JP7186870B2 - 二重アノードを有するアルカリ電池 - Google Patents

二重アノードを有するアルカリ電池 Download PDF

Info

Publication number
JP7186870B2
JP7186870B2 JP2021517475A JP2021517475A JP7186870B2 JP 7186870 B2 JP7186870 B2 JP 7186870B2 JP 2021517475 A JP2021517475 A JP 2021517475A JP 2021517475 A JP2021517475 A JP 2021517475A JP 7186870 B2 JP7186870 B2 JP 7186870B2
Authority
JP
Japan
Prior art keywords
anode
formulation
surfactant
cylindrical
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021517475A
Other languages
English (en)
Other versions
JP2022510543A (ja
Inventor
チュファン リウ
ドーン マリー フリーマン
アンジェロ マンダト
Original Assignee
エナジャイザー ブランズ リミテッド ライアビリティ カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エナジャイザー ブランズ リミテッド ライアビリティ カンパニー filed Critical エナジャイザー ブランズ リミテッド ライアビリティ カンパニー
Publication of JP2022510543A publication Critical patent/JP2022510543A/ja
Application granted granted Critical
Publication of JP7186870B2 publication Critical patent/JP7186870B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • H01M4/12Processes of manufacture of consumable metal or alloy electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/045Cells with aqueous electrolyte characterised by aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/08Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes
    • H01M6/085Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes of the reversed type, i.e. anode in the centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/24Cells comprising two different electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/023Gel electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

特にアルカリ電池においてよく見出されるボビン形電気化学セルにおいては、アノード粒子の位置的酸化が電気化学セルの全体の性能に影響を与える。これらのボビン形セルでは、カソード(典型的にはアルカリ一次セルにおける活物質として二酸化マンガンを含む)は、セル容器内に位置付けられる典型的には中空のチューブとして形成される。アノード(典型的には亜鉛又は亜鉛合成物を含む)は、カソードのキャビティ内部に位置付けられ且つセパレータによってカソードから分離される。集電体(例えば、ネール)がアノードの中心に位置付けられる。全体の組成物は、KOH電解質中に飽和される。
バッテリが放電すると、亜鉛粒子が酸化されて、アノード内に非反応性の酸化亜鉛粒子を形成する。理論レベルでは、アノード内の供給亜鉛が、亜鉛から酸化亜鉛への変換によって枯渇すると、アノードが完全に放電される。
アルカリセルは、低放電率で効率が良く、全体的により膨大な量の亜鉛から酸化亜鉛への変換が、アノードの断面(すなわち、セパレータと集電体の間)にわたってほぼ均一に起こる。しかしながら、放電率が増加した場合、高容量の亜鉛から酸化亜鉛への変換は、セパレータに対して益々付勢されることになる。従って、アノードの内部の亜鉛粒子は、中及び高率放電の間に十分に利用されない可能性があり、これによってセルの放電性能にこれらの亜鉛粒子が寄与することが妨げられる。アノード活物質が完全には使い果たされないので、電気化学セルの耐用年数が高ドレインレートにて減少し、放電中のアノード亜鉛の無視できない部分の完全利用が妨げられる。
中及び高率放電中のアルカリ電気化学セルのセパレータ近くの酸化亜鉛の障壁の形成を妨げる様々な試みがなされてきたが、このような試みは、一般的には低放電率性能を結果として生じてきた。例えば、アノードの電荷移動抵抗を引き上げて、より均一な亜鉛から酸化亜鉛への変換を促進させるために、亜鉛粒子を被覆するため界面活性剤が付加されてきた。しかしながら、このような界面活性剤は、一般的にはアノードにおける電荷移動抵抗を上昇させ、これによって電気化学セルの全体性能を低下させる。
従って、電気化学セルにおけるアノード活物質の効率的な使用を可能にする製品及び方法、特に低及び高放電率の両方でバランスの取れたセル性能特性を提供する製品及び方法に対する継続的な必要性が存在する。
様々な実施形態では、セルセパレータから離れた距離の関数としてアノードの特性を変えることによって、アノード放電の不均一性に対処し、中及び高放電率用途におけるアノードの効率を改善している。例えば、アノードの異なる部分(例えば、集電体の近くの内部及びセパレータ近くの外部)において異なるアノード界面活性剤タイプを提供すること、アノードの異なる部分において異なるアノード界面活性剤濃度を提供すること、セルセパレータから離れた距離の関数として活物質濃度を変更すること、アノードの異なる部分において異なるゲル化剤タイプ及び/又は異なるゲル化剤濃度を提供すること、アノードの異なる部分において異なる電解質濃度を提供すること、アノードの異なる部分において異なるアノード添加剤を提供すること、及び/又は同様のことである。セパレータから離れた距離の関数(例えば、漸次的関数、階段関数、及び/又は同様のもの)として1又は2以上のアノード特性を変えることによって、異なる放電抵抗をアノードの異なる部分に提供することができ、これによって、セル放電中のアノード活性成分の全体の使用を引き上げるアノードの特定放電プロファイルを促進する。
様々な実施形態は、容器と、中空のシリンダを形成するカソードであって、容器の内面に隣接するカソード外面と、カソードの内部を定めるカソード内面とを有するカソードと、カソードの内部内に位置付けられ、カソード内面に隣接したアノード外面と中心部分とを定めるアノードと、アノード外面とカソード内面との間に配置されたセパレータと、電解質と、を備えた電気化学セルであって、アノードが、少なくとも2つのアノード部分;すなわち、セパレータに隣接して位置付けられ、第1の電荷移動抵抗を有する第1のアノード配合物からなる第1のアノード部分と、アノードの中心部分に位置付けられ、第1の電荷移動抵抗よりも低い第2の電荷移動抵抗を有する第2のアノード配合物からなる第2のアノード部分と、を含む、電気化学セルに関する。
様々な実施形態によれば、第1のアノード配合物は第1の界面活性剤を含み、第2のアノード配合物は第2の界面活性剤を含み、第1の界面活性剤は第2の界面活性剤とは異なる。更にまた、第1の界面活性剤はリン酸エステル界面活性剤を含むことができ、第2の界面活性剤はスルフォン酸塩界面活性剤を含むことができる。特定の実施形態では、第1のアノード部分は、第1のアノード部分と第2のアノード部分との間の特性勾配によって第2のアノード部分から分離されている。更にまた、この特性勾配は第1のアノード配合物及び第2のアノード配合物を含み、第1のアノード配合物と第2のアノード配合物の比率は、アノード内に位置付けられる半径位置に少なくともほぼ比例する。
特定の実施形態では、特性勾配は、アノードの中心部分とアノード外面との間で連続している。様々な実施形態では、第1のアノード配合物の量は、アノード内の第2のアノード配合物の量を超える。
特定の実施形態は、電気化学セルを形成する方法に関する。様々な実施形態では、本方法は、容器内にカソードを形成するステップであって、カソードは略円筒形であり、容器の内面に隣接して位置付けられたカソード外面とカソードの内部を定めるカソード内面とを定めるステップと、カソードの内部内にセパレータを位置付けるステップと、セパレータに隣接して第1の円筒形アノード部分を形成するステップであって、第1の円筒形アノード部分が開放内部を定め、第1の円筒形アノード部分は、第1の電荷移動抵抗を有する第1のアノード配合物からなる、ステップと、第1の円筒形アノード部分の開放内部内に第2の円筒形アノード部分を形成するステップであって、第2の円筒形アノード部分は、第1の電荷移動抵抗よりも低い第2の電荷移動抵抗を有する第2のアノード配合物からなる、ステップと、を含む。
様々な実施形態では、第1のアノード部分を形成するステップが、第1の界面活性剤を有する第1のアノード配合物をカソードの内部に押し出すステップを含み、第2のアノード部分を形成するステップが、第2の界面活性剤を有する第2のアノード配合物を第1の円筒形アノード部分の開放内部に押し出すステップを含み、第2の界面活性剤は第1の界面活性剤とは異なる。更にまた、第1の界面活性剤は、リン酸エステル界面活性剤を含むことができ、第2の界面活性剤はスルフォン酸塩界面活性剤を含むことができる。特定の実施形態では、第1のアノード部分を形成するステップ及び第2のアノード部分を形成するステップは、全体として、第1のアノード部分及び第2のアノード部分を共に押し出すステップを含む。更にまた、第1のアノード部分を形成するステップは、プランジャの外面がセパレータから離間して配置されるようにカソードの内部にプランジャを延在させるステップと、プランジャの外面とセパレータとの間に第1のアノード部分を押し出すステップと、第1のアノード部分の開放内部を形成するためにプランジャを取り除くステップとを含むことができ、第2のアノード部分を形成するステップは、第2のアノード部分を第1のアノード部分の開放内部に押し出すステップを含む。
特定の実施形態では、第1のアノード組成物の量は、アノード内の第2のアノード組成物の量を超える。更にまた、第2の円筒形アノード部分を形成するステップは、第2の円筒形アノード部分と第1の円筒形アノード部分との間に混合領域を形成するステップを含むことができる。
様々な実施形態が、例えばボビン形構成を有するアルカリ電池に用いられるアノードに関する。特定の実施形態では、アノードは、アノード外面を定める第1のアノード部分を含み、第1のアノード部分は、第1の電荷移動抵抗を有する第1のアノード配合物からなり、第2のアノード部分は、アノード中心部分に位置付けられ、第2のアノード部分は、第1の電荷移動抵抗よりも低い第2の電荷移動抵抗を有する第2のアノード配合物からなる。特定の実施形態では、第1のアノード配合物は、第1の界面活性剤を含み、第2のアノード配合物は、第1の界面活性剤とは異なる第2の界面活性剤を含む。更にまた、第1のアノード部分は、第1のアノード部分と第2のアノード部分との間の特性勾配によって第2のアノード部分から分離することができる。様々な実施形態では、特性勾配は、第1のアノード配合物及び第2のアノード配合物を含み、第1のアノード配合物と第2のアノード配合物の比率は、アノード内の半径位置に少なくともほぼ比例する。特定の実施形態では、特性勾配は、アノードの中心部分とアノード外面との間で連続している。様々な実施形態によれば、第1のアノード組成物の量は、アノード内の第2のアノード組成物の量を超える。
ここで、必ずしも縮尺通りに描かれていない添付図面を参照する。
1つの実施形態によるアルカリ電気化学セルの断面正面図である。 1つの実施形態によるアノードの略断面図である。 1つの実施形態によるアルカリ電気化学セルの断面正面図である。 対照アルカリセルに対して、1つの実施形態に従って提供されるアルカリ電池の比較テストからのテスト結果を示す図である。
本発明について添付図面を参照して以下に詳細に説明するが、添付図面では本発明の全ての実施形態が示されているわけではない。実際に、本発明は、多くの異なる形態で実施できるが、本明細書に記載される実施形態に限定されるものと解釈すべきではない。逆に、これらの実施形態は、この開示が適用可能な法的要件を満足させるように提供される。同じ数字は全体を通して同じ要素を示す。
アルカリ電気化学セルは、LR6(AA)、LR03(AAA)、LR14(C)及びLR20(D)として一般に知られているセルサイズで商業的に利用可能である。セルは、国際電気化学委員会などの組織によって設定された寸法規格に準拠した円筒形状を有する。電気化学セルは、例えば、時計、ラジオ、玩具、電子ゲーム、一般的にフラッシュバルブユニットを含むフィルムカメラ、並びにデジタルカメラなどの広範囲の電子デバイスに給電するために消費者によって用いられる。このような電子デバイスは、低ドレインから比較的高ドレインなど、広範囲の電気放電状態を有する。デジタルカメラなどの高ドレインデバイスの使用が増加したことに起因して、製造者が所望の高ドレイン放電特性を有する電池を製造することが望まれる。
図1は、従来のLR6(AA)サイズのアルカリ電池に匹敵するネールタイプ又はボビンタイプの構成及び寸法を有する電池を備えた円筒形セル1の正面断面図を示す。しかしながら、様々な実施形態によるセルは、当該技術分野で公知である角柱又はボタンタイプの形状、及び電極構成などの、他のサイズ及び形状を有することができることを理解されたい。図1に示した電気化学セルの構成要素の材料及び設計は、例証の目的であり、他の材料及び設計に置き換えることができる。
電気化学セル1は、閉鎖底端部24、上端部22、及びこれらの間の側壁26を有する容器又は缶体10を含む。閉鎖底端部24は、突起部を含む端子カバー20を含む。缶体10は内壁16を有する。実施形態では、正端子カバー20は、底端部24に溶接又は他の方法で取り付けられている。1つの実施形態では、端子カバー20は、めっき鋼で、例えばその中心領域に突出隆起部で形成することができる。容器10は、鋼などの金属から形成することができ、電気化学セルへの様々な入力に匹敵する十分な構造的特性を有する、ニッケル、コバルト及び/又は他の金属又は合金、或いは他の材料によって容器の内側にめっきすることができる。負端子カバー46が容器10及び正端子20から電気的に絶縁される限り、ラベル28は、容器10の外面付近に形成することができ、正端子カバー20及び負端子カバー46の周辺縁部上に形成することができる。
容器10内には、セパレータ14を間に備えて、第1の電極18及び第2の電極12が配置される。第1の電極18は、セパレータ14と、容器10の開放端部22に固定された閉鎖組立体40とによって定められたスペース内に配置される。閉鎖端部24、側壁26、及び閉鎖組立体40は、セルの電極が収容されるキャビティを定める。
閉鎖組立体40は、ガスケットなどの閉鎖部材42、集電体44、及び集電体44と電気的に接触した導電端子46とを含む。閉鎖部材42は、セルの内部圧力が過度になった場合に閉鎖部材が破裂するのを可能にする圧力逃がし口を包含することができる。集電体44及び導電端子46が、第2の電極12の集電体として機能を果たす容器10から電気的に絶縁されているという条件下で、閉鎖部材42は、高分子又はエラストマー材料(例えば、ナイロン-6、6)、ポリ(フェニレン酸化物)又はポリスチレンと組み合わされたポリプロピレンマトリクスなどの射出成型可能ポリマーブレンド、又は金属などの別の材料から形成することができる。図示の実施形態では、集電体44は、細長いネール又はボビン形の構成要素である。集電体44は、銅又は真ちゅう、導電めっきされた金属又はプラスチック集電体などの金属又は金属合金から作られる。他の適切な材料も用いることができる。集電体44は、閉鎖部材42の孔(例えば、中心に位置付けられた孔)を介して挿入される。
第1の電極18は、負電極又はアノードとすることができる。負電極は、1又は2以上の活物質(例えば、亜鉛)の混合物、電気的導電材料、固体酸化亜鉛、及び/又は、一部の実施形態では界面活性剤を含む。負電極は、任意選択的に、他の添加剤、例えば、バインダー又はゲル化剤及び同様のものを含むことができる。
図1の実施形態は、略均一な特性を有するものとして第1の電極18を示すが、様々な実施形態は、非均一なアノード構成を含むことを理解されたい。例えば、第1の電極18は、第1の電極18の外面(例えば、セパレータ14に近接した)と第1の電極18の内側部分(例えば、集電体44に近接した)との間の特性勾配を定義し、例えば、第1のアノード部分(第1のアノード配合物からなる)を第2のアノード部分(第2のアノード配合物からなる)から分離することができる。この勾配は、連続することができ、これによって第1の特性と第2の特性の間を漸次的に変化(例えば、第1のアノード特性を有するアノード組成物と第2のアノード特性を有するアノード組成物の相対的濃度を漸次的に変えることによって)又はロックステップさせ、これによって境界領域によって分離することができる異なる特性によって定められた離散的領域を取り込む。境界領域は、隣接するアノード成分間の離散的境界によって、又は隣接するアノード組成物の混合の各々の部分における混合領域によって、例えば、複数のアノード組成物をセルの離散的な領域に追加するための処理ステップの結果として定めることができる。
特定の実施形態では、隣接するアノード組成物の間の境界は、第1の電極18の半径に対して中心に位置することができる(又は2より多くのアノード組成物を含む実施形態では、境界は、第1の電極18の半径に沿って等間隔に配置することができる)か、又は隣接するアノード組成物の間の連続勾配の変化率は、第1の電極18の半径の中心点に置くことができる。しかしながら、隣接するアノード組成物間の境界又は変化の中心は、特定の実施形態においてセパレータ14又は集電体44に向けて歪ませることができる。様々なアノード組成物間の量の差は、重量(例えば、第1の電極18の合計重量の重量パーセンテージ)、容積(第1の電極18の合計容積の容積パーセンテージ)、厚み(例えば、第1の電極18の合計厚みの半径厚みパーセンテージ、換言すると、第1の電極18半径の長さのパーセンテージ)などに基づく様々な特性に基づいて定義することができる。1つの例として、各アノード組成物の重量(例えば、第1のアノード組成物及び第2のアノード組成物)は、少なくともほぼ等しくすることができる。別の例として、各アノード組成物(例えば、第1のアノード組成物及び第2のアノード組成物)の容積は、少なくともほぼ等しくすることができる。更に別の例として、各アノード組成物(例えば、第1のアノード組成物及び第2のアノード組成物)の厚みは、少なくともほぼ等しくすることができる。特定の実施形態では、より多く又はより少ない特定のアノード組成物を第1の電極18内に含めることができることを理解されたい(例えば、これによって各アノード組成物の重量、容積、又は厚みは等しくない)。以下に説明する実験的検査で試験された1つの特定の例として、第1のアノード組成物の量は、重量で第2のアノード組成物の量を超えることができる。
特定の実施形態では、アノード特性の各々に関連付けられるアノード組成物は、それぞれのアノード組成物内に含まれる界面活性剤タイプの差によって定義することができる。例えば、第1のアノード組成物は、第1の界面活性剤タイプを含むことができ、第2のアノード組成物は、第2の界面活性剤タイプを含むことができる。このような実施形態では、第1の電極18は、セパレータ14に近接した第1の界面活性剤を組み込んだ第1のアノード組成物と、集電体44に近接した第2の界面活性剤を組み込んだ第2のアノード組成物と、の間の漸次的変化によって定めることができる。特定の例として、セパレータ14に隣接して位置付けられた第1の電極18の一部分に組み込まれた第1の界面活性剤を組み込んだ第1のアノード組成物は、第2の界面活性剤を組み込み且つ集電体44に隣接して位置付けられる第1の電極18の一部分に位置付けられた第2のアノード組成物よりも高い電荷移動抵抗を有することができる。第1の界面活性剤を組み込んだ第1のアノード組成物はまた、第2の界面活性剤を組み込んだ第2のアノード組成物よりも低いアノード導電率を有することができる。このような例では、第1のアノード組成物がリン酸エステル界面活性剤を含むことができ、第2のアノード組成物がスルフォン酸塩界面活性剤(例えば、アニオン性スルフォン酸塩界面活性剤)を含むことができる。第1のアノード組成物におけるリン酸エステル界面活性剤(例えば、非イオンリン酸エステル界面活性剤)を含有することにより、第1のアノード組成物が、スルフォン酸塩界面活性剤を含む第2のアノード組成物よりも高い電荷移動抵抗及び低い導電率を有するようにすることができることを、発明者らは理解している。第1の電極18の集電体44の近くに低電荷移動抵抗部分と、セパレータ14の近くに高電荷移動抵抗部分とを含めることによって、第1の電極18は、集電体44に近い部分が最初に放電し、そうすることで、セパレータ14により近いZnO粒子の形成の前に集電体44に最も近い第1の電極の部分内にZnO粒子の形成が生じるように放電が行われる。アノードの内部に近いアノードの部分の放電を完了する前にセパレータ14の近くに形成されたZnO粒子は、セパレータ14にわたる電解質の拡散を阻止することによって、アノード内部のアノード活物質の完全な放電を阻止又は少なくとも妨げることができる。上述のように、セパレータ14の近くのアノードの部分の前に集電体44の近くのアノードの部分が放電するように第1の電極(アノード)を形成することにより、第1の電極内の放電されていない活物質が、セパレータ14に近接したZnOの形成によって放電が阻止されないようにする。集電体44の近くにあり且つ低電荷移動抵抗を有する第1の電極18の部分が、少なくともほぼ放電した後に、セパレータ14の近くに位置付けられ且つ高電荷移動抵抗を有する第1の電極18の部分が放電を開始する。
漸次的変化がロックステップ変化によって定められる実施形態では、アノードの第1の外側領域(セパレータ14に隣接した)は、第1の界面活性剤を組み込んだ第1のアノード組成物を含み、第2の内側領域(集電体44に隣接した)は、第2の界面活性剤を組み込んだ第2のアノード組成物を含む。第1のアノード組成物と第2のアノード組成物の間に離散的境界が存在することができ、又は第1のアノード組成物と第2のアノード組成物の間の境界に位置付けられた小さな混合領域が存在することができ、混合領域は、第1の界面活性剤と第2の界面活性剤の両方を含む。
漸次的変化が連続する実施形態では、第1のアノード組成物及び第2のアノード組成物によって定められる総合アノード組成物の相対部分は、アノード内で半径方向に変化することができる。例えば、セパレータ14の直近の第1の電極18の部分では、アノード組成物は、第1の界面活性剤を含む第1のアノード組成物によって完全に(例えば100%)又はほぼ完全に定めることができ、第2のアノード組成物の最小又はトレースなし(例えば、0%)及び第2の界面活性剤の最小又はトレースなしである。集電体44に接近すると、集電体44の直近の第1の電極18の一部に達するまで、第1のアノード組成物を含むアノード組成物のパーセンテージが低下し、第2のアノード組成物を含むアノード組成物のパーセンテージが増加し、アノード組成物は、第2の界面活性剤を含む第2のアノード組成物によって完全に(例えば、100%)又はほぼ完全に定めることができ、第1のアノード組成物の最小又はトレースなし(例えば、0%)及び第1の界面活性剤の最小又はトレースなしである。
2018年2月14日に出願された同時継続の米国特許出願第15/896,917号にて論じられるように、この内容は、その全体が引用により本明細書に組み入れられ、他の特性は、第1のアノード部分と第2のアノード部分との間で変わることができる。例えば、変化する特性は、活物質(例えば、亜鉛)の平均粒子サイズ、平均活物質合金組成、活物質の平均濃度、添加剤の平均濃度、界面活性剤の平均濃度、及び/又は同様のものとすることができる。非限定的な例として、第1の電極18の総合組成物のパーセンテージとしての活物質の相対組成は、第1の電極18の半径に沿って(例えば、第1の電極18の外面と内側部分との間で)変化することができ、1又は2以上の活物質の粒子特性(例えば、粒子サイズ、表面の粗さ、多孔率及び/又は同様のもの)が、第1の電極18の半径に沿って変化することができ、活物質合金タイプは、第1の電極の半径に沿って変化することができ、界面活性剤のタイプは、第1の電極の半径に沿って変化することができ、第1の電極18の総合組成物のパーセンテージとしての界面活性剤の相対組成物は、第1の電極18の半径に沿って変化することができ、1又は2以上の不活物質の1又は2以上の粒子特性は、第1の電極18の半径に沿って変化することができ、及び/又は同様である。
特定の実施形態では、特性勾配は連続とすることができる(例えば、様々な実施形態による第1の電極18の断面図を示す図2に示すように)。このような実施形態では、第1の電極の1又は2以上の特性は、図2の集電体44とセパレータ14の間の第1の電極18の連続した暗色化に基づいて示すように、第1の電極18の半径に沿って漸次的に、連続して、及び/又は同様のものとして変化することができる。例えば、活物質の平均粒子サイズが第1の電極の半径に沿って変化する実施形態では、平均粒子サイズは、第1の電極18の外面と第1の電極18の内部との間の第1の電極内の半径位置の関数として(例えば、線形関数、指数関数、対数関数、多項式関数などに従って)連続して変化することができる。変化は、特定の式に従う必要はないが、粒子サイズは、第1の電極18の半径に沿って非離散的増分で変化する。第1のアノード組成物(例えば、第1の界面活性剤タイプを有する)と第2のアノード組成物(例えば、第2の界面活性剤タイプを有する)の間の同様の連続変化を提供できることを理解されたい。
他のアノード特性が第1の電極18の半径に沿って変化する他の実施形態では、アノード特性は、第1の電極18の半径に沿った活物質粒子サイズにおける上述の連続変化に関して論じられたものに類似の方式で変化することができる。様々な実施形態では、複数の特性は、複数の特性勾配アノード組成物を形成するためにアノードの半径に沿って変化することができる。例えば、アノード内の活物質の平均粒子サイズは、アノードの半径に沿って変化することができ、界面活性剤タイプもまたアノードの半径に沿って変化することができる。アノード特性変化の多種多様な組み合わせの何れかが、所望の特性を有するアノードを提供するために想定される。特定の例として、アノード特性勾配は、セパレータに近接したアノードの領域の第1の界面活性剤タイプと、セパレータに近接したアノードの領域における第1の平均活物質粒子サイズと、集電体に隣接したアノードの領域における第2の平均活物質粒子サイズとを定めることができる。このような構成は、好ましくは、集電体44に近い領域における低電荷移動抵抗を提供することができ、集電体44の近くの領域のガス発生を最小にすると同時に高率放電サービスを向上させることができる。
本明細書で詳細に論じるように、2又は3以上のアノード組成物を配合し押し出して、第1の電極を形成することができ、これによって第1の電極18の外面に近接して位置付けられた第1の電極18の部分が、第1の電極の内面に近接した濃度よりも高い第1のアノード組成物の濃度を含み、第1の電極18の内側部分に近接して位置付けられた第1の電極18の部分が、第1の電極の外面に近接した濃度よりも高い第2のアノード組成物の濃度を含み、外面と内部の間の第1の電極18の部分は、第1の電極18の半径に沿って第1の組成と第2の組成の間で連続的に遷移する。
他の実施形態では、特性勾配は、2又は3以上の離散的領域によって定めることができ、各領域は、一貫した材料特性を有する。離散的領域は、同時に及び/又は順次的に形成することができる。例えば、様々な実施形態による電気化学セルの側断面図である図3に示すように、第1の電極18は、第1の部分18a及び第2の部分18bを含むことができる。図3に示すように、第1の部分18aは、第1の電極18の外面と第2の部分18bとの間に位置付けることができる。従って、第2の部分は、第1の部分18aと第1の電極18の内側部分(例えば、集電体44に隣接する部分)との間に位置付けることができる。従って、第1の部分18aは、第1の電極18の外面と共存する外面を定める中空の柱状形状と、第1の部分18aの開放内部を囲む内面とを定めることができる。第2の部分18bは、第1の部分18aの内部開口部内に位置付けることができ、これによって第2の部分18bは、第1の部分18aの内面に隣接して位置付けられる外面と、第1の電極18の内部と共存する内部とを定めるようになる。様々な実施形態では、第1の部分18aと第2の部分18bの間の界接面(第2の部分18bの外面と第1の部分18aの内面の間に定められる)は、第1の部分と第2の部分の間の離散的境界を定めることができる。しかしながら、特定の実施形態では、第1の部分18aと第2の部分18bとの間の界接面は、第1の部分18aと第2の部分18bの間で混合によって定められた混合領域によって定めることができる。
特定の実施形態では、第1の部分18aは、第1の電極18の総重量の約20wt%-80wt%の間で定めることができ、第2の部分18bは、第1の電極18の総重量の約20wt%-80wt%の間で定めることができる。本明細書で論じる例示的な実施形態では、第1のアノード部分18aの重量は、第2のアノード部分18bの重量を超えることができる。
図3には示されていないが、様々な実施形態の第1の電極18は、2より多い離散的部分を含むことができる。追加の部分は、第1の部分18aと第2の部分18bとの間に位置付けることができ、これにより第2の部分18bを囲み且つ第1の電極18内で一連のリング(例えば、同心リング)を形成する。本明細書で更に詳細に論じるように、第1の電極18の様々な離散的部分は、電気化学セルに共押し出しすることができ、様々な離散的な部分は、順次的に電気化学セルに押し出すことができる。
1つの例に過ぎないが、第1の部分18a内の界面活性剤は、第2の部分18b内の界面活性剤とは異なるものとすることができる。具体的には、第1の部分18a内の界面活性剤は、第1の部分が第2の部分18bよりも高い電荷移動抵抗及び低いアノード導電率を有することができるようになる。特定の実施形態では、第1の部分18a内の界面活性剤はリン酸エステル界面活性剤であり、第2の部分18b内の界面活性剤はスルフォン酸塩界面活性剤である。別の例として、非イオン界面活性剤は、第1の部分18a又は第2の部分18bの1つに用いることができ、アニオン性界面活性剤は、アノードの他の部分に用いることができる。具体的には、亜鉛粒子に付着させるための第1の親和性を有する第1の界面活性剤は、第1の部分18aに提供することができ、亜鉛粒子に付着させるための第2の親和性(例えば、亜鉛粒子に付着するための低親和性)を有する第2の界面活性剤は、第2の部分18bに提供することができる。界面活性剤タイプのこのような勾配は、集電体44への亜鉛めっきを可能にすることができ、これによって排ガスを低下させると同時に、高率放電中の亜鉛酸化の最高濃度を有するアノードの領域内の高活性界面活性剤を提供する。
別の例として、第1の部分18a内の活性アノード材料(例えば、亜鉛)の平均粒子サイズは、第2の部分18b内の活性アノード材料の平均粒子サイズより大きくすることができる。別の例として、第1の部分18a内の活物質の平均量は、第2の部分18b内の活物質の平均量より大きくすることができる(例えば、それぞれの第1の電極部分の総重量に対する活物質の重量パーセンテージとして測定され、それぞれの第1の電極部分の総重量に対する活物質の容積平均として測定され、及び/又は同様のもの)。更に別の例として、第2の部分18a内の界面活性剤の平均量は、第2の部分18b内の界面活性剤の平均量より大きくすることができる(例えば、それぞれの第1の電極部分の総重量に対する界面活性剤の重量パーセンテージとして測定、それぞれの第1の電極部分の総重量に対する界面活性剤の容積パーセンテージとして測定、及び/又は同様のもの)。
更に別の例として、第1の部分18aに用いられる活物質のタイプは、第2の部分18bに用いられる活物質のタイプとは異なることができる(例えば、亜鉛の様々なグレードを用いることができ、異なる供給者から購入される亜鉛を用いることができ、異なる亜鉛鉱山から取り出された亜鉛を用いることができ、異なる平均多孔率を有する亜鉛を用いることができ、異なる表面の粗さ特性を有する亜鉛を用いることができ、異なる合金組成物を有する活物質を用いることができ(例えば、異なる合金を異なるアノード部分に用いることができ、これらの合金は、亜鉛-ビスマス合金、亜鉛-インジウム合金、亜鉛-アルミニウム合金、及び/又は同様のものの非限定的な例から選択することができる)、及び/又は同様のもの)。特定の例として、高反応性として既知である亜鉛合金は、第1の部分18aに含めることができ、低反応性として既知である亜鉛は、第2の部分18bに含めて、集電体44に近接した領域で排ガスを低減しながら高レートサービス(亜鉛反応性が一般的にセパレータ近くに集中する場合)を増加させることができる。
様々な実施形態で用いるのに適した亜鉛は、BIA100、BIA115などの様々な記号表示下の複数の異なる商用供給源から購入することができる。ベルギー国ブリュッセル所在のUmicoreS.Aは、亜鉛供給元の例である。好ましい実施形態では、亜鉛粉体は、一般的には、75ミクロン未満の25から40微粉率、及び詳細には75ミクロン未満の28から38微粉率を有する。一般的に低い微粉率は、所望の高レートサービスの実現を可能にすることなく、高い微粉率の利用は、ガス発生の増加に至る可能性がある。セルの負電極ガス発生を低減し試験サービス結果を維持するために、適正な亜鉛合金が必要とされる。
特定の実施形態では、負電極に存在する亜鉛の量は、一般に約62から約78重量パーセントに及び、望ましくは約64から約74重量パーセント、具体的には負電極、すなわち、亜鉛、固体酸化亜鉛、界面活性剤及びゲル化電解質の総重量に基づく約68から約72重量パーセントである。
様々な実施形態に用いられる固体酸化亜鉛は、デジタルスチルカメラ(DSC)サービスなどの高レートサービスを増やし、並びにアノードレオロジーを向上させ、DSCサービスのばらつきを低減するために、高活性とすることができる。
アノードに付加される固体酸化亜鉛は、具体的には高純度を有し、高亜鉛ガス発生及びサービスの低下を生じる可能性がある低レベルの不純物を含む。固体酸化亜鉛は、具体的には、30ppm未満の鉄、3ppm未満の銀及びヒ素、1ppm未満の銅、ニッケル、クロム及びカドミウム、0.50ppm未満のモリブデン、バナジウム及びアンチモン、0.1ppm未満のスズ、0.05ppm未満のゲルマニウムを含有する。
様々な実施形態では、第1の電極18の1又は2以上の部分に付加される界面活性剤は、非イオン又はアニオン性界面活性剤の何れか、又はこれらの組み合わせとすることができる。例えば上述のように、非イオン界面活性剤は、第1の電極18の1つの部分に付加することができ、アニオン性界面活性剤は、第1の電極18の別の部分に付加することができる。アノードの粘度は、固体酸化亜鉛のみの付加により放電中に増大するが、界面活性剤の付加によって軽減されることが分かっている。界面活性剤の付加は、固体酸化亜鉛の表面電荷密度を増大させ、上記に示すようにアノードの粘度を低下させる。従って、アノードの一部(例えば、アノードの離散的部分及び/又はアノード内の界面活性剤の濃度を変える)に界面活性剤を付加すること、又はアノードの異なる部分内に異なる界面活性剤を付加することで、アノード内の電荷分散勾配を生成することができる。
界面活性剤の使用は、界面活性剤が固体酸化亜鉛上で吸収されるときにより多孔性の放電生成物を形成するのを助けると考えられている。界面活性剤がアニオン性であるときには、界面活性剤は負電荷を帯び、アルカリ溶液では、固体酸化亜鉛の表面で吸収される界面活性剤は、固体酸化亜鉛粒子表面の表面電荷密度を変えると考えられている。吸収された界面活性剤は、固体酸化亜鉛粒子間の反発する静電相互作用を引き起こすと考えられる。界面活性剤の付加は、固体酸化亜鉛粒子表面の表面電荷密度の増大を結果として生じると考えられている。固体酸化亜鉛のブルナウア-エメット-テラー(BET)表面積が大きい程、固体酸化亜鉛表面で吸収される界面活性剤が多くなる可能性がある。
更に、発明者らは、界面活性剤化学的性質の差が、アノード電荷移動抵抗及びアノードのアノード導電率の差をもたらすことを見出した。特定の例として、発明者らは、リン酸エステル界面活性剤(例えば、非イオンリン酸エステル界面活性剤)を含むアノード組成物が、スルフォン酸塩界面活性剤(例えば、アニオン性スルフォン酸塩界面活性剤)を含むアノード組成物よりも高い電荷移動及び低いアノード導電率を有することを見出した。電荷移動抵抗の差を有する複数のアノード組成物が単一のセルに含まれるときには、低電荷移動抵抗を有するアノードの部分が、アノードの他の部分の前に最初に放電する。従って、単一のセル内に(例えば、アノードの対応する部分内に)、リン酸エステル界面活性剤(例えば、非イオンリン酸エステル界面活性剤)を含む第1のアノード組成物及びスルフォン酸塩界面活性剤(例えば、アニオン性スルフォン酸塩界面活性剤)を含む第2のアノード組成物を含むことにより、第1のアノード組成物の前に第2のアノード組成物が放電するようになる。
この理解を考慮すると、様々な実施形態によるアノードは、複数のアノード組成物を含み、集電体44の最も近くに位置付けられたアノード組成物は、セパレータ14の最も近くに位置付けられたアノード組成物よりも低い電荷移動抵抗を有する。このような実施形態では、集電体44の最も近くに位置付けられたアノード組成物は、セパレータ14に位置付けられたアノード組成物の前に放電し、これによって、集電体44により近く位置付けられたアノード活物質の更なる放電を妨げる可能性がある、セパレータ14に隣接した酸化亜鉛障壁の早期の形成を阻止する。
水性アルカリ電解質は、水酸化カリウム(KOH)、水酸化ナトリウム、又は同様のもの、或いはこれらの混合物など、アルカリ金属水酸化物を含む。負電極のゲル化電解質を形成するのに用いられるアルカリ電解質は、アルカリ電解質の総重量に基づく約26から約36重量パーセント、望ましくは約26から約34重量パーセント、及び具体的には約26から約30重量パーセントのアルカリ金属水酸化物を含有する。負電極アルカリ金属水酸化物と付加された固体酸化亜鉛との間で相互作用が行われ、低アルカリ金属水酸化物がDSCサービスを改善することが見出された。弱アルカリ性の電解質が好ましいが、アノードの急速な電解質分解に至る可能性がある。アルカリ金属水酸化物濃度の上昇は、より安定したアノードを生成するが、DSCサービスを低下する可能性がある。
米国オハイオ州クリーブランド所在のNoveon社から入手可能な、Carbopol(登録商標)940などの架橋ポリアクリル酸などの当該技術分野で周知のゲル化剤を負電極に用いることができる。カルボキシメチルセルロース、ポリアクリルアミド、及びポリアクリル酸ナトリウムは、アルカリ性電解質溶液で用いるのに適した他のゲル化剤の例である。ゲル化剤は、負電極における亜鉛及び固体酸化亜鉛粒子のほぼ均一な分散を維持するために望ましい。存在するはゲル化剤の量は、低レートの電解質分離が取得され、アノード分配に伴う問題につながる可能性がある降伏応力のアノード密度が過剰に大きくならないように選択される。
負電極の1又は2以上の部分内に任意選択的に存在する可能性がある他の成分は、限定ではないが、ガス発生抑制剤、有機又は無機防錆剤、めっき剤、バインダー又は他の界面活性剤を含む。ガス発生抑制剤又は防錆剤の例は、インジウム水酸化物、ペルフルオロアルキルアンモニウム塩、アルカリ金属硫化物などのインジウム塩を含むことができる。1つの実施形態では、ボビン又はネール集電体へのめっきを改良するために且つ負電極シェルフガス発生を低下させるために、溶解酸化亜鉛が電解質における溶解を介して存在することができる。付加される溶解酸化亜鉛は、アノード組成物中に存在する固体酸化亜鉛から分離され別個のものである。1つの実施形態において、負電極電解質の総重量に基づく約1重量パーセントの量の溶解酸化亜鉛のレベルが好ましい。溶解性又は溶解酸化亜鉛は、一般的には、酸化亜鉛が150℃で1時間脱ガスされた後にマルチポイント較正を有するMicrometricsが提供するTristar3000BET比表面積アナライザを用いて測定された約4m2/g以下のBFT表面積と、上記に示すようにCILAS粒子サイズアナライザを用いて測定された、約1ミクロンの粒子サイズD50(平均直径)とを有する。他の実施形態では、セル放電中のセパレータを介したセル短絡を実質的に回避するために、負電極電解質の総重量に基づく約0.3重量パーセントの量のケイ酸ナトリウムが負電極においては好ましい。
例示的な製造方法
本明細書で簡潔に記載するように、アノードの1又は2以上の部分(例えば、第1の電極18の第1の部分18a、第1の電極18の第2の部分18b、及び/又は第1の電極18の全部)は、電気化学セル内の第1の電極を形成するために押し出すことができる。特定の実施形態では、第1の電極18の様々な部分を共押し出しする(例えば、同心ノズルを介してアノードの別々の部分を同時に又は連続して押し出すことによって)、連続して押し出す(金型が缶体の中に少なくともほぼ同心状に位置付けられている間に第1の電極18の第1の部分18aを押し出す、第1の部分18a内に内側開口部を形成するために金型を取り除く、次に第1の電極18の第2の部分18bを金型の除去によって生じた内側開口部に押し出す)、3Dプリントする(例えば、第1の電極18全体を形成するために第1の電極18の連続層を押し出すことによって)、及び/又は同様のものとすることができる。特定の実施形態では、第1の部分18aを形成するのに用いられる第1のアノード組成物は、電気化学セルに押し出すことができ、次に成形プランジャを電気化学セルに延長して、第1の電極18の第1の部分18aを形成することができる。例えば、成形プランジャは、第1の部分18aを第2の電極12の内部(例えば、セパレータ44の反対側)の略リング形状に形成して、第1の部分18aの内面を定めることができる。その後、第2の部分18bは、第1の部分18aの内面によって結合された第1の部分18aの内部に押し出すことができる。
1つの実施形態では、亜鉛及び固体酸化亜鉛粉、及びゲル化剤以外の他の任意選択的な粉末が結合及び混合される。特定の実施形態では、亜鉛及び固体酸化亜鉛粉体は、アノードの様々な部分に対応する別個のバッチで混合することができる。例えば、第1の亜鉛及び酸化亜鉛粉末を混合して、第1のバッチを形成することができ、第2の亜鉛及び酸化亜鉛粉末を混合して、第2のバッチを形成することができる(例えば、第1のバッチの亜鉛粉末とは異なる平均亜鉛粒子サイズを有する亜鉛粉を含有する)。
その後、界面活性剤は、亜鉛及び固体酸化亜鉛を含有する混合物に組み込むことができる(例えば、界面活性剤は様々なバッチの各々に組み込むことができる)。アルカリ電解質、可溶性酸化亜鉛及びゲル化剤、及び任意選択的に他の液体成分を含むプレゲルは、界面活性剤、亜鉛及び固体酸化亜鉛混合物に組み込むことができ、これらは、セルに付加する前にほぼ均一な混合物(例えば、各バッチ内で均一)を得るために更に混合される。様々な実施形態では、各バッチの1又は2以上の成分を変えて、各バッチ間の所望のアノード特性差を提供することができる(例えば、異なる量の界面活性剤を提供する、異なる亜鉛等級を提供する、異なる酸化亜鉛量を提供する、及び/又は同様のこと)。
特定の実施形態では、界面活性剤は、第1の電極18を電気化学セルに形成する前に電気化学セルに組み込むことができる。例えば、第2の電極12が形成された後であるが、第1の電極18が電気化学セル内に付加される前に、界面活性剤は、電気化学セルに付加されるアルカリ電解質(例えば、本明細書で論じるようなフリー電解質)と混合することができる。このような実施形態では、界面活性剤は、第2の電極12によって少なくとも一部が一時的に吸収することができる。第1の電極18が第2の電極の内部内に(例えば、押し出しを介して)形成されると、界面活性剤は第1の電極18によって吸収することができる。このような実施形態では、界面活性剤は、第1の電極18によって漸次的に吸収され、これによって集電体44に近接する第1の電極18の内部よりも第1の電極18の外面にて高い界面活性剤の濃度を生じる。従って、界面活性剤は、電荷移動抵抗勾配を付加的に定めることができる、第1の電極18内の少なくともほぼ連続する濃度勾配を形成することができる。界面活性剤は、離散的第1の部分18a及び第2の部分18bを有する第1の電極18内の連続濃度勾配を形成できることを理解すべきである。従って、第1の電極18は、第1の電極18内の連続界面活性剤勾配によって定められる第1の特性勾配を有することができ、同時に、第1の部分18a及び第2の部分18bによって定められるステップワイズ特性勾配によって定められる第2の特性勾配(例えば、アノード合金組成物勾配、平均活物質粒子サイズ勾配、平均活物質濃度勾配、及び/又は同様のもの)を有することができる。
他の実施形態では、固体酸化亜鉛は、アルカリ電解質、ゲル化剤、可溶性酸化亜鉛及び他の所望の液体を含む負電極プレゲルに事前分散され、約15分間など配合される。上述のように、固体酸化亜鉛、アルカリ電解質、ゲル化剤、可溶性酸化亜鉛及び他の所望の液体を各々が含む、複数のバッチを提供することができる。特定の実施形態では、各バッチは、上述のように組み合わせ成分の異なる組成物を含むことができる。次に、固体亜鉛及び界面活性剤が付加され、負電極組成物の各バッチが約20分間などの追加の時間期間に配合される。負電極組成物の各バッチに用いられるゲル化電解質の量は、一般的には約25から約30重量パーセントである。例えば、ゲル化電解質の量は、負電極組成物の各バッチの総重量に基づいて約32重量パーセントとすることができる。特定の実施形態では、ゲル化電解質の容積パーセントは、負電極の総容積に基づいて約70%とすることができる。負電極製造工程中にゲル化剤によって吸収される水性アルカリ電解質に加えて、アルカリ金属水酸化物の水性溶液の追加の量、すなわち、「フリー電解質」もまた、製造工程中にセルに付加することができる。フリー電解質は、正電極又は負電極、或いはこれらの組み合わせによって定められるキャビティに配置することによってセルに組み込むことができる。1つの実施形態では、フリー電解質が負電極混合物の追加前並びに追加後の両方に追加される。1つの実施形態では、29重量パーセントKOH溶液の約0.97グラムが、フリー電解質としてLR6タイプセルに追加され、負電極が挿入される前に約0.87グラムがセパレータ裏打ちキャビティに付加される。本明細書で論じるように、負電極の挿入前に付加されるフリー電解質は、負電極によって後で吸収される界面活性剤組成物を含むことができ、これによって負電極内の界面活性剤濃度勾配を形成する。29重量パーセントKOH溶液の残りの部分が、負電極が挿入された後にセパレータ裏打ちキャビティに注入される。
特定の実施形態では、電気化学セル内に負電極を形成する前に負電極組成物の1又は2以上のバッチを組み合わせることができる。例えば、負電極組成物の1又は2以上のバッチは、シングルスクリュー押し出しミキサ、デュアルスクリュー押し出しミキサ、及び/又は同様のものなどを介して組み合わせることができる。様々な実施形態では、負電極組成物の1又は2以上のバッチを組み合わせて、負電極の様々な部分間に勾配を形成することができる。例えば、負電極組成物の各バッチの少なくとも一部分が配合されることなく混合構成要素の側面に沿って通過可能にする混合構成要素(例えば、スクリュー押し出しミキサ)を介して負電極組成物の1又は2以上のバッチを組み合わせることができる。特定の実施形態では、様々なバッチを配合して、負電極の部分間に連続勾配を形成することができる。例えば、本明細書で論じるように、負電極の形成された外面と負電極の形成された内部の間の電極特性の勾配を負電極が定めるように、様々なバッチを配合して、最終的には押し出すか又は電気化学セル内に他の方法で形成することができる。
他の実施形態では、負電極組成物の1又は2以上のバッチは、電気化学セル内に第1の電極18を形成するまで別々に維持することができる。このような実施形態では、1又は2以上のバッチは、別個のノズルを介して共押し出しされて第1の電極18を形成することができる。別個のノズルは、少なくとも部分的に同心にされ、第1の電極18の同心部分を形成するよう構成することができる。他の実施形態では、第1のバッチ(例えば、負電極の第1の部分18aを形成することになる)は、電気化学セルに押し出すことができ、プランジャ、金型、又は他の成形構成要素は、電気化学セルに延在されて、電気化学セル内の負電極の第1の部分18aを形成することができる。第1の部分18aを形成した後に、第2のバッチは、電気化学セルに、及び第1の部分18aと少なくともほぼ同心状にある内側開口部に(例えば、第1のバッチと同じノズル又は異なるノズルを用いて)押し出されて、第2の部分18bを形成することができる。特定の実施形態では、1又は2以上の追加の部分(例えば、第1の部分18aと第2の部分18bの間の中間部分)は、電気化学セルに押し出されて、第2の部分18bの形成の前に対応する部分に形成することができ、これらの追加の部分の各々は、第1の部分18aに関して論じたものに類似の方式で形成することができる。
本明細書では正電極又はカソードとも呼ばれる第2の電極12は、電気化学的活物質として二酸化マンガンを含むことができる。二酸化マンガンは、正電極の総重量、すなわち、二酸化マンガン、導体材料、正電極電解質及び硫酸バリウムなどの添加剤に基づく約81から85重量パーセントなどの約80から約86重量パーセントの量に存在する。二酸化マンガンは、天然二酸化マンガン(NMD)、化学二酸化マンガン(CMD)、又は電解二酸化マンガン(EMD)として商業的に入手可能である。セルに用いる好ましい二酸化マンガンはEMDである。EMDの供給者は、コネチカット州スタンフォードのTronox社、日本国東京のTosoh社、及びメリーランド州ボルチモアのErachem Comilog社を含む。正電極は、電極の所望の成分を組み合わせて混合し、その後、容器の開放端部に所定量の混合物を分散し、次にラムを用いて、セパレータ14及び第1の電極18が後で配置される容器内のキャビティを定める固体柱状構成に混合物を成型することによって形成される。第2の電極12は、図1に示すようにレッジ30及び内面32を有する。代替として、正電極は、二酸化マンガンを含む混合物から複数のリングを事前形成して、次にリングを容器に挿入し柱状の第2の電極を形成することによって形成することができる。図1に示したセルは、典型的には3又は4つのリングを含むことになる。
正電極は、導体材料、例えばグラファイトなどの他の成分を含むことができ、二酸化マンガンと混合されたときに正電極のほぼ全体を通して導電率マトリクスを提供する。導電材料は、天然、すなわち採掘することができ、又は合成、すなわち製造することができる。1つの実施形態では、セルは、活物質又は約12から約14にわたる酸化物対炭素比(O:C比)を有する正電極を含む。酸化物対炭素比が高すぎると容器をカソード抵抗まで低下させ、全体的なセル抵抗に影響を与え、DSC試験、又は高カットオフ電圧などの高レート試験に電位効果を有することができる。更に、グラファイトは、拡張又は非拡張することができる。アルカリ電池で用いるグラファイトの供給者は、スイス国バイロニコのImerys Graphite&Carbon、及びイリノイ州シカゴのSuperior Graphiteを含む。導電材料は、一般的に、正電極の総重量に基づく約5から約10重量パーセントの量で存在する。グラファイトが多すぎると、二酸化マンガン入力、及び従ってセル容量を低減する可能性があり、グラファイトが少なすぎると、容器をカソード接点抵抗及び/又はバルクカソード抵抗まで増大することができる。追加の添加剤の例は、イタリア マッサのBario E.Derivati S.p.A.から商業的に入手可能な硫酸バリウム(BaSO4)である。硫酸バリウムは、一般的には正電極の総重量に基づく約1から約2重量パーセントの量で存在する。他の添加剤は、例えば、酢酸バリウム、二酸化チタン、コーチレンなどのバインダー、及びステアリン酸カルシウムを含むことができる。
1つの実施形態では、二酸化マンガン、導電材料、及び硫酸バリウムなどの正電極成分が互いに混合され、均一混合物を形成する。混合工程中に、約37%から約40%のKOH溶液などのアルカリ電解液がこの混合物に均一に分散され、これによって正電極材料全体の溶液の均一な分布を保証する。混合物は次に、容器に付加され、ラムを用いて成形される。容器内の湿分及び成形前及び後の正電極混合、及び混合の成分を最適化して、高品質正電極の成型を可能にする。混合湿分最適化は、湿式混合に起因する最小スプラッシュ及びフラッシュ、並びに乾式混合に起因する剥離及び過度のツール摩耗によって正電極が成形されるのを可能にし、最適化は、所望の高カソード重量の達成の助けとなる。正電極混合物の湿分含有量は、全体的なセル電解質バランスに影響を与え、高レート試験に対する影響を与える。
セパレータ14は、第2の電極12から第1の電極18を分離するために設けられる。セパレータ14は、負電極の電気化学的活物質と正電極の電気化学的活物質の物理的誘電分離を維持し、電極材料間のイオンの移動を可能にする。加えて、セパレータは、電解質のためのウィッキング媒体として、及び負電極のフラグメント化部分が正電極の上部に接触するのを阻止するカラーとして役割を果たす。セパレータ14は、層状イオン透過性不織布繊維布帛とすることができる。典型的なセパレータは通常、2又は3以上の紙の層を含む。従来のセパレータは通常、第2の電極12及び閉鎖端部24及び何れかの正電極材料によって定められたキャビティの下に続いて挿入されるカップ形バスケットにセパレータ材料を事前形成することによって、又は2つの長方形のセパレータのシートを互いに対して90°角度回転された材料によってキャビティに挿入することによってセル組み立ての間にバスケットを形成することにより形成される。従来の事前形成セパレータは、典型的には、第2の電極の内壁に適合し閉鎖底端部を有する円筒形状に巻かれた不織布繊維のシートから構成される。
上述の構成は、高放電率で作動する既存のアルカリセル電池に関連付けられる共通の放電欠陥に対処する。実験を通して、従来のアルカリセルは、セルが高放電率で使用されるときに全く放電しないことが見出された。具体的には、ZnOの形成を引き起こすアノード内の亜鉛の酸化は、ほぼ均質なアノードを含有するアルカリセルの高率放電中にセパレータ近くに集中することが見出された。上述のように、ZnOは未反応亜鉛よりも高い粒子容積を有するので、セパレータ近くのZnO形成は、アノードの中心に近くに位置付けられた亜鉛粒子の放電を妨げる障壁を効率的に生成する。
従って、アノード特性勾配を提供することによって、アノードの特性を修正して、中央集電体に近い(及びセパレータから離れた)アノード部分内の低放電抵抗を誘起することができ、これによりセルの中及び高率放電中の放電の一定の深度の後のセパレータ近くで利用可能な亜鉛の量を増加させることができる。例えば、異なる界面活性剤タイプをセパレータに近接し且つ集電体に近接したアノードの一部に提供して、アノード内のアノード活物質の高パーセンテージが放電反応に関与するように電流分布を広げることができ、アノード活物質の大きな平均粒子サイズは、セパレータに近接して配置することができる(例えば、中及び高率放電中のセパレータの近くの亜鉛の完全消費を回避するため)。更にまた、集電体の近くのアノードの部分を修正して、低減されたガス発生特性を有することができ、これによってアノードが高位放電されたときの望ましくないガス発生を低減する。
アノード内に特性勾配を提供することによって、アノードの全体的な電気容量は、従来の均質なアノード配合物に対して実質的に不変に維持することができるが、高率放電用途でより迅速に放電することが知られるアノードの部分は、これらの領域のアノードの電気容量を増大させるために修正することができる。アノードの全体の電気容量が均質なアノード配合物と比較して実質的に不変に維持されるので、特性勾配を定めるアノードは、理論的には従来の均質なアノード配合物に類似の低率放電性能を有する。
実験的検査
二重アノードの使用の利点が実験的検査で示された。具体的には、デジタル静止カメラ(DSC)試験(標準的なデジタル静止カメラを用いてバッテリの単一電荷で撮影される写真の数を測定する)及び750mAパーソナルグルーミング試験(これに従って、セルが1.1Vのカットオフ電圧に達するまで、1日につき8時間の期間、各時間に2分間、750mAのレートでセルが放電される)における二重アノード構成の性能を試験する実験的検査が実行された。試験結果を図4に示す。
試験では、アノード容積全体に少なくともほぼ均一な特性を有する伝統的な均質アノード構成を含むボビンスタイルの構成を有する対照アルカリバッテリが構成された。対照アルカリバッテリは、20ppmのリン酸エステル界面活性剤を有するアノードの6.3グラムを含んでいた。
二重アノード構成を有する実験的アルカリバッテリもまた構成された。以下に記載するもの以外のバッテリの全ての他の特性は、対照アルカリバッテリと同一であった。実験的アルカリバッテリは、セパレータに隣接して位置付けられた第1のアノード部分及び中心に位置付けられた集電体に隣接して位置付けられた第2のアノード部分を含む二重アノード構成を含んでいた。従って、第1のアノード部分及び第2のアノード部分は同心状であり、第1のアノード部分が第2のアノード部分の外側を囲む。セパレータは第1のアノード部分と第2のアノード部分の間に位置付けられなかった。第1のアノード部分(セパレータに隣接して位置付けられた)は、20ppmのリン酸エステル界面活性剤を有するアノードの約3.6グラムを含み、第2のアノード部分(集電体に隣接して位置付けられた)は、20ppmのスルフォン酸塩を有するアノードの約2.7グラムを含む。スルフォン酸塩界面活性剤を有するアノードは、リン酸エステル界面活性剤を有するアノードと比較して低電荷移動抵抗及び高導電率を有し、これによってアノード放電が、アノードの内側(集電体に隣接して位置付けられた第2のアノード部分内)から始まるよう強制される。
図4に示した結果は、対照アルカリバッテリの性能に対して標準化されている。本明細書に示すように、実験二重アノードアルカリバッテリは、DSC試験での対照バッテリよりも15%良好に実行し(すなわち、実験アルカリバッテリは、対照バッテリによって撮影された写真の数の115%を達成するのに十分であった)、実験二重アノードアルカリバッテリは、750mAパーソナルグルーミング試験で対照バッテリよりも9%効果的に実行された。
結論
本明細書に記載される本発明の多くの修正及び他の実施形態は、上述の説明及び関連付けられる図面に提示された教示の利点を有するこれらの実施形態が属する当該技術の当業者に想起されるであろう。従って、実施形態は、開示される特定の実施形態に限定されるものではなく、修正及び他の実施形態は添付の請求項の範囲内に含まれるものとすることを理解されたい。特定の用語が本明細書で用いられるが、これらは一般的且つ説明的な意味でのみ用いられ、限定を目的とするものではない。
1 円筒形セル
10 容器又は缶体
12 第2の電極
14 セパレータ
16 内壁
18 第1の電極
20 端子カバー
22 開放端部
24 底端部
26 側壁
28 ラベル
30 レッジ
32 内面
40 閉鎖組立体
42 閉鎖部材
44 集電体
46 導電端子

Claims (14)

  1. アルカリ一次電池であって、
    容器と、
    中空のシリンダを形成するカソードであって、前記容器の内面に隣接するカソード外面と、前記カソードの内側部分を定めるカソード内面とを有するカソードと、
    前記カソードの内部内に位置付けられ、前記カソード内面に隣接したアノード外面と中心部分とを定めるアノードと、
    前記アノード外面と前記カソード内面との間に配置されたセパレータと、
    アルカリ電解質と、
    を備え、
    前記アノードが、少なくとも2つのアノード部分;
    前記セパレータに隣接して位置付けられ、第1の電荷移動抵抗を有する第1のアノード配合物からなり、リン酸エステル界面活性剤を含む第1のアノード部分と、
    前記アノードの中心部分に位置付けられ、前記第1の電荷移動抵抗よりも低い第2の電荷移動抵抗を有する第2のアノード配合物からなり、スルフォン酸塩界面活性剤を含む、第2のアノード部分と、
    を含む、
    ことを特徴とするアルカリ一次電池
  2. 前記第1のアノード部分は、前記第1のアノード部分と前記第2のアノード部分との間の特性勾配によって前記第2のアノード部分から分離され、
    前記特性勾配は、前記第1のアノード配合物及び前記第2のアノード配合物を含み、
    前記第1のアノード配合物と前記第2のアノード配合物の比率は、前記第1のアノード部分と前記第2のアノード部分との間の前記アノード内の半径位置に少なくともほぼ比例する、
    請求項1に記載のアルカリ一次電池
  3. 前記特性勾配は、前記アノードの中心部分と前記アノード外面との間で連続している、
    請求項2に記載のアルカリ一次電池
  4. 前記第1のアノード配合物の重量は、前記アノード内の前記第2のアノード配合物の重量を超える、
    請求項1に記載のアルカリ一次電池
  5. アルカリ一次電池を形成する方法であって、
    容器内にカソードを形成するステップであって、前記カソードは、少なくとも略円筒形であり且つ前記容器の内面に隣接して位置付けられたカソード外面と前記カソードの内側部分を定めるカソード内面とを定める、ステップと、
    前記カソードの内側部分内にセパレータを位置付けるステップと、
    前記セパレータに隣接して第1の円筒形アノード部分を形成するステップであって、前記第1の円筒形アノード部分が開放内部を定め、前記第1の円筒形アノード部分は、第1の電荷移動抵抗を有する第1のアノード配合物からなり、リン酸エステル界面活性剤を含む、ステップと、
    前記第1の円筒形アノード部分の開放内部内に第2の円筒形アノード部分を形成するステップであって、前記第2の円筒形アノード部分は、前記第1の電荷移動抵抗よりも低い第2の電荷移動抵抗を有する第2のアノード配合物からなり、スルフォン酸塩界面活性剤を含む、ステップと、
    を含む方法。
  6. 前記第1の円筒形アノード部分を形成するステップ及び前記第2の円筒形アノード部分を形成するステップは、全体として、前記第1の円筒形アノード部分及び前記第2の円筒形アノード部分を共に押し出すステップを含む、
    請求項5に記載の方法。
  7. 前記第1の円筒形アノード部分を形成するステップが、
    プランジャを前記カソードの内側部分に延在させて、前記プランジャの外面が前記セパレータから離間して配置されるようにするステップと、
    前記プランジャの外面と前記セパレータとの間に前記第1のアノード配合物を押し出して前記第1の円筒形アノード部分を形成するステップと、
    前記プランジャを取り除いて、前記第1の円筒形アノード部分の開放内部を形成するステップと、
    を含み、
    前記第2の円筒形アノード部分を形成するステップが、前記第2のアノード配合物を前記第1の円筒形アノード部分の開放内部に押し出すステップを含む、
    請求項5に記載の方法。
  8. 前記第1のアノード配合物の重量が、前記アノード内の前記第2のアノード配合物の重量を超える、
    請求項5に記載の方法。
  9. 前記第2の円筒形アノード部分を形成するステップが、前記第2の円筒形アノード部分と前記第1の円筒形アノード部分の間の混合領域を形成するステップを含む、
    請求項5に記載の方法。
  10. アノード外面と中心部分を定める、アルカリ一次電池のアノードであって、
    前記アノード外面を定める第1のアノード部分であって、第1の電荷移動抵抗を有し且つ第1の界面活性剤を含む第1のアノード配合物からなる、第1のアノード部分と、
    前記アノード中心部分に配置された第2のアノード部分であって、前記第1の電荷移動抵抗よりも低い第2の電荷移動抵抗を有し且つ前記第1の界面活性剤とは異なる第2の界面活性剤を含む第2のアノード配合物からなる、第2のアノード部分と、
    を含むアノード。
  11. 前記第1のアノード部分は、前記第1のアノード部分と前記第2のアノード部分との間の特性勾配によって前記第2のアノード部分から分離される、
    請求項10に記載のアノード。
  12. 前記第1のアノード部分は、前記第1のアノード部分と前記第2のアノード部分との間の特性勾配によって前記第2のアノード部分から分離され、
    前記特性勾配は、前記第1のアノード配合物及び前記第2のアノード配合物を含み、前記第1のアノード配合物と前記第2のアノード配合物の比率は、前記第1のアノード部分と前記第2のアノード部分との間の前記アノード内の半径位置に少なくともほぼ比例する、
    請求項10に記載のアノード。
  13. 前記特性勾配は、前記アノードの中心部分と前記アノード外面との間で連続している、
    請求項12に記載のアノード。
  14. 前記第1のアノード配合物の重量は、前記アノード内の前記第2のアノード配合物の重量を超える、
    請求項10に記載のアノード。
JP2021517475A 2018-09-28 2019-07-16 二重アノードを有するアルカリ電池 Active JP7186870B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/145,830 US11211615B2 (en) 2018-09-28 2018-09-28 Alkaline battery having a dual-anode
US16/145,830 2018-09-28
PCT/US2019/041910 WO2020068247A1 (en) 2018-09-28 2019-07-16 Alkaline battery having a dual-anode

Publications (2)

Publication Number Publication Date
JP2022510543A JP2022510543A (ja) 2022-01-27
JP7186870B2 true JP7186870B2 (ja) 2022-12-09

Family

ID=67480425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021517475A Active JP7186870B2 (ja) 2018-09-28 2019-07-16 二重アノードを有するアルカリ電池

Country Status (6)

Country Link
US (2) US11211615B2 (ja)
EP (1) EP3857629A1 (ja)
JP (1) JP7186870B2 (ja)
KR (1) KR20210070328A (ja)
CN (1) CN113383444B (ja)
WO (1) WO2020068247A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11322752B2 (en) 2017-03-10 2022-05-03 Energizer Brands, Llc Anode cross-sectional characteristic gradient
US11211615B2 (en) 2018-09-28 2021-12-28 Energizer Brands, Llc Alkaline battery having a dual-anode
US11502284B2 (en) 2020-01-22 2022-11-15 Energizer Brands, Llc Systems and methods for generating an electrochemical cell having a multi-part anode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007521617A (ja) 2003-07-03 2007-08-02 ザ ジレット カンパニー 改良された負極を有するアルカリ電池
JP2009164079A (ja) 2008-01-10 2009-07-23 Panasonic Corp アルカリマンガン電池の製造方法およびアルカリマンガン電池
JP2018506150A (ja) 2015-01-16 2018-03-01 スペクトラム ブランズ インコーポレイテッド 改善された信頼性及び放電性能を有するアルカリセル

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU438685B2 (en) 1971-04-30 1973-07-31 Buzova, Zoya Mikhailovna An arrangement for manufacture ofa primary cell electrode
US5401590A (en) * 1992-12-07 1995-03-28 Duracell Inc. Additives for electrochemical cells having zinc anodes
US5962163A (en) * 1997-08-27 1999-10-05 Eveready Battery Company, Inc. Alkaline cell with gel type anode having centrally disposed gelling agent absorbent
US6207322B1 (en) 1998-11-16 2001-03-27 Duracell Inc Alkaline cell with semisolid cathode
US6326102B1 (en) 1998-11-24 2001-12-04 Eveready Battery Company, Inc. High rate electrochemical cell with increased anode-to-cathode interface surface area
US6872489B2 (en) * 2002-02-27 2005-03-29 Rovcal, Inc. Alkaline cell with gassing inhibitors
US7226696B2 (en) * 2002-02-27 2007-06-05 Rayovac Corporation Alkaline cell with performance enhancing additives
US20070248879A1 (en) * 2002-08-28 2007-10-25 Durkot Richard E Alkaline battery including nickel oxyhydroxide cathode and zinc anode
CN1331266C (zh) 2004-04-30 2007-08-08 比亚迪股份有限公司 一种碱性蓄电池及其制备方法
EP1715536A3 (en) 2005-04-20 2007-10-10 ReVolt Technology AS Zinc electrode comprising an organic gelling agent and an organic binder.
US8586244B2 (en) 2007-04-02 2013-11-19 Eveready Battery Co., Inc. Alkaline electrochemical cell having a negative electrode with solid zinc oxide and a surfactant
CN102132438A (zh) * 2008-07-30 2011-07-20 住友化学株式会社 层叠结构体、其制造方法和含有其的电子元件
US8323835B2 (en) 2008-10-01 2012-12-04 The Gillette Company Batteries having multiple anode portions
US10008748B2 (en) * 2012-12-05 2018-06-26 Duracell U.S. Operations, Inc. Alkaline electrochemical cells with separator and electrolyte combination
US9590233B2 (en) * 2013-04-05 2017-03-07 Duracell U.S. Operations, Inc. Method of making a cathode
CN106415919A (zh) * 2014-03-31 2017-02-15 泰克年研究发展基金会公司 钝态金属活化方法和其用途
WO2017070340A1 (en) * 2015-10-21 2017-04-27 Research Foundation Of The City University Of New York Additive for increasing lifespan of rechargeable zinc-anode batteries
WO2017201124A2 (en) * 2016-05-17 2017-11-23 Eos Energy Storage, Llc Zinc-halide battery using a deep eutectic solvent-based electrolyte
US11322752B2 (en) 2017-03-10 2022-05-03 Energizer Brands, Llc Anode cross-sectional characteristic gradient
US11211615B2 (en) 2018-09-28 2021-12-28 Energizer Brands, Llc Alkaline battery having a dual-anode
US11502284B2 (en) 2020-01-22 2022-11-15 Energizer Brands, Llc Systems and methods for generating an electrochemical cell having a multi-part anode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007521617A (ja) 2003-07-03 2007-08-02 ザ ジレット カンパニー 改良された負極を有するアルカリ電池
JP2009164079A (ja) 2008-01-10 2009-07-23 Panasonic Corp アルカリマンガン電池の製造方法およびアルカリマンガン電池
JP2018506150A (ja) 2015-01-16 2018-03-01 スペクトラム ブランズ インコーポレイテッド 改善された信頼性及び放電性能を有するアルカリセル

Also Published As

Publication number Publication date
JP2022510543A (ja) 2022-01-27
KR20210070328A (ko) 2021-06-14
US20200106109A1 (en) 2020-04-02
EP3857629A1 (en) 2021-08-04
CN113383444A (zh) 2021-09-10
WO2020068247A1 (en) 2020-04-02
US20220077473A1 (en) 2022-03-10
US11211615B2 (en) 2021-12-28
CN113383444B (zh) 2024-03-26
US11677082B2 (en) 2023-06-13

Similar Documents

Publication Publication Date Title
US8586244B2 (en) Alkaline electrochemical cell having a negative electrode with solid zinc oxide and a surfactant
US11677082B2 (en) Alkaline battery having a dual-anode
US11322752B2 (en) Anode cross-sectional characteristic gradient
JP2023101817A (ja) 増加酸化亜鉛レベルを含むアルカリ電気化学電池
JP7410644B2 (ja) 電池性能を改良するための長鎖界面活性剤
US11502284B2 (en) Systems and methods for generating an electrochemical cell having a multi-part anode
US11705584B2 (en) Additives for improving battery performance via second electron discharge of manganese dioxide
US11502303B2 (en) Single-walled carbon nanotubes in alkaline electrochemical cell electrodes
US11081763B2 (en) Current interrupt for electrochemical cells
US20240170677A1 (en) Hybrid material anode current collector for alkaline batteries
US20230163321A1 (en) Electrochemical cell with increased runtime and reduced internal shorting

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A529

Effective date: 20210525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221129

R150 Certificate of patent or registration of utility model

Ref document number: 7186870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150