するように、ハミルトニアン(式1)の基底状態を近似する共分散行列(式13)を計算することができる。特に、以下で説明する手順は、自己無撞着ループのない相互作用的なハミルトニアンの基底状態を近似する共分散行列を計算することを目的としている。
ハミルトニアン(式1)は、マヨラナ演算子を用いて式17の形で書き直すことができ、式中、TT=-Tであり、V及びWは、任意の2つの近傍のインデックスの交換の下で反対称である。
Figure 0007203443000018
ガウス状態に対する期待値は、式18の形を有するウィックの定理を使用して効率的に計算することができ、式中、
Figure 0007203443000019
ウィックの定理が成り立つと仮定すると、式20のものとして、効果的だが状態従属2次ハミルトニアンが記せる。式中
Figure 0007203443000020
参照状態の共分散行列を得るために、式21のものとして、純粋な状態
Figure 0007203443000021
Figure 0007203443000022
以下の数値的な例に示されるように、虚時間発展(式21)とそれに続く固定小数点発展(式23)は数値的に安定しており、一貫して所望のGHF基底状態に到達する。以下で説明するように、マッチゲートは、変分プロシージャの参照状態として量子コンピュータで純粋なガウス状態を準備するために使用できる。
上述のように、量子コンピュータは、古典的なコンピュータの到達範囲を超える量子システムのシミュレーションを可能にすることができる。実用的なシミュレーションには、興味深いハミルトニアンの基底状態を高精度で準備する必要がある。VQEプロトコルは、この基底状態に到達するために適用できる。しかし、VQEを一般的に実装することは、精度のために制御不能な様式で長い回路深度を犠牲にする。
本明細書で説明するように、正確かつハードウェアの効率性があり、Bardeen-Cooper-Schrieer(BCS)様のペアリング相関で状態を表すことができるという追加の利点を備えた構成可能なVQE仮設が提供される。本明細書で説明する様々な方法は、参照ガウス状態を準備し、フェルミオン非線形光学に類似した変換を使用して仮設をパラメータ化するために、マッチゲートとそれらのフェルミオン線形光学との関係に依存している。得られた純粋なガウス状態は、線形深度アルゴリズムを使用して量子レジスタで準備できる。したがって、本開示は、BUCC仮設の継承された特性及び完全構成相互作用法の見かけの精度を備えた低深度回路仮設を提示する。
2キュービットヒルベルト空間の計算の基礎では、マッチゲートは式24のような一般的な形式を有し、式中
Figure 0007203443000023
それらは、式25のものとして、最近傍のパウリ演算子のテンソル積によって生成される群を形成する。これは、最近傍マヨラナ演算子のすべての積のジョーダン・ウィグナー変換積にも対応している。これは、フェルミオン・ガウス演算との接続を確立する。
Figure 0007203443000024
ボゴリューボフ変換(式3)は、マヨラナ演算子(式10)のS0(2M)変換として、
Figure 0007203443000025
量子プロセッサにおいてこの変換を実装するために、式27が成立するように、Mのキュービットに作用する最近傍マッチゲートUBogの量子回路が存在する。
Figure 0007203443000026
そのような回路の例は、フェルミオン高速フーリエ変換である。一般に、ホフマンアルゴリズムは、モードのペアとMS0(2)ローカルフェーズの間の2M(M-1)SO(4)回転でUBogを分解するために使用できる。総じて、これらの2M2-Mアングルは、同じ数の量子ゲートに対応する。量子ゲートがキュービットの線形鎖で並列に動作できるという事実を使用して、任意の変換Rが、図1に詳細を示すように、回路の深さ
Figure 0007203443000027
で実装できる。本明細書で使用される場合、キュービットの線形鎖は、各キュービットが集合の1または2キュービットに隣接しているような、キュービットの集合を指す。鎖の端にあるキュービットは、鎖の中に1つの最近傍があるが、端ではないキュービットは、まさに2つ直接近接しているものがある。したがって、近傍のキュービットには、鎖に他の介在するキュービットがない。
図1を参照すると、UBogを実装する例示的な量子回路が、本開示の実施形態に従って示されている。この例は、ローカル位相回転と最近傍マッチゲートの回路で8キュービットのUBogの分解で動作する。図1Aを参照すると、所与の回路
Figure 0007203443000028
という4回転で構成されるキュービットiとjとの間の2つの局所的演算である。
図1Bを参照すると、各層kのユニタリ
Figure 0007203443000029
を並行して操作することで構築される。
図1Cを参照すると、最近傍マッチゲート
Figure 0007203443000030
に結合されて、UBog回路109を形成する。
ホフマン法は、モードの各ペアでの順次の動作を想定しているため、S0(2M)で最適な制御方式を使用して、並列に動作するゲートのパラメータ化を容易にした。マッチゲートはMキュービットで許可されている完全なSU(2M)変換のはるかに小さい部分空間で動作するのみであるため、これは古典的なコンピュータで一般的に効率的である。変換Rは式28が成立するように、局所及び最近傍モードの回転で分解でき、式中
Figure 0007203443000031
モード回転は、式30のようなS0(2M)ハミルトニアンと共に式29のような
Figure 0007203443000032
最適な制御方法は、式32のように勾配を使用して式31の忠実度関数を最大化する。
Figure 0007203443000033
8キュービットの例の図1に示されるように、この分解は、式33のような単一キュービット位相回転の量子回路に、また式34のような最近傍マッチゲートに、式35のような各回転で明確に変換される。
Figure 0007203443000034
各並列サイクルは式36のような偶数と奇数の最近傍の間でゲートをインターリーブし、式37のように合計で
Figure 0007203443000035
最後に、ユニタリーボゴリューボフ変換は、式38のように構成でき、
Figure 0007203443000036
参照状態がスレーター行列式である場合、数保存マッチゲートのみが状態を準備するのに必要とされ、回路の深度は
Figure 0007203443000037
で切り捨てられたユニタリ結合クラスター仮設は、ガウス変換し、UBogと同じ方法でトロッター化なしで実装できる。UBog分解と同様に、非マッチゲート変分項をゲートシーケンスに導入することにより、この結果にて構築されたVQEスキームを以下に示す。
ボゴリューボフ変換(式38)は、フェルミオンモードのベースの変化として機能する。したがって、VQEプロトコルに従って、DBUCC仮設(式7)を実装して、(式1)の近似基底状態を準備する修正されたベースにて期待値
Figure 0007203443000038
を測定する。これには、従来のユニタリ結合クラスター仮設と比較した場合、非数保存項(ペアリングフィールドなど)のものに、処理できるハミルトニアンの範囲を拡張するという利点がある。しかし、ベースの変化により、測定する必要がある項の数が大幅に増える可能性がある。VQEプロトコルでの測定数を減らすために、積の状態(式5)から開始し、準粒子ベースで変分ユニタリ(式7)を実行できる。次に、マッチゲートを使用して逆ボゴリューボフ変換を実行し、ハミルトニアン(式1)の期待値と元のフェルミオン軌道ベースの数値演算子Nを測定できる。準粒子ベースでは、ボゴリューボフ演算子を、ジョーダン・ウィグナー変換を使用してキュービット演算子にマッピングできる。これらが、式39のような正準反交換関係に従うためである。同マッピングは、ボゴリューボフ変換後、フェルミオン演算子
Figure 0007203443000039
に使用できる。フェルミオン粒子の数が軌道の数に比例すると仮定すると、BUCCSD様のスキームの欠点は、変分パラメータの数がO(M4)としてスケーリングされることである。ジョーダン・ウィグナー像では、これらの項はO(M6)ゲートで実装できる。近い将来の量子プロセッサは、この種のスケーリングを非実用的にするエラー率に苦しみ続けることが予想される。したがって、よりハードウェア効率の高いVQEスキームが必要である。
Figure 0007203443000040
Bogのゲート分解はまた、線形回路深度でBUCCS VQEプロトコルを正確にパラメータ化することができると仮定すると、スキームは、T2の四次変分項の効果を模倣するための最近傍位相結合
Figure 0007203443000041
回転で増強され得る。大まかに言うと、このスキームは変分項のいかなるトロッター化をも含まない、パラメータ化されたフェルミオン非線形光学回路である。アルゴリズムを図2に示す。
次に図2を参照すると、UBogを実装する例示的な量子回路が、本開示の実施形態に従って示されている。この例では、8キュービットの線形鎖のLサイクルLDCAの例示的なゲート分解が提示されている。図2Aを参照すると、
Figure 0007203443000042
への変換について示されている。
第1のステップとして、準粒子真空(式5)がボゴリューボフ像において準備されており、計算ベースで状態
Figure 0007203443000043
を適用することにより、元の基準で行うことができる。
低深度回路仮設(LDCA)のサイクルlでは、最近傍マッチゲート(式34)は、式40のように置き換えられ、式41のように回転が定義される。
Figure 0007203443000044
各層kは、式42が成立するように最初にそれらの変分回転を偶数ペアに、次に奇数ペアに平行に適用する。
Figure 0007203443000045
Figure 0007203443000046
最後に、Lサイクルは、式45のような一回転のみの変分位相回転を伴う式44のような完全な変分仮設を形成するために順次組み立てられる。
Figure 0007203443000047
ゲートがキュービットの線形鎖で並列に操作できるため、
Figure 0007203443000048
ゲートを含み(または同等であり)、パウリ文字列の形でハミルトニアンの項を測定する)。したがって、このVQEスキームは、回路の深度がキュービット数で線形であるという意味で、ハードウェア効率が高くなる。収束に到達するか、エラーが結果の精度を左右するまで、サイクル数を増やすことにより、精度を体系的に改善することもできる。
以下に説明するものとして、量子リソースを使用してLDCAの分析勾配を計算するための実装が提示され、これは、基底状態及びそのエネルギーの探索を導くことにより、VQEにおける最適化プロシージャの間に有用である。
総エネルギーを最小化するために仮設パラメータを最適化するとき、選択された最適化プロシージャに応じて勾配を実装する必要がある場合がある。直接探索アルゴリズムは、通常、勾配ベースのアプローチよりもノイズに対してロバストであるが、多数の関数評価が必要になる場合がある。一方、勾配の数値の実装は、精度のためのステップの規模に大きく依拠する。しかし、ステップの規模が小さすぎると数値が不安定になる可能性があり、望ましい精度に対応するステップの規模の実装は、現在の実験手順によって制限される。
妥当な計算コストを維持しながら高精度を示す代替アプローチは、勾配の分析形態が利用可能であると仮定して、量子コンピュータで直接勾配を評価することであり得る。ここでは、追加のキュービットと制御された2キュービット回転を使用してLDCAユニタリの分析勾配を実装するためのスキームが提示されている。式44に示されている完全変分仮設のユニタリは、角度θでパラメータ化された
Figure 0007203443000049
と呼ぶ。
Figure 0007203443000050
エネルギーの期待値を計算するために、ハミルトニアン平均化プロシージャを採用することができる。これには、ハミルトニアンのすべての項の期待値を測定し、式48に示すようにそれらを合計することを伴う。Oiと呼ばれる各項は、式1の2番目の量子化ハミルトニアンにおいて対応する項でジョーダン・ウィグナーまたはBravyi-Kitaev変換を実行して得られたパウリ行列の積である。
Figure 0007203443000051
式48を式47cに代入すると、勾配は、式49のように表すことができ、図3に示す回路を使用して実装して、式50の状態を得ることができる。
Figure 0007203443000052
次いで、式49から得る
Figure 0007203443000053
の虚数成分は、Yベースで補助キュービットを測定することによって回復できる。勾配の実際の物理的実装では、勾配回路の制御キュービットがレジスタ内のすべてのキュービットに接続されている回路のレイアウトを使用できる。
図3を参照すると、回路は、本開示の実施形態によるLDCAの分析勾配を計算する補助キュービットを使用して示されている。特に、
Figure 0007203443000054
は、図2の回路の最近傍マッチゲートの回転項の間に挿入される。
以下に、フェルミ・ハバード・モデルの小さなインスタンス及びシクロブタジエンの自動化反応に関する、BUCC及びLDCA仮設のための数値的なベンチマークが提示される。示されているように、LDCAはこれらのシステムの正確な基底状態を準備することができる。
数値試験の結果は、凝縮物質及び量子化学における強い相関のシステムのインスタンスに対する前述のアルゴリズムの能力について提供される。仮設の挙動は、フェルミ・ハバード・モデルで、異なる相互作用の強さでの半充填で分析される。シクロブタジエンの自動化反応は、パリサー・パー・ポプル(PPP)ハミルトニアンを使用してモデル化される。どちらの場合も、ハミルトニアンは8キュービットレジスタにマップされ、エネルギーと波動関数の精度が比較されて、次の方法の仮設、すなわちGHF、BUCCSD、1サイクル及び2サイクルのLDCAの正確な基底が概算される。
これらの場合において、状態の初期化は、並列に動作する8の単一キュービットXゲートを有し、逆ボゴリューボフ変換は、1つの層の単一キュービット位相回転及び112の最近傍マッチゲートを有する。状態の初期化と
Figure 0007203443000055
回路を合計すると、回路の深度は34になる。LDCA法は、1つの層の変分位相回転と、1サイクルあたり140の最近傍ゲートを追加する。したがって、1サイクルLDCAは回路深度に41を追加し(合計75で148の変分パラメータ)、2サイクルLDCAは81を回路深度に追加(合計115で288の変分パラメータ)する。
ここに提示された数値的な例について、2サイクルLDCAは、シミュレートされたシステムの基底状態を正確に回復することができ、1サイクルLDCAは、GHF解よりも優れているが、BUCCSDほど正確ではない。2サイクルLDCAには、ヒルベルト空間の次元(28=256)よりも多くの変分パラメータ(288)があるが、回路の深度は、BUCCで4次まで達成できるものよりもはるかに短い。それは調査したシステムの正確な基底状態を回復するために必要とされる。
フェルミ・ハバード・モデルは、相関電子の典型的な例である。これは、局所的なクーロン力を介して相互作用する電子の緊密結合格子によって記述される。ハミルトニアンは、式51で得られ、式中、tは最近傍サイト〈p,q〉間の運動エネルギー、Uは静的クーロン相互作用、μは化学ポテンシャルである。
Figure 0007203443000056
数演算子は
Figure 0007203443000057
である。一次元フェルミ・ハバード・モデルは、Bethe仮設で正確に解くことができるが、2次元版は、パラメータのまさに特定の値に対してのみ正確に解くことができ、一般的な解はとらえていないままである。2Dモデルの相図は非常に豊富であることが知られており、モデルの理解を深めることで、高温銅酸化物超伝導体の物理学を説明するための鍵が特に得られるという強力な議論がある。
熱力学的限界におけるフェルミ・ハバード・モデルの相図を系統的に近似する代替のハイブリッドな量子古典的方法は、代替の方法では到達できない精度でモデルの大きなクラスターの基底状態を準備することを必要とする。ここで、上記の詳細な仮設の能力は、8キュービット量子プロセッサで実装できる、半充填(μ=0)でのフェルミ・ハバード・モデルの2×2クラスターの例で説明されている。図4に示すように、GHF法は相互作用強度U/tの小さな値に対して良好に機能し、ハミルトニアンが2次であるタイトバインディングのケースを正確に表す。BUCCSD仮設は、GHF解よりも大幅に改善されているが、強い相互作用強度で正確な基底状態に到達することができない。1サイクルLDCA仮設はGHFとBUCCSDの中間の解を提供するが、2サイクルLDCA解は、相互作用の強さのすべての値について、数値的な精度まで正確な基底状態に到達できる。すべての場合において、準備の忠実度
Figure 0007203443000058
を導入することにより、ペアリング項でハミルトンを扱うことができる。基底状態がフェルミオン・ガウス状態に近づくにつれて、すべての方法の精度は、Δ/tが増加するにつれて向上する。
ここで図4を参照すると、忠実度及びエネルギー差のグラフが相互作用パラメータに対して提供されている。図4Aでは、フェルミ・ハバード・モデルの2×2クラスターの基底状態準備の忠実度が、相互作用パラメータUの関数としてプロットされている。様々な方法に関する正確な基底状態に関するエネルギー差を、図4Bに示す。エネルギーはホッピング項tによって正規化される。図4C~図Dでは、追加のs波ペアリング項Δで誘引性のクラスターU/t=-8の場合の忠実度とエネルギー差がプロットされている。
フェルミ・ハバード・モデルの1次元クラスターも2つのサイトでテストされ、パラメータUのすべての値について、BUCCSDとlサイクルLDCAの両方の方法で正確な基底状態に到達できることが示された。2×1クラスターは1サイクルしか必要とせず、2×2の場合は2サイクルで基底状態に達するという事実は、スケーリングがクラスターサイズの指数関数ではないことを示唆している。
量子化学の適用の例として、提案された方法の精度は、シクロブタジエンの自動化の説明に対して評価される。閉殻D2h基底状態
Figure 0007203443000059
の弱い相関特性とは対照的に、開殻D4h遷移状態の強い相関特性のため、この反応の研究は理論化学者にとって特に困難であった。遷移状態の正確な理論的処理により、分子の基底状態と遷移状態との間の芳香族の特性の断言される変化、及び反応におけるトンネル炭素原子の関与など、メカニズムに関するいくつかの観察の確認が可能になる。さらに、それは、実験の報告が1.6から12.0kcal/molの間で変化する自動化のエネルギー障壁の確認として役立つ。
@シクロブタジエンのハミルトニアンは、ハートリー・フォックまたは完全アクティブスペース(CAS)標準量子化学計算から得ることができるが、パリサー・パー・ポプル(PPP)モデルハミルトニアンを使用して反応を説明することを選んだ。PPPモデルは、シクロブタジエンなどのπ電子系の主要な物理学を捉え、上記のフェルミ・ハバード・ハミルトニアンへの直接的な接続も確立する。このモデルを使用すると、シクロブタジエンのハミルトニアンは式52のように記述できる。式中
Figure 0007203443000060
ij、U、及びVcパラメータは、無次元反応座標λの関数として得られ、基底の形状ならびに遷移状態は、この理論レベルで最適化された。
図5は、シクロブタジエンの自動化反応についての異なる仮設の精度を比較し、無次元反応座標に対して忠実度及びエネルギー差をプロットしている。図4Aでは、シクロブタジエンの自動化反応経路に沿った基底状態準備の忠実度がプロットされている。図4Bでは、正確な基底状態との差が様々な仮設に対してプロットされている。化学的精度は約0.043eV(破線)である。
GHF仮設は、D2h基底状態に近いBUCCSDによってかなり改善されるが、強く相関するD4h遷移状態に近づくにつれて、改善はあまり目立たなくなる。2×2のフェルミ・ハバードの場合と同様に、1サイクルLDCA法はGHFとBUCCSDの精度の間の精度をもたらし、2サイクルLDCA法はλのすべての値に対して数値的に正確な基底状態を生成する。これは、LCDA仮設が量子化学における強い相関のケースを扱うのに有用であることを示唆している。
上記に提示された結果は、LDCA仮設が、精度及び効率の両方において、BUCCなどのVQE計算に使用される他の仮設より優れている可能性を示している。LDCAスキームは、この仮設のいくつかの特性を継承する。例えば、ゼロに設定されたすべての
Figure 0007203443000061
の1サイクルのLDCAの制限では、BUCC仮設を単一の励起で回復する。このパラメータの選択は、ボゴリューボフ変換がすでに最適化されているフェルミオンモードの基本回転にすぎないため、GHFの解を改善できない。ボゴリューボフ変換とマッチゲート回路の間のマッピング(式35)は、長さO(M)のパウリ文字列をフェルミオン演算子に関連付けるジョーダン・ウィグナー変換に依拠するため、演算子が長さ0(logM)の文字列で表されるBravyi-Kitaevベースで同様のマッピングを作成することにより、測定されたパウリ文字列の長さをさらに短くすることができる場合がある。数値のベンチマークは、BUCCSDと同じ結果を提供するUCCSDスキームに提供される。これは、明示的なペアリング項のないハミルトニアンの場合に予想される。ただし、このような項は、変分自己エネルギー関数理論に表示される場合がある。この場合、架空のペアリング項がクラスターハミルトニアンに追加されて、熱力学的極限の磁気及び超伝導状態図が復元される。
変分パラメータの数に関して、LDCA仮設は、ガウスベースの設定でのUCCSD及びBUCCSDに、O(M4)と比較したO(LM2)としてスケールする。LDCAの変分パラメータの制約により、総数が減少する場合がある。変分的手順で〈H〉のみを測定することが可能であったかどうかを調べるために、フェルミ・ハバード・モデルの数保存項のみ(すべての
Figure 0007203443000062
)を使用して仮設を試したが、正確な基底状態との重複が減少していることを見出した。これは、GHF参照状態に対するペアリング振幅の再構成が、正確な基底状態に到達するための重要な条件であることを意味する。
回路の深度の推定は、キュービットの線形鎖からなる量子アーキテクチャを想定しており、これは、アルゴリズムによるゲートの並列適用を最大化する。接続性が向上したアーキテクチャを使用することにより、さらなる改善を実現できる。また、最近傍の2キュービットゲートを直接実装できることも想定されている(極性分子の線形鎖に対して提案されているように)。これは、現在のイオントラップ及び超伝導回路技術には当てはまらないが、調整可能な最近傍のエンタングリングのゲートが利用可能である限り、必要なゲートを実装できる。この場合、追加の単一キュービット基底回転だけで十分であり、回路の深さのオーバーヘッドはわずかしか追加されない。
LDCA手法は、以前の仮設と比較して、その精度が高く、深さ及びパラメータ数の規模が小さいため、短期量子デバイスで強い相関のシステムを研究する手段を提供する。この場合、制御が不正確な実際の量子プロセッサでより適切な仮設のパフォーマンスを保証するために、様々な戦略を採用することができる。例えば、量子コンピュータで測定された〈H〉と〈N〉の値とGHF参照状態で数値的に得られた値の差を最小化することにより、
Figure 0007203443000063
をゼロに設定する代わりに、ZZ回転を同等の時間遅延に置き換えることもできる。
この形式は、核子のシミュレーションを実行するのに十分一般的であるはずである。同様に、これらの方法は、量子リンクモデルのゲージ理論の基底状態を研究するために使用できる。
上述のように、ボゴリューボフ結合クラスター仮設は、量子コンピュータ上のVQEスキームとして実装できるように、ユニタリのフレームワークに一般化される。必要なGHF参照状態は、フェルミオン・ガウス状態の理論から計算できる。これらの状態には、量子化学で使用されるSlater行列式や、平均場超伝導BCS状態が含まれる。システムのサイズに線形の深さを持つ最近傍マッチゲートの回路を使用して、量子コンピュータでフェルミオン・ガウス状態を準備する手順を説明する。利用可能なゲートのセットを最近傍
Figure 0007203443000064
回転で補強することにより、フェルミオン・ハミルトニアンの近似基底状態の準備を体系的に改善できる低深度回路仮設(LDCA)を構築した。追加された各サイクルは、量子回路の深さを直線的に増加させる。これにより、短期的な量子デバイスでの実装が実用的になる。
フェルミ・ハバード・モデルのクラスター及びシクロブタジエンの自動化は、BUCC及びLDCA仮設の精度を評価するための例として使用される。結果は、LDCA仮設が、量子プロセッサ上の強い相関のフェルミオンシステムの正確な基底状態を正確に記述する可能性があることを示している。さらに、提案されているBUCCとLDCAのアプローチを使用して、ハミルトニアンの基底状態をペアリングフィールドで近似できる。この特徴は、VQEの適用範囲を凝縮物質及び核物理学の問題にまで拡大する。粒子の数はBUCCとLDCAで保存されていないため、古典的なコンピュータで最適化を実行するには、粒子の数に制約が課される。
次に、図6を参照すると、本開示の実施形態による、相関フェルミオンシステムの基底状態を決定するように量子回路を構成する方法が示されている。量子回路は、キュービットの線形鎖と、直列に配置された複数の層を含む少なくとも1つのブロックとを含む。各層は複数のマッチゲートを含む。複数のマッチゲートのそれぞれは、線形鎖内の近傍のキュービットに作用し、複数の2キュービット回転を含む。601で、キュービットの線形鎖の初期値が量子回路に提供される。602で、量子回路がキュービットの線形鎖に適用されて、キュービットの線形鎖に仮設が準備され、その仮設は、フェルミオン・ガウス状態に対応する。
次に図7を参照すると、本開示の実施形態による、相関したフェルミオンシステムの基底状態を決定する方法が示されている。量子回路は、キュービットの線形鎖と、直列に配置された複数の層を含む少なくとも1つのブロックとを含む。各層は複数のマッチゲートを含む。複数のマッチゲートのそれぞれは、線形鎖内の近傍のキュービットに作用し、複数の2キュービット回転を含む。701で、キュービットの線形鎖の初期値が量子回路に提供される。702では、量子回路がキュービットの線形鎖に適用されて、キュービットの線形鎖上に仮設を準備し、その仮設は、フェルミオン・ガウス状態に対応する。703で、第1のエネルギー値が量子回路から測定される。704で、第1のエネルギー値に基づいて、量子回路の複数の構成パラメータが、量子回路から測定された第2のエネルギー値を最小化するように調整される。
ここで図8を参照すると、古典的な計算ノードの例の概略図が示されている。コンピューティングノード10は、適切なコンピューティングノードの一例にすぎず、本明細書で説明する本発明の実施形態の使用または機能の範囲に関する制限を示唆することを意図したものではない。とにかく、コンピューティングノード10は、上述の機能のいずれかを実装及び/または実行することができる。
コンピューティングノード10には、多数の他の汎用または専用のコンピューティングシステム環境または構成で動作するコンピュータシステム/サーバ12がある。コンピュータシステム/サーバ12での使用に適する可能性がある周知のコンピューティングシステム、環境、及び/または構成の例には、パーソナルコンピュータシステム、サーバコンピュータシステム、シンクライアント、シッククライアント、ハンドヘルドまたはラップトップデバイス、マルチプロセッサシステム、マイクロプロセッサベースのシステム、セットトップボックス、プログラマブル家電、ネットワークPC、ミニコンピュータシステム、メインフレームコンピュータシステム、及び上記のシステムやデバイスのいずれかを含む分散クラウドコンピューティング環境などが含まれるが、これらに限定されない。
コンピュータシステム/サーバ12は、コンピュータシステムによって実行される、プログラムモジュールなどのコンピュータシステム実行可能命令の一般的なコンテキストで説明することができる。一般に、プログラムモジュールには、特定のタスクを実行したり、特定の抽象データ型を実装したりするルーチン、プログラム、オブジェクト、コンポーネント、ロジック、データ構造などが含まれ得る。コンピュータシステム/サーバ12は、通信ネットワークを介してリンクされたリモート処理デバイスによってタスクが実行される分散クラウドコンピューティング環境で実施することができる。分散型クラウドコンピューティング環境では、プログラムモジュールは、メモリストレージデバイスを含むローカルとリモートの両方のコンピュータシステムストレージメディアに配置できる。
図8に示すように、コンピューティングノード10のコンピュータシステム/サーバ12は、汎用コンピューティングデバイスの形で示されている。コンピュータシステム/サーバ12のコンポーネントは、1つまたは複数のプロセッサまたは処理ユニット16、システムメモリ28、及びシステムメモリ28を含む様々なシステムコンポーネントをプロセッサ16に結合するバス18を含むことができるが、これらに限定されない。
バス18は、メモリバスまたはメモリコントローラ、周辺バス、加速グラフィックスポート、及び様々なバスアーキテクチャのいずれかを使用するプロセッサまたはローカルバスを含む、いくつかのタイプのバス構造のいずれか1つまたは複数を表す。限定ではなく例として、このようなアーキテクチャには、業界標準アーキテクチャ(ISA)のバス、マイクロチャネルアーキテクチャ(MCA)のバス、拡張ISA(EISA)バス、ビデオエレクトロニクス標準協会(VESA)のローカルバス、及び周辺コンポーネント相互接続(PCI)のバスが含まれる。
コンピュータシステム/サーバ12は、通常、様々なコンピュータシステム可読媒体を含む。そのような媒体は、コンピュータシステム/サーバ12によってアクセス可能な任意の利用可能な媒体とすることができ、揮発性及び不揮発性媒体、取り外し可能及び取り外し不能媒体の両方が含まれる。
システムメモリ28は、ランダムアクセスメモリ(RAM)30及び/またはキャッシュメモリ32などの揮発性メモリの形態のコンピュータシステム可読媒体を含むことができる。コンピュータシステム/サーバ12は、他の取り外し可能/取り外し不能、揮発性/不揮発性のコンピュータシステム記憶媒体をさらに含み得る。ほんの一例として、取り外し不能で不揮発性の磁気媒体(図示せず、通常「ハードドライブ」と呼ばれる)からの読み取り及びそこへの書き込みのために、ストレージシステム34を提供することができる。図示されていないが、取り外し可能な不揮発性磁気ディスク(例えば、「フロッピーディスク」)を読み書きするための磁気ディスクドライブ、及び取り外し可能な不揮発性光学ディスクから読み書きするための光ディスクドライブ、例えばCD-ROM、DVD-ROM、またはその他の光メディアを提供できる。そのような場合、それぞれ、1つまたは複数のデータ媒体インターフェースによってバス18に接続することができる。以下にさらに示され説明されるように、メモリ28は、本発明の実施形態の機能を実行するように構成されたプログラムモジュールのセット(例えば、少なくとも1つ)を有する少なくとも1つのプログラム製品を含み得る。
プログラムモジュール42のセット(少なくとも1つ)を有するプログラム/ユーティリティ40は、限定ではなく例として、オペレーティングシステム、1つまたは複数のアプリケーションプログラム、その他のプログラムモジュール、及びプログラムデータと同様に、メモリ28に格納することができる。各オペレーティングシステム、1つまたは複数のアプリケーションプログラム、他のプログラムモジュール、及びプログラムデータまたはそれらのいくつかの組み合わせは、ネットワーキング環境の実装を含み得る。プログラムモジュール42は、一般に、本明細書で説明する本発明の実施形態の機能及び/または方法を実行する。
コンピュータシステム/サーバ12はまた、キーボード、ポインティングデバイス、ディスプレイ24などの1つまたは複数の外部デバイス14、ユーザーがコンピュータシステム/サーバ12と対話することを可能にする1つ以上のデバイス、及び/またはコンピュータシステム/サーバ12が1つまたは複数の他のコンピューティングデバイスと通信することを可能にする任意のデバイス(例えば、ネットワークカード、モデムなど)と通信することができる。そのような通信は、入出力(I/O)インターフェース22を介して行うことができる。さらに、コンピュータシステム/サーバ12は、ネットワークアダプター20を介し、ローカルエリアネットワーク(LAN)、一般的なワイドエリアネットワーク(WAN)、及び/または公共ネットワーク(例えばインターネット)などの1つまたは複数のネットワークと通信することができる。図示のように、ネットワークアダプター20は、バス18を介してコンピュータシステム/サーバ12の他のコンポーネントと通信する。図示されていないが、他のハードウェア及び/またはソフトウェアコンポーネントは、コンピュータシステム/サーバ12と組み合わせて使用できることを理解されたい。例えば、マイクロコード、デバイスドライバー、冗長処理ユニット、外部ディスクドライブアレイ、RAIDシステム、テープドライブ、データアーカイブストレージシステムなどが含まれるが、それらに限定されない。
本発明は、システム、方法、及び/またはコンピュータプログラム製品であってもよい。コンピュータプログラム製品は、プロセッサに本発明の態様を実行させるためのコンピュータ可読プログラム命令を有するコンピュータ可読記憶媒体(または複数の媒体)を含み得る。
コンピュータ可読記憶媒体は、命令実行デバイスによる使用のための命令を保持及び格納することができる有形のデバイスであり得る。コンピュータ可読記憶媒体は、例えば、電子記憶装置、磁気記憶装置、光学記憶装置、電磁記憶装置、半導体記憶装置、または前述の任意の適切な組み合わせであり得るが、これらに限定されない。コンピュータ可読記憶媒体のより具体的な例の非網羅的なリストには、以下が含まれる。すなわち、ポータブルコンピュータディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)、消去可能なプログラム可能な読み取り唯一のメモリ(EPROMまたはフラッシュメモリ)、スタティックランダムアクセスメモリ(SRAM)、ポータブルコンパクトディスク読み取り専用メモリ(CD-ROM)、デジタル多用途ディスク(DVD)、メモリスティック、フロッピーディスク、パンチカードまたは命令が記録された溝内の隆起構造などの機械的にコード化されたデバイス、及び前述の任意の適切な組み合わせ、である。本明細書で使用されるコンピュータ可読記憶媒体は、例えば、電波または他の自由に伝搬する電磁波、導波管または他の伝送媒体を通って伝搬する電磁波(例えば、光ファイバーケーブルを通過する光パルス)、またはワイヤーを介して送信される電気信号といった、それ自体が一時的な信号であると解釈されるべきではない。
本明細書に記載されたコンピュータ可読プログラム命令は、コンピュータ可読記憶媒体からそれぞれのコンピューティング/処理デバイスに、またはネットワーク、例えばインターネット、ローカルエリアネットワーク、ワイドエリアネットワーク及び/またはワイヤレスネットワークを介して外部コンピュータまたは外部記憶デバイスにダウンロードすることができる。ネットワークは、銅伝送ケーブル、光伝送ファイバー、無線伝送、ルーター、ファイアウォール、スイッチ、ゲートウェイコンピュータ、及び/またはエッジサーバを含み得る。各コンピューティング/処理デバイスのネットワークアダプタカードまたはネットワークインターフェイスは、ネットワークからコンピュータ可読プログラム命令を受信し、各コンピュータ/処理デバイス内のコンピュータ可読記憶媒体に格納するためにコンピュータ可読プログラム命令を転送する。
本発明の動作を実行するためのコンピュータ可読プログラム命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、機械命令、機械依存命令、マイクロコード、ファームウェア命令、状態設定データ、またはSmalltalk、C++などのオブジェクト指向プログラミング言語、及び「C」プログラミング言語などの従来のプロシージャ型プログラミング言語または同様のプログラミング言語を含む、1つ以上のプログラミング言語の任意の組み合わせで記述されたソースコードまたはオブジェクトコードであり得る。コンピュータ可読プログラム命令は、完全にユーザーのコンピュータで、一部はユーザーのコンピュータで、スタンドアロンソフトウェアパッケージとして、一部はユーザーのコンピュータで、一部はリモートコンピュータで、または完全にリモートコンピュータまたはサーバで実行できる。後者のシナリオでは、リモートコンピュータは、ローカルエリアネットワーク(LAN)またはワイドエリアネットワーク(WAN)を含む任意のタイプのネットワークを介してユーザーのコンピュータに接続でき、または接続は、外部コンピュータに(例えば、インターネットサービスプロバイダーを利用してインターネットを介して)なされ得る。いくつかの実施形態では、例えば、プログラマブルロジック回路、フィールドプログラマブルゲートアレイ(FPGA)、またはプログラマブルロジックアレイ(PLA)を含む電子回路は、本発明の態様を実行するために、電子回路をパーソナライズするコンピュータ可読プログラム命令の状態情報を利用することにより、コンピュータ可読プログラム命令を実行することができる。
本発明の態様は、本発明の実施形態による方法、装置(システム)、及びコンピュータプログラム製品のフローチャート図及び/またはブロック図を参照して本明細書で説明される。フローチャート図及び/またはブロック図の各ブロック、ならびにフローチャート図及び/またはブロック図内のブロックの組み合わせは、コンピュータ可読プログラム命令によって実装できることが理解されよう。
これらのコンピュータ可読プログラム命令は、汎用コンピュータ、専用コンピュータ、または他のプログラム可能なデータ処理装置のプロセッサに提供されて、機械に、コンピュータまたは他のプログラム可能なデータ処理装置のプロセッサを介して実行される命令が、フローチャート及び/またはブロック図のブロックで指定された機能/動作を実装するための手段を作成するようにすることができる。これらのコンピュータ可読プログラム命令は、コンピュータ、プログラム可能なデータ処理装置、及び/または他のデバイスに特定の方法で機能するように指示することができるコンピュータ可読記憶媒体に格納することもでき、その結果、命令が格納されたコンピュータ可読記憶媒体フローチャート及び/またはブロック図のブロックで指定された機能/動作の態様を実装する命令を含む製品の物品を含む。
コンピュータ可読プログラム命令はまた、コンピュータ、他のプログラム可能なデータ処理装置、または他のデバイスにロードでき、一連の動作ステップをコンピュータ、他のプログラム可能な装置または他のデバイスで実行させて、コンピュータに実装されたプロセスを生成し、コンピュータ、他のプログラム可能な装置、または他のデバイスにて実行される命令が、フローチャート及び/またはブロック図のブロックで指定された機能/動作を実装するようにする。
図面のフローチャート及びブロック図は、本発明の様々な実施形態によるシステム、方法、及びコンピュータプログラム製品の可能な実装のアーキテクチャ、機能、及び動作を示している。これに関して、フローチャートまたはブロック図の各ブロックは、指定された論理機能(複数可)を実装するための1つまたは複数の実行可能な命令を含む命令のモジュール、セグメント、または部分を表すことができる。一部の代替実装では、ブロックに記載されている機能が、図面に記載されている順序とは異なる順序で発生する場合がある。例えば、連続して示されている2つのブロックは、関連する機能に応じて、実際には実質的に同時に実行される場合や、ブロックが逆の順序で実行される場合がある。ブロック図及び/またはフローチャート図の各ブロック、及びブロック図及び/またはフローチャート図のブロックの組み合わせは、指定された機能または動作を実行する特定の目的のハードウェアベースのシステムによって実装できる、または専用のハードウェアとコンピュータ命令の組み合わせを実行できることにも注意されたい。
本発明の様々な実施形態の説明は、例示の目的で提示されているが、網羅的であること、または開示された実施形態に限定されることは意図されていない。説明された実施形態の範囲及び趣旨から逸脱することなく、多くの修正及び変形が当業者には明らかであろう。本明細書で使用される用語は、実施形態の原理、市場で見られる技術に対する実際の適用または技術的改善を最もよく説明する、または当業者が本明細書で開示される実施形態を理解できるようにするために選択された。

Claims (24)

  1. 相関したフェルミオンシステムの基底状態を決定するように量子回路を構成する方法であって、前記量子回路が、
    キュービットの線形鎖と、
    層状に配置された複数のマッチゲートであって、各マッチゲートが、前記線形鎖内の近傍のキュービットで2キュービット回転を実行するように構成されている、前記マッチゲートと
    を含み、
    前記線形鎖の各キュービットの初期状態を提供することと、
    前記量子回路を初期値に適用することにより、キュービットの前記線形鎖上に仮設を準備することであって、前記仮設は、フェルミオン状態に対応する、前記仮設を準備することと
    を含む、前記方法。
  2. 相関したフェルミオンシステムの基底状態を決定するための量子回路であって、
    キュービットの線形鎖と、
    層状に配置された複数のマッチゲートであって、各マッチゲートが、前記線形鎖内の近傍のキュービットで2キュービット回転を実行するように構成されている前記複数のマッチゲートと
    を含む、前記量子回路。
  3. 層状に配置された複数の2キュービットゲートであって、前記層が直列に配置されてブロックを形成し、各ゲートは、前記線形鎖内の近傍キュービットに2キュービット回転を実行するように構成され、前記回転はZZ回転を含む、前記複数の2キュービットゲート
    をさらに含む、請求項に記載の量子回路。
  4. 少なくとも2つのブロックを含む、請求項に記載の量子回路。
  5. キュービットの前記線形鎖が8キュービットを含む、請求項に記載の量子回路。
  6. 前記線形鎖に第1の数のキュービットと、マッチゲートの第2の数の層とをさらに含み
    前記第2の数が、前記第1の数の半分以下である、請求項に記載の量子回路。
  7. 前記線形鎖に第1の数のキュービットと、前記ブロックに第2の数の層とをさらに含み
    前記第2の数は、前記第1の数の半分以下である、請求項に記載の量子回路。
  8. 前記ブロックの前に、前記線形鎖の各キュービットに対して回転を実行するように構成されたゲートをさらに含む、請求項に記載の量子回路。
  9. 前記複数のマッチゲートが2つの連続するグループに配置され、各グループの前記マッチゲートが並列に適用される、請求項に記載の量子回路。
  10. 前記複数の2キュービットゲートが2つの連続するグループに配置され、各グループの前記ゲートが並列に適用される、請求項に記載の量子回路。
  11. 相関したフェルミオンシステムの基底状態を決定する方法であって、
    複数の構成パラメータを有する量子回路を構成することであって、前記量子回路は、
    キュービットの線形鎖と、
    層状に配置された複数のマッチゲートであって、各マッチゲートが、前記線形鎖内の近傍のキュービットで2キュービット回転を実行するように構成されている、前記複数のマッチゲートと
    を含む、前記構成することと、
    前記線形鎖の各キュービットの初期状態を提供することと、
    前記量子回路を初期値に適用することにより、キュービットの前記線形鎖に仮設を準備することであって、前記仮設は、フェルミオン状態に対応する、前記仮設を準備することと、
    前記量子回路を使用して、前記相関したフェルミオンシステムの第1のエネルギー値を決定することと、
    前記第1のエネルギー値に基づいて、前記複数の構成パラメータを調整することと、
    前記量子回路を使用して、前記相関したフェルミオンシステムの第2のエネルギー値を決定することであって、前記構成パラメータが、前記第2のエネルギー値を最小化するように調整される、前記相関したフェルミオンシステムの第2のエネルギー値を前記決定することと
    を含む、前記方法。
  12. 前記複数の構成パラメータを調整することは、古典的な計算ノードを使用して前記複数の構成パラメータを最適化することを含む、請求項11に記載の方法。
  13. 前記第1のエネルギー値が、前記構成パラメータの関数であり、前記関数は勾配を有し、
    前記勾配を決定すること
    をさらに含む、請求項11に記載の方法。
  14. 前記フェルミオン状態がガウス型である、請求項1または11に記載の方法。
  15. 前記量子回路が、
    層状に配置された複数の2キュービットゲートであって、前記層が直列に配置されてブロックを形成し、各ゲートが、前記線形鎖内の近傍キュービットに2キュービット回転を実行するように構成され、前記回転がZZ回転を含む、前記複数の2キュービットゲート
    をさらに含む、請求項1または11に記載の方法。
  16. 前記フェルミオン状態が非ガウス型である、請求項15に記載の方法。
  17. 前記量子回路が少なくとも2つのブロックを含む、請求項15に記載の方法。
  18. キュービットの前記線形鎖が8キュービットを含む、請求項1または11に記載の方法。
  19. 前記量子回路は、前記線形鎖に第1の数のキュービットと、第2の数のマッチゲート層とを含み
    前記第2の数は、前記第1の数の半分以下である、請求項1または11に記載の方法。
  20. 前記量子回路は、前記線形鎖に第1の数のキュービットと、前記ブロックに第2の数の層とを含み
    前記第2の数は、前記第1の数の半分以下である、請求項15に記載の方法。
  21. 前記初期状態が準粒子真空状態に対応する、請求項1または11に記載の方法。
  22. 前記量子回路は、前記ブロックの前に、前記線形鎖の各キュービットに対して回転を実行するように構成されたゲートをさらに含む、請求項15に記載の方法。
  23. 前記複数のマッチゲートが2つの連続するグループに配置され、各グループの前記マッチゲートが並列に適用される、請求項1または11に記載の方法。
  24. 前記複数の2キュービットゲートが2つの連続するグループに配置され、各グループの前記ゲートが並列に適用される、請求項15に記載の方法。
JP2020534214A 2017-12-21 2018-12-21 量子コンピュータでの相関したフェルミオン状態の準備 Active JP7203443B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762608972P 2017-12-21 2017-12-21
US62/608,972 2017-12-21
PCT/US2018/067093 WO2019126644A1 (en) 2017-12-21 2018-12-21 Preparing correlated fermionic states on a quantum computer

Publications (3)

Publication Number Publication Date
JP2021507401A JP2021507401A (ja) 2021-02-22
JP2021507401A5 JP2021507401A5 (ja) 2021-12-23
JP7203443B2 true JP7203443B2 (ja) 2023-01-13

Family

ID=65041927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020534214A Active JP7203443B2 (ja) 2017-12-21 2018-12-21 量子コンピュータでの相関したフェルミオン状態の準備

Country Status (7)

Country Link
US (1) US11551133B2 (ja)
EP (1) EP3729341A1 (ja)
JP (1) JP7203443B2 (ja)
CN (1) CN111615709A (ja)
CA (1) CA3087378A1 (ja)
IL (1) IL275540A (ja)
WO (1) WO2019126644A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3729341A1 (en) 2017-12-21 2020-10-28 President and Fellows of Harvard College Preparing correlated fermionic states on a quantum computer
AU2020292425B2 (en) 2019-06-14 2023-02-23 Zapata Computing, Inc. Hybrid quantum-classical computer for bayesian inference with engineered likelihood functions for robust amplitude estimation
EP4022530A4 (en) * 2019-09-27 2022-11-30 Zapata Computing, Inc. COMPUTER SYSTEMS AND METHODS OF CALCULATION OF THE GROUND STATE OF FERMI-HUBBARD-HAMILTONIAN
US11861457B2 (en) 2020-06-02 2024-01-02 Zapata Computing, Inc. Realizing controlled rotations by a function of input basis state of a quantum computer
WO2022087143A1 (en) * 2020-10-20 2022-04-28 Zapata Computing, Inc. Parameter initialization on quantum computers through domain decomposition
CA3200270A1 (en) * 2020-10-28 2022-05-05 The Governing Council Of The University Of Toronto Operator implementations for quantum computation
US20220138607A1 (en) * 2020-11-03 2022-05-05 River Lane Research Ltd. Methods and apparatus for improving signal-to-noise performance in quantum computation
CN115146778A (zh) * 2021-03-31 2022-10-04 合肥本源量子计算科技有限责任公司 待运行量子线路确定方法、装置及量子计算机操作系统
US11941484B2 (en) 2021-08-04 2024-03-26 Zapata Computing, Inc. Generating non-classical measurements on devices with parameterized time evolution
CN114512193B (zh) * 2022-01-27 2023-08-08 本源量子计算科技(合肥)股份有限公司 基于自旋对称性和等同粒子特性制备体系试验态的方法
CN114512194B (zh) * 2022-01-27 2023-08-08 本源量子计算科技(合肥)股份有限公司 用于量子化学模拟中获取目标体系试验态的方法及装置
CN114511090B (zh) * 2022-01-27 2023-08-04 本源量子计算科技(合肥)股份有限公司 基于自旋对称性制备体系试验态的方法、装置及介质
CN114511091B (zh) * 2022-01-27 2023-09-05 本源量子计算科技(合肥)股份有限公司 基于等同粒子特性制备体系试验态的方法、装置及介质
CN114580643B (zh) * 2022-03-18 2023-04-28 北京百度网讯科技有限公司 确定方法、模型处理方法、装置、设备及存储介质
JP2024039170A (ja) 2022-09-09 2024-03-22 富士通株式会社 エラー検知プログラム、エラー検知方法、および情報処理装置
CN117690534B (zh) * 2024-01-25 2024-04-19 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) 一种量子材料超导性判断方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180053112A1 (en) 2016-08-17 2018-02-22 International Business Machines Corporation Efficient reduction of resources for the simulation of fermionic hamiltonians on quantum hardware

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004084132A2 (en) * 2003-03-18 2004-09-30 Magiq Technologies, Inc. Universal quantum computing
US7109593B2 (en) * 2004-07-30 2006-09-19 Microsoft Corporation Systems and methods for performing quantum computations
WO2015069625A1 (en) * 2013-11-05 2015-05-14 President And Fellows Of Harvard College Embedding electronic structure in controllable quantum systems
CN105993017B (zh) * 2014-02-12 2019-11-05 微软技术许可有限责任公司 用于化学仿真的改进的量子电路
EP3729341A1 (en) 2017-12-21 2020-10-28 President and Fellows of Harvard College Preparing correlated fermionic states on a quantum computer
US20200057957A1 (en) * 2018-08-17 2020-02-20 Zapata Computing, Inc. Quantum Computer with Improved Quantum Optimization by Exploiting Marginal Data
EP3861488A4 (en) * 2018-10-02 2021-11-24 Zapata Computing, Inc. CLASSIC HYBRID QUANTUM COMPUTER FOR THE SOLUTION OF LINEAR SYSTEMS
EP4022530A4 (en) * 2019-09-27 2022-11-30 Zapata Computing, Inc. COMPUTER SYSTEMS AND METHODS OF CALCULATION OF THE GROUND STATE OF FERMI-HUBBARD-HAMILTONIAN

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180053112A1 (en) 2016-08-17 2018-02-22 International Business Machines Corporation Efficient reduction of resources for the simulation of fermionic hamiltonians on quantum hardware

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BABBUSH Ryan et al.,Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation,arXiv,2015年02月05日,<URL:https://arxiv.org/pdf/1410.8159>
HERRERA Felipe et al.,Infrared-dressed entanglement of cold open-shell polar molecules for universal matchgate quantum computing,New Journal of Physics,Volume 16,IOP Publishing,2014年07月04日
KIVLICHAN Ian D. et al.,Quantum Simulation of Electronic Structure with Linear Depth and Connectivity,arXiv,2017年11月13日,<URL:https://arxiv.org/pdf/1711.04789v1>

Also Published As

Publication number Publication date
WO2019126644A1 (en) 2019-06-27
CA3087378A1 (en) 2019-06-27
US20200394549A1 (en) 2020-12-17
US11551133B2 (en) 2023-01-10
EP3729341A1 (en) 2020-10-28
IL275540A (en) 2020-08-31
CN111615709A (zh) 2020-09-01
JP2021507401A (ja) 2021-02-22

Similar Documents

Publication Publication Date Title
JP7203443B2 (ja) 量子コンピュータでの相関したフェルミオン状態の準備
Paulson et al. Simulating 2d effects in lattice gauge theories on a quantum computer
Lin et al. Real-and imaginary-time evolution with compressed quantum circuits
Cincio et al. Learning the quantum algorithm for state overlap
Tacchino et al. Quantum computers as universal quantum simulators: state‐of‐the‐art and perspectives
Häner et al. A software methodology for compiling quantum programs
Zulehner et al. Advanced simulation of quantum computations
JP7149504B2 (ja) 量子コンピューティング・マシンのための高ハードウェア効率変分量子固有値ソルバを実現するためのシステム、方法、量子コンピューティング・デバイスおよびコンピュータ・プログラム
US11537771B2 (en) System and method for simulating and analyzing quantum circuits
Bennewitz et al. Neural error mitigation of near-term quantum simulations
WO2018089792A1 (en) Generating quantum logic control sequences for quantum information processing hardware
Chan Low entanglement wavefunctions
JP2023129419A (ja) 量子シミュレーションのための平面波双対基底
CN113614752A (zh) 量子算法的验证和估计运行时间
Wilde et al. Scalably learning quantum many-body Hamiltonians from dynamical data
Willsch Supercomputer simulations of transmon quantum computers
CN115169565A (zh) 一种小分子化学体系的哈密顿量模拟方法和装置
Lee et al. Liouvillian dynamics of the open Schwinger model: String breaking and kinetic dissipation in a thermal medium
EP4133430A1 (en) Method of performing a quantum computation
Ruh et al. Digital quantum simulation of the BCS model with a central-spin-like quantum processor
Génetay Johansen et al. Prime number factorization using a spinor Bose–Einstein condensate-inspired topological quantum computer
JP2024510703A (ja) 量子計算における読み出しエラーの低減
Wang et al. Quantum algorithm for preparing the ground state of a physical system through multi-step quantum resonant transitions
Hou et al. Feynman Diagrams as Computational Graphs
Landahl et al. Logical fermions for fault-tolerant quantum simulation

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211109

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221220

R150 Certificate of patent or registration of utility model

Ref document number: 7203443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150