JP7195762B2 - 発電のためのねじり振動の効果を低減させるシステム及び方法 - Google Patents

発電のためのねじり振動の効果を低減させるシステム及び方法 Download PDF

Info

Publication number
JP7195762B2
JP7195762B2 JP2018083727A JP2018083727A JP7195762B2 JP 7195762 B2 JP7195762 B2 JP 7195762B2 JP 2018083727 A JP2018083727 A JP 2018083727A JP 2018083727 A JP2018083727 A JP 2018083727A JP 7195762 B2 JP7195762 B2 JP 7195762B2
Authority
JP
Japan
Prior art keywords
gear train
power
excitation signal
excitation
aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018083727A
Other languages
English (en)
Other versions
JP2019013137A (ja
Inventor
マイケル ティー. フォックス,
カミア ジェー. カリミ,
シャオ-ウェイ ジェー. フー,
ユージーン ヴィー. ソロドフニク,
ポール エー. メッツ,
ジェリー イー. ファルスタッド,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of JP2019013137A publication Critical patent/JP2019013137A/ja
Application granted granted Critical
Publication of JP7195762B2 publication Critical patent/JP7195762B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/36Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using armature-reaction-excited machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/105Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for increasing the stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D41/00Power installations for auxiliary purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B1/00Details
    • H03B1/04Reducing undesired oscillations, e.g. harmonics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D41/00Power installations for auxiliary purposes
    • B64D2041/002Mounting arrangements for auxiliary power units (APU's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D2045/0085Devices for aircraft health monitoring, e.g. monitoring flutter or vibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/10Measuring characteristics of vibrations in solids by using direct conduction to the detector of torsional vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/30Special adaptation of control arrangements for generators for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Eletrric Generators (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

本開示は、一般に、航空機に関し、より具体的には、航空機プロパルサー発電に関する。ある航空機プロパルサーは、電力を航空機に供給するための可変周波数発生器(VFG)を駆動しうる。そのようなVFGは、直接駆動ギアトレインを通して航空機プロパルサーのエンジンコアに結合され、そこで直接駆動ギアトレインが、典型的には約0.02、又は2%以下の減衰率を有しうる。この低い減衰率のため、一又は複数の固有(例えば、共振)周波数での振動を通して、制限サイクル作用の形態でギアトレイン内にねじり振動が生じることがある。そのような周波数でのねじり振動は、フィードバック制御によって増幅され、準同期振動(SSRO)としても知られている持続的ねじり振動(STO)を発生させうる。
そのようなねじり振動は、VFGにより生成される電力の質の低下を引き起こすことがある。とりわけ、ねじり振動は、ギアトレインの一又は複数の固有周波数に関連する電圧及び/又は電流の振動を示す電力を発生させうる。よって、そのような振動は、航空機に供給される電力内に不所望なノイズをもたらし、修正されないままであれば、航空機電気システムに過度の摩耗及び/又は損傷を引き起こす可能性がある。
発電器に結合された航空機プロパルサーのギアトレインのねじり振動に起因した不所望な発電を減衰させるためのシステム及び方法が開示される。1つの例では、航空機発電システムが開示されうる。航空機発電システムは、関連したねじり振動周波数を有するギアトレインに結合された可変周波数発生器と、励磁信号に応じて、可変周波数発生器内に磁場を誘導し、ギアトレインの回転に応じて、可変周波数発生器によって電力を発生させるための励磁回路と、励磁信号を調節し、可変周波数発生器によって供給された電力におけるギアトレインのねじり振動周波数の効果をフィルタリングするために、励磁回路に電気的に結合された補償回路とを含む。
更なる例では、発電システムを動作させる方法が開示されうる。方法は、関連したねじり振動周波数を有するギアトレインで可変周波数発生器を回転させること(304)と、励磁信号に応じて、励磁回路で可変周波数発生器内に磁場を誘導することと、可変周波数発生器で電力を生成し、補償回路で電力を受け取ることと、補償回路で励磁信号を調節することと、可変周波数発生器によって供給された電力中のギアトレインのねじり振動周波数の効果をフィルタリングするために、調節された励磁信号を励磁回路に印加することとを含みうる。
別の例では、航空機が開示されうる。航空機は、胴体と、翼と、胴体及び/又は翼に結合された航空機プロパルサーとを含みうる。航空機プロパルサーは、電力ユニットと、関連したねじり振動周波数を有する、電力ユニットに結合されたギアトレインと、ギアトレインに結合された可変周波数発生器と、励磁信号に応じて、可変周波数発生器内に磁場を誘導し、ギアトレインの回転に応じて、可変周波数発生器によって電力を発生させるための励磁回路と、励磁信号を調節し、可変周波数発生器によって供給された電力におけるギアトレインのねじり振動周波数の効果をフィルタリングするために、励磁回路に電気的に結合された補償回路とを含みうる。
本発明の範囲は、参照によりこのセクションに組み込まれる特許請求の範囲によって定義される。下記の一又は複数の実施態様の詳細な説明を検討することにより、当業者は、本開示をより完全に理解し、その更なる利点を認識することになるだろう。これより、まず簡潔に説明される添付の図面を参照することになる。
本開示の実施形態による航空機の上面図を示す。 本開示の実施形態による航空機プロパルサーの斜視図を示す。 本開示の実施形態による、ねじり振動補償システムを有する航空機プロパルサー発電システムの例の斜視図を示す。 本開示の実施形態による補償回路のブロック図を示す。 本開示の実施形態による、例示的航空機プロパルサー発電システムのブロック図を示す。 本開示の実施形態による、ねじり振動補償システムを有する航空機プロパルサー発電システムの動作の詳細を示すフローチャートである。 ねじり振動補償システムを含まない航空機プロパルサー発電システムのモデル化された動作を示す。 本開示の実施形態による、ねじり振動補償システムを有する航空機プロパルサーのモデル化された動作を示す。
本開示の実施例とそれらの利点とは、下記の詳細な説明を参照することにより最もよく理解される。図面の一又は複数に示される類似の要素を識別するために、類似の参照番号が使用されると理解すべきである。
例えば、本明細書で更に検討される補償回路によって供給される調節された励磁信号の適用を通して生成された電力をフィルタリングすることによって、生成された電力のねじり振動の効果を低下させるためのシステム及び技術が提供される。ある例では、本明細書に記載のシステム及び技術は、航空機プロパルサーなどの動力装置に結合された発生器内に組み込まれうる。航空機プロパルサーは、可変周波数発生器(VFG)に結合された電力ユニット(例えば、航空機プロパルサーのコアエンジン及び/又は他の適切な電力システム)を含む。電力ユニットは、直接駆動ギアトレインを介してVFGに接続されうる。そのような直接駆動ギアトレインは、低い減衰率を有しうる。
低い減衰率は、一又は複数の固有(例えば、共振)周波数での振動を通して、制限サイクル作用の形態でギアトレイン内でねじり振動を生成しうる。そのようなねじり振動は、VFGによって生成された電力の質の低下を引き起こしうる。とりわけ、ねじり振動は、ギアトレインの制限サイクル作用に関連する電圧及び/又は電流の振動を示す電力を発生させうる。例えば、VFGにより生成される電力は、複数の周波数における成分を含むコンポジット波形として表され、これらの成分(例えば、ある周波数の成分)のうちの少なくとも1つは、制限サイクル作用に起因しており、不所望なこともある。
航空機プロパルサーはまた、励磁回路を含みうる。励磁信号は、励磁回路に電力供給し、VFG内に磁場を発生させるために使用されうる。励磁信号は、VFGによって生成される電力に基づくものであってもよい。したがって、フィードバックループは、VFGと励磁回路との間に存在することができ、VFGにより生成される電力の不所望な周波数成分の増幅を引き起こすことがある。
不所望な周波数成分を効果的にフィルタリングする目的で、調節された励磁信号を生成するために補償回路が使用されうる。補償回路は、電圧調整器、プロセッサ、及びメモリを含みうる。補償回路は、不所望な周波数成分を効果的にフィルタリングするように、励磁回路をVFGと相互作用させるために、励磁信号を調節しうる。よって、補償回路は、VFGにより生成される電力へのギアトレインのねじり振動の効果を最小化又は低下させ、電力の質の向上だけではなく、不所望な周波数成分の更なる増幅を防止することにもつながる。したがって、電気部品の耐用年数が増加し、及び/又は保守要件が低減されうる。本開示は、一般に、補償回路でノッチフィルタリングを効果的に実施することを記載しているが、補償回路の他の例は、ローパスフィルタ、ハイパスフィルタ、及び/又はバンドパスフィルタといった他の種類のフィルタを効果的に実施しうる。
一般に、本明細書に記載のシステム及び技術は、ある固有周波数で電力ユニットをVFGに結合するギアトレインの望ましくない震動及び/又は振動(例えば、制限サイクル作用)から生じるVFGによって生成される電力への外乱を補償する。このような周波数の例は、20ヘルツ未満の周波数、20ヘルツから40ヘルツまでの周波数、40ヘルツから60ヘルツまでの周波数、及び60ヘルツを上回る周波数を含む。そのような周波数の特定の非限定的例は、25ヘルツ、34ヘルツ、37ヘルツ、及び60ヘルツを含む。補償回路は、VFGにより生成された電力の周波数コンテントの狭い部分を効果的にフィルタリングしうる。ある非限定的例において、補償回路は、電力の周波数コンテント内の+/-0.5ヘルツ未満、+/-1ヘルツ未満、及び/又は+/-1ヘルツ以上の対象周波数範囲(例えば、25ヘルツ、34ヘルツ、37ヘルツ、及び/又は60ヘルツ)を効果的にフィルタリングしうる。
本開示は、航空機プロパルサー(例えば、推力及び電力を生成する航空機電力システム)に言及するが、本明細書に開示されたシステム及び技術はまた、前方推力及び電力を生成する他の推進システム(例えば、内燃機関、船舶電力システム、及び宇宙船推進システム)に適用されてもよい。
図1Aは、本開示の実施形態による航空機の上面図を示す。図1Aの航空機50は、胴体170、翼172、水平安定板174、航空機プロパルサー100A及び100B、並びに垂直安定板178を含む。様々な制御装置及びセンサが、航空機50に存在する。例えば、航空機50は、パイロットが航空機50動作のための命令を入力しうる操縦室104を含む。航空機50の操縦室104は、航空機動作のための命令を提供するために、航空機50のパイロットによって操作されうる制御装置を含みうる。例えば、操縦室104は、航空機プロパルサー100A及び100Bの動作を制御するように構成された一又は複数の制御装置を含みうる。操縦室104はまた、航空機50の水平安定板又は他の空力デバイスの構成、更には垂直安定板の構成を決定するための制御装置も含みうる。
入力がシステムコントローラ108に伝達され、次いで出力が航空機50の様々なシステム(例えば、航空機プロパルサー100A及び100B)に提供されうる。航空機50の様々なシステムがデジタル通信106にリンクし、航空機50の1つの構成要素から一又は複数の他の構成要素に信号が供給される。デジタル通信チャネル106は、例えば、有線通信回路又は無線通信システムでありうる。デジタル通信チャネル106は、様々な構成要素をシステムコントローラ108にリンクしうる。
システムコントローラ108は、例えば、シングルコア若しくはマルチコアプロセッサ又はマイクロプロセッサ、マイクロコントローラ、ロジックデバイス、信号処理デバイス、実行可能な命令を記憶するためのメモリ(例えば、ソフトウェア、ファームウェア、又は他の命令)、及び/又は本明細書に記載の様々な任意の動作を実行する任意の要素を含みうる。様々な例では、システムコントローラ108及び/又はその関連動作は、単一のデバイスとして、又はシステムコントローラ108をまとめて構成する複数のデバイス(例えば、デジタル通信チャネル106などの有線接続又は無線接続を介して通信可能にリンクされる)として実装されうる。
システムコントローラ108は、データ及び情報を記憶するための一又は複数のメモリ構成要素又はデバイスを含みうる。メモリは、揮発性及び不揮発性のメモリを含みうる。このようなメモリの例としては、RAM(ランダムアクセスメモリ)、ROM(読取専用メモリ)、EEPROM(電気的消去可能読取専用メモリ)、フラッシュメモリ、又は別の種類のメモリが挙げられる。ある例では、システムコントローラ108は、センサ及び/又はオペレータ(例えば、搭乗員)入力に応じた制御アルゴリズムの実装及び実行を含む、本明細書に記載の様々な方法及びプロセスを実行するために、メモリ内に記憶された命令を実行するように適合されうる。
図1Aに記載の航空機50は例示であり、他の実施形態では、航空機50が、より少ない構成要素又は追加的な構成要素を含みうる(例えば、水平安定板を含まない、追加的に安定板、センサ、及び/又はコントローラを含みうる)と理解される。加えて、本明細書に記載の概念は、ヘリコプター、無人航空機といった他の航空機まで拡張されうる。
図1Bは、本開示の実施形態による航空機プロパルサーの斜視図を示す。航空機プロパルサー100(例えば、図1Aに示す航空機プロパルサー100A及び100B)は、ナセル102及び電力ユニット136を含む。図1Bに示す例では、ナセル102は、電力ユニット136(図2Aに示すように、回転シャフトを有するギアトレイン210と通信している)、及び推進を発生させるために使用される航空機プロパルサー100の他の構成要素を包含するが、航空機プロパルサーの他の例は、(例えば、ターボプロップ構成内で)ファンがナセルに包含されないように、ファンを配置してもよい。ナセル102はまた、技術者又は他の人員が航空機プロパルサー100の内部構成要素にアクセスできるようにするために、例えば、航空機プロパルサー100の一又は複数の条件をモニタリングするための一又は複数の電気部品(例えば、器具)を挿入及び/又は装着できるようにするために、移動及び/又は除去される一又は複数の部分を含みうる。
電力ユニット136は、気流方向140Aなどに、ナセル102に流れ込む空気を吸入する及び/又はその空気にエネルギー供給する一又は複数のファンを含む。気流方向140Aを介してナセル102に流入する空気は、ナセル102及び/又は電力ユニット136内の様々な内部流路を通って流れうる。電力ユニット136は、一又は複数のファン、並びに燃焼室に供給される燃料を搬送する及び/又は燃焼させるように構成される一又は複数の燃焼室及び他の構成要素を含みうる。電力ユニット136は、航空機プロパルサー100が接続されている航空機に電力供給するために、推進を発生させうる。ある例では、電力ユニット136の動作は、電力ユニット136の少なくともある部分の回転を含みうる。電力ユニット136は、VFGに連結され及び/又はVFGを含みうる。電力ユニット136の回転移動は、ギアトレインを介して、航空機プロパルサー100のVFGを回転させるために使用されうる。
図2Aは、本開示の実施形態による、ねじり振動補償システムを有する航空機プロパルサー発電システムの例の斜視図を示す。図2Aは、電力ユニット136、ギアトレイン210、VFG212、励磁回路214、補償回路222、航空機電気システム218、及びフィルタコントローラ220を含みうる。
電力ユニット136は、航空機プロパルサーのエンジン又は電力ユニットといった、任意の種類の動力装置でありうる。したがって、電力ユニット136は、ターボファン、ターボプロップ、ターボシャフト、プロップファン、ターボジェット、バンケル、ピストン、及び/又は他の種類のエンジンの電力ユニットでありうる。電力ユニット136は、ギアトレイン210を介して、VFG212に結合されている。ある例では、ギアトレイン210は、直接駆動ギアトレインであるが、他の例では、他の種類のギアトレインを含みうる。
航空機プロパルサー100の動作中に、電力ユニット136の一又は複数の構成要素(例えば、出力シャフト)は、ギアトレイン210を回転させ、ギアトレイン210は、VFG212を実質的に回転させる。励磁回路214が励磁信号を受信すると、励磁回路214は、VFG212の発生器コイルと相互作用する電磁波を生成し、電力232が生成され、この電力が、航空機システムに電力供給するために使用されうる。生成された電力232の少なくとも一部は、励磁信号230の形式で励磁回路214に実質的に電力供給し、よって少なくともVFG212及び励磁回路214を含むフィードバックループを形成するためにも使用されうる。
ギアトレイン210は、低い減衰係数を有するギアトレインでありうる。ある例では、ギアトレイン210は、直接駆動ギアトレインでありうる。ある例では、ギアトレイン210の動作は、一又は複数の共振周波数でのサイクル作用を結果的に制限することがある。
ギアトレイン210がVFG212に直接接続されると、そのような共振及び/又は制限サイクル作用は、ある不所望な構成要素(例えば、不所望な周波数成分)を含む電力を生成することによって、VFG212が生成する電力232の質を低下させることがある。低下した電力の質は、補償回路222の使用によって、補償及び/又は最小化されうる。加えて、補償回路222は、共振の増幅を最小化及び/又は防止しうる。
補償回路222は、少なくとも電圧調整器216及びフィルタコントローラ220を含みうる。幾つかのそのような例では、VFG212により生成された電力232を効果的にノッチフィルタリングするよう、励磁回路214がVFG212と相互作用するように、補償回路222は、励磁回路214に提供される励磁信号230を調節しうる。補償回路222は、例えば、異なる方程式を励磁信号230に適用し、励磁信号230のある周波数成分を減衰させることによって、励磁信号230を調節しうる。例えば、ある例では、VFG212により生成される電力232は、複数の周波数の成分を含むコンポジット波形として表示されうる。これらの成分のうちの少なくとも1つ(例えば、ある周波数の成分)は、ギアトレイン210の制限サイクル作用から生じ、及び/又はその作用によって増幅されるが、不所望であることもある。補償回路222のある例では、電力の不所望な要素を除去又は低減するために、不所望な成分の周波数の負の波形形式の補償信号が適用される。
したがって、補償回路222は、励磁信号230のある周波数成分(例えば、ギアトレイン210及び/又はVFG212内で、共振及び/又は制限サイクル作用から生じうる周波数)を減衰させる(例えば、減少又はフィルタリングで除くことによって弱める)ように構成されうる。周波数及び/又は周波数範囲は、ギアトレイン210及び/又はVFG212の固有周波数に対応し及び/又はその固有周波数を含みうる。そのような周波数の非限定的例は、25ヘルツ、34ヘルツ、37ヘルツ、及び60ヘルツを含むが、そのような周波数及び/又は周波数範囲は、他の周波数を含むことができる。そのような周波数は、例えば、歯数、ギアの重量、ギアの数、ギアの配向といったギアトレイン210及び/又はVFG212の設計、ベアリングの設計、ギアトレイン210及び/又はVFG212の構成要素の重量、構成及び/又は寸法、並びに/又は他のそのような要因によって、影響される可能性がある。
本実施例は補償回路222による効果的なノッチフィルタリングの使用について記載するが、他の例は、励磁信号及び続いて補償回路222に供給されるそのような調節された励磁信号のある周波数をフィルタリングで除くように構成されうる現行のノッチフィルタを利用しうる。
例示的実施例では、ギアトレイン210及び/又はVFG212は、ねじり振動を生じさせる制限サイクル作用を示しうる。ねじり振動は、1ヘルツから1000ヘルツまでの周波数(例えば、25ヘルツ、34ヘルツ、37ヘルツ、及び/又は 60ヘルツ)でありうる。励磁信号230は、VFG212により生成される電力232を使用してもよく、及び/又は電力232に基づいていてもよい。補償回路222は、そのような制限サイクル作用を補償するよう励磁回路214を駆動させるために供給される励磁信号230の一部を調節し及び/又は減衰させるように構成されうる(例えば、励磁回路214に電力供給するために励磁信号230が供給される前に、そのような周波数で電力の成分をフィルタリングで除くことにより)。したがって、補償回路222は、そのような周波数(例えば、34ヘルツ)で成分をフィルタリングで除き及び/又は最小化し、それにより、励磁回路214に対して34ヘルツにおける励磁信号230の成分を低下させる。励磁回路214がそのようにフィルタリングされ及び/又は調節された励磁信号230によって電力供給されると、VFG212によって生成される電力の質は、高まりうる。加えて、そのようなフィルタリングされた励磁信号230によって電力供給された励磁回路214により生成される磁場は、ギアトレイン210及び/又はVFG212内での制限サイクルの増幅を防止するように、VFG212と相互作用しうる。
航空機電気システム218は、バッテリー、器具、ライト、キャビンシステム、及び/又は他のシステムを含む航空機の任意の電気システムを含みうる。ある例では、航空機は、VFG212によって生成される電力の少なくとも一部を貯蔵しうるが、他の例では、航空機のシステムに電力供給するためにVFG212によって生成されるすべての電力を利用しうる。加えて、特定の他の例の航空機電気システム218は、電力232を、補償回路222を通って通過させる回路から分離した回路を介して、VFG212から電力を受け取りうる。そのような例は、VFG212から直接電力を受け取り、及び/又は他のフィルタを通ってフィルタリングされたVFG212から電力を受け取りうる。
フィルタコントローラ220は、例えば、シングルコア若しくはマルチコアプロセッサ又はマイクロプロセッサ226、マイクロコントローラ、ロジックデバイス、信号処理デバイス、実行可能な命令を記憶するためのメモリ224(例えば、ソフトウェア、ファームウェア、又は他の命令)、及び/又は本明細書に記載の様々な任意の動作を実行する任意の要素を含みうる。様々な例では、フィルタコントローラ220及び/又はその関連動作は、単一のデバイスとして、又はフィルタコントローラ220をまとめて構成する複数のデバイス(例えば、有線接続又は無線接続を介して通信可能にリンクされる)として実装されうる。
フィルタコントローラ220は、メモリ224をまとめて構成するデータ及び情報を記憶するための一又は複数のメモリ構成要素又はデバイスを含みうる。メモリ224は、揮発性及び不揮発性のメモリを含みうる。このようなメモリの例としては、RAM(ランダムアクセスメモリ)、ROM(読取専用メモリ)、EEPROM(電気的消去可能読取専用メモリ)、フラッシュメモリ、又は別の種類のメモリが挙げられる。ある例では、メモリ224内に記憶された命令を実行し、センサ及び/又はオペレータ(例えば、搭乗員)の入力に応じた制御アルゴリズムの実装及び実行、並びにギアトレイン210及び/又はVFG212と関連する特性の記憶を含む、本明細書に記載の様々な方法及びプロセスを実施するために、フィルタコントローラ220が適合されうる。
ある例では、補償回路222は、励磁信号230の所定の周波数及び/又は周波数の範囲をフィルタリングするように構成されうる。補償回路222の他の例は、ギアトレイン210及び/又はVFG212の制限サイクル作用の周波数を決定するように構成されうる。例えば、航空機は、ギアトレイン210及び/又はVFG212のねじり振動を検出する一又は複数のセンサを含みうる。フィルタコントローラ220は、次いで、制限サイクル作用で生じる周波数及び/又は制限サイクル作用を補償するために電力からフィルタリングする周波数を決定しうる。例えば、フィルタコントローラ220は、補償回路222に励磁信号230のある周波数をフィルタリングさせるように構成され、励磁信号230の異なる周波数をフィルタリングするために動作中に変更されうる。フィルタコントローラ220は、次いで、制限サイクルを示すギアトレイン210及び/又はVFG212のねじり振動を検出すると、異なる周波数のフィルタリングを繰り返し、制限サイクルを排除するフィルタリングされた周波数に注目しうる。次いで、補償回路222によって、そのような周波数をフィルタリングすることが、維持されうる。
ある例では、フィルタコントローラ220は、ギアトレイン210のねじり振動の位相及び振幅を決定しうる。位相及び振幅がいったん決定されると、フィルタコントローラ220は、VFG212の特性及びねじり振動の特性に基づき、励磁信号230の調節を決定しうる。調節された励磁信号230が励磁回路214に印加されると、発生した磁場がVFG212と相互作用し、VFG212が、ねじり振動から生じる周波数成分を含まない電力232を生成するように、励磁信号230が調節されうる。あるそのような例では、フィルタコントローラ220は、ねじり振動に応じて、VFG212の位相を変更しうる。
図2Bは、本開示の実施形態による補償回路222のブロック図を示す。図2Bにおいて、補償回路222は、電圧調整器216、2段階の電圧調整器、及びフィルタコントローラ220を含む。
第1の調整段階では、指令電圧が測定電圧と比較される。指令電圧(図2BのVCMD)は、航空機の動作のためのターゲット電圧(例えば、270ボルト又は任意の他の電圧)である。指令電圧は、例えば、フィルタコントローラ220から受け取られうる。測定電圧(図2BのVEFF、VFG212の「端子電圧」とも呼ばれる)は、指令電圧と区別され、区別された後に、最初に調整された電圧(例えば、測定電圧を指令電圧に補正した結果)を有する電力(例えば、出力228)が、第1の調整段階に供給される。ある例では、測定電圧は、VFG212からの出力として測定されうる。そのような例では、測定電圧は、交流(AC)VFG(例えば、三相AC VFG)に対するおよそ270ボルトの電圧でありうる。
第1の調整段階は、任意の種類の調整器を使用して、測定電圧を指令電圧に補正することができる。そのような調整器の例は、一又は複数のAC及び/又はDC電圧を調整するように構成された調整器、一又は複数のダイオードと直列の抵抗器などの電子電圧調整器、フィードバック電圧調整器、電気機械調整器、PWN静電電圧調整器、一定電圧調整器、自動電圧調整器、DC電圧安定器、アクティブ調整器、電圧スライサー、分解器、及び/又は別の種類の電圧調整器を含む。最初に調整される電圧は、第2の調整段階により受け取られ、ここで、励磁電流Iex(例えば、励磁回路214に供給される電流)に対して合計されるか区別され、更に調整される出力電圧及び加えられる電流を有する電力が供給される。ある例では、励磁電流Iexは、外乱入力であり、第2の調整段階は、励磁電流Iexの効果を調整するように構成される。更に調整された出力電圧及び加えられた電流が、次いでフィルタコントローラ220に出力される。
ある例では、VFG212からのAC電圧が励磁回路214への出力前に直流に変換されるように、電圧調整器216はまた、直角位相ゼロ変換を実行しうる。よって、励磁回路214は、そのような例においては、直流によって電力供給されるように構成されうる。記載されたように、電圧調整器216は、単一入力単一出力制御システムである。他の例は、他の種類の制御システムの電圧調整器を含みうる。
フィルタコントローラ220は、更に調整された出力電圧及び付加された電流を電圧調整器216から受け取り、補償信号を印加することによって、その一部(例えば、ギアトレイン210及び/又はVFG212の固有周波数と関連した電力成分に対応する電力の一部)を減衰させうる。よって、補償信号の適用は、VFG212によって生成されたギアトレイン210及び/又はVFG212の固有周波数に対応する周波数における電力の成分を防止又は最小化しうる。したがって、そのような周波数での励磁回路214の任意の制限サイクルの増幅が、防止及び/又は最小化される。図2Bでは、フィルタコントローラ220が電圧調整器216の後に示されているが、他の例では、フィルタコントローラ220は、電圧調整器216の調整段階の間、及び/又は電圧調整器216の前といった別の場所(例えば、そのような例の構成及び要件に応じて)に配置されてもよい。フィルタコントローラ220は、次いで調節された励磁信号230を、少なくとも励磁回路214に出力しうる。
図2Cは、本開示の実施形態による、例示的航空機プロパルサー発電システムのブロック図を示す。図2Cは、図2Aの電力ユニット136、ギアトレイン210、VFG212、及び励磁回路214を含む。図2Cでは、励磁回路214は、励磁器250及びフィールドコイル252を更に含む。励磁器250は、補償回路222(図2Cには示されないが、図2Aに示される)から励磁信号230を受信し、次いで、フィールドコイル252に電力供給しうる。VFG212は、固定子240及び回転子242を含む。図2CのVFG212及び励磁回路214が、例示目的で提供されている。したがって、他の例は、より多い構成要素、より少ない構成要素、若しくは他の構成要素を含んでいてもよく、及び/又は構成要素を他の構成で配置してもよい。
ある例では、励磁回路214は、補償回路222から受信した励磁信号230によって制御される。補償回路222は、VFG212から電力232を受け取りうる。ある例では、励磁回路214が、所望の周波数で「クリーンな」電力を受け取ることが所望でありうる。VFG212から受け取った電力232は、電力のある不所望な成分(例えば、所望の周波数以外のある周波数の成分)、例えばギアトレイン210及び/又はVFG212のねじり振動により生成された成分などを含みうる。例えば、ギアトレイン210は、34Hzの周波数の制限サイクル作用を示し、よって、VFG212によって生成される電力232は、34Hzの周波数の不所望な成分を含みうる。補償回路222は、次いで34Hzの周波数で電力232の少なくとも1つの成分をフィルタリングで取り除き、電力232に基づく調節された励磁信号230を励磁回路214に供給する前に、電力を「クリーンアップ」する。励磁回路214がVFG212と相互作用し、電力を生成すると、調節された励磁信号232で励磁回路214に電力供給することにより、次にVFG212によって生成される電力の質がより高くなりうる。
図3は、本開示の実施形態による発電のためのねじり振動の効果を低下させる方法300の詳細を示すフローチャートである。図3に記載される方法300は、電圧調整器216を含む航空機プロパルサー100などの動力装置によって実行されうる。
ブロック302では、ギアトレイン210がVFG212に接続される。ある例では、ギアトレイン210は、直接駆動ギアトレインとすることができる。ブロック302は、例えば、航空機プロパルサー100の製造中、航空機50の製造中、航空機プロパルサー100の保守中、又は別の期間中に、実行されうる。
ブロック304では、航空機プロパルサー100を動作させる。例えば、航空機プロパルサー100の電力ユニット136は、ギアトレイン210に接続された一又は複数の出力シャフトを回転させるために、動作しうる。ギアトレイン210は、次いでVFG212を回転させる。
ブロック306では、VFG212を回転させ、励磁回路214に電力供給することによって、電力232が生成される。VFG212が回転しているときに、励磁回路214に電力供給することによって、磁場が発生する。回転しているVFG212のコイルは、励磁回路214により発生した磁場と相互作用し、電力を生成する。ブロック312において、VFG212によって生成された電力の一部が次いで供給され、航空機電気システムに電力供給される一方で、電力の別の部分は、補償回路222に供給される。補償回路222は、ブロック308及び310に詳しく説明されるように、励磁回路214に電力供給する励磁信号230を生成し及び/又は調節しうる。励磁信号230は、VFG212により生成される電力232に基づくものであってもよい。
ブロック308では、補償回路222が、励磁信号230を生成及び/又は調節しうる。補償回路222は、受け取った電力の不所望な成分を低下及び/又は相殺するために、補償信号(例えば、逆波形)を供給することによって、励磁信号230を調節しうる。他の例は、物理的ノッチフィルタを含みうる。ブロック310において、調節された励磁信号230は、励磁回路214に印加されうる。
ブロック314において、フィルタリングされる周波数が決定されうる。ある例では、ギアトレイン210及び/又はVFG212の特性は、航空機プロパルサー100の設計及び/又は試験でモデル化及び/又は決定されうる。例えば、ギアトレイン210及び/又はVFG212が、様々な異なる回転スピードで動作するように構成されうるのに対し、ギアトレイン210及び/又はVFG212のねじり振動は、そのような回転スピードの一部又はすべてで発生しうる。ねじり振動は、設定周波数(例えば、25Hz、34Hz、37Hz、又は68Hz)での振動であり、そのような振動の周波数は、ギアトレイン210及び/又はVFG212の回転スピードから独立していてもよい。航空機プロパルサー100のモデル化及び/又は試験は、そのような発振周波数を識別しうる。
別の例では、そのような発振周波数は、航空機プロパルサー100のベンチテスト及び/又は動作中に識別されうる。例えば、補償回路222は、バンドパスフィルタを含みうる。航空機プロパルサー100のスタートアップ及び/又は動作中に、バンドパスフィルタは、励磁信号230のある周波数又は周波数範囲を選択的に通過し、フィルタコントローラ220は、そのような周波数又は周波数範囲から生じる制限サイクル作用を検出しうる。制限サイクル作用は現れるのに時間を要することがあるので、そのような周波数又は周波数範囲の各々は、ある期間通過させてもよい。
ある期間に制限サイクル作用が現われない場合、次いで、そのような周波数又は周波数範囲は、制限サイクル作用が生じないよう決定されてもよく、したがって、ノッチフィルタリングを要しない。バンドパスフィルタは、次に、制限サイクル作用を検出するために、別の周波数及び/又は周波数範囲を通過可能にしうる。
制限サイクル作用が検出される場合、そのような周波数及び/又は周波数範囲は、制限サイクル作用が生じるように決定され、次いで補償回路222は、制限サイクル作用が検出された周波数及び/又は周波数範囲をフィルタリングする及び/又は減衰させる(例えば、ノッチフィルタによって)ように構成されうる。バンドパスフィルタは、次いで、別の周波数及び/又は周波数範囲を通過可能にしうる。
図3に記載される方法300の実施態様の例示的実施例において、ブロック302において、航空機プロパルサー100のギアトレイン210は、VFG212に接続されうる。ブロック304において、航空機プロパルサー100を含む航空機50が完全に組み立てられた後に、ブロック304で、航空機プロパルサー100の電源を入れることによって、航空機50は動作しうる。
航空機プロパルサー100のコアエンジン136がギアトレイン210を回転させると、次にVFG212が回転し、励磁回路214に電力供給され、VFG212のコイルと相互作用しうる磁場が発生し、ブロック304で電力を生成する。航空機50の電気システムは、生成された電力232によって電力供給されてもよい。VFG212によって生成された電力232はまた、励磁回路214に電力供給するために使用されてもよい。
加えて、ギアトレイン210は、ギアトレイン210の弱い減衰のため、制限サイクル作用を明らかにしうる。制限サイクル作用は、ギアトレイン210のねじり振動を含みうる。ねじり振動は、ある特定の周波数での振動であり、振動のそのような周波数は、ギアトレイン210の回転速度から独立していてもよい。よって、ギアトレイン210の回転スピードは加速又は減速しうるが、ギアトレイン210は、そのような周波数で発振し続けうる。そのようなねじり振動は、電力の不所望な成分として生成された電力232内で現れることがある。電力232の不所望な成分は、ある周波数(例えば、34Hz)での電力232の成分でありうる。ある例では、電力232の不所望な成分が、電力232のある成分(例えば、ある周波数の成分)のピークとして現れることがある。したがって、制限サイクル作用は、VFG212によって生成される電力の質の低下につながることがある。
そのような制限サイクル作用の特性は、ブロック314において、航空機プロパルサー100の製造及び動作の前の、航空機プロパルサー100の設計中に識別されうる。したがって、航空機プロパルサー100の設計中に、航空機プロパルサー100のシステム特性は、ギアトレイン210のねじり振動に起因した電力232の不所望な成分の周波数を決定するために、モデル化されうる。励磁信号230が電力232に基づいている際には、補償回路222は、次いで、励磁信号230を調節し、電力の不所望な成分を減衰させるために、補償信号を生成するように構成される。
調節された励磁信号230が、ブロック308で生成される。そのような調節された励磁信号230は、ブロック310で、励磁回路214に印加されうる。したがって、励磁回路214によって受信される励磁信号230は、フィルタリングで除かれる不所望な成分を有する励磁信号230でありうる。そのような調節された励磁信号230によって励磁回路214に電力が供給されると、VFG212によって生成された電力232の質が改善されうる。したがって、ブロック306で生成される電力232の質が改善されうる。
図4は、ねじり振動補償システムを含まない航空機プロパルサー発電システムのモデル化された動作を示す。図5は、本開示による、ねじり振動補償システムを有する航空機プロパルサーのモデル化された動作を示す。図4及び図5は、ノッチフィルタを有していない航空機プロパルサーの動作モデル対ノッチフィルタを有している航空機プロパルサーの動作モデルを示している。
図4及び図5で、上のグラフは、図2Aに示す電力ユニット136からのギアトレイン210におけるトルク外乱であるTEを示している。この非限定的例において、TEは、完全強度で始まり、完全強度の約5%(0.05)までテーパする正規化信号として表されるインパルスである。中央のグラフは、図2AのVFG212からのトルクであるTEGENを示している。下のグラフは、図2Aの励磁回路214からの励磁器トルクであるTEEXを示している。これらのグラフすべてのx-軸が、秒での時間単位である。
図4は、ねじり振動補償システムを有していない航空機プロパルサーの応答を示す。図4の下の図に示すように、励磁回路214により発生した磁場とVFG212の回転に影響を与える共振ギアトレイン210との間の相互作用に起因した、航空機プロパルサーのギアトレイン210の制限サイクル作用による、励磁器トルク共振が存在する。およそ7秒から8秒間で、VFG212によって生成された電力量は変化し、生成された電力ギャップを引き起こし、下のグラフに示すように、励磁器トルクの共振不足が生じる。その後、VFG212によって再び電力が生成されると、励磁器トルクの共振が戻る。
励磁信号230を効果的にノッチフィルタリングする補償回路222が、VFG212によって生成される電気を調節するためにモデルに存在している点で、図5のモデルは、図4のモデルと異なる。図5に示すように、下のグラフ(TEEX)は、VFG212が図4と同じ時点で同量の電力を生成するにもかかわらず、補償回路222により、図4に存在する共振が低下することを示している。
本明細書に記載され、図4及び図5に示されるように、ねじり振動補償システムは、VFGによって生成され、励磁信号として供給される電力の成分を効果的にフィルタリングする(例えば、ノッチフィルタリングする)ために、補償回路222を利用する。このように励磁信号を調節することは、ギアトレイン及び/又はVFGのねじり振動のフィードバック誘導増幅を防止及び/又は低減し、よって、電気部品の耐用年数を延ばし、保守要件を低減し、及び/又はVFGによって生成される電力の質を向上させる。
更に、本開示は、以下の条項による実施例を含む。
条項1 関連したねじり振動周波数を有するギアトレイン(210)に結合された可変周波数発生器(212)と;励磁信号(230)に応じて、可変周波数発生器(212)内に磁場を誘導し、ギアトレイン(210)の回転に応じて、可変周波数発生器(212)によって電力(232)を発生させるための励磁回路(214)と;励磁信号(230)を調節し、可変周波数発生器(212)によって供給された電力(232)におけるギアトレイン(210)のねじり振動周波数の効果をフィルタリングするために、励磁回路(214)に電気的に結合された補償回路(222)とを含む航空機プロパルサー(100)。
条項2 調節された励磁信号(230)に応じて、可変周波数発生器(212)に誘導される調節された磁場が、ギアトレイン(210)の回転に応じて生成された電力(232)にノッチフィルタリングを実行する、条項1に記載の航空機プロパルサー(100)。
条項3 補償回路(222)が、ギアトレイン(210)の一又は複数の特性に基づき励磁信号(230)を調節するコントローラ(220)を含む、条項1に記載の航空機プロパルサー(100)。
条項4 一又は複数の特性が、補償回路(222)のメモリ(224)に記憶された所定の特性である、条項3に記載の航空機プロパルサー(100)。
条項5 補償回路(222)が、一又は複数の特性を決定するために試験動作を実行するためのコントローラ(220)を含む、条項3に記載の航空機プロパルサー(100)。
条項6 コントローラ(220)が、複数の可能なねじり振動周波数にわたって電力(232)を選択的にフィルタリングし、ギアトレイン(210)に関連したねじり振動周波数を識別するために、励磁回路(214)を動作させる、条項5に記載の航空機プロパルサー(100)。
条項7 関連したねじり振動周波数が、ギアトレイン(210)の固有周波数を含む、条項1に記載の航空機プロパルサー(100)。
条項8 励磁回路(214)が、励磁信号(230)に応じてフィールドコイル(252)に電流を供給し、磁場を誘導するために、フィールドコイル(252)に電気的に結合された励磁器(250)を含む、条項1に記載の航空機プロパルサー(100)。
条項9 電力ユニット(136)と;電力ユニット(136)を可変周波数発生器(212)に接続するギアトレイン(210)であって、直接駆動ギアトレインであるギアトレイン(210)と
を更に含む、条項1に記載の航空機プロパルサー(100)。
条項10 航空機プロパルサー(100)の電力ユニット(136)を動作させる方法(300)であって、関連したねじり振動周波数を有するギアトレイン(210)で可変周波数発生器(212)を回転させること(304)と;励磁信号(230)に応じて、励磁回路(214)で可変周波数発生器(212)内に磁場を誘導することと;可変周波数発生器(212)で電力(232)を生成し(306)、補償回路(222)で電力(232)を受け取ることと;補償回路(222)で励磁信号を調節すること(308)と;可変周波数発生器(212)によって供給された電力(232)中のギアトレイン(210)のねじり振動周波数の効果をフィルタリングするために、調節された励磁信号を励磁回路(214)に印加すること(310)と
を含む方法(300)。
条項11 調節された励磁信号(230)に応じて、可変周波数発生器(212)内に誘導された調節された磁場が、ギアトレイン(210)の回転に応じて生成された電力(232)にノッチフィルタリングを実行する、条項10に記載の方法(300)。
条項12 励磁信号(230)が、ギアトレイン(210)の一又は複数の特性に基づき調節される、条項10に記載の方法(300)。
条項13 一又は複数の特性が、所定の特性である、条項12に記載の方法(300)。
条項14 一又は複数の特性を決定するために試験動作を実行することを更に含む、条項12に記載の方法(300)。
条項15 試験動作が、複数の可能なねじり振動周波数にわたって電力(232)を選択的にフィルタリングし、ギアトレイン(210)に関連したねじり振動周波数を識別するために、励磁回路(214)を動作させることを含む、条項14に記載の方法(300)。
条項16 関連したねじり振動周波数が、ギアトレイン(210)の固有周波数を含む、条項10に記載の方法(300)。
条項17 励磁回路(214)が、励磁信号(230)に応じてフィールドコイル(252)に電流を供給し、磁場を誘導するために、フィールドコイル(252)に電気的に結合された励磁器(250)を含む、条項10に記載の方法(300)。
条項18 電力ユニット(136)が、可変周波数発生器(212)を回転させるために、ギアトレイン(210)を回転させ(304)、ギアトレイン(210)が直接駆動ギアトレインである、条項10に記載の方法(300)。
条項19 胴体(170)、翼(172)、並びに胴体(170)及び/又は翼(172)に結合された航空機プロパルサー(100)を含む航空機(50)であって、航空機プロパルサー(100)が、関連したねじり振動周波数を有する、電力ユニットに結合されたギアトレイン(210)と;ギアトレイン(210)に結合された可変周波数発生器(212)と;励磁信号(230)に応じて、可変周波数発生器(212)内に磁場を誘導し、ギアトレイン(210)の回転に応じて、可変周波数発生器(212)によって電力(232)を発生させるための励磁回路(214)と;励磁信号(230)を調節し、可変周波数発生器(212)によって供給された電力(232)におけるギアトレイン(210)のねじり振動周波数の効果をフィルタリングするために、励磁回路(214)に電気的に結合された補償回路(222)とを含む、航空機(50)。
条項20 調節された励磁信号(230)に応じて、可変周波数発生器(212)内に誘導された調節された磁場が、ギアトレイン(210)の回転に応じて生成された電力(232)にノッチフィルタリングを実行する、条項19に記載の航空機(50)。
上述の実施例は、本発明を説明するが、本発明を限定するものではない。本発明の原則に従って数多くの修正例及び変形例が可能であることも理解すべきである。したがって、本発明の範囲は下記の請求項によってのみ定義される。

Claims (15)

  1. ギアトレイン(210)に関連したねじり振動周波数を有するギアトレイン(210)に結合された可変周波数発生器(212)と、
    励磁信号(230)に応じて、前記可変周波数発生器(212)内に磁場を誘導し、前記ギアトレイン(210)の回転に応じて、前記可変周波数発生器(212)によって電力(232)を発生させるための励磁回路(214)と、
    前記ギアトレイン(210)の回転に応じて、前記ギアトレイン(210)及び/又は前記可変周波数発生器(212)のねじり振動を検出することが可能な一又は複数のセンサと、
    前記励磁回路(214)に電気的に結合され、前記可変周波数発生器(212)によって供給された前記電力(232)における前記ギアトレイン(210)の前記ねじり振動周波数の効果をフィルタリングするために、所定の周波数範囲にしたがって前記励磁信号(230)を調節する補償回路(222)と
    を含む、航空機プロパルサー(100)。
  2. 調節された前記励磁信号(230)に応じて、前記可変周波数発生器(212)に誘導される調節された磁場が、前記ギアトレイン(210)の前記回転に応じて生成された前記電力(232)にノッチフィルタリングを実行する、請求項1に記載の航空機プロパルサー(100)。
  3. 前記補償回路(222)が、前記ギアトレイン(210)の一又は複数の特性に基づき前記励磁信号(230)を調節するコントローラ(220)を含
    前記一又は複数の特性は前記補償回路(222)のメモリ(224)に記憶され、少なくとも1つの前記特性は前記ねじり振動周波数に関連している、請求項1に記載の航空機プロパルサー(100)。
  4. 前記ねじり振動周波数の効果は、前記ギアトレイン(210)の準同期振動を含む、請求項3に記載の航空機プロパルサー(100)。
  5. 前記コントローラ(220)は、前記ギアトレイン(210)に関連した前記ねじり振動周波数を識別するために、複数の可能なねじり振動周波数にわたって前記電力(232)を選択的にフィルタリングするように前記励磁回路(214)を動作させることによって、前記一又は複数の特性を決定するベンチテスト動作を実行するように構成されている、請求項3に記載の航空機プロパルサー(100)。
  6. 前記補償回路(222)は、前記可変周波数発生器(212)の動作とは独立して、前記所定の周波数範囲にしたがって前記励磁信号(230)を調整するように構成されている、請求項に記載の航空機プロパルサー(100)。
  7. 前記関連したねじり振動周波数が、前記ギアトレイン(210)の固有周波数を含む、請求項1に記載の航空機プロパルサー(100)。
  8. 前記励磁回路(214)が、前記励磁信号(230)に応じてフィールドコイル(252)に電流を供給し、前記磁場を誘導するために、前記フィールドコイル(252)に電気的に結合された励磁器(250)を含む、請求項1に記載の航空機プロパルサー(100)。
  9. 電力ユニット(136)と、
    前記電力ユニット(136)を前記可変周波数発生器(212)に結合するギアトレイン(210)であって、直接駆動ギアトレインであるギアトレイン(210)と
    を更に含む、請求項1に記載の航空機プロパルサー(100)。
  10. 航空機プロパルサー(100)の電力ユニット(136)を動作させる方法(300)であって、
    ギアトレイン(210)に関連したねじり振動周波数を有するギアトレイン(210)で可変周波数発生器(212)を回転させること(304)と、
    励磁信号(230)に応じて、励磁回路(214)で前記可変周波数発生器(212)内に磁場を誘導することと、
    前記可変周波数発生器(212)で電力(232)を生成し(306)、補償回路(222)で前記電力(232)を受け取ることと、
    一又は複数のセンサによって、前記ギアトレイン(210)及び/又は前記可変周波数発生器(212)のねじり振動を検出することと、
    前記補償回路(222)で所定の周波数範囲にしたがって前記励磁信号を調節すること(308)と、
    前記可変周波数発生器(212)によって供給された前記電力(232)中の前記ギアトレイン(210)の前記ねじり振動周波数の効果をフィルタリングするために、調節された前記励磁信号を前記励磁回路(214)に印加すること(310)と
    を含む方法(300)。
  11. 調節された前記励磁信号(230)に応じて、前記可変周波数発生器(212)内に誘導された調節された磁場が、前記ギアトレイン(210)の前記回転に応じて生成された前記電力(232)にノッチフィルタリングを実行する、請求項10に記載の方法(300)。
  12. 前記励磁信号(230)が、前記ギアトレイン(210)の一又は複数の記憶された特性に基づき調節され、少なくとも1つの前記特性が、前記ねじり振動周波数に関連している、請求項10に記載の方法(300)。
  13. 前記ねじり振動周波数の効果は、前記ギアトレイン(210)の準同期振動を含む、請求項12に記載の方法(300)。
  14. 前記ギアトレイン(210)に関連した前記ねじり振動周波数を識別するために、複数の可能なねじり振動周波数にわたって前記電力(232)を選択的にフィルタリングするように前記励磁回路(214)を動作させることによって、前記一又は複数の特性を決定するベンチテスト動作を実行することを更に含、請求項12に記載の方法(300)。
  15. 前記関連したねじり振動周波数が、前記ギアトレイン(210)の固有周波数を含む、
    前記励磁回路(214)が、前記励磁信号(230)に応じて、フィールドコイル(252)に電流を供給し、前記磁場を誘導するために、前記フィールドコイル(252)に電気的に結合された励磁器(250)を含む、及び
    電力ユニット(136)が、前記可変周波数発生器(212)を回転させるために、前記ギアトレイン(210)を回転させ(304)、前記ギアトレイン(210)が直接駆動ギアトレインである、
    のうちの少なくとも1つである、請求項10に記載の方法(300)。
JP2018083727A 2017-04-28 2018-04-25 発電のためのねじり振動の効果を低減させるシステム及び方法 Active JP7195762B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/582,421 US10320314B2 (en) 2017-04-28 2017-04-28 Systems and methods for reducing effects of torsional oscillation for electrical power generation
US15/582,421 2017-04-28

Publications (2)

Publication Number Publication Date
JP2019013137A JP2019013137A (ja) 2019-01-24
JP7195762B2 true JP7195762B2 (ja) 2022-12-26

Family

ID=61768116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018083727A Active JP7195762B2 (ja) 2017-04-28 2018-04-25 発電のためのねじり振動の効果を低減させるシステム及び方法

Country Status (7)

Country Link
US (1) US10320314B2 (ja)
EP (1) EP3396848A1 (ja)
JP (1) JP7195762B2 (ja)
KR (1) KR102509264B1 (ja)
CN (1) CN108809175B (ja)
BR (1) BR102018004444A2 (ja)
RU (1) RU2749525C2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019219857A1 (de) * 2019-12-17 2021-06-17 Siemens Aktiengesellschaft Verfahren zur Vermessung des Schwingungsverhaltens eines Antriebsstrangs eines einen Generator aufweisenden Turbosatzes eines mit einem Energienetz verbundenen Kraftwerks
EP3910786A1 (en) 2020-05-11 2021-11-17 Hamilton Sundstrand Corporation Active damping of mechanical drivetrain oscillations using generator voltage regulator
US11770084B2 (en) 2021-10-22 2023-09-26 Honeywell International Inc. Voltage regulation of high voltage direct current systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000060003A (ja) 1998-08-04 2000-02-25 Toshiba Corp 直流送電システムに用いる交直変換器の制御装置
JP2007267554A (ja) 2006-03-29 2007-10-11 Shinko Electric Co Ltd 磁石式ブラシレス発電機及び磁石式ブラシレススタータ
US20090009129A1 (en) 2007-07-02 2009-01-08 Hamilton Sundstrand Corporation Active damping for synchronous generator torsional oscillations
JP2011259583A (ja) 2010-06-08 2011-12-22 Ihi Corp 電力変換装置及び電力変換方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4080559A (en) 1976-11-15 1978-03-21 General Electric Company Torsional protective device for power system stabilizer
JPS55153298A (en) * 1979-05-16 1980-11-29 Toshiba Corp Apparatus for stabilizing electric power system
JPS55160998A (en) * 1979-06-01 1980-12-15 Tokyo Electric Power Co Inc:The Controller for synchronous machine
US4454428A (en) * 1981-07-22 1984-06-12 Westinghouse Electric Corp. Noise reduction means for a dynamic stabilizer for synchronous machines having torsional oscillations and method
US4741023A (en) * 1986-12-23 1988-04-26 General Electric Company On-line test and diagnostic system for power system stabilizer
JPH10215600A (ja) * 1997-01-30 1998-08-11 Toshiba Corp 発電装置
US7518344B2 (en) * 2003-06-13 2009-04-14 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method and damping device for damping a torsional vibration in a rotating drivetrain
US7948197B2 (en) * 2007-02-27 2011-05-24 Peabody Energy Corporation Controlling torsional shaft oscillation
US8344673B2 (en) * 2008-12-04 2013-01-01 Nuovo Pignone S.P.A. Torsional mode damping apparatus
US8056417B2 (en) 2009-01-12 2011-11-15 Hamilton Sundstrand Corporation Torque oscillation monitoring
IT1399118B1 (it) * 2010-04-01 2013-04-05 Nuovo Pignone Spa Sistema e metodo di smorzamento del modo torsionale senza sensori
FR2975547B1 (fr) * 2011-05-20 2013-06-07 Turbomeca Procede de rationalisation de chaine de composants electriques d'un aeronef, architecture de mise en oeuvre et aeronef correspondant
US8786262B2 (en) * 2011-07-25 2014-07-22 Rolls-Royce Corporation Systems and methods for synchronous power generation
US9899942B2 (en) * 2013-06-25 2018-02-20 Siemens Energy, Inc. Using static excitation system to reduce the amplitude of torsional oscillations due to fluctuating industrial loads
US9143070B2 (en) * 2013-08-02 2015-09-22 Hamilton Sundstrand Corporation Systems and methods for controlling torsional oscillation in wound field synchronous generator machines
US9515373B2 (en) * 2013-09-05 2016-12-06 The Boeing Company Integrated antenna transceiver for sensor and data transmission on rotating shafts
US9639089B2 (en) * 2015-06-04 2017-05-02 The Boeing Company Gust compensation system and method for aircraft
EP3347980B1 (en) 2015-09-11 2024-05-22 Wärtsilä Finland Oy Method for controlling generator voltage
US10498275B2 (en) * 2015-12-14 2019-12-03 Rolls-Royce North American Technologies Inc. Synchronous electrical power distribution excitation control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000060003A (ja) 1998-08-04 2000-02-25 Toshiba Corp 直流送電システムに用いる交直変換器の制御装置
JP2007267554A (ja) 2006-03-29 2007-10-11 Shinko Electric Co Ltd 磁石式ブラシレス発電機及び磁石式ブラシレススタータ
US20090009129A1 (en) 2007-07-02 2009-01-08 Hamilton Sundstrand Corporation Active damping for synchronous generator torsional oscillations
JP2011259583A (ja) 2010-06-08 2011-12-22 Ihi Corp 電力変換装置及び電力変換方法

Also Published As

Publication number Publication date
US10320314B2 (en) 2019-06-11
CN108809175A (zh) 2018-11-13
RU2018101684A (ru) 2019-07-18
RU2018101684A3 (ja) 2021-04-08
CN108809175B (zh) 2023-06-27
RU2749525C2 (ru) 2021-06-11
EP3396848A1 (en) 2018-10-31
KR102509264B1 (ko) 2023-03-10
BR102018004444A2 (pt) 2018-11-21
JP2019013137A (ja) 2019-01-24
KR20180121335A (ko) 2018-11-07
US20180316294A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP7195762B2 (ja) 発電のためのねじり振動の効果を低減させるシステム及び方法
EP3246525B1 (en) Gas turbine engines with flutter control
US9382847B2 (en) Rotor resonance disturbance rejection controller
US10547258B2 (en) Vibration control method and system
EP3048333A1 (en) Method and system for damping torsional oscillations
CA2812253C (en) Resonant mode damping system and method
EP3575560A1 (en) Compressor surge control
EP3794230B1 (en) Method and system for controlling a wind turbine to reduce nacelle vibration
KR101989941B1 (ko) 공진기와, 그러한 공진기를 구비한 항공기
JP2020125104A (ja) 速度補償機能を有する航空機用補助動力装置(apu)制御システム
WO2020240567A1 (en) Thrust control system and method
EP3573228A1 (en) Electric rotor dynamics damping
RU2695001C2 (ru) Устройство и способ регулирования вспомогательного двигателя, выполненного с возможностью подачи тяговой мощности на несущий винт вертолета
US11167858B2 (en) Variable cycle compensation in a gas turbine engine
KR102146620B1 (ko) 전력 시스템 및 발전기 전압을 제어하기 위한 방법
US11545921B2 (en) Active damping of mechanical drivetrain oscillations using generator voltage regulator
US11999498B2 (en) Variable cycle compensation in a gas turbine engine
Fan et al. Gain-scheduled higher harmonic control for full flight envelope vibration reduction
EP4312211A1 (en) Active sound attenuation for aircraft electrical system
EP4249374A1 (en) Method of reducing noise of aircraft having hybrid power plants
Ahumada Sanhueza Reduction of torsional vibrations due to electromechanical interaction in aircraft systems
Jafarboland et al. Modeling of Belt-Pulley and Flexible Coupling Effects on Submarine Driven System Electrical Motors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221214

R150 Certificate of patent or registration of utility model

Ref document number: 7195762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150