2.2 関連技術の説明
2.2.1 ヒトの呼吸器系およびその疾患
身体の呼吸器系は、ガス交換を促進させる。鼻および口腔は、患者の気道への入口を形成する。
これらの気道は、一連の分岐する管を含み、これらの管は、肺の奥深くに進むほど狭く、短くかつ多数になる。肺の主要な機能はガス交換であり、空気から酸素を静脈血中へ取り入れさせ、二酸化炭素を退出させる。気管は、右および左の主気管支に分かれ、これらの主気管支はさらに分かれて、最終的に終末細気管支となる。気管支は、伝導のための気道を構成するものであり、ガス交換には関与しない。気道がさらに分割されると呼吸細気管支となり、最終的には肺胞となる。肺の肺胞領域においてガス交換が行われ、この領域を呼吸ゾーンと呼ぶ。以下を参照されたい:「Respiratory Physiology」, by John B. West, Lippincott Williams & Wilkins, 9th edition published 2012。
一定範囲の呼吸器疾患が存在している。特定の疾患は、特定の発症(例えば、無呼吸、呼吸低下および過呼吸)によって特徴付けられ得る。
呼吸器疾患の例には、閉塞性睡眠時無呼吸(OSA)、チェーン・ストークス呼吸(CSR)、呼吸不全、肥満過換気症候群(OHS)、慢性閉塞性肺疾患(COPD)、神経筋疾患(NMD)および胸壁疾患が含まれる。
閉塞性睡眠時無呼吸(OSA)は、睡眠呼吸障害(SDB)の1つの形態であり、睡眠時の上通気道の閉鎖または閉塞などの発症によって特徴付けられる。これは睡眠時の異常に小さな上気道および舌領域における筋緊張の正常欠損、軟口蓋および後口咽頭壁の組み合わせに起因する。このような状態に起因して、罹患患者の呼吸停止が典型的には30~120秒にわたり、ときには一晩に200~300回も呼吸が停止する。その結果、日中の眠気が過度になり、心血管疾患および脳損傷の原因になり得る。この症候は一般的な疾患であり、特に中年の過体重の男性に多いが、患者に自覚症状は無い。米国特許第4,944,310号(Sullivan)を参照されたい。
チェーン・ストークス呼吸(CSR)は、別の形態の睡眠呼吸障害である。CSRは、患者の呼吸調節器の疾患であり、CSRサイクルとして知られる換気の漸増および漸減が交互に周期的に続く。CSRは、動脈血の脱酸素および再曝気の繰り返しによって特徴付けられる。反復低酸素症のため、CSRは有害であり得る。患者によっては、CCRは、重症不眠、交感神経活動の増加、および後負荷の増加の原因となる、反復性睡眠覚醒を随伴する。米国特許第6,532,959号(Berthon-Jones)を参照されたい。
呼吸不全とは、呼吸器障害の総称であり、患者の需要を満たすための充分な酸素吸気または充分なCO2呼気を肺が行うことができていないことを指す。呼吸不全は、以下の疾患のうちいくつかまたは全てを包含し得る。
呼吸不全(一種の呼吸不全)の患者は、運動時に異常な息切れを経験することがある。
肥満過換気症候群(OHS)は、低換気の原因が他に明確に無い状態における、重症肥満および覚醒時慢性高炭酸ガス血症の組み合わせとして定義される。症状には、呼吸困難、起床時の頭痛と過剰な日中の眠気が含まれる。
慢性閉塞性肺疾患(COPD)は、特定の共通する特性を有する下気道疾患のグループのうちのいずれも包含する。これには空気の動きに対する抵抗の増加、呼吸の呼気相の延長および肺における正常な弾性の減少が含まれる。COPDの例として、気腫および慢性気管支炎がある。COPDの原因としては、慢性喫煙(第一危険因子)、職業被ばく、空気汚染および遺伝因子がある。症状を挙げると、労作時の呼吸困難、慢性咳および痰生成がある。
神経筋疾患(NMD)は、内在筋病理を直接介してまたは神経病理を間接的に介して筋肉機能を損なう多数の疾病および病気を包含する広範な用語である。NMD患者の中には、進行性の筋肉障害によって特徴付けられる者もあり、結果的に歩行不可能、車椅子への束縛、嚥下困難、呼吸筋力低下に繋がり、最終的には呼吸不全による死亡に繋がる。神経筋肉障害は、以下の急速進行性と緩徐進行性とに区分され得る:(i)急速進行性障害:数ヶ月かけて悪化する筋肉障害によって特徴付けられ、数年内に死亡に繋がる(例えば、ティーンエージャーにおける筋萎縮性側索硬化症(ALS)およびデュシェンヌ筋ジストロフィー(DMD));(ii)可変性または緩徐進行性障害:数年かけて悪化する筋肉障害によって特徴付けられ、平均余命が若干低減するだけである(例えば、肢帯、顔面肩甲上腕型および筋強直性筋ジストロフィー)。NMDにおける呼吸不全症状を以下に挙げる:全身衰弱の増加、嚥下障害、労作および安静時の呼吸困難、疲労、眠気、起床時の頭痛、および集中および気分の変化の困難。
胸壁障害は、胸郭変形の1つのグループであり、呼吸筋肉と胸郭との間の連結の無効性の原因となる。これらの障害は、拘束性障害によって主に特徴付けられ、長期の炭酸過剰性呼吸不全の可能性を共有する。脊柱側弯症および/または後側弯症は、重篤な呼吸不全を発症することがある。呼吸不全の症状を以下に挙げる:労作時の呼吸困難、末梢浮腫、起座呼吸、反復性胸部感染症、起床時の頭痛、疲労、睡眠の質の低下、および食欲不振。
このような状態を治療または改善するために、一定範囲の治療が用いられている。さらに、その他の点では健常人も、呼吸器疾患の予防治療を有利に利用することができる。しかし、これらにおいては、複数の欠陥がある。
2.2.2 治療法
多様な療法(例えば、持続的気道陽圧(CPAP)治療法、非侵襲的換気(NIV)および侵襲的換気(IV)が上記の呼吸器疾患の1つ以上の治療のために用いられている。
持続的気道陽圧(CPAP)療法が、閉塞性睡眠時無呼吸(OSA)の治療において用いられている。その作用機構としては、例えば軟口蓋および舌を押して後口咽頭壁へ前進または後退させることにより、持続的気道陽圧療法が空気圧スプリントとして機能し、これにより上気道の閉鎖を回避する。CPAP治療によるOSAの治療は自発的なものであり得るため、このような患者が治療の提供に用いられるデバイスについて以下のうち1つ以上に気づいた場合、患者が治療を遵守しないことを選択する可能性がある:不快、使用困難、高価、美観的な魅力の無さ。
非侵襲的換気(NIV)は、換気補助を上気道を通じて患者へ提供して、呼吸機能の一部または全体を行うことにより患者の呼吸の補助および/または身体中の適切な酸素レベルの維持を提供する。換気補助が、非侵襲的患者インターフェースを介して提供される。NIVは、OHS、COPD、NMD、および胸壁障害などの形態のCSRおよび呼吸不全の治療に用いられている。いくつかの形態において、これらの治療の快適性および有効性が向上し得る。
侵襲的換気(IV)は、自身で有効に呼吸することができなくなった患者に対して換気補助を提供し、気管切開管を用いて提供され得る。いくつかの形態において、これらの治療の快適性および有効性が向上し得る。
2.2.3 治療システム
これらの治療は、治療システムまたはデバイスによって提供され得る。このようなシステムおよびデバイスは、症状を治療することなく診断するためにも、用いられ得る。
治療システムは、呼吸圧力治療デバイス(RPTデバイス)、空気回路、加湿器、患者インターフェース、およびデータ管理を含み得る。
別の形態の治療システムとして、下顎再位置決めデバイスがある。
2.2.3.1 患者インターフェース
患者インターフェースは、例えば気道入口への空気流れを提供することにより呼吸装具へのインターフェースを装着者へ提供するために、用いられ得る。空気流れは、鼻および/または口腔へのマスク、口腔への管、または患者気管への気管切開管を介して提供され得る。適用される療法に応じて、患者インターフェースは、例えば患者の顔の領域との密閉部を形成し得、これにより、療法実行のための雰囲気圧力と共に充分な分散の圧力において(例えば、例えば雰囲気圧力に対して約10cmH2Oの陽圧において)ガス送達を促進する。酸素送達などの他の治療形態において、患者インターフェースは、約10cmH2Oの陽圧において気道へのガス供給の送達を促進するのに充分な密閉を含まない場合がある。
特定の他のマスクシステムは、本分野において機能的に不適切であり得る。例えば、純然たる装飾目的のマスクの場合、適切な圧力を維持することができない場合がある。水中水泳またはダイビングに用いられるマスクシステムは、外部からのより高い圧力からの水侵入から保護することと、周囲よりも高い圧力において内部の空気を維持しないこととを行うように、構成され得る。
特定のマスクは、本技術において臨床的に好ましく無い場合があり得る(例えば、マスクが鼻を介して気流を遮断し、口を介した気流のみを通過させる場合)。
特定のマスクにおいて、患者がマスク構造の一部を口に挿入し、唇を介して密閉状態を生成および維持しなければならない場合、本技術において不快であるかまたは非実際的である場合がある。
特定のマスクは、睡眠時(例えば、横向きにベッドに寝て枕の上に頭を置いた状態で睡眠する場合)における使用においては非実際的である場合がある。
患者インターフェースの設計においては、複数の課題がある。顔は、複雑な三次元形状を有する。鼻および頭のサイズおよび形状は、個人によって大きく異なる。頭部には骨、軟骨および軟組織が含まれるため、顔の異なる領域は、機械的力に対して異なる反応を示す。すなわち、顎部または下顎は、頭蓋骨の他の骨に相対して動き得る。頭部全体は、呼吸治療期間を通じて動き得る。
これらの課題に起因して、いくつかのマスクの場合、特に装着時間が長い場合または患者がシステムに不慣れである場合、押しつけがましい、美観的に望ましくない、コストが高い、フィット感が悪い、使用が困難、および不快感があるなどの理由のうち1つ以上がある。誤ったサイズのマスクが用いられた場合、適応性の低下、快適性の低下および患者予後の低下に繋がり得る。飛行士専用のマスク、個人用保護装具(例えば、フィルターマスク)、SCUBAマスクの一部として設計されたマスク、または麻酔投与用マスクは、その元々の用途には耐えられるものの、このようなマスクの場合、長時間(例えば、数時間)にわたって装着するには望ましくないほど不快な場合がある。このような不快感に起因して、治療に対する患者の承諾が低下する可能性がある。これは、マスクを睡眠時に装着する必要がある場合、特に当てはまる。
CPAP治療は、患者が治療を承諾している場合、特定の呼吸器疾患の治療においては極めて効果的である。マスクが不快である場合または使用が難しい場合、患者は、治療を承諾しない場合がある。患者はマスクを定期的に洗浄するよう推奨されることが多いため、マスクの清浄が難しい(例えば、組立または分解が困難である場合)、患者は、マスクを清浄することができず、患者の承諾に影響が出る場合がある。
他の用途(例えば、飛行士)用のマスクの場合、睡眠呼吸障害の治療の使用には不適である場合があるため、睡眠呼吸障害の治療の使用のために設計されたマスクは、他の用途に適している場合がある。
これらの理由のめ、睡眠時のCPAP送達のための患者インターフェースは、明瞭な分野を形成する。
2.2.3.1.1 シール形成部分
患者インターフェースはシール形成部分を含み得る。患者インターフェースは、患者の顔と直接接触するため、シール形成部分の形状および構成は、患者インターフェースの有効性および快適性に直接影響を持ち得る。
患者インターフェースは、使用時にシール形成部分を顔と係合させる場所の設計意図に従って、部分的に特徴付けられ得る。患者インターフェースの一形態において、シール形成部分は、左鼻孔の周囲にシールを形成するための第1のサブ部分と、右鼻孔の周囲にシールを形成するための第2のサブ部分とを含み得る。患者インターフェースの一形態において、シール形成部分は、使用時において双方の鼻孔を包囲する単一の要素を含み得る。このような単一の要素は、例えば顔の上唇領域および鼻梁領域上に載置されるように、設計され得る。患者インターフェースの一形態において、シール形成部分は、使用時に例えば顔の下唇領域上にシールを形成することにより口腔領域を包囲する要素を含み得る。患者インターフェースの一形態において、シール形成部分は、使用時に双方の鼻孔および口腔領域を包囲する単一の要素を含み得る。これらの異なる種類の患者インターフェースは、その製造業者によって鼻マスク、フルフェイスマスク、鼻枕、鼻パフおよび口鼻マスクなどの多様な名称によって公知であり得る。
患者の顔の一領域において有効であり得るシール形成部分は、例えば患者の顔の異なる形状、構造、変化性および感受性領域に起因して、別の領域において不適切であり得る。例えば、患者の前額上に載置される水泳用ゴーグルの密閉部は、患者の鼻上における使用には不適切である場合がある。
特定のシール形成部分は、広範囲の異なる顔形状およびサイズに対して1つの設計が適合し、快適でありかつ有効になるように、大量製造用に設計され得る。密閉部を形成するためには、患者の顔の形状と、大量製造された患者インターフェースのシール形成部分との間の不整合がある範囲まで、一方または双方を適合させる必要がある。
1つの種類のシール形成部分は、患者インターフェースの周囲を包囲して延び、シール形成部分が患者の顔に対向して係合している状態で力が患者インターフェースへ付加された際、患者の顔を密閉することを意図する。このシール形成部分は、空気または流体充填クッションを含み得るか、または、ゴムなどのエラストマーによって構成された弾力性のある密閉要素の成形されたかまたは形成された表面を含み得る。この種のシール形成部分により、フィット感が不適切である場合、シール形成部分と顔との間に隙間が発生し、密閉を達成するには、患者インターフェースを顔に押しつけるためにさらなる力が必要になる。
別の種類のシール形成部分は、陽圧がマスク内に付加された際に患者の顔に対して自己気密作用を提供するように、マスクの周囲の周辺に配置された薄材のフラップシールを使用する。先述の種類のシール形成部分と同様に、顔とマスクとの間の整合が良くない場合、密閉を達成するために必要なさらなる力が必要になり得るか、またはマスクから漏洩が発生し得る。さらに、シール形成部分の形状が患者の形状と整合しない場合、使用時においてシール形成部分に折り目または座屈が発生し、漏洩の原因になる。
別の種類のシール形成部分は、例えば鼻孔中へ挿入される摩擦嵌め要素を含み得るが、これらのシール形成部分を不快であると感じる患者も存在する。
別の形態のシール形成部分は、密閉を達成するために接着部を用い得る。患者の中には、常に接着部を自身の顔に貼り付けるかまたは取り外すことが不便であると感じる患者もいる。
一定範囲の患者インターフェースシール形成部分の技術について、(ResMed Limitedへ譲渡された以下の特許出願:WO1998/004,310;WO2006/074,513;WO2010/135,785)に開示がある。
鼻枕の一形態が、Puritan Bennettによって製造されたAdam回路において見受けられる。別の鼻枕または鼻パフが、Puritan-Bennett Corporationへ譲渡された米国特許第4,782,832号(Trimbleら)の主題になっている。
ResMed Limitedは、鼻枕を用いた以下の製品を製造している:SWIFT(登録商標)鼻枕マスク、SWIFT(登録商標)II鼻枕マスク、SWIFT(登録商標)LT鼻枕マスク、SWIFT(登録商標)FX鼻枕マスクおよびMIRAGELIBERTY(登録商標)フルフェイスマスク。ResMed Limitedへ譲渡された以下の特許出願において、鼻枕マスクの実施例についての記載がある:国際特許出願WO2004/073、778号(特に、ResMed LimitedのSWIFT(登録商標)鼻枕の様相を記載)、米国特許出願第2009/0044808号(特に、ResMed LimitedのSWIFT(登録商標)LT鼻枕の様相を記載);国際特許出願WO2005/063,328号およびWO2006/130,903号(特に、ResMed LimitedのMIRAGE LIBERTY(登録商標)フルフェイスマスクの様相を記載);国際特許出願WO2009/052,560号(特に、ResMed LimitedのSWIFT(登録商標)FX鼻枕の様相を記載)。
2.2.3.1.2 位置決めおよび安定化
陽圧空気治療に用いられる患者インターフェースのシール形成部分は、密閉を妨害する空気圧力の対応する力を受ける。そのため、シール形成部分を位置決めすることと、顔の適切な部分に対して密閉を維持することとを行うために、多様な技術が用いられている。
1つの技術において、接着部が用いられる。例えば、米国特許出願公開US2010/0000534号を参照されたい。しかし、接着部を用いた場合、不快感がある場合がある。
別の技術において、1つ以上のストラップおよび/または安定化ハーネスが用いられる。多数のこのようなハーネスの場合、フィット感が悪い、かさばる、不快および扱いにくいなどの点のうち1つ以上が当てはまる。
2.2.3.2 呼吸圧力治療(RPT)デバイス
呼吸圧力治療(RPT)デバイスは、例えば気道入口への空気送達流れを生成することにより、上記した複数の治療のうち1つ以上の送達に用いられ得る。この空気流れは、加圧され得る。RPTデバイスの例を挙げると、CPAPデバイスおよび人工呼吸器がある。
空気圧生成器は、広範な用途(例えば、工業規模通気システム)において公知である。しかし、医療用途のための空気圧生成器は、より一般的な空気圧生成器(例えば、医療機器の信頼性要件、サイズ要件および重量要件)では満足できない特定の要件を有する。加えて、医療治療向けに設計されたデバイスであっても、以下のうち1つ以上に関連して欠陥を免れない場合がある:快適性、ノイズ、使いやすさ、有効性、サイズ、重量、製造可能性、コストおよび信頼性。
特定のRPTデバイスの特殊な要件の一例として、音響ノイズがある。
睡眠呼吸障害の治療に用いられる1つの公知のRPTデバイスとして、S9睡眠治療システム(製造元:ResMed Limited)がある。RPTデバイスの別の実施例として、人工呼吸器がある。人工呼吸器(例えば、成人および小児用人工呼吸器のResMed Stellar(登録商標)シリーズ)の場合、複数の状態(例を非限定的に挙げると、NMD、OHSおよびCOPD)の治療のための一定範囲のための患者のための侵襲的および非侵襲的な非依存的呼吸のための補助を提供し得る。
ResMed Elisee(登録商標)150人工呼吸器およびResMedVSIII(登録商標)人工呼吸器は、複数の状態の治療のための成人患者または小児用患者に適した侵襲的および非侵襲的な依存的呼吸の補助を提供し得る。これらの人工呼吸器により、単一または二重の肢回路を用いた容積通気モードおよび気圧通気モードが得られる。RPTデバイスは典型的には、圧力生成器(例えば、電動送風機または圧縮ガスリザーバ)を含み、患者の気道へ空気流れを供給するように構成される。場合によっては、空気流れは、患者の気道へ陽圧で供給され得る。RPTデバイスの出口は、空気回路を介して上記したような患者インターフェースへ接続される。
デバイスの設計者には、無数の選択肢が提示され得る。設計基準同士が対立することが多くあるため、特定の設計選択肢が慣例からほど遠くなるかあるいは避けられないことがある。さらに、特定の態様の快適性および有効性は、1つ以上のパラメータの些細な変更から大きく影響を受ける可能性もある。
2.2.3.3 加湿器
空気流れの送達を加湿無しで行った場合、気道の乾燥に繋がり得る。加湿器をRPTデバイスおよび患者インターフェースと共に用いた場合、加湿ガスが生成されるため、鼻粘膜の乾燥が最小化され、患者気道の快適性が増加する。加えて、より冷涼な気候においては、概して患者インターフェースの周囲の顔領域へ温風を付加すると、冷風の場合よりも快適性が高まる。
一定範囲の人工的加湿機器およびシステムが公知であるが、医療加湿器の特殊な要件を満たせていない。
医療加湿器は、典型的には患者が(例えば病院において)睡眠時または安静時にあるときに、必要な場合に周囲空気に相対して空気流れの湿度および/または温度を増加させるように、用いられる。枕元に置かれる医療加湿器は、小型である場合がある。医療加湿器は、患者へ送達される空気流れの加湿および/または加熱のみを行うように構成され得、患者の周囲の加湿および/または加熱は行わない。例えば、部屋ベースのシステム(例えば、サウナ、エアコン、または蒸発冷却器)は、呼吸により患者体内に取り込まれる空気も加湿し得るものの、これらのシステムの場合、部屋全体も加湿および/または加熱するため、占有者にとって不快になり得る。さらに、医療加湿器の場合、工業用加湿器よりも安全面での制約がより厳しい場合もある。
多数の医療加湿器が公知であるものの、このような医療加湿器の場合、1つ以上の欠陥を被り得る。すなわち、このような医療加湿器の場合、加湿が不適切なものもあれば、患者にとって使用が困難または不便であるものもある。
2.2.3.4 データ管理
臨床的理由により、呼吸治療が処方された患者が「コンプライアンスを遵守している」(例えば、患者が自身のRPTデバイスを特定の「コンプライアンスルール」に則っているか)を決定するためのデータを入手する場合がある。CPAP治療についてのコンプライアンスルールの一例として、患者がコンプライアンスを遵守しているとみなすためには、患者が連続30日間のうち少なくとも21日間にわたってRPTデバイスを一晩あたり少なくとも4時間にわたって使用する必要がある。患者のコンプライアンスを決定するためには、RPTデバイスのプロバイダ(例えば、ヘルスケアプロバイダ)は、RPTデバイスを用いた患者の治療を記述するデータを手作業で入手し、所定期間にわたる使用率を計算し、これをコンプライアンスルールと比較し得る。ヘルスケアプロバイダが患者が自身のRPTデバイスをコンプライアンスルールに則って使用したと決定すると、当該ヘルスケアプロバイダは、患者がコンプライアンスを遵守している旨を第三者に通知し得る。
患者の治療において、治療データの第三者または外部システムへの通信から恩恵を受ける他の態様があり得る。
このようなデータを通信および管理するための既存のプロセスの場合、高コスト、時間がかかること、エラーの発生し易さのうち1つ以上が発生し得る。
2.2.3.5 下顎の再位置決め
下顎再位置決めデバイス(MRD)または下顎前方固定デバイス(MAD)は、睡眠時無呼吸およびいびきの治療選択肢の1つである。これは、歯科医または他の供給業者から利用可能である調節可能な口腔用器具であり、下顎部(下顎)を睡眠時に前方位置に保持する。MRDは、取り外し可能なデバイスであり、患者の睡眠前に口腔内に挿入され、睡眠後に取り外される。そのため、MRDは、常時装着用途を想定した設計はされていない。MRDは、カスタム仕様にしてもよいし、あるいは、標準形態で製造してもよく、患者の歯に適合するように設計された咬合印象部位を含む。この下顎からの機械的突出部は、舌の後ろ側の空間を拡張させ、咽頭壁上へ張力を付加して、気道崩壊を低減させ、口蓋振動を低減させる。
特定の実施例において、下顎前方固定デバイスは、上顎または上顎骨上の歯と係合するかまたは嵌め合うように意図された上側スプリントと、上顎または下顎上の歯と係合するかまたは嵌め合うように意図された下側スプリントとを含み得る。上側スプリントおよび下側スプリントは、一対の接続ロッドを介して相互に横方向に接続される。この1組の接続ロッドは、上側スプリントおよび下側スプリント上において対称に固定される。
このような設計において、接続ロッドの長さは、MRDが患者の口腔中に配置されたときに下顎が前方位置に保持されるように、選択される。接続ロッドの長さは、下顎の突出レベルを変化させるように、調節され得る。歯科医は、突出レベルを下顎に合わせて決定することができ、その結果、接続ロッドの長さが決定される。
下顎を上顎骨に対して前方に押し出すように構成されているMRDもあれば、ResMed Narval CC(登録商標)MRDなどの他のMADのように、下顎を前方位置に保持するように設計されているものもある。このデバイスにより、歯科的副作用および側頭/下顎間の関節(TMJ)の副作用も低下または最小化される。そのため、このデバイスは、歯のうち1つ以上の任意の移動を最小化または回避するように構成される。
2.2.3.6 通気技術
いくつかの形態の治療システムは、吐き出された二酸化炭素を押し出すための通気部を含み得る。この通気部により、患者インターフェースの内部空間(例えば、プレナムチャンバ)から患者インターフェースの外部(例えば、周囲)への流れが可能になり得る。
この通気部は、オリフィスを含み得、マスク使用時において、ガスがオリフィスを通じて流れ得る。多数のこのような通気部の場合、音がうるさい。他の場合、使用時において閉塞し得るため、押し出しが不十分になる。いくつかの通気部の場合、例えば音または気流集中に起因して、患者1000と同床者1100の睡眠を妨げる場合がある。
ResMed Limitedは、複数の向上したマスク通気技術を開発している。下記を参照されたい:国際特許出願公開第WO1998/034,665;国際特許出願公開第WO2000/078,381;米国特許第6,581,594号;米国特許出願公開第US2009/0050156;米国特許出願公開第2009/0044808。
2.2.4 診断システムおよび監視システム
睡眠ポリグラフ(PSG)は、心肺疾患の診断および監視のための従来のシステムであり、典型的には、システム適用のために専門家臨床スタッフを必要とすることが多い。PSGにおいては、多様な身体信号(例えば、脳波検査(EEG)、心電図検査(ECG)、電気眼球図記録(EOG)、筋電図描画法(EMG))を記録するために、典型的には15~20個の接触覚センサーを人体上に配置する。睡眠時呼吸障害のPSGのめには、患者を専門病院において二晩にわたって観察する必要があった。すなわち、第一夜は純然たる診断のためであり、第二夜は、臨床医による治療パラメータのタイトレーションのために必要であった。そのため、PSGは高コストであり、利便性も低い。PSGは、家庭における睡眠テストには特に不向きである。
臨床専門家は、患者の診断または監視をPSG信号の視覚的観察に基づいて適切に行い得る。しかし、臨床専門家が居ないまたは臨床専門家への支払いができない状況がある。患者の状態について臨床専門家によって意見が異なる場合がある。さらに、或る臨床専門家は、時期によって異なる基準を適用し得る。
5 本技術の実施例の詳細な説明
本技術についてさらに詳細に説明する前に、本技術は、本明細書中に記載される異なり得る特定の実施例に限定されるのではないことが理解されるべきである。本開示中に用いられる用語は、本明細書中に記載される特定の実施例を説明する目的のためのものであり、限定的なものではないことも理解されるべきである。
以下の記載は、1つ以上の共通の特性および/または特徴を共有し得る多様な実施例に関連して提供される。任意の1つの実施例の1つ以上の特徴は、別の実施例または他の実施例の1つ以上の特徴と組み合わせることが可能であることが理解されるべきである。加えて、これらの実施例のうちのいずれかにおける任意の単一の特徴または特徴の組み合わせは、さらなる実施例を構成し得る。
5.1 治療法
一形態において、本技術は、呼吸器疾患の治療方法を含む。本方法は、患者1000の気道の入口へ陽圧を付加するステップを含む。
本技術の特定の実施例において、陽圧における空気供給が鼻孔の片方または双方を介して患者の鼻通路へ提供される。
本技術の特定の実施例において、口呼吸が制限されるか、限定されるかまたは妨げられる。
5.2 治療システム
一形態において、本技術は、呼吸障害の治療のための装置またはデバイスを含む。装置またはデバイスは、加圧空気を患者インターフェース3000への空気回路4170を介して患者1000へ供給するRPTデバイス4000を含み得る。
5.3 患者インターフェース
本技術の一態様による非侵襲的患者インターフェース3000は、以下の機能様態を含む:シール形成構造3100、プレナムチャンバ3200、位置決めおよび安定化構造3300、通気孔3400、空気回路4170への接続のための一形態の接続ポート3600、および前額支持部3700。いくつかの形態において、機能様態が、1つ以上の物理的コンポーネントによって提供され得る。いくつかの形態において、1つの物理的コンポーネントは、1つ以上の機能様態を提供し得る。使用時において、シール形成構造3100は、気道への陽圧での空気供給を促進するように、患者の気道の入口を包囲するように配置される。
本発明者らの発見によれば、患者インターフェース3000が最低レベルの陽圧を快適に気道へ送達できない場合、治療が無効になる可能性が出てくる。
本技術の一形態による患者インターフェース3000は、周囲に対して少なくとも6cmH20の陽圧で空気供給を提供できるように構築および配置される。
本技術の一形態による患者インターフェース3000は、周囲に対して少なくとも10cmH20の陽圧で空気供給を提供できるように構築および配置される。
本技術の一形態による患者インターフェース3000は、周囲に対して少なくとも20cmH20の陽圧で空気供給を提供できるように構築および配置される。
5.3.1 シール形成構造
本技術の一形態において、シール形成構造3100は、シール形成表面を提供し、クッション機能をさらに提供し得る。
本技術によるシール形成構造3100は、柔らかく、可撓性でありかつ弾力性のある材料(例えば、シリコーン)から構成され得る。
一形態において、非侵襲的患者インターフェース3000は、使用時患者の顔の上唇領域(すなわち、上唇)上にシールを形成するシール形成部分を含む。
一形態において、非侵襲的患者インターフェース3000は、使用時患者の顔の顎領域上に密閉を形成するシール形成部分を含む。
本技術の特定の形態において、1つよりも多くのシール形成構造3100を含むシステムが提供される。各シール形成構造3100は、異なるサイズおよび/または形状範囲に対応するように構成される。例えば、システムは、小さなサイズの頭ではなく大きなサイズの頭に適したシール形成構造3100の一形態および大きなサイズの頭ではなく小さなサイズの頭に適した別のものを含み得る。
本技術の特定の形態において、シール形成構造3100は、生体適合性材料(例えば、シリコーンゴム)から構成される。
図4は、患者インターフェース3000の残りから分離されたシール形成構造3100の斜視図である。シール形成構造は、患者の気道の周囲にシールを形成するように構成された密閉面3105を含む。該シールは、患者の鼻または患者の鼻および口腔の周囲に形成され得る。
シール形成構造3100は、密閉構造3100の外周3115の密閉構造3100を内方に(例えば、使用時に患者の顔に向かって)折り畳むつなぎ材、接続部またはループ3110を含む。外周3115は、密閉面3105を支持しかつ/または密閉面3105と連続的に形成された壁として概して規定され得る。このようにして、つなぎ材3110は、つなぎ材3110が密閉面3105および外周3115と共に連続的構造(例えば、連続的円周)を形成するように、実質的に管状の構造3120を形成し得る。よって、つなぎ材3110は、密閉面の一部3105と、外周3115の一部と、密閉面3105でも外周3115でもない部位とを含み得る。密閉面3105でも外周3115でもない部位は、フラップまたはシートの形態をとり得、一端において密閉面へ取り付けられたかまたは密閉面と連続しかつ別の端部において外周3115へ取り付けられたかまたは外周3115と連続する。つなぎ材3110は、患者の鼻と並んで(例えば、翼に沿って)鼻骨の上方またはその間の任意の位置に配置され得る。2つのつなぎ材3110が、患者の鼻の対向する両側部上に設けられ得る。つなぎ材3110は、一端または両端を含んで内的に開口し得、これにより、つなぎ材3110が使用時に患者の治療圧力により内的に加圧される(例えば、流体連通される)。
本技術の一形態において、つなぎ材3110は、シール形成構造3100の周囲において一部のみに延び得る。
一形態において、つなぎ材3110およびシール形成構造3100は、閉鎖型の加圧可能な構造(例えば、ブラダー)を形成せず、これにより、つなぎ材3110とシール形成構造3100との間の空間が患者インターフェース3000の内部の圧力に対して開口する。
一形態において、シール形成構造3100は縁を有し、つなぎ材3110は、縁における破裂を防止するように縁を保持する。
つなぎ材3110以外の密閉面3105の領域は、密閉構造の内周3100へと内方に突出する密閉フラップ3125を含み得る。密閉フラップ3125は、密閉面3105のラジアル方向の内側部位またはその近隣において、接続されていない縁を持ち得る。密閉フラップ3125は、患者の鼻骨上方の鼻の側部に対してシールを形成するように構成された部位3125aを含み得る。密閉フラップ3125は、(例えば、翼に対して充分に離隔したラジアル方向に外方に間隔を空けて配置されることにより)翼に対して密閉を回避するような構造にされ得、これにより、翼との接触が回避または最小化される。
図5は、図4に対して実質的に反対側のシール形成構造3100の斜視図である。実質的に管状の構造3120は、この図からより容易に明らかになり得る。図5Aは、閉端3111を備えたつなぎ材3110を示す。本図は、下側にクッションを備えていないシール形成構造3100も示し、そのためシール形成構造3100は単一層クッションと呼ばれ得る。
図6は、シール形成構造3100の平面図であり、図7および図8に示す2つの断面図の基本として機能する。
図7は、つなぎ材3110を通じてとられた断面図である。実質的に管状の構造3120は、本図からより容易に区別され得る。つなぎ材3110は、比較的肉厚の部位3130および比較的肉薄の部位3135を含む。比較的肉厚の部位3130は、厚さ1mm~2mmであり得るかまたは厚さ1.3mm~1.7mmであり得るかまたは厚さ約1.5mmであり得る。比較的肉薄の部位3135は、厚さ0.2mm~0.8mmであり得るかまたは厚さ0.4mm~0.6mmであり得るかまたは厚さ約0.5mmであり得る。あるいは、比較的肉厚の部位3130の厚さは、比較的肉薄の部位3135の厚さの約2.5~5倍であり得るか、または比較的肉薄の部位3135の厚さの約2.8~3.3倍であり得るか、または比較的肉薄の部位3135の厚さの3倍であり得る。比較的肉厚の部位3130が外周3115および密閉面3105の大部分をつなぎ材3110において含む様子が図示されている。比較的肉薄の部位3135は、ヒンジ構造3140またはその近隣にある接続点3165において密閉構造を内方に折り畳み、シール形成構造3100へ再度接続する。ヒンジ構造3140は、局所的な比較的肉薄のストリップまたは線として図示される。そのため、所定の位置において選好的に屈曲または撓むことが可能になるため、シール形成構造3100において患者の顔に適合する可撓性が得られる。比較的肉厚の部位3130により、患者の顔に対して有効なシールを提供するための充分な弾性が得られる。比較的肉薄の部位3135により、有効なシールを形成する際に密閉面3105の剛性が高くなり過ぎる事態を防止しつつ、圧力下において密閉面3105が破裂しないための抵抗が得られ得る。あるいは、比較的肉厚の部位3130および比較的肉薄の部位3135の厚さは、図7中に示す内容の逆であり得る。あるいは、比較的肉薄の部位3135を密閉面3105を包含するように延ばしてもよい。密閉能力および破裂抵抗の所望の組み合わせを達成するために、厚さの任意の組み合わせが用いられ得る。
接続点3165は、つなぎ材3110から付加される所望の力またはつなぎ材3110の所望の弾性に基づいて決定され得る。例えば、図7Aに示すように、比較的肉薄の部位3135によって形成される角度3170は変化し得る。角度3170が変化すると、比較的肉薄の部位3135中の張力も変化する。そのため、角度3170を破裂防止のためおよび/または患者快適性に合わせて最適化することができる。
角度3170は、いくつかの方法で事前決定され得る。例えば、シール形成構造3100が単一の成形ピースである場合、シール形成構造3100の形成に用いられる方により、角度3170が決定される。異なる角度を異なる型によって達成することができる。あるいは、比較的肉薄の部位3135を接続されていない状態で製造してもよく、これにより、後続組立ステップにおいて接続点3165が形成される。接続点3165は、機械的接続または接着剤であり得る。接着剤が用いられる場合、接続点3165は、受容可能な取付内において連続的に変化し得る。あるいは、機械的取付を用いてもよい。図7B~図7Iは、例示的な機械的取付を示す。図7B~図7Eにおいて、異なる角度を単一の接続点3165において達成できるよう、接続点3165が鍵型にされる。図7Bおよび図7Cは、鍵型接続の第1の接続方位を示し、図7Dおよび図7Eは、鍵型接続の第2の接続方位を示す。図7F~図7Iにおいて、複数の別個の接続点3165が図示される。選択された接続点3165により、角度3170が決定される。図7Fおよび図7Gは、別個の接続点の第1の別個の接続を示し、図7Hおよび図7Iは、別個の接続点の第2の別個の接続を示す。図7B~図7Iに示す特定のジオメトリはあくまで例示的なものであり、限定的なものとしてみなされるべきではない。他の鍵型または別個の接続ジオメトリも用いられ得る。
図7から理解され得るように、つなぎ材3110は、翼を含む鼻の側壁と接触するように配置され得る。つなぎ材3110は、患者の鼻骨上方の鼻の側部との接触を維持するための連続的表面も提供し得る。
図8Aは、図6中の垂直面を通じてとられた断面図示す。図8から最も良く理解されるように、つなぎ材3110は、取付部位3145において外周3115を形成する壁へ取り付けられる。図示のように、取付部位3145は、つなぎ材3110の連続的部位であり、シール形成構造3100をワンピースに成形することにより達成することができる。しかし、取付部位3145は、他の任意の簡便な方法で(例えば、何らかの形態の機械的または接着などの化学的締結を用いてつなぎ材3110の自由端を締結することにより)達成することもできる。圧力(例えば、治療圧力)がつなぎ材3110の内面上に作用し、シール形成構造3100が患者の顔から引き離される場合および/または充分なヘッドギア張力が存在する場合、密閉面3105の破裂を中和するための充分な張力がつなぎ材3110へ提供されるように、取付部位3145がつなぎ材3110の全体的長さと共に選択され得る。
密閉面3105の一部または全体は、(比較的)低摩擦の領域であり得る。これは、いわゆるつや消し表面の提供により、達成され得る。低摩擦の領域により、密閉面は、低摩擦領域無しの場合よりもより低く患者の顔に密着し得る。低摩擦の領域は、患者の鼻の側部(複数)が密閉面3105および/またはつなぎ材3110に沿って自由にスライドすることを可能にするつなぎ材3110の一部として設けられ得る。
図8A~図8Gは、図6の多様な断面も示す。図中、断面の交差は、シール形成構造3100が多様なサドルおよび半球を含むことを示す。簡潔さのため、本明細書中、多様な断面の交差部を2文字の組み合わせによって示す。例えば、線8A-8Aに沿ってとられた断面および線8B-8Bに沿ってとられた断面の交差を交差ABと呼ぶ。
交差ABは、患者のセリオンの下側の患者の鼻堤に接触するように構成された第1のドーム領域においてとられる。交差ACは、交差ABの下側の位置において患者の鼻堤と接触するように構成された第1のサドル領域においてとられる。交差ADは、患者の下唇および/またはオトガイと接触するように構成された第2のサドル領域においてとられる。交差EFは、口角点の近隣の患者の口腔の外部においてかつ口腔の近隣において患者と接触するように構成された第2のドーム領域においてとられる。交差EGは、患者の鼻翼に隣接する患者頬に接触するように構成された第3のサドル領域においてとられる。相互に関連して、第1のドーム領域は、双方の断面に沿って比較的大きな湾曲部を有し、第2の半球領域は、双方の断面に沿って比較的小さな湾曲部を有する。第1のサドル領域は、双方の断面に沿って比較的大きな湾曲部を有し、第3のサドル領域は、線8E-8Eに沿って比較的小さな湾曲部を有し、線8G-8Gに沿って比較的大きな湾曲部を有する。第2のサドル領域は、線8D-8Dに沿った第1のサドル領域と第3のサドル領域との間に湾曲部を有し、線8A-8Aは、線8G-8Gに沿ったものと同様である。
図9は、本技術のさらなる態様を示す。例えば、つなぎ材3110を密閉面3105と連続させる代わりに、図9は、密閉面3105の下側につなぎ材3110を配置した様子を示す。つなぎ材3110は、主に破線として図示される。この構成は、密閉面3105の下側のストリップまたは材料の管を取り付けるかまたは形成することにより、達成され得る。下側のつなぎ材3110は、図10からより容易に明らかになり得る。
図9は、フラップ3150も示す。フラップ3150は、主につなぎ材3110および/または患者の鼻の近隣の密閉面3105から延び得る。このようなフラップ3150は、上顎骨の上方および目頭部分に隣接する患者の鼻の密閉および/または患者の鼻に関連する快適性を補助し得る。いくつかの公知のデバイスを用いた場合、患者の顔のこの領域を密閉することは困難であり得る。あるいは、フラップ3150は、つなぎ材3110から延び得、これにより、つなぎ材3110に対してフラップ3150の位置が固定され得る。図11は、フラップ3150が内部から延びた実質的に管状の構造3120としてのつなぎ材3110の簡単な図である。
図12は、シール形成構造3100へ取り付けられた図11に示す実質的に管状の構造3120の簡単な図である。図12によれば、実質的に管状の構造3120は、別個に作製され得、シール形成構造3100へ締結され得る。
図13は、シール形成構造3100が患者の顔に適合できるように実質的に管状の構造3120からコンプライアンスを得る様態を示す。コンプライアント時においても、本技術は破裂を防止し得る。
破裂は、シール形成構造3100の変形を指すものとして理解され得、密閉面3105を患者の顔との密閉接触から変位させるために治療時に圧力付加した際の圧力差に少なくとも部分的に起因する。例えば、患者は、治療時(すなわち、圧力付加時において)患者インターフェース3000を顔から引き離し得、患者インターフェース3000が患者によって患者の顔から変位させられると、治療圧力の力に起因してシール形成構造3100が変形し得る。次に、感謝が患者インターフェース3000を再度患者の顔へ付加すると、シール形成構造3100の密閉面3105が変形に起因して変位し得、その結果、密閉が無効になり得、加圧ガスがシール形成構造3100から漏洩する。シール形成構造3100の再配置時において、プレナムチャンバ3200の内部加圧が妨害される場合があり、圧力勾配が密閉フラップ3125に近づき得る。圧力勾配に起因して力が発生し得、その結果、最終的には密閉フラップが破裂し得る。破裂時に密閉フラップが変位すると、密閉フラップが移動し得、密閉構造が顔上に再度配置される際に漏洩経路が形成されるため、密閉が妨害される。シール形成構造3100の破裂が患者の眼の近隣において発生する(例えば、上顎骨の前頭突起の近隣の密閉面3105が変位した)場合、加圧ガスが患者の方に流動し得、患者にとって特に破壊的かつ厄介になり得る。よって、破裂低減が可能になれば、有利である。
シール形成構造3100における変形からの破裂は、外方(例えば、患者の顔から離隔方向)に発生し得る。実際、内部加圧が高い極限条件においては、破裂によってシール形成構造3100が後方に二重に折り畳まれる場合がある。
鼻骨上方を含む上顎骨の前頭突起の近隣の鼻の側部および外側軟骨は、ユーザのプロファイルによって大きく異なり得る。さらに、この領域を密閉するためには、密閉フラップ3125の内縁を内方に(例えば、プレナムチャンバ内方にかつフランクフルト水平に対して直角に)屈曲させ、鼻側部のプロファイルに追随するように変形させる。そのため、この領域は、破裂に繋がる密閉妨害が特に発生し易い。すなわち、破裂時に密閉フラップ3125が外方に変位(例えば、患者の顔から離隔方向に変位)した場合、加圧ガス力からの抵抗に起因して、密閉フラップを密閉位置に戻すことは困難であることが多い。
しかし、破裂は、密閉妨害の可能性が低い頬領域あるいは上唇領域または下唇領域などの領域においても発生し得るが、これらの領域の場合、前額面に実質的に沿ったプロファイルが概してより平坦である。破裂時において、密閉フラップは、この面に沿った密閉に必要な位置から大きく移動し得、ヘッドギアベクトルから付与される密閉力は、密閉フラップを密閉を再入手するために必要な方位に再配置するのに充分である場合が多い。
鼻領域の側部から密閉フラップの下角部まで下る密閉フラップの後面により、より大きな表面積が得られるため、内部加圧下においては変位がより発生し易くなる。
二重壁のシール形成構造3100は破裂が発生し易い場合があり得、例えば本技術の一実施例に開示される単一の壁のシール形成構造3100は、特に破裂が発生し易い。外側密閉壁を支持するアンダークッション構造が無い場合、外側密閉壁がより容易に変形し歪み得る可能性が発生することとして理解され得る。さらに、二重壁クッション中にアンダークッションを設けると、患者インターフェース3000の再配置の際に外側密閉壁を患者の顔に対して再配置することが支援され得るが、この支援は、単一壁クッション中には無い場合がある。
図34Aおよび図34Bは、内部において破裂が発生した関連技術の患者インターフェース3000の実施例を示す。図34Aにおいて、破裂領域BR1における密閉面3105が患者の鼻から変位するように、シール形成構造3100が変形可能である様子が分かる。さらに、別の破裂領域BR2における密閉面3105が患者の鼻の側部(例えば、上顎骨の前頭突起の近隣のもの)(図2Hを参照)から変位するように、シール形成構造3100を変形させることが可能である様子がわかる。同様に、図34Bは、患者の鼻の側部(例えば、上顎骨の前頭突起の近隣のもの)における破裂領域BR2におけるシール形成構造3200の密閉面3105の変位を示す。
上記した破裂の双方の実施例において、患者インターフェース3000はフルフェイス患者インターフェースであり、鼻および口腔の周囲を密閉する。このような患者インターフェースは、中間領域における比較的細長い横方向部位の支持が若干弱く、これらの領域内において破裂が発生し得るため、特に破裂が発生し易い。さらに、位置決めおよび安定化構造3300の力ベクトルは、フランクフルト水平面または矢状面に対して概して平行に方向付けられ得る。そのため、これらの力ベクトルは、シール形成構造3100へ力を付与するように方向付けられない場合がある。シール形成構造3100は、上顎骨の前頭突起に対して概して垂直方向に内方に向いているため、破裂の原因となるシール形成構造の変形3100に耐える。換言すれば、シール形成構造3100の変形の原因となる治療圧力の力は、位置決めおよび安定化構造3100からの力ベクトルに適切に対抗できない大きさおよび方向を持ち得る。破裂現象はフルフェイス患者インターフェースに特に関連し得るが、鼻患者インターフェースも同じ原理によって破裂が発生し易いことも理解されるべきである。よって、本明細書中に開示されるつなぎ材3110を鼻およびフルフェイス患者インターフェースと共に用いることにより、破裂に抵抗することができる。
さらに、密閉面3105の文脈においても関連する区別がある。密閉面3105は、シール発生が意図されるシール形成構造3100上の領域を広範に指すものとして理解され得る。各患者の頭部および顔の人体計測は異なるため、シール形成構造3100は、一定範囲の患者に対して快適なフィットおよび有効なシールを提供するような形状および寸法にされ得る。よって、シールはシール形成構造3100の多様な領域上において発生するものとして意図され、密閉面3105はこのような領域を広範に指し得ることが理解されるべきである。シール形成構造3100が使用時に実際に特定の患者へ付加された後、シール発生が意図されるより広い領域の特定の部位においてシールが形成され得る。使用時にシールが実際に発生する領域は、密閉面3105としても理解され得る。密閉面3105の特定の意味は、上記のように用語が用いられる特定の文脈に晒されるものとして理解され得る。
上記した破裂に戻って、破裂発生は、シール発生が意図される密閉面3105が患者の顔から変位する状況を指すものとして理解され得る。このような変位が発生すると、少なくとも有効な密閉の妨げになり得、より簡潔に言うと、密閉接触の発生が全く無くなり得る。
図14は、シール形成構造3100の破裂を防止し得る本技術の別の態様を示す。ここで、2つのリブ3155が図示されているが、任意の数のリブが設けられ得る。例えば、単一のリブまたは3つ以上のリブが設けられ得る。つなぎ材3110と同様に、各リブ3155は、シール形成構造3100(例えば密閉面3105)の破裂を防止する傾向がある。これらのリブは、同じ厚さであってもよいし、あるいは異なる厚さであってもよい。例えば、1つまたは双方のリブ3155は厚さ約1mmであり得、1つまたは双方のリブ3155は厚さ約0.5mmであり得る。あるいは、これらのリブは可変厚さを持ってもよい。リブ3155が取り付けられる場所においては密閉面3105は凸状であり得、反対側のリブ3155が取り付けられる場所においては凹状であり得る。そのため、凸状表面および凹状表面により、当該領域の材料の厚さが規定される。リブ3155は、患者の鼻に隣接して設けられ得る。
図15は、リブ3155の面に対して垂直にとられたシール形成構造3100の断面を示す。リブ3155は、圧縮されると比較的コンプライアントにすることができるしあるいは密閉負荷下において容易に圧壊することもできるため、シール形成構造3100および/または密閉面3105は患者の顔に適合することができる。これを図16に示す。しかし、図17に示すように、リブ3155は、シール形成構造3100の内側(例えば、密閉面3105に対向する表面3105a)が加圧された際に発生し得る張力において比較的高い抵抗を提供し得る。このようにして、リブ3155は、シール形成構造3100の破裂に抵抗する傾向になり得る(例えば、リブ3155は、引張部材になり得る)。例えば、リブ3155は、シール形成構造3100を「成形されたままの」状態または破裂状態下の形状に保持する傾向を持つ。
図18および図19に示す伸長フラップ3160により、鼻側部と密閉フラップとの間の距離が変化する場合に顔の変動に対応するために、距離D1vsD2を増大することが可能になり得る。伸長フラップ3160の密閉面3105は、頬に対する有効な密閉も提供し得る。矢印は、患者との接触があり得る領域を示す。この主の構造は、従来のシリコーンマスク上の膜を用いて主に密閉され、マスク位置の再調節の際に破裂し易い。つなぎ材3110またはリブ3155は、有効に密閉すべき顔の差に起因する距離変化を許容しつつ、破裂発生を防止し得る。
図20は、シール形成構造3100上にパターンが含まれる点を除いて、図6に類似する図を示す。これらのパターンは、シール形成構造3100の類似の厚さの領域3175を示す。
領域3175Aは、比較的肉薄の領域(例えば、約0.3mm)であり得る。この領域は、鼻梁における快適性のために肉薄かつコンプライアンスにされ得る。
領域3175Bは、極めて肉薄の領域(例えば、約0.2mm)であり得る。領域3175Aに相対する厚さを低減することにより、張力を大幅に低減することができ、その結果、鼻梁における顔の跡が最小限になり得る。鼻梁は、ほとんどの患者の場合に骨が多い部分であるため、跡および/または不快感が発生し易い。
領域3175Cは、半薄領域(例えば、約1mm)であり得る。この領域は、鼻側部におけるつねりを防止するために半薄にされ得る。
領域3175Dは、半厚領域(例えば、約1.5mm)であり得る。この領域は、鼻に沿った頬を密閉し得る。顔上のこの領域は典型的には、鼻または鼻梁の側部よりも脂肪が多い箇所であるため、比較的大きな密閉力を不快感無く付加することができる。半厚領域により、より肉薄領域よりも高い構造剛性も得られ得る。
領域3175Eは、肉厚領域(例えば、約2.0mm)であり得る。このより肉厚の周辺領域により、クッションの内側部位を支持するための高剛性の外壁が得られ得る。領域3175Eは、従来の二重層クッション設計のアンダークッションのように機能し得、例えば、領域3175Eは、患者の顔と接触するシール形成構造3100の部位(複数)を支持し得る。例えば、領域3175Eは、領域3175Dおよび/または3175F(以下に後述)への支持を提供し得る。クッションの全体的断面形状は、シールおよびコンプライアンスのために空気(圧力)アシスト型ばねを提供するように曲線状にされ得る。この構成の場合、このような肉厚領域を含む開示の構成は、シール形成を補助するための一定レベルのコンプライアンスを提供できるように圧縮することも可能であるため、従来のマスクの先行の肉厚アンダークッションに比して有利であり得る。その結果、従来の二重層設計と比較してクッションが圧縮可能な全体的距離範囲を増加させることが可能になり得る。
領域3175Fは、肉薄膜領域(例えば、約0.3~0.5mm)であり得る。下唇下側を密閉する部位は、下顎の動きを可能にするために肉薄(例えば、約0.3mm)であり得る。このような肉薄の膜領域は、快適性のため、患者の歯茎に対する負荷も軽減し得る。領域3175F隣接領域3175Dのこの部位は、つなぎ材3110が配置される箇所である。領域3175Fのこの部位は、肉薄(例えば、約0.5mm)であるため、つなぎ材3110の圧縮が可能になる。患者の口腔の側部上に接触するように構成された領域3175Fの部位は、約0.5mmであり得、二重層クッションの密閉膜層のように機能し、これにより、睡眠時の顔のプロファイルおよび動きの細かな変化とのシールが維持される。
領域3175間において別個の線が図示されているが、これらの領域は、領域間の相対的厚さにおいて平滑に移行し得るため、領域間の境界は近似値である。これが有利であり得る理由として、肉厚領域および肉薄領域を裸眼で識別する能力が限定されるため、美観が向上し得る点がある。しかし、別個の遷移を設けてもよい。
国際特許出願公開WO2006/074513において、クッションが開示されている。本明細書中、同文献全体を参考のため援用する。このようなクッションにおいて、より肉厚のアンダークッションおよびより肉薄膜層が開示される。より肉薄膜により、圧力下の顔上のシールが軽減され(すなわち、膨張し)、アンダークッションにより密閉を支持するための支持が得られる。曲線状断面により、ヘッドギア張力下のシールを支持するための圧力アシストばねが得られる。
これと対照的に、上記した領域3175のうち1つ以上を備えたシール形成構造3100は、単一の層のみを持ち得る。この単一の層は、WO2006/074513の膜およびアンダークッションの機能を組み合わせ得る。領域3175(例えば、領域3175E)の断面の最大厚さは、WO2006/074513のアンダークッションの最大厚さよりもより肉薄であり得る。しかし、アンダークッションおよび膜を組み合わせて単一の層とすることにより、クッション形状および支持密閉作用を保持できるだけの充分な構造剛性が得られる。さらに、最大厚さの低減により、シール形成構造3100の単一の層の圧縮を従来の二重層設計の場合よりもより大きな距離で行うことが可能になるため、ボトムアウトする前のコンプライアンスが増加する。
国際特許出願公開WO2014/117227において開示されているシステムにおいて設けられたマスクにおいて、第2の高剛性クリップへ取り付けられた可撓性クリップによって発泡体クッションが支持される。本明細書中、これらのそれぞれ全体を参考のため援用する。図21に開示される類似のシステムにおいては、2つのリブ3155が採用される。これらのリブは、患者の鼻の対向する側部上に設けられるように構成される。1つのリブのみが図21中に図示される。これらのリブは、可撓性クリップおよび取り付けられた発泡体シールの破裂を防止するつなぎ材として機能する。リブ3155が図示されているが、リブ3155の代わりにつなぎ材3110を用いてもよい。
よって、本技術の別の実施例において、シール形成構造3100は、発泡体によって構成され得るクッション3810を含む。このクッションにより、鼻マスクの場合に患者の鼻周辺を被覆し、フルフェイスマスクの場合に鼻および口腔周辺を被覆する単一の領域が規定される。発泡体クッションは、例えば任意の適切な材料(例えば、ポリエチレン、ポリウレタン、エチレン酢酸ビニル(EVA)のうち1つ以上)から構成され得る。いくつかの場合において、発泡体クッションは、半開クローズドセル発泡体(例えば、ポリウレタン製のもの)であり得る。半開セル発泡体のクッションは、浸透性が限られる場合がある(例えば、国際特許出願公開WO2014/117227中により詳細に記載の範囲のもの)。同文献中に開示される浸透性を本明細書中参考のため援用する。
クッション3810は、実質的に三角形または洋なし型の形状を持ち得、ユーザの顔の輪郭に追随する密閉面を持つ。発泡体クッションは、第1の支持(例えば、可撓性)クリップ3812へ取り付けられるように設計される。第1の支持クリップ3812そのものは、(図22に示すような)第2の高剛性クリップ3814へ取り付けられるかまたはマスクシェル3816へ直接取り付けられる。一実施形態において、第1の支持クリップ3812は可撓性クリップであり得、発泡体クッションよりも高剛性でありかつ第2のクリップ3814よりも可撓性が高い。これは、発泡体および可撓性クリップの組み合わせであり、全体的な密閉インターフェースの物理的特性を規定する。可撓性クリップにより、インターフェースが大きな変化に対応することおよび患者の顔の輪郭にうまく適合することが可能になる。発泡体クッションのコンプライアント性により、微調整が可能になり、患者の皮膚と相互作用する快適なインターフェース層が形成される。
第1の支持クリップ3812は、可撓性およびコンプライアント性に起因して破裂し易い場合がある。図21に示す本技術の別の態様により、第1の支持クリップ3812および取り付けられたクッション3810の破裂が防止され得る。ここで、図示の構成は、2つのリブ3155(図面の対称性および方位に起因してそのうち1つのみを図示している)を含むが、任意の数のリブが設けられ得る。例えば、単一のリブまたは3つ以上のリブが設けられ得る。つなぎ材3110と同様に、各リブ3155は、引張部材として機能することにより、第1の支持クリップ3812および取り付けられたクッション3810の破裂を防止する傾向がある。これらのリブは、同じ厚さであってもよいし、あるいは異なる厚さであってもよい。例えば、1つまたは双方のリブ3155は厚さ約1mmであり得、1つまたは双方のリブ3155は厚さ約0.5mmであり得る。あるいは、これらのリブは可変厚さを持ってもよい。リブ3155は、患者の鼻に隣接して設けられ得る。
図21は、クッションアセンブリ3800の側面図を示す。クッションアセンブリ3800は、シール形成構造3100を含む。シール形成構造3100は、マスクシェル3816、恒久的に取り付けられた可撓性第1の支持クリップ3812および発泡体クッション3810を含む。図示のように、可撓性の第1の支持クリップは、破裂を防止するつなぎ材として機能する一対のリブ3155を介してマスクシェル3816へ固定され得る。これらのリブ3155は、圧縮時に比較的コンプライアントであり得るかまたは密閉負荷下において容易に圧壊し得るため、シール形成構造3100が患者の顔に適合することができる。リブ3155によって提供される張力の調節は、その材料組成、リブ3155のジオメトリまたは位置の任意の1つ以上を変更することにより行われ得る。
図23は、患者の接触表面を視認することができる、発泡体クッション3810および可撓性の第1の支持クリップ3812を示す。図23Aは、図23を通じてとられた対称垂直面に沿った断面であり、発泡体クッション、可撓性の第1の支持クリップ3812およびリブ3155を示す。
本技術の別の実施例において、シール形成構造3100は、第1の支持クリップ3812の破裂を防止するための一対のつなぎ材3110を含み得る。各つなぎ材3110は、外周の可撓性支持クリップ3812の内側折り曲げによって形成され、これにより接続点3165が形成される。このようにして、つなぎ材3110は、実質的に管状の構造3120を形成し得る。つなぎ材は、プレナムチャンバの内部加圧からの破裂に耐えるつなぎ材を形成する。リブ3155によって提供される張力は、その材料組成、つなぎ材3110の接続点3165のジオメトリまたは位置のうち任意の1つ以上の変更によって調節され得る。
図24A~図27Fは、本明細書中に上記した点を除いてシール形成構造3100に類似するクッションアセンブリ6000を示す。類似の参照符号は、シール形成構造3100について上記したものと同様であるため、さらなる詳細についての記載は控える。図24A~図27Fに示すクッションアセンブリ6000は、鼻マスクとの使用におもに適した特徴を持ち得る。
図24Aは、患者インターフェース3000の残り部分から分離されたクッションアセンブリ6000の一形態の斜視図である。図24Bは、シェル6005を含むクッションアセンブリ6000の斜視図である。クッションアセンブリ6000およびシェル6005は共に、プレナムチャンバ3200を形成し得る。クッションアセンブリ6000は、任意の手段(例えば、化学結合、機械的接続または接着剤)によってシェル6005へ取り付けられ得る。加えて、クッション6000は、シェル6005から取り外してもよいし、あるいはシェル6005へ恒久的に取り付けてもよい。また、クッションアセンブリ6000は、シェル6005よりも高い可撓性を持ち得る。例えば、クッションアセンブリ6000はシリコーン材料製であり得、シェル6005はポリカーボネート材料製であり得る。クッションアセンブリ6000の一部または全体がつや消しにされ得、シェル6005は透明であり得ることが企図される。あるいは、クッションアセンブリ6000およびシェル6005を全体的に透明にしてもよい。
クッションアセンブリ6000は、エラストマーシール形成構造6010と、シール形成構造6010を支持するエラストマー支持構造6015とを含み得る。シール形成構造6010は、支持構造6015よりも高い可撓性を持ち得、支持構造6015は、シェル6005よりも高い可撓性を持ち得る。
シール形成構造6010は、密閉フラップ3125を含み得、患者の気道の周囲にシールを形成するように構成され得る。該シールは、患者の鼻または患者の鼻および口腔の周囲に形成され得る。加えて、シール形成構造6010は、クッションアセンブリ6000の後側に中央開口部(または後方中心開口部)6020を形成し得、これにより、クッション6000を通じてプレナムチャンバ3200内部へのアクセスが可能になる。
加えて、図24Aおよび図24Bから分かるように、つなぎ材3110は、取付点3145において支持構造6015へアンカー固定される。加えて、つなぎ材3110およびクッションアセンブリ6000によって形成されたプレナムチャンバ3200および管形状(または管状)の構造3120の内部は、シール形成構造6010の同一内面によって境界付けられ得る。換言すれば、管形状(または管状)の構造3120およびプレナムチャンバ3200は、クッションアセンブリ6000の共通表面によって境界付けられ得る。
図25B~図25Gは、図25Aの多様な断面も示す。ここで、断面の交差は、シール形成構造6010が多様なサドルおよび半球を含むことを示す。簡潔さのため、本明細書中、多様な断面の交差部を2文字の組み合わせによって示す。例えば、線25B-25Bに沿ってとられた断面の交差および線25C-25Cに沿ってとられた断面を交差BCと呼ぶ。
交差BCは、患者のセリオンの下側の患者の鼻堤と接触するように構成された第1のサドル領域においてとられる。線25B-25Bに沿って、湾曲部は比較的小さく、線25C-25Cに沿って、湾曲部は比較的大きい。線25B-25Bに沿った湾曲部は、第1のサドル領域が円筒型の領域に近づけるくらいに充分に大きい。所望の場合、第1のサドル領域を円筒型の領域にしてもよい。交差BDは、患者の上唇に接触するように構成された第2のサドル領域においてとられる。線25B-25Bに沿ったとき、湾曲部は、線25D-25Dに沿ったときよりも比較的小さい。交差CFは、鼻堤に隣接する患者の鼻と接触するように構成された第1のドーム領域においてとられる。線25F-25Fおよび線25C-25Cに沿って、湾曲部は相対的に類似している。交差FGは、患者の鼻に並んで接触するように構成されたつなぎ材3110によって形成された第3のサドル領域においてとられる。線25F-25Fに沿った湾曲部は比較的小さく、ゼロの湾曲部に近づく。線25G-25Gに沿った湾曲部は、線25F-25Fと比較して相対的に大きい。そのため、第3のサドル領域は、円筒型の領域に近いため、好適な場合は円筒型の領域にされ得る。交差EFは、患者の鼻翼に並んで患者に接触するように構成された第2のドーム領域においてとられる。線22E-22Dおよび22F-22Fに沿った湾曲部は、相対的に類似している。
図27Aおよび27Bは、シール形成構造6010上にパターンが設けられている点を除いて、シール形成構造6010の図を示す。これらのパターンは、シール形成構造6010の類似の特性および/または厚さを指定する。図27Bは、つなぎ材3110と、異なる領域との間の位置関係を示す。
患者インターフェース3000が患者の顔上に取り付けられると、領域6010A(これは、鼻ブリッジ領域と呼ばれ得る)は、患者の鼻ブリッジと係合し得る。加えて、領域6010Aは、中央開口部6020から支持構造6015へ延び得る。
シール形成構造6010のエラストマー壁厚さは領域6010Aにおいて最も薄いため、シール形成構造6010は、患者の鼻ブリッジ上において最もコンプライアントになり得る。例えば、領域6010Aにおけるシール形成構造6010のエラストマー壁厚さは、約0.25mmであり得る。その結果、患者の鼻梁の近隣の赤い跡の低減が促進され得る。しかし、領域6010A内においてシール形成構造6010が肉薄であるため、領域6010A内のシール形成構造6010の部位は、患者インターフェース3000が患者の顔に押しつけられたときに発生する力を受けた場合、その形状を維持できなくなり得、(治療セッション時に発生し得る)患者の顔に相対して移動する。そのため、領域6010Aにおけるシール形成構造6010の薄さにより、領域6010A内のシール形成構造6010の部位において皺および/または襞が発生し易くなり、その結果、漏洩および/または不快感に繋がり得る。
(ばね領域または鼻梁支持領域と呼ばれ得る)一対の領域6010Bは、領域6010Aの側面に位置し得る。領域6010Bは、中央開口部6020に到達しないくらいに支持構造6015から延び得、これにより、各領域6010Bの第1の端部6025が所定位置にアンカー固定され得、各領域6010Bの第2の端部6030は、シール形成構造6010上に作用する圧縮力に応答して自由移動し得る。
各領域6010Bのエラストマー壁厚さは、第1の端部6025と第2の端部6030との間で異なり得る。領域6010Bのエラストマー壁厚さは、第1の端部6025において最も厚く、第2の端部6030において最も薄くされ得る。例えば、第1の端部6025のエラストマー壁厚さは約1.35mmであり得、第2の端部6030のエラストマー壁厚さは約0.9mmであり得る。各領域6010Bにおけるシール形成構造6010のエラストマー壁厚さは、第1の端部6025から第2の端部6030へ漸減させてもよいし、あるいは第1の端部6025から第2の端部6030に向かって急激に変化してもよいことが企図される。いずれにしても、各領域6010B全体におけるシール形成構造6010のエラストマー壁厚さは、領域6010A中のシール形成構造6010のエラストマー壁厚さよりも肉厚であり得る。
領域6010Bは、クッションの全体的支持を提供するような構造にされたリブと別個にされ得る。例えば、領域6010B中のシール形成構造6010の曲率は、リブの曲率(または曲率の欠如)と異なり得る。領域6010B中の各点について、シール形成構造6010の内面(プレナムチャンバ3200に対向しかつプレナムチャンバ3200を境界付ける表面)およびシール形成構造6010の外面(内面に対向しかつプレナムチャンバ3200から離隔方向を向く表面)は、反対の種類の湾曲部を持ち得る。例えば、領域6010B内の特定の点におけるシール形成構造6010の内面が正の曲率を有する場合、領域6010B内における同一点におけるシール形成構造6010の外面は負の曲率を有する。内面が負の曲率を有する場合、同じことがいえる。換言すれば、内面の湾曲部は、外面の湾曲部に追随し得る。
シール形成構造6010は、シール形成構造6010の湾曲部の半径がシール形成構造6010上に作用する圧縮力に応答して「湾曲部の中立半径」から低減するような構造にされ得る。各領域6010B中のシール形成構造6010は、圧縮力が無い場合、湾曲部の中立半径へ「はね」返り得る。
領域6010Bの「ばね作用」により、領域6000Aの支持が得られ得、これにより、領域6010A内のシール形成構造3110の部位の皺および/または襞が防止または低減され得る。詳細には、領域6010A内のエラストマー壁厚さを薄くすることにより、シール形成構造6010が患者の顔へ押圧されたときおよび/または患者の睡眠時の動きに起因してシール形成構造6010が患者の顔上において移動または擦りつけられたとき、領域6010A中のシール形成構造6010が皺および/または襞に対して抵抗を提供できない場合がある。領域6010Bによって提供される「ばね力」は、「患者の顔の面」に対しておよび/または患者の鼻の側部に対して作用し得る。領域6010Bは領域6010Aに並んで配置されるため、領域6010Bによって生成される「ばね力」により、領域6010Aが皺および/または襞に少なくとも部分的に耐えることができるだけの充分な支持が領域6010Aへ提供され得る。領域6010Bは、領域6010Aに何らかの皺および/または襞がある場合に領域6010Aが患者の顔とのシールを維持することも可能にし得る。その結果、快適性を向上させつつ、クッションアセンブリ6000が患者の顔とのシールを維持することが可能になる。
(コンプライアント領域と呼ばれ得る)一対の領域6010Cは、領域6010Bと並んで配置されるため、各領域6010Bは、領域6010Aと領域6010Cとの間に挟まれる。領域6010Bと同様に、領域6010Cが支持構造6015から中央開口部6020へとテーパ状になるように、各領域6010C内のシール形成構造6010のエラストマー壁厚さが変化し得る。領域6010C内のシール形成構造6010のエラストマー壁厚さは、支持構造6015に向かってより肉厚になり得、中央開口部6020に向かってより肉薄になり得ることが理解されるべきである。例えば、領域6010C内のエラストマー壁厚さは、中央開口部6020に隣接する箇所において約0.25mmから支持構造6015に隣接する箇所において約1.30mmまで変化し得る。領域6010Bが領域6010Cと出合う箇所において、領域6010B中のエラストマー壁厚さは、対応する領域6010C中のエラストマー壁厚さよりも常に肉厚であり得る。加えて、最も厚いエラストマー壁厚さから最も薄いエラストマー壁厚さへの変化は、急激であってもよいし徐々にしてもよい。
(膜領域と呼ばれ得る)一対の領域6010Dは、中央開口部6020に直接隣接し得る。加えて、領域6010Dは、領域6010Aと同じ厚さ(すなわち、約0.25mm)を持ち得るため、患者の顔に対する付勢された(例えば、圧力活性化された)シールとして機能し得る。一対の領域6010Dシール形成構造6010のおよそ1/3を形成し得、つなぎ材3110を含み得る。
(唇領域と呼ばれ得る)領域6010Eは、患者の上唇の上方において患者の顔と係合するように構成され得る。図示のように、この領域内のクッションアセンブリ6000は、患者の上唇上への食い込みを回避するために曲線状にされ得る。加えて、領域6010Eは、領域6010Aおよび領域6010Dと同じ厚さ(すなわち、約0.25mm)を持ち得る。これにより、シール形成構造6010は、患者の上唇に隣接する領域に対してよりコンプライアントになることができる。加えて、領域6010Aと同様に、領域6010Eは、中央開口部6020から支持構造6015へ延び得る。そのため、領域6010A、6010Dおよび6010Eは、シール形成構造6010の下側からシール形成構造の上側において連続膜層を共に形成し得る。
(「アンダークッション」領域と呼ばれ得る)一対の領域6010Fは、シール形成構造6010の主要な領域であり得る。アンダークッション層が「二重壁」クッション(すなわち、膜の支持を提供すること)において持つように、領域6010Fは、「単一の壁」のクッションアセンブリ6000と同じ機能を持ち得る。クッションアセンブリ6000の場合、領域6010Fは、エラストマー壁厚さが最も薄くなる領域6010Dおよび6010Eを支持し得る。
領域6010Fにおけるシール形成構造6010のエラストマー壁厚さは、変化し得る。詳細には、エラストマー壁厚さは、支持構造6015に向かって増加し得る。例えば、領域6010Fのエラストマー壁厚さは、領域6010Dおよび6010Eに隣接して約1.0mmであり得、支持部位3125に隣接して約2.0mmであり得る。エラストマー壁厚さの変化は、急激であってもよいし徐々にしてもよい。
(側部支持領域と呼ばれ得る)領域6010Gは、シール形成構造6010の任意の領域において最大のエラストマー壁厚さを持ち得る。シール形成構造6010のエラストマー壁厚さは、約1.35mm~3.45mmであり得る。例えば、エラストマー壁厚さは、約1.35mm~約2.00mmであり得る。領域6010G内の1つ以上のサブ領域は、約0.90mm~約1.80mmのエラストマー壁厚さを持ち得る。領域6010Gは、一定のエラストマー壁厚さを持ってもよいし、あるいは、支持構造6015に近づくにつれて増加する可変エラストマー壁厚さを持ってもよいことが企図される。エラストマー壁厚さが変化する場合、厚さの変化は急激であってもよいし徐々にしてもよい。領域6010Gは、密閉フラップ3125に対して支持またはベースを提供し得、シール形成構造6010の全体的形状を提供または維持し得る。
図27A~図27Dに示すように、クッションアセンブリ6000は、矢状面6045によって左側6035および右側6040に分割され得る。矢状面6045に含まれ得る線6050は、2つの点(すなわち、第1の接点(上側接点)6055および第2の接点(下側接点)6060)のみにおいてシール形成構造6010に対して正接である。
領域6010Aは、矢状面6045に跨がり得、第1の接点6055を含み得る。また、図27Aおよび図27Bを図25B~図26Gと比較すると、第1の接点6055を含む領域6010Aの一部はサドル状であり得ることが分かる。
領域6010Bは、矢状面6045に対して対称であり得る。加えて、各領域6010Bは、第1の端部6025において矢状面6045から最も離隔され得、第2の端部6030において矢状面6045へ最も近接し得る。加えて、各領域6010Bのうち少なくとも一部は、サドル形状から半球形状へ変化するシール形成構造6010の領域内に配置され得る。加えて、領域6010Bは、シール形成構造6010の円筒型部位上に配置され得る。
図25B~図25Gを図27Aおよび図27Bと比較すると分かるように、領域6010Cは半球状であり得る。領域6010Fおよび6010Gの一部も半球状であり得る。領域6010C中の半球形状の湾曲部の半径は、領域6010F中の半球形状の湾曲部の半径よりも小さくなり得る。また、領域6010Fおよび6010Gの一部は円筒状であり得る。
領域6010Dは、矢状面6045に跨がり得、第2の接点6055を含み得る。また、図27Aおよび図27Bを図25B~図26Gと比較すると、第2の接点6055を含む領域6010Dの一部をサドル状にしてよいことが分かる。領域6010D中の湾曲部の半径は、領域6010Aの湾曲部の半径よりも大きくなり得ることが企図される。
図27Eに示すように、シール形成構造6010は、中央開口部6020の周囲に連続的表面を持ち得る。そのため、シール形成構造6010は、中央開口部6020と同軸の複数の閉経路6065を持ち得る。本開示の目的のため、中央開口部6020と同軸の経路は、中央開口部6020の形状に実質的に追随し得、正面からみた場合に(すなわち、図27Eに示す視点からみた場合に)経路全体において中央開口部6020からの特定の距離であり得る。図27Eは、中央開口部6020から支持部位6015へ延びる複数の開経路6070のうち1つも示す。
図27Fおよび図27Lは、シェル6005を含む例示的クッションアセンブリ6000を示す。理解されるように、クッションアセンブリ6000内の特定の地点において、シール形成構造6010は、支持構造6015を張り出し得る。これらの領域において、シール形成構造6010は、「鎌」形状を持ち得る。この「鎌」形状は、図27M~図27Rに示す断面により明確に図示される。線(例えば、図27Lに示すようなクッションの中心領域を通じて延びる線)に沿ったクッションの断面は、いくつかの領域において閉ループ形状を持ち得、断面は、他の領域において開形状を持ち得ることが理解されるべきである。「閉ループ」部位において、クッションの縁部は、どちらも所定位置に固定され得る。「開口状」部位において、クッションの一端は所定位置に固定され得、他端は自由端とされ、何にも固定されず、自由に動くようにされ得る。
支持構造6015は、クッションアセンブリ6000の下側へ向かう矢状面6045の対向する両側部上の一対のフランジ部位6075を含み得る。フランジ部位6075は、支持構造6015からラジアル方向に外方に延び得る。加えて、シール形成構造6010は、フランジ部位6075の外縁へ取り付けられ得、これにより、圧縮力がシール形成構造6010上に作用すると、フランジ部位6075が各フランジ部位6075のベース6080周囲をヒンジ状に旋回する。このようにして、各フランジ部位6075は、(例えばクッションアセンブリ6000が患者の頭部により圧縮されたことに起因する)圧縮力をシール形成構造6010が受けた際、緩衝器として機能し得る。
支持構造6015の可撓性は、支持構造6015の前側と支持構造の後側との間の距離に関連し得る。例えば、前側と後側との間の距離がより短い場合、支持構造6015の可撓性が低くなり得る(図27Mおよび図27R)。逆に、前側と後側との間の距離がより長い場合、支持構造6015の可撓性が高くなり得る(図27Oおよび図27Q)。換言すれば、支持構造6015の前側と後側との間において距離が変化するため、支持構造6015は、クッションアセンブリ6000の他の部位においてよりもクッションアセンブリ6000の上部および/または下部においてシール形成構造6010をより大きく支持し得る。
図28A~図28Mは、つなぎ材3110を含む例示的なフルフェイスシール形成構造3100を示す。図28Kから分かるように、例えばつなぎ材3110は、第1の内面領域3180と第2の内面領域3185との間に延び得る。第1の内面領域3180は、シール形成構造の密閉面3105の反対側にあると理解され得る。第2の内面領域3185は、その他の箇所にあるものと理解され得る。図28Kに示す実施例において、第2の内面領域3185は、シール形成構造3100の内部上に配置される。他の実施例において、第2の内面領域3185は、つなぎ材3110がシール形成構造3100とプレナムチャンバ3200との間に延びるように、プレナムチャンバ3200の内部上に配置され得る。第2の内面領域3185の位置は、破裂力に耐えるつなぎ材3100の張力ベクトルの所望の方向成分に基づいて選択され得る。
図28Lおよび図28Mは、詳細な断面図であり、詳細には、つなぎ材3110が第2の内面領域3165から延びる接続点3165を示す。本実施例における接続点3165は、この領域における応力集中を低減するために曲線状にされ得、これにより、つなぎ材3110が破断する傾向が低減される。さらに、つなぎ材3110は、製造時にシール形成構造3100がプレナムチャンバ3200へ接合される接合領域3190からの一定距離において第2の内面領域3185から延び得る。これにより、シール形成構造3100をプレナムチャンバ3200へ接合する際のつなぎ材3110に対する損傷が防止され得る。図29C~図29Eは、接合領域3190およびプレナムチャンバ3200からの距離においてつなぎ材3110が第2の内面領域3185から延びる様態も示す。
図28J~図28Lの断面図は、つなぎ材3110が第1の内面領域3180から延び得る様子も示す。これらの実施例から分かるように、つなぎ材3110は、密閉フラップ3125の近隣でありかつ密閉フラップ3125ではない位置にある第1の内面領域3110から延びる。しかし、別の実施例において、つなぎ材3110は、密閉フラップ3125の縁により近いかまたは密閉フラップ3125の縁にある第1の内面領域3180から延び得る。
図30Aおよび図30Bは、本技術の特徴を含むシール形成構造3100を含みかつ記載の位置決めおよび安定化構造3300を含まないフルフェイス患者インターフェース3000の実施例を示す。
図31A~図31Mは、鼻シール形成構造3100である本技術の別の実施例を示す。図31Kから分かるように、例えば、つなぎ材3110は、密閉フラップ3125から近接して延びる。そのため、この領域において規定された縁は無い場合がある。さらに、このような配置構成におけるつなぎ材3110の少なくとも一部は、使用時に患者の顔の人体計測に応じて密閉面3105の一部を形成し得ることが理解されるべきである。
図32C~図32Eは、鼻患者インターフェース3000の実施例において、接合領域3190からのさらなる距離においてフルフェイス患者インターフェース3000と比較してつなぎ材3110が第2の内面領域3185から延び得ることを示す。
図33A~図33Cは、フレーム(またはシュラウド)6085が患者インターフェースシステム全体のためのハブとして機能し得ることを示す。詳細には、フレーム6085は、シェル6005へ取り外し可能に接続され得、安定化構造3300へ取り外し可能に接続される。加えて、フレーム6085は、空気回路4170へ取り外し可能に接続され得る。加えて、シェル6005は、中央開口部において可撓性リップシールを含み得る。この可撓性リップシールは、空気回路4170からプレナムチャンバ3200への空気経路を密閉し得る。フレーム6085を用いたモジュール式構成を焦点として用いることにより、クッションアセンブリ6000およびシェル6005は、他のクッションアセンブリ6000およびシェル6005と交換可能であり得る。加えて、モジュール式構成により、支持構造3300の調節の必要無く患者インターフェースシステムを取り外すことが可能になる。
図35は、別の例示的な密閉構造7000を示す。本明細書において鼻領域と呼ばれる領域7005Aは厚さ約0.5mmであり得るため、この領域内におけるシール形成構造7000の皺および/または襞が防止され得る。
本明細書においてベース領域と呼ばれる領域7005Bは、厚さ約2.9mm~3.45mmであり得る。例えば、厚さは、7005B2において2.9mmであり得、7005B1および7005B3において3.0mmであり得、7005B4において3.45mmであり得る。領域7005Bは、密閉フラップ3125に対して支持またはベースを提供し得、シール形成構造7000の全体的形状を提供および維持し得る。
本明細書においてアンダークッションゾーンと呼ばれる領域7005Cは、厚さが0.95mm~2.1mmであり得る。図示のように、この領域は、クッションの主要な領域であり得る。例えば、領域7005Cは、クッションのうちおよそ50%であり得る。領域7005C1の上部の厚さは、0.95mm~1.6mmであり得、領域7005C2の下部の厚さは、1.25mm~2.1mmであり得る。この厚さは、平滑な外観を提供するために、これらの値の間において連続的に変化し得る。
領域7005Dは、本明細書において膜領域と呼ばれ、シール形成構造7000のおよそ1/3を形成し得、つなぎ材3110を含み得る。厚さは、約0.35mmであり得る。この領域は比較的肉薄であり得るため、患者の顔に対して付勢された(例えば、圧力活性化された)シールとして機能し得る。側部7005D1は、患者の顔に対して実質的に平行であり得るため、襞の可能性およびそれに起因する漏洩が低減し得る。このような皺は、動的な状況(例えば、シールが移動中にある場合)においてより発生し易い。
領域7005Fは、本明細書においてばねゾーンと呼ばれ、1.1mm~1.8mmの厚さを持ち得る。このゾーンは、ばねとして機能し得、上唇上の圧縮を可能にして、上唇上への圧力を低減させる。この領域は、上唇中心から(領域中心から7005Fの剛性が最高になる)鼻の角部(例えば、翼頂点)へと漸進的に剛性が増し得る。
領域7005Gは、本明細書において鼻窪み領域と呼ばれ得、患者の鼻梁が比較的高い場合および/またはシールをより快適にする場合に患者により良好に対応できるよう、比較的に深くされ得る。この領域は、領域6005D(例えば、約0.35mm)と同様の厚さを持ち得るため、領域7005Dのサブ領域であり得る。
「軟性」および「可撓性」という表現ならびにその派生語は、第1の支持クリップ3812を記述するために本明細書において用いられる場合、「患者インターフェースに関連して用いられる用語」という項において具体的に定義するように、「弾性」という表現の意味を持つものとして意図される。すなわち、可撓性支持クリップは、実質的に弾性的に変形可能であり、除荷時のエネルギー全てを実質的に迅速に解放することができる。
シール形成構造3100は、本技術の1つ以上の形態において利点を持ち得る。例えば、ヒトの顔の構造は個人毎に異なり得るため、多数の異なる顔と用いられるシールを設計する際に問題になる。このような差違を挙げると、顔構造の異なる形状(例えば、異なる形状の鼻および/または異なる曲線状の頬)および/または異なる組織含量(例えば、脂肪組織の量の多少差)がある。これらの差違に起因して、従来のシール形成構造の場合、或る人には良好に機能する一方、別の人にはうまく機能しないことがある。また、快適さの知覚は、顔構造から独立して個人毎に異なり得る。本明細書中に記載のシール形成構造3100を用いれば、従来のシール形成構造と比較して、より高比率のユーザがシール形成構造3100を有効に用い得る(例えば、より高比率のユーザが有効なシールを形成するためにシール形成構造3100を持ち得かつ/またはより高比率のユーザがシール形成構造3100を快適と知覚し得る)。
5.3.2 プレナムチャンバ
プレナムチャンバ3200は、使用時に密閉が形成される領域において平均的な人の顔の表面輪郭に対して相補的である形状の縁部を有する。使用時において、プレナムチャンバ3200の周辺縁部は、顔の隣接する表面に近接して位置決めされる。顔との実際の接触は、シール形成構造3100によって提供される。シール形成構造3100は、使用時においてプレナムチャンバ3200の縁部全体の周りに延び得る。
本技術の特定の形態において、プレナムチャンバ3200は、透明材料(例えば、透明ポリカーボネート)から構築される。透明材料の利用により、患者インターフェースの押しつけがましさが低減され得、治療へのコンプライアンスの向上が補助され得る。透明材料の利用により、臨床医が患者インターフェースの配置様態および機能を確認することが補助され得る。
本技術の特定の形態において、プレナムチャンバ3200は、半透明材料から構成される。半透明材料を用いることにより、患者インターフェースの押しつけがましさを低減することができ、治療へのコンプライアンスの向上を補助することができる。
5.3.3 位置決めおよび安定化構造
本技術の患者インターフェース3000のシール形成構造3100は、使用時において位置決めおよび安定化構造3300によって密閉位置において保持され得る。
一形態において、位置決めおよび安定化構造3300により、顔から浮き上がるためのプレナムチャンバ3200中の陽圧の効果に打ち勝つのに少なくとも充分な保持力が得られる。
一形態において、位置決めおよび安定化構造3300により、患者インターフェース3000上への引力に打ち勝つだけの保持力が得られる。
一形態において、位置決めおよび安定化構造3300により、患者インターフェース3000上への破壊的作用の可能性(例えば、管引き摺りまたは患者インターフェースとの不慮の干渉に起因するもの)を解消するための安全マージンとして保持力が得られる。
本技術の一形態において、患者が睡眠時に装着されるように構成された位置決めおよび安定化構造3300が提供される。一実施例において、位置決めおよび安定化構造3300は、装置の感知される嵩または実際の嵩を低減するように、ロープロファイルまたは断面厚さを有する。一実施例において、位置決めおよび安定化構造3300は、矩形断面を有する少なくとも1つのストラップを含む。一実施例において、位置決めおよび安定化構造3300は、少なくとも1つの平坦ストラップを含む。
本技術の一形態において、患者が患者の頭部の後部領域を枕に載せた状態で仰臥位睡眠位置において寝る際の妨げとなるような過度に大きいまたは嵩張るサイズにならないように構成された位置決めおよび安定化構造3300が提供される。
本技術の一形態において、患者が患者の頭部の側部領域を枕に載せた状態で側臥位睡眠位置において寝る際の妨げとなるような過度に大きいまたは嵩張るサイズにならないように構成された位置決めおよび安定化構造3300が提供される。
本技術の一形態において、位置決めおよび安定化構造3300は、織物患者接触層、発泡材料内側層および織物外側層の積層物から構成されたストラップを含む。一形態において、発泡材料は、湿気(例えば、汗)がストラップを通過できるような多孔性である。一形態において、織物外側層は、フック材料部分と係合するタイ材料を含む。
本技術の特定の形態において、位置決めおよび安定化構造3300は、伸張可能である(例えば、弾力性と共に伸張可能である)ストラップを含む。例えば、ストラップは、使用時にはピンと張った状態にされて、クッションを患者の顔の一部と密着させる力を方向付けるように、構成され得る。一実施例において、ストラップは、タイとして構成され得る。
本技術の特定の形態において、位置決めおよび安定化構造3300は、屈曲可能であり例えば非剛性であるストラップを含む。本態様の利点として、患者が睡眠時に体を横たえたときにストラップがより快適になっている点がある。
本技術の特定の形態において、位置決めおよび安定化構造3300は、内部を水蒸気が通過できるように呼吸可能なように構成されたストラップを含む。
本技術の特定の形態において、1つよりも多くの位置決めおよび安定化構造3300を含むシステムが提供される。各位置決めおよび安定化構造3300は、異なるサイズおよび/または形状範囲に対応するための保持力を提供するように構成される。例えば、システムは、小さなサイズの頭ではなく大きなサイズの頭に適しかつ大きなサイズの頭ではなく小さなサイズの別の頭に適した位置決めおよび安定化構造3300の一形態を含み得る。
5.3.4 通気
一形態において、患者インターフェース3000は、吐き出されたガス(例えば、二酸化炭素)の押し出しを可能にするように構成および配置された通気部3400を含む。
本技術による一形態の該通気部3400は、複数の穴(例えば、約20個~約80個の穴または約40個~約60個の穴または約45個~約55個の穴)を含む。
通気部3400は、プレナムチャンバ3200内に配置され得る。あるいは、通気部3400は、結合解除構造(例えば、回り継ぎ手)内に配置される。
5.3.5 結合解除構造(複数)
患者インターフェース3000の一形態は、少なくとも1つの結合解除構造(例えば、回り継ぎ手または球窩およびソケット)を含む。
5.3.6 接続ポート
接続ポート3600は、空気回路4170への接続を可能にする。
5.3.7 前額支持部
一形態において、患者インターフェース3000は、前額支持部3700を含む。
5.3.8 窒息防止弁
一形態において、患者インターフェース3000は、窒息防止弁を含む。
5.3.9 ポート
本技術の一形態において、患者インターフェース3000は、プレナムチャンバ3200内の量へのアクセスを可能にする1つ以上のポートを含む。一形態において、これにより、臨床医が補充酸素を供給することが可能になる。一形態において、これにより、プレナムチャンバ3200内のガス(例えば、圧力)の特性を直接測定することが可能になる。
5.4 RPTデバイス
本技術の一態様によるRPTデバイス4000は、機械、空気圧式、および/または電気部品を含み、1つ以上のアルゴリズム4300を実行するように構成される。RPTデバイス4000は、例えば本文書中のいずれかに記載の呼吸状態のうち1つ以上の治療のために患者の気道へ送達される空気流れを生成するように構成され得る。
RPTデバイスは、上部4012および下部4014の2つの部分として形成された外部ハウジング4010を持ち得る。さらに、外部ハウジング4010は、1つ以上のパネル(複数)4015を含み得る。RPTデバイス4000は、RPTデバイス4000の1つ以上の内部コンポーネントを支持するシャーシ4016を含む。RPTデバイス4000は、ハンドル4018を含み得る。
空気圧RPTデバイス4000の空気圧経路は、1つ以上の空気回路アイテム(例えば、入口空気フィルタ4112、入口マフラー4122、空気を陽圧で供給することが可能な圧力生成器4140(例えば、送風機4142)、出口マフラー4124)ならびに1つ以上の変換器4270(例えば、圧力センサ4272および流量センサー4274)を含み得る。
空気回路アイテムのうち1つ以上は、本明細書において空気圧ブロック4020と呼ばれる取り外し可能な一体構造内に配置され得る。空気圧ブロック4020は、外部ハウジング4010内に配置され得る。一形態において、空気圧ブロック4020は、シャーシ4016によって支持されるかまたはシャーシ4016の一部として形成される。
RPTデバイス4000は、電源4210、1つ以上の入力デバイス4220、中央コントローラ4230、治療デバイスコントローラ4240、圧力生成器4140、1つ以上の保護回路4250、メモリ4260、変換器4270、データ通信インターフェース4280、および1つ以上の出力デバイス4290を有することができる。電気部品4200は、単一のプリント回路基板アセンブリ(PCBA)4202上に取り付けられ得る。一代替形態において、RPTデバイス4000は、1つよりも多くのPCBA4202を含み得る。
5.4.1 RPTデバイス機械および空気圧式コンポーネント
RPTデバイスは、以下のコンポーネントのうち1つ以上を一体ユニット中に含み得る。一代替形態において、以下のコンポーネントのうち1つ以上が、それぞれの別個のユニットとして配置され得る。
5.4.1.1 空気フィルタ(複数)
本技術の一形態によるRPTデバイスは、空気フィルタ4110または複数の空気フィルタ4110を含み得る。
一形態において、入口空気フィルタ4112は、圧力生成器4140の空気圧経路上流の始まり部に配置される。
一形態において、出口空気フィルタ4114(例えば抗菌ファクタ)は、空気圧ブロック4020の出口と、患者インターフェース3000との間に配置される。
5.4.1.2 マフラー(複数)
本技術の一形態によるRPTデバイスは、マフラー4120または複数のマフラー4120を含み得る。
本技術の一形態において、入口マフラー4122は、空気圧経路内において圧力生成器4140の上方に配置される。
本技術の一形態において、出口マフラー4124は、空気圧経路内において圧力生成器4140と患者インターフェース3000との間に配置される。
5.4.1.3 圧力生成器
本技術の一形態において、空気の流れまたは供給を陽圧において生成する圧力生成器4140は、制御可能な送風機4142である。例えば、送風機4142は、ボリュート内に収容された1つ以上のインペラを備えたブラシレスDCモータ4144を含み得る。送風機は、空気供給の送達を例えば約120リットル/分までの速度で、約4cmH2O~約20cmH2Oの範囲の陽圧で、または他の形態において約30cmH2Oまで行うことができる。送風機については、以下の特許または特許出願のうちいずれか1つに記載があり得。本明細書中、同文献全体を参考のため援用する:米国特許第7,866,944号、米国特許第8,638,014号、米国特許第8,636,479号およびPCT特許出願公開WO2013/020167。
圧力生成器4140は、治療デバイスコントローラ4240の制御下にある。
他の形態において、圧力生成器4140は、ピストン駆動ポンプ、高圧源(例えば、圧縮空気リザーバ)へ接続された圧力調節器、またはベローズであり得る。
5.4.1.4 変換器(複数)
変換器は、RPTデバイスの内部に設けてもよいし、あるいはRPTデバイスの外部に設けてもよい。外部変換器は、例えば空気回路上に配置してもよいし、あるいは空気回路の一部を形成してもよい(例えば、患者インターフェース)。外部変換器は、非接触センサーの形態をとり得る(例えば、データRPTデバイスを送るかまたは移動させるドップラーレーダー移動センサー)。
5.4.2 RPTデバイス電気部品
5.4.2.1 電源
電源4210は、RPTデバイス4000の外部ハウジング4010の内部または外部に配置され得る。
本技術の一形態において、電源4210は、RPTデバイス4000にのみ電力を供給する。本技術の別の形態において、電源4210から、電力がRPTデバイス4000および加湿器5000双方へ提供される。
5.4.2.2 入力デバイス
本技術の一形態において、RPTデバイス4000は、人間がデバイスと相互作用を可能にするためのボタン、スイッチまたはダイヤルの形態をとる1つ以上の入力デバイス4220を含む。ボタン、スイッチまたはダイヤルは、タッチスクリーンを介してアクセスすることが可能な物理的デバイスまたはソフトウェアデバイスであり得る。ボタン、スイッチまたはダイヤルは、一形態において外部ハウジング4010に物理的に接続させてもよいし、あるいは、別の形態において中央コントローラと電気接続された受信器と無線通信してもよい。
5.4.2.3 任意選択のディスプレイ、警報を含む出力デバイス
本技術による出力デバイスは、視覚、音声および触覚ユニットのうち1つ以上の形態をとり得る。視覚ディスプレイは、液晶ディスプレイ(LCD)または発光ダイオード(LED)ディスプレイであり得る。
5.5 空気回路
本技術の一態様による空気回路4170は、使用時において空気流れが2つのコンポーネント(例えば、RPTデバイス4000および患者インターフェース3000)間に移動するように、構築および配置された導管またはチューブである。
詳細には、空気回路4170は、空気圧ブロック4020の出口および患者インターフェースと流体接続し得る。空気回路は、空気送達管と呼ばれ得る。いくつかの場合において、吸息および呼息のための回路の別個の肢があり得る。他の場合において、単一の肢が用いられる。
いくつかの形態において、空気回路4170は、(例えば空気温度の維持または上昇のために)空気回路中の空気を加熱するように構成された1つ以上の加熱要素を含み得る。加熱要素は、加熱ワイヤ回路の形態をとり得、1つ以上の変換器(例えば、温度センサー)を含み得る。一形態において、加熱ワイヤ回路は、空気回路4170の軸周囲にらせん状に巻かれ得る。加熱要素は、コントローラ(例えば、中央コントローラ)と連通し得る。加熱ワイヤ回路を含む空気回路4170の一実施例について、米国特許出願第8,733,349号に記載がある。本明細書中、同文献全体を参考のため援用する。
5.6 加湿器
5.6.1 加湿器の概要
本技術の一形態において、患者へ送達されるべき空気またはガスの絶対湿度を周囲空気に相対して変化させるための加湿器5000が提供される(例えば、図3Vおよび図3Wに示すようなもの)。典型的には、加湿器5000は、患者気道へ送達される前に空気流れの(周囲空気に相対する)絶対湿度を増加させかつ温度を増加させるために、用いられる。
加湿器5000は、加湿器リザーバ5110と、空気流れを受容する加湿器入口5002と、加湿された空気流れを送達させるための加湿器出口5004とを含み得る。図3Vおよび図3Wに示すようないくつかの形態において、加湿器リザーバ5110の入口および出口はそれぞれ、加湿器入口5002および加湿器出口5004であり得る。加湿器5000は、加湿器ベース5006をさらに含み得る。加湿器ベース5006は、加湿器リザーバ5110を受容するように適合され得、加熱要素5240を含み得る。
5.6.2 加湿器コンポーネント
5.6.2.1 水リザーバ
1つの配置によれば、加湿器5000は、空気流れの加湿のために蒸発させるべき一定量の液体(例えば、水)を収容または保持するように構成された水リザーバ5110を含み得る。水リザーバ5110は、少なくとも呼吸治療セッション期間(例えば、一晩の睡眠)にわたって適切な加湿を提供するための所定の最大量の水を収容するように、構成され得る。典型的には、リザーバ5110は、数百ミリリットルの水(例えば、300ミリリットル(ml)、325ml、350mlまたは400ml)を収容するように、構成される。他の形態において、加湿器5000は、外部水源(例えば、建物の水供給システム)から水供給を受容するように、構成され得る。
一態様によれば、水リザーバ5110は、空気流れがRPTデバイス4000を通過する際にRPTデバイス4000からの空気流れを加湿するように、構成される。一形態において、水リザーバ5110は、空気流れがリザーバ5110中の一定量の水と接触しつつ、空気流れのリザーバ5110中の蛇行経路の移動を促進するように、構成され得る。
一形態によれば、リザーバ5110は、例えば図3Vおよび図3Wに示すように横方向において加湿器5000から取り外し可能であり得る。
リザーバ5110は、例えばリザーバ5110がその通常の動作方向(例えば、任意のアパチャを通じておよび/またはそのサブコンポーネント間に)から変位および/または回転した時にリザーバ5110からの液体放出を抑制するようにも構成され得る。加湿器5000によって加湿すべき空気流れは加圧されていることが多いため、リザーバ5110は、漏洩および/または流れインピーダンスを通じた空気圧の損失を回避するようにも、構成され得る。
5.6.2.2 伝導性部位
1つの配置によれば、リザーバ5110は、加熱要素5240からリザーバ5110中の一定量の液体への効率的な熱伝達を可能にするように構成された伝導性部位5120を含む。一形態において、伝導性部位5120はプレートとして配置され得るが、他の形状も適切であり得る。伝導性部位5120の全体または一部は、アルミニウムなどの熱伝導性材料(例えば、厚さおよそ2mm(例えば、1mm、1.5mm、2.5mmまたは3mm))、別の熱伝導金属また何らかのプラスチックによって構成され得る。いくつかの場合において、適切な熱伝導性が、適切なジオメトリのより低伝導性の材料により、達成され得る。
5.6.2.3 加湿器リザーバドック
一形態において、加湿器5000は、加湿器リザーバ5110を受容するように構成された(図3Vに示すような)加湿器リザーバドック5130を含み得る。いくつかの配置において、加湿器リザーバドック5130は、ロック機能を含み得る(例えば、リザーバ5110を加湿器リザーバドック5130内に保持するように構成されたロックレバー5135)。
5.6.2.4 水位インジケータ
加湿器リザーバ5110は、図3V~図3Wに示すような水位インジケータ5150を含み得る。いくつかの形態において、水位インジケータ5150は、加湿器リザーバ5110中の水の量についての1つ以上の兆候を患者1000または介護者などのユーザへ提供し得る。水位インジケータ5150から提供されるこれら1つ以上の兆候は、最大の所定量の水、その任意の一部の通知を含み得る(例えば、25%、50%または75%または量(例えば、200ml、300mlまたは400ml))。
5.6.2.5 加熱要素
いくつかの場合において、加熱要素5240は、加湿器リザーバ5110中の水量および/または空気流れへの水量のうち1つ以上へ熱入力を提供する加湿器5000へ設けられ得る。加熱要素5240は、電気抵抗加熱トラックなどの熱生成コンポーネントを含み得る。加熱要素5240の1つの適切な実施例として、例えばPCT特許出願公開第WO2012/171072号に記載の層状加熱要素がある。本明細書中、同文献全体を参考のため援用する。
いくつかの形態において、加熱要素5240は、加湿器ベース5006中へ設けられ得る。加湿器ベース5006において、図5Bに示すように主に伝導により熱が加湿器リザーバ5110へ送られ得る。
5.7 用語集
本技術の開示目的のため、本技術の特定の形態において、以下の定義のうち1つ以上が適用され得る。本技術の他の形態において、別の定義も適用され得る。
5.7.1 一般
空気:本技術の特定の形態において、空気は大気を意味し得、本技術の他の形態において、空気は、他の呼吸可能なガスの組み合わせ(例えば、酸素を豊富に含む大気)を意味し得る。
雰囲気:本技術の特定の形態において、「雰囲気」という用語は、(i)治療システムまたは患者の外部、および(ii)治療システムまたは患者を直接包囲するものを意味するものとしてとられるべきである。
例えば、加湿器に対する雰囲気湿度とは、加湿器を直接包囲する空気の湿度であり得る(例えば、患者が睡眠をとっている部屋の内部の湿度)。このような雰囲気湿度は、患者が睡眠をとっている部屋の外部の湿度と異なる場合がある。
別の実施例において、雰囲気圧力は、身体の直接周囲または外部の圧力であり得る。
特定の形態において、雰囲気(例えば、音響)ノイズは、例えばRPTデバイスから発生するかまたはマスクまたは患者インターフェースから発生するノイズ以外の、患者の居る部屋の中の背景ノイズレベルとみなすことができる。雰囲気ノイズは、部屋の外の発生源から発生し得る。
自動的な気道陽圧(APAP)療法:SDB発症の兆候の存在または不在に応じて、例えば、呼吸間に最小限界と最大限界との間で治療圧力を自動的に調節することが可能なCPAP療法。
持続的気道陽圧(CPAP)療法:治療圧力が患者の呼吸サイクルを通じてほぼ一定である呼吸圧療法。いくつかの形態において、気道への入口における圧力は、呼息時において若干上昇し、吸息時において若干低下する。いくつかの形態において、圧力は、患者の異なる呼吸サイクル間において変動する(例えば、部分的な上気道閉塞の兆候の検出に応答して増加され、部分的な上気道閉塞の通知の不在時において低減される)。
流量:単位時間あたりに送出される空気の瞬時の量(または質量)。流量とは、瞬間の量を指し得る。場合によっては、流量について言及した場合、スカラー量(すなわち、大きさのみを有する量)を指す。他の場合において、流量について言及した場合、ベクトル量(すなわち、大きさおよび方向両方を持つ量)を指す。流量には、符号Qが付与され得る。「流量」を簡略的に「流れ」と呼ぶ場合もある。
患者の呼吸の実施例において、流量は、患者の呼吸サイクルの吸気部分に対してノミナルに陽圧であり得るため、患者の呼吸サイクルの呼気部分に対して負であり得る。合計流量Qtは、RPTデバイスから退出する空気の流量である。通気流量Qvは、吐き出されたガスの流出を可能にするために通気孔から退出する空気の流量である。漏洩流量Qlは、患者インターフェースシステムまたは他の場所からの漏洩の流量である。呼吸流量Qrは、患者の呼吸器系中に受容される空気の流量である。
加湿器:「加湿器」という単語は、患者の医療呼吸状態を改善するために治療上有益な量の水(H20)蒸気を空気流れへ提供することが可能な物理的構造を備えて構築、配置または構成された加湿装置を意味するものとして解釈される。
漏洩:「漏洩」という用語は、意図しない空気流れとしてとられる。一実施例において、漏洩は、マスクと患者の顔との間のシールが不完全であることに起因して発生し得る。別の実施例において、漏洩は、周囲に対する回りエルボーにおいて発生し得る。
ノイズ伝導(音響):本文書において、伝導ノイズとは、空気圧経路(例えば、空気回路および患者インターフェースおよびその内部の空気)によって患者へ搬送されるノイズを指す。一形態において、伝導ノイズは、空気回路の端部における音圧レベルを測定することにより、定量化され得る。
ノイズ放射(音響):本文書において、放射ノイズとは、周囲空気によって患者へ搬送されるノイズを指す。一形態において、放射ノイズは、当該対象の音響パワー/圧力レベルをISO3744に従って測定することにより、定量化され得る。
ノイズ通気(音響):本文書において、通気ノイズとは、任意の通気(例えば、患者インターフェース中の通気穴)を通じた空気流れにより生成されるノイズを指す。
患者:呼吸器疾患に罹患しているかまたはしていない人。
圧力:単位面積あたりの力。圧力は、多様な単位で表現測定され得る(例えば、cmH2O、g-f/cm2、及びヘクトパスカル)。1cmH2Oは、1g-f/cm2に等しく、およそ0.98ヘクトパスカルである。本明細書において、他に明記無き限り、圧力はcmH2Oの単位で付与される。
患者インターフェース中の圧力には記号Pmが付与され、現時点においてマスク圧力Pmが達成すべき目標値を表す治療圧力には記号Ptが付与される。
呼吸圧力治療(RPT):雰囲気に対して典型的には陽圧である治療圧力における空気供給の気道入口への付加。
人工呼吸器:患者が呼吸動作の一部または全てを行い際に圧力補助を提供する機械的デバイス。
5.7.1.1 材料
シリコーンまたはシリコーンエラストマー:合成ゴム。本明細書において、シリコーンについて言及される場合、液体シリコーンゴム(LSR)または圧縮成形シリコーンゴム(CMSR)を指す。市販のLSRの一形態として、Dow Corningによって製造されるSILASTIC(この登録商標下において販売される製品群に含まれる)がある。別のLSR製造業者として、Wackerがある。他に逆の明記無き限り、例示的形態のLSRのASTMD2240によって測定した場合のショアA(またはタイプA)押込み硬さは、約35~約45である。
ポリカーボネート:ビスフェノールAカーボネートの熱可塑性ポリマーである。
5.7.1.2 機械的特性
弾性:弾性変形時にエネルギーを吸収することおよび除荷時にエネルギーを解放することが可能な材料の能力。
弾性のある:除荷時に実質的に全てのエネルギーを解放する。例えば特定のシリコーンおよび熱可塑性エラストマーを含む。
硬度:材料自体の変形に抵抗する能力(例えば、ヤング係数または規格化されたサンプルサイズ上において測定された押込硬さスケールによって記述されたもの)。
・ 「軟性」材料は、シリコーンまたは熱可塑性エラストマー(TPE)を含み得、例えば指圧力下において容易に変形し得る。
・ 「硬質」材料は、ポリカーボネート、ポリプロピレン、鋼またはアルミニウムを含み得、例えば指圧力下において容易に変形し得ない。
構造または構成要素の剛度(または剛性):構造または構成要素が負荷を受けたときに変形に抵抗する能力。負荷は、力またはモーメントであり得る(例えば、圧縮、伸張、屈曲またはねじれ)。構造または構成要素は、異なる方向において異なる抵抗を提供し得る。
フロッピー構造または構成要素:自重を支持させられた際に比較的短期間(例えば、1秒)以内に形状を変化させる(例えば、屈曲する)構造または構成要素。
剛性の構造または構成要素:使用時において典型的に遭遇する負荷を受けた際に実質的に形状変化の無い構造または構成要素。このような用途の実施例として、患者インターフェースを例えばおよそ20~30cmH2Oの圧力の負荷において患者気道入口に対して密閉した様態でセットアップおよび維持することがあり得る。
一実施例として、I形ばりは、第2の直交方向と比較した第1の方向において、異なる曲げ剛性(曲げ負荷に対する抵抗)を含み得る。別の実施例において、構造または構成要素は、第1の方向においてはフロッピーであり得、第2の方向においては剛性であり得る。
5.7.2 呼吸サイクル
無呼吸:いくつかの定義によれば、無呼吸とは、所定の閾値を下回った流れが例えば10秒間の継続期間にわたって継続した場合に発生したと言われる。閉塞性無呼吸とは、患者の労作にもかかわらず、何らかの気道閉塞により空気の流れが許されないときに発生すると言われる。中枢性無呼吸とは、気道が開通しているにも関わらず呼吸努力の低下または呼吸努力の不在に起因して無呼吸が検出された状態を指すと言われる。混合無呼吸とは、呼吸努力の低下または不在が気道閉塞と同時発生した状態を指すと言われる。
呼吸速度:患者の自発呼吸速度であり、通常は毎分あたりの呼吸回数で測定される。
負荷サイクル:吸息時間Tiの合計呼吸時間Ttotに対する比。
労作(呼吸):呼吸努力は、呼吸しようとしている人の自発呼吸によって行われる動きを指すと言われる。
呼吸サイクルの呼気部分:呼気流れの開始から吸気流れの開始までの期間。
流量制限:流量制限は、患者による労作の増大が流量の対応する増大を引き起こさない患者の呼吸における状況であると解釈される。呼吸サイクルの吸気部分において流量制限が発生した場合、当該流量制限は吸気流量制限と称することができる。呼吸サイクルの呼気部分において流量制限が発生した場合、当該流量制限は呼気流量制限と称することができる。
流れ制限吸気の波形の種類:
(i)平坦化:上昇の後に比較的平坦な部位が続いた後、下降が発生すること。
(ii)M字型:立ち上がりにおいて1つおよび立ち下がりにおいて1つの2つの局所的ピークを持ち、これら2つのピークの間に比較的平坦な部位がある。
(iii)椅子状:単一の局所的ピークを持ち、このピークが立ち上がり部分に発生した後、比較的平坦な部位が続く。
(iv)逆椅子状:比較的平坦な部位の後に単一の局所的ピークが続き、このピークが立ち下がり部分に発生する。
呼吸低下:一部の定義によれば、呼吸低下は、流れの中断ではなく、流れの低下を意味する。一形態において、閾値速度を下回った流れ低下が継続期間にわたって続いた場合、呼吸低下が発生したと言われる。呼吸努力の低下に起因して呼吸低下が検出された場合、中枢性呼吸低下が発生したと言われる。成人の一形態において以下のうちいずれかが発生した場合、呼吸低下と見なされ得る:
(i)患者呼吸の30%の低下が少なくとも10秒+関連する4%の脱飽和、または、
(ii)患者呼吸の(50%未満の)低下が少なくとも10秒間継続し、関連して脱飽和が少なくとも3%であるかまたは覚醒が発生する。
過呼吸:流れが通常の流量よりも高いレベルまで増加すること。
呼吸サイクルの吸気部分:吸気流れの開始から呼気流れの開始までの期間が、呼吸サイクルの吸気部分としてとられる。
開通性(気道):気道が開いている度合いまたは気道が開いている範囲。気道開通性とは、開口である。気道開通性の定量化は、例えば、開通性を示す値(1)と、閉鎖(閉塞)を示す値(0)で行われ得る。
呼吸終末陽圧(PEEP):肺中の大気を越える圧力であり、呼気終了時に存在する。
ピーク流量(Qpeak):呼吸流れ波形の吸気部分における流量最大値。
呼吸気流量、空気流量、患者の空気流量、呼吸気空気流量(Qr):これらの用語は、RPTデバイスの呼吸空気流量の推定を指すものとして理解され得、通常リットル/分で表される患者の実際の呼吸流量である「真の呼吸流量」または「真の呼吸気流量」と対照的に用いられる。
1回換気量(Vt):余分な努力をせずに通常の呼吸時に吸い込まれたかまたは吐き出された空気の量である。
(吸息)時間(Ti):呼吸流量波形の吸気部分の継続期間。
(呼息)時間(Te):呼吸流量波形の呼気部分の継続期間。
(合計)時間(Ttot):呼吸流量波形の一つの吸気部分の開始と呼吸流量波形の次の吸気部分の開始との間の合計継続期間。
典型的な最近の換気:所定の時間スケールにわたる換気Ventの直近値が密集する傾向となる換気値(すなわち、換気の直近値の中心の傾向の度合い)。
上気道閉塞(UAO):部分的な上気道閉塞および合計上気道閉塞両方を含む。上気道上の圧力差の増加(スターリングレジスタ挙動)と共に流量がわずかに増加するかまたは低下し得る流量制限の状態と関連し得る。
換気(Vent):患者の呼吸器系によって行われるガス交換率の測定。換気の測定は、単位時間あたりの吸気および呼気流のうち片方または双方を含み得る。1分あたりの体積として表される場合、この量は、「分換気」と呼ばれることが多い。分換気は、単に体積として付与されることもあり、1分あたりの体積として理解される。
5.7.3 換気
適応サーボ人工呼吸器(ASV):一定の目標換気を持つのではなく変更が可能なサーボ人工呼吸器。変更可能な目標換気は、患者の何らかの特性(例えば、患者の呼吸特性)から学習され得る。
バックアップレート:人工呼吸器のパラメータであり、(自発呼吸努力によってトリガされない場合に)人工呼吸器から患者へ送達される最小呼吸速度(典型的には、1分あたりの呼吸数)を確立させる。
サイクル:人工呼吸器の吸気フェーズの終了。自発呼吸をしている患者へ人工呼吸器から呼吸を送達する場合、呼吸サイクルの吸気部分の終了時において、当該人工呼吸器は、呼吸送達を停止するようサイクルされると言われる。
呼気の気道陽圧(EPAP):、人工呼吸器が所与の時期に達成しようとする所望のマスク圧力の生成のために、呼吸内において変化する圧力が付加される基本圧力。
終了時呼気圧力(EEP):呼吸の呼気部分の終了時において人工呼吸器が達成しようとする所望のマスク圧力。圧力波形テンプレートΠ(Φ)が呼気終了時にゼロの値である(すなわち、Φ=1のときにΠ(Φ)=0である場合)、EEPはEPAPに等しい。
吸息の気道陽圧(IPAP):呼吸の吸気部分時に人工呼吸器が達成しようとする最大の所望のマスク圧力。
圧力補助:人工呼吸器吸気時における当該人工呼吸器呼気時における圧力増加を示す数であり、吸気時の最大値と、基本圧力との間の圧力差を主に意味する(例えば、PS=IPAP-EPAP)。いくつかの文脈において、圧力補助とは、(人工呼吸器が実際に達成する差ではなく)人工呼吸器が達成しようとする差を意味する。
サーボ人工呼吸器:患者換気を有しかつ目標換気を有する人工呼吸器であり、患者換気を目標換気に近づけるために圧力補助レベルを調節する。
自発/タイミング(S/T):自発呼吸している患者の呼吸の開始を検出しようとする、人工呼吸器または他のデバイスのモード。しかし、デバイスが所定期間の間に呼吸を検出できない場合、デバイスは、呼吸送達を自動的に開始する。
スイング:圧力補助に相当する用語。
トリガ:人工呼吸器が自発呼吸する患者へ空気の呼吸を送達する場合、患者自身が呼吸サイクルの呼吸部分を開始したとき、当該人工呼吸器が呼吸送達を行うようトリガされたと言う。
典型的な最近の換気:典型的な最近の換気Vtypは、一定の所定の時間スケールにわたって最近の換気測定が密集する傾向となる一定範囲の値である。例えば、最近の履歴にわたる換気測定の中心的傾向の測定は、典型的な最近の換気の適切な値であり得る。
5.7.4 解剖学的構造
5.7.4.1 顔の解剖学的構造
翼:外部の外壁または各鼻孔の「翼」(複数形:alar)
Alare:鼻翼上の最外側の点。
翼曲率(または翼頂)点:各翼の曲線状基準線における最後方点であり、翼および頬の結合によって形成される折り目において見受けられる。
耳介:耳の視認できる部分全体。
(鼻)骨格:鼻の骨格は、鼻骨、上顎骨の前頭突起および前頭骨の鼻部分を含む。
(鼻)軟骨格:鼻の軟骨格は、中隔軟骨、外側軟骨、大軟骨および小軟骨を含む。
鼻柱:鼻孔を分離する皮膚片であり、鼻尖点から上唇へ延びる。
鼻柱角度:鼻孔の中点を通じて引かれる線と、鼻下点と交差しつつフランクフルト水平に対して垂直に引かれる線との間の角度。
フランクフォート水平面:眼窩縁の最下側点から左耳点へ延びる線。耳点は、ノッチ上側から耳介の耳珠への最も深い点である。
眉間:軟組織中に配置され、前額部の正中矢状において最も顕著な点。
側鼻軟骨:軟骨の概して三角形の板。その上側周縁は鼻骨および上顎骨の前頭突起へ取り付けられ、その下側周縁は大鼻翼軟骨へ接続される。
大鼻翼軟骨:軟骨の板であり、外側鼻軟骨の下側に配置される。これは、鼻孔の前方部分の周囲において曲線状になる。その後端は、3つまたは4つの翼の小軟骨を含む強靱な線維膜により、上顎骨の前頭突起へ接続される。
鼻孔(小鼻):概して楕円体の翼穴であり、鼻腔への入口を形成する。鼻孔の単数形は鼻孔(小鼻)である。これらの鼻孔は、鼻中隔によって分離される。
鼻唇溝または鼻唇折り目:皮膚の折り目または溝であり、鼻の各側から口腔の角部へ延びて、頬を上唇から分離させる。
鼻唇角:鼻柱と上唇との間の角度であり、鼻下点と交差する。
下耳下縁点:耳介の顔の皮膚への取り付けの最低点。
下耳上縁点:耳介の顔の皮膚への取り付けの最高点。
鼻尖点:鼻の最も突出した点または先端であり、頭部の部分の残り部分の側面図中に確認され得る。
人中:鼻中隔の下側境界から上唇領域中の唇の上部へ延びる正中線溝。
ポゴニオン:軟組織上に配置された、顎の最前方中点。
(鼻)堤:鼻堤は、鼻の正中線隆起であり、セリオンから鼻尖点へ延びる。
矢状面:前方(前)から後方(後)へ続く垂直面であり、本体を右半分および左半分に分割する。
セリオン:軟組織上に配置された、前頭鼻骨縫合の領域上の最も凹状の点である。
中隔軟骨(鼻):鼻中隔軟骨は、隔膜の一部であり、鼻腔の前部分を分割する。
鼻翼最下点:翼ベースの下側周縁における点であり、翼ベースは上(上)唇の皮膚と接合する。
鼻下点:軟組織上に配置され、鼻柱が正中矢状における上唇と合体する点。
スプラメンターレ:下唇中点と軟組織ポゴニオンとの間の下唇の正中線中の最も凹状の点。
5.7.4.2 頭蓋骨の解剖学的構造
前頭骨:前頭骨は、前額部として知られる領域に対応する大型垂直部分である前頭鱗を含む。
下顎骨:下顎骨は、下側顎部を形成する。オトガイ隆起は、顎部の骨隆起であり、顎を形成する。
上顎骨:上顎骨は、上側顎部を形成し、下顎の下側および眼窩の下側に配置される。上顎骨の前頭突起は、鼻の側部によって上方に突出し、その外側境界の部分を形成する。
鼻骨:鼻骨は、2つの小さな長方形骨であり、個人によってサイズおよび形態が異なる。鼻骨は、顔の中間部分および上部分に並んで配置され、その接合により鼻の「ブリッジ」を形成する。
ナジオン:前頭骨および2本の鼻骨の交差であり、眼と鼻のブリッジの上側との間に直接設けられた凹領域である。
後頭骨:後頭骨は、頭蓋の裏および下側部分に配置される。後頭骨は、楕円穴である大後頭孔を含み、この穴を通じて、頭蓋内腔が椎管と連痛する。大後頭孔の後側の曲面板は、後頭鱗である。
眼窩:頭蓋骨中の骨空洞であり、眼球を含む。
頭頂骨:頭頂骨は、相互に接合されると頭蓋の頂部および側部を形成する骨である。
側頭骨:側頭骨は、頭蓋骨のベースおよび側部上に配置され、こめかみとして知られる顔の部分を支持する。
頬骨:顔に含まれる2つの頬骨は、顔の上側部分および外側部分中に配置され、頬の隆起を形成する。
5.7.4.3 呼吸器系の解剖学的構造
横隔膜:シート状の筋肉であり、胸郭下部上に延びる。横隔膜は、心臓、肺および肋骨を含む胸腔を腹腔から分離させる。横隔膜が収縮すると、胸腔の容量が増加し、肺中に空気が引き込まれる。
喉頭:声帯ひだを収容する喉頭または発声器であり、咽頭の下部(下咽頭)を気管へ接続させる。
肺:ヒトにおける呼吸臓器。肺の伝導性ゾーンは、気管、気管支、気管支、および終末細気管支を含む。呼吸ゾーンは、呼吸細気管支、肺胞管および肺胞を含む。
鼻腔:鼻腔(または鼻窩)は、顔の中央の鼻の上方および後方の空気が充填された大きな空間である。鼻腔は、鼻中隔と呼ばれる垂直フィンによって2つに分割される。鼻腔の側部には、鼻甲介または鼻介骨と呼ばれる3つの水平伸長物がある。鼻腔の前方には鼻があり、後方は後鼻孔を介して鼻咽頭内に繋がる。
咽頭:鼻腔の直接下側(下方)に配置されかつ食道および喉頭の上方に配置された咽喉の部分。咽頭は、従来から以下の3つの部分へ区分される:鼻咽頭(上咽頭)(咽頭の鼻部分)、中咽頭(中咽頭)(咽頭の口部分)、および咽喉(下咽頭)。
5.7.5 患者インターフェース
窒息防止弁(AAV):マスクシステムの構成要素またはサブアセンブリであり、フェールセーフ様態での雰囲気中への開口により、患者による過度のCO2の再呼吸の危険性を低減させる。
エルボーエルボーは、内部を移動する空気の流れの軸を方向付けて、角度を通じて方向を変化させる構造の実施例である。一形態において、角度はおよそ90度であり得る。別の形態において、角度は、90度超過または未満であり得る。肘は、ほぼ円形の断面を持ち得る。別の形態において、肘は、楕円または矩形の断面を持ち得る。特定の形態において、エルボーは、噛み合い構成要素に対して例えば約360度で回転可能であり得る。特定の形態において、エルボーは、噛み合い構成要素から例えばスナップ接続を介して取り外すことが可能であり得る。特定の形態において、エルボーは、製造時にワンタイムスナップを介して噛み合い構成要素へ組み付けることが可能である一方、患者が取り外すことはできない。
フレーム:フレームは、ヘッドギアを接続する2つ以上の点間の引張荷重を支持するマスク構造を意味するものとしてとられる。マスクフレームは、マスク中の非気密負荷支持構造であり得る。しかし、いくつかの形態のマスクフレームは、気密であってもよい。
ヘッドギア:ヘッドギアは、頭部上において使用されるように設計された、一形態の位置決めおよび安定化構造を意味するものとしてとられる。例えば、ヘッドギアは、患者インターフェースを呼吸治療の送達のために患者の顔上の所定位置に配置および保持するように構成された1つ以上の支柱、タイおよび補剛材の集合を含み得る。いくつかのタイは、柔らかい可撓性の弾性材料(例えば、発泡材料および織物の層状複合材)によって形成される。
膜:膜は、典型的には肉薄の要素を意味するものとしてとられ、好適には屈曲に対して実質的に抵抗せずかつ伸縮に対しては抵抗する。
プレナムチャンバ:マスクプレナムチャンバは、空間の容積を少なくとも部分的に封入する壁を有する患者インターフェースの一部を意味するものとしてとられ、容積中の空気は、加圧されて使用時において気圧を超える。シェルは、マスクプレナムチャンバの壁の一部を形成し得る。
シール:名詞(「シール」)として用いられる場合は構造を指し得、動詞(「密閉(する)」)として用いられる場合はその効果を指し得る。2つの要素は、別個の「シール」要素自体を必要とすることなく両者間において「シール」するかまたは「密閉」効果を得るように、構築および/または配置され得る。
シェル:シェルは、屈曲、引っ張りおよび圧縮剛性を有する曲線状の比較的肉薄構造を意味するものとしてとられる。例えば、マスクの曲線状構造壁は、シェルであり得る。いくつかの形態において、シェルはファセットされ得る。いくつかの形態において、シェルは気密であり得る。いくつかの形態において、シェルは気密でない場合もある。
補剛材:補剛材は、別の構成要素の剛軟度を少なくとも1つの方向において増加させるように設計された構造構成要素を意味するものとしてとられる。
支柱:支柱は、別の構成要素の圧縮抵抗を少なくとも1つの方向において増加させるように設計された構造構成要素を意味するものとしてとられる。
回り継ぎ手(名詞)構成要素のサブアセンブリであり、共通軸の周囲において好適には独立して好適には低トルク下において回転するように構成される。一形態において、回り継ぎ手は、少なくとも360度の角度で回転するように構成され得る。別の形態において、回り継ぎ手は、360度未満の角度で回転するように構成され得る。空気送達導管の文脈において用いられる場合、構成要素のサブアセンブリは好適には、一対組み合わせの円筒導管を含む。使用時において、回り継ぎ手からの空気漏れはほとんど無い。
つなぎ材(名詞):張力に抵抗するように設計された構造。
通気:(名詞):マスクまたは導管の内部の周囲空気への空気流れを可能にする構造であり、吐き出されたガスの臨床的に有効な洗い流しを可能にする。例えば、臨床的に有効な洗い流しにおいては、約10リットル/分~約100リットル/分の流量がマスク設計および治療圧力に応じて用いられ得る。
5.7.6 構造の形状
本技術による製品は、1つ以上の三次元機械構造(例えば、マスククッションまたはインペラ)を含み得る。三次元構造は、二次元表面によって制限され得る。これらの表面は、関連付けられた表面の方向、位置、機能または他の何らかの特性を記述するためのラベルを用いて区別され得る。例えば、構造は、前表面、後表面、内面および外面のうち1つ以上を含み得る。別の実施例において、クッション構造は、顔を含む(例えば、外側の)表面と、別個の顔を含まない(例えば、下側または内側の)表面を含み得る。別の実施例において、構造は、第1の表面および第2の表面を含み得る。
三次元構造の形状および表面の説明を容易にするために、構造の表面を通じた点pにおける断面について先ず検討する。図3B~図3Fを参照されたい。図3B~図3Fは、表面上における点pにおける断面例と、その結果得られる平面曲線の例とを示す。図3B~図3Fは、pにおける外向き法線ベクトルも示す。pにおける外向き法線ベクトルは、表面から離隔方向に延びる。いくつかの実施例において、架空の小さな人が表面上に直立している観点から、この表面について説明する。
5.7.6.1 一次元における曲率
pにおける平面曲線の曲率は、符号(例えば、正、負)および大きさ(例えば、pにおいて曲線に接する円形の1/半径)を持つものとして記述され得る。
正の曲率:pにおける曲線が外向き法線に向かって曲がる場合、その点における曲率は、正の値を持つものとしてとられる(この架空の小さな人が点pから立ち去る場合、上り坂を歩行する必要がある)。図3B(図3Cと比較して比較的大きな正の曲率)および図3C(図3Bと比較して比較的小さな正の曲率)を参照されたい。このような曲線を、凹状と呼ぶことが多い。
ゼロ曲率:pにおける曲線が直線である場合、曲率はゼロとしてとられる(この架空の小さな人が点pから立ち去る場合、上向きでも下向きでもない水平面を歩行することができる)。図3Dを参照されたい。
負の曲率:pにおける曲線が外向き法線から離隔方向に曲がる場合、その点およびその方向における曲率は、負の値を持つものとしてとられる(この架空の小さな人が点pから立ち去る場合、下り坂を歩行する必要がある)。図3E(図3Fと比較して比較的小さな負の曲率)および図3F(図3Eと比較して比較的大きな負の曲率)を参照されたい。このような曲線は、凸状と呼ばれることが多い。
5.7.6.2 二次元表面の曲率
本技術による二次元表面上の所与の点における形状の記述は、複数の垂直断面を含み得る。複数の断面は、外向き法線(「法平面」)を含む面において表面を切断し得、各断面は、異なる方向においてとられ得る。各断面の結果、対応する曲率を有する平面曲線が得られる。その点における異なる曲率は、同一符号または異なる符号を持ち得る。その点における曲率はそれぞれ、(例えば、比較的小さな)大きさを有する。図3B~図3F中の平面曲線は、特定の点におけるこのような複数の断面の例であり得る。
主要な曲率および方向:曲線の曲率が最大値および最小値をとる法平面の方向を主要な方向と呼ぶ。図3B~図3Fの実施例において、最大曲率は図3Bにおいて発生し、最小は図3Fにおいて発生するため、図3Bおよび図3Fは、主要な方向における断面である。pにおける主要な曲率は、主要な方向における曲率である。
表面の領域:表面上の連結された点の集合。領域内のこの1組の点は、類似の特性(例えば、曲率または符号)を持ち得る。
サドル領域:(上り坂または下り坂を歩行し得る架空の人が向く方向に応じて)各点において主要な曲率が反対の符号(すなわち、片方が正の符号および他方が負の符号)を有する領域。
ドーム領域:各点において主要な曲率が同一符号(双方とも正(「凹状ドーム」)または双方とも負(「凸状ドーム」))を持つ領域。
円筒型領域:1つの主要な曲率がゼロ(または、例えば製造公差内のゼロ)をとり、他方の主要な曲率が非ゼロである領域。
平面領域:主要な曲率双方がゼロであるか(または例えば製造交差内のゼロである)表面の領域。
表面の縁部:表面または領域の境界または限界。
経路:本技術の特定の形態において、「経路」は、数学的-トポロジー的意味合いにおける経路(例えば、表面上におけるf(0)からf(1)への連続空間曲線)を意味するものとしてとられる。本技術の特定の形態において、「経路」は、例えば表面上の1組の点を含むルートまたはコースとして記述され得る。(架空の人の経路は、表面上において歩行する場所であり、庭の経路に類似する)。
経路長さ:本技術の特定の形態において、「経路長さ」とは、表面に沿ったf(0)からf(1)への距離(すなわち、表面上の経路に沿った距離)を指すものとしてとられる。表面上の2つの点間において1つよりも多くの経路があり得、このような経路は、異なる経路長さを持ち得る。(架空の人の経路長さは、表面上を経路に沿って歩行する距離である)。
直線距離:直線距離は、表面上の2つの点間の距離であるが、表面は考慮しない。平面領域上において、表面上の2つの点間の直線距離と同一の経路長さを有する表縁上の距離がある。非平面表面上において、2つの点間の直線距離と同一の経路長さを有する経路は存在し得ない。(架空の人にとって、直線距離は、「カラスが飛ぶ」距離に対応する)。
5.7.6.3 空間曲線
空間曲線:平面曲線と異なり、空間曲線は、任意の特定の平面内に必ずしも存在しない。空間曲線は、三次元空間の一次元ピースとみなされ得る。DNA螺旋の鎖上を歩行している架空の人物は、空間曲線に沿って歩行する。典型的なヒトの左耳は、左手螺旋を含む(図3Qを参照)。典型的なヒトの右耳は、右手螺旋を含む(図3Rを参照)。図3Sは、右手螺旋を示す。構造の縁部(例えば、膜または羽根車の縁部)は、空間曲線をたどり得る。一般的に、空間曲線は、空間曲線上の各点における曲率およびねじれによって記述され得る。ねじれとは、平面から発生する曲線の様態の尺度である。ねじれは、符号および大きさを有する。空間曲線上の点におけるねじれは、当該点における接線ベクトル、法線ベクトルおよび従法線ベクトルに対して特徴付けられ得る。
接線単位ベクトル(または単位接線ベクトル):曲線上の各点について、当該点におけるベクトルは、当該点からの方向および大きさを指定する。接線単位ベクトルとは、当該点における曲線と同じ方向を向く単位ベクトルである。架空の人物が曲線に沿って飛行しており、特定の点において自身の車両から落ちた場合、接線ベクトルの方向は、その人物が移動しているはずの方向である。
単位法線ベクトル:架空の人物が曲線に沿って移動している場合、この接線ベクトルそのものが変化する。接線ベクトルが変化している方向と同じ方向を向く単位ベクトルは、単位主法線ベクトルと呼ばれる。これは、接線ベクトルに対して垂直である。
従法線単位ベクトル:従法線単位ベクトルは、接線ベクトルおよび主法線ベクトル双方に対して垂直である。その方向は、右手の法則(例えば図3Pを参照)または表すあるいは左手の法則(図3O)によって決定され得る。
接触平面:単位接線ベクトルおよび単位主法線ベクトルを含む平面。図3Oおよび図3Pを参照されたい。
空間曲線のねじれ:空間曲線の点におけるねじれとは、当該点における従法線単位ベクトルの変化速度の大きさである。これは、曲線の接触平面からの逸脱の程度を測定する。平面内にある空間曲線のねじれはゼロである。空間曲線の接触平面からの逸脱が比較的少量である場合、その空間曲線のねじれの大きさは比較的小さい(例えば、緩やかに傾斜する螺旋状経路)。空間曲線の接触平面からの逸脱が比較的大量である場合、その空間曲線のねじれの大きさは比較的大きい(例えば、急勾配に傾斜する螺旋状経路)。図3Sを参照して、T2>T1であるため、図3Sの螺旋の最上部コイルの近隣のねじれの大きさは、図3Sの螺旋の最下部コイルのねじれの大きさよりも大きい。
図3Pの右手の法則を参照して、右手従法線の方向に向かって曲がる空間曲線は、右手方向に正のねじれとしてみなされ得る(例えば、図3Sに示すような右手螺旋)。右手従法線方向から離隔方向を向く空間曲線は、右手の負のねじれを持つものとしてみなされ得る(例えば、左手螺旋)。
同様に、左手の法則(図3Oを参照)を参照して、左手従法線方向を向く空間曲線は、左手の正のねじれ(例えば、左手螺旋)を持つものとしてみなされ得る。よって、左手の正の方向は、右手の負の方向に相当する。図3Tを参照されたい。
5.7.6.4 穴
表面は、一次元穴を持ち得る(例えば、平面曲線または空間曲線によって境界付けられた穴)。穴を含む肉薄構造(例えば、膜)の場合、この構造は、一次元穴を有するものとして記述され得る。例えば、図3Iに示す構造の表面中の一次元穴が平面曲線によって境界付けられる様子を参照されたい。
構造は、二次元穴(例えば、表面によって境界付けられた穴)を持ち得る。例えば、可膨張性タイヤは、タイヤ内面によって境界付けられた二次元穴を有する。別の実施例において、空気またはゲルのための空洞を備えたブラダーは、二次元穴を持ち得る。例えば図3Lのクッション、および二次元穴を境界付ける内面が示される図3Mおよび図3Nにおける図3Lの例示的断面を参照されたい。さらに別の実施例において、導管は、(例えばその入口またはその出口において)一次元穴を含み得、導管の内面によって境界付けられた二次元穴を含み得る。図3Kに示す構造を通じておりかつ図示のように表面によって境界付けられた二次元穴も参照されたい。
5.8 他の注意事項
本特許文書の開示の一部は、著作権保護が与えられる内容を含む。著作権所有者は、何者かが本特許文書または本特許開示をファックスにより再生しても、特許庁の特許ファイルまたは記録に記載されるものであれば目的のものであれば異論は無いが、その他の目的については全ての著作権を保持する。
他に文脈から明確に分かる場合および一定の範囲の値が提供されていない限り、下限の単位の1/10、当該範囲の上限と下限の間、および記載の範囲の他の任意の記載の値または介入値に対する各介入値は本技術に包含されることが理解される。介入範囲中に独立的に含まれるこれらの介入範囲の上限および下限が記載の範囲における制限を特に超えた場合も、本技術に包含される。記載の範囲がこれらの制限のうち1つまたは双方を含む場合、これらの記載の制限のいずれかまたは双方を超える範囲も、本技術に包含される。
さらに、本明細書中に値(単数または複数)が本技術の一部として具現される場合、他に明記無き限り、このような値が近似され得、実際的な技術的実行が許容または要求する範囲まで任意の適切な有効桁までこのような値を用いることが可能であると理解される。
他に明記しない限り、本明細書中の全ての技術用語および科学用語は、本技術が属する分野の当業者が一般的に理解するような意味と同じ意味を持つ。本明細書中に記載の方法および材料に類似するかまたは等しい任意の方法および材料を本技術の実践または試験において用いることが可能であるが、限られた数の例示的方法および材料が本明細書中に記載される。
特定の材料が構成要素の構築に好適に用いられるものとして記載されているが、特性が類似する明白な代替的材料が代替物として用いられる。さらに、それとは反対に記載無き限り、本明細書中に記載される任意および全ての構成要素は、製造可能なものとして理解されるため、集合的にまたは別個に製造され得る。
本明細書中及び添付の特許請求の範囲において用いられるように、単数形である「a」、「an」および「the」は、文脈から明らかにそうでないことが示されない限り、その複数の均等物を含む点に留意されたい。
本明細書中に記載される公開文献は全て、これらの公開文献の対象である方法および/または材料の開示および記載、参考のために援用される。本明細書中に記載の公開文献は、本出願の出願日前のその開示内容のみのために提供するものである。本明細書中のいずれの内容も、本技術が先行特許のためにこのような公開文献に先行していない、認めるものと解釈されるべきではない。さらに、記載の公開文献の日付は、実際の公開文献の日付と異なる場合があり、個別に確認が必要であり得る。
「comprises」および「comprising」という用語は、要素、構成要素またはステップを非排他的な意味合いで指すものとして解釈されるべきであり、記載の要素、構成要素またはステップが明記されていない他の要素、構成要素またはステップと共に存在、利用または結合され得ることを示す。
詳細な説明において用いられる見出しは、読者の便宜のためのものであり、本開示または特許請求の範囲全体において見受けられる内容を制限するために用いられるべきではない。これらの見出しは、特許請求の範囲または特許請求の範囲の制限の範囲の解釈において用いられるべきではない。
本明細書中の技術について、特定の実施例を参照して述べてきたが、これらの実施例は本技術の原理および用途を例示したものに過ぎないことが理解されるべきである。いくつかの場合において、用語および記号は、本技術の実施に不要な特定の詳細を示し得る。例えば、「first(第1の)」および「second(第2の)」(など)という用語が用いられるが、他に明記無き限り、これらの用語は任意の順序を示すことを意図しておらず、別個の要素を区別するために用いられる。さらに、本方法におけるプロセスステップについての記載または例示を順序付けて述べる場合があるが、このような順序は不要である。当業者であれば、このような順序が変更可能でありかつ/またはその様態を同時にまたはさらに同期的に行うことが可能であることを認識する。
よって、本技術の意図および範囲から逸脱することなく、例示的な実施例において多数の変更例が可能であり、また、他の配置構成が考案され得ることが理解されるべきである。