JP7182696B2 - パワーコンバータの受動性のための電流制御 - Google Patents

パワーコンバータの受動性のための電流制御 Download PDF

Info

Publication number
JP7182696B2
JP7182696B2 JP2021512213A JP2021512213A JP7182696B2 JP 7182696 B2 JP7182696 B2 JP 7182696B2 JP 2021512213 A JP2021512213 A JP 2021512213A JP 2021512213 A JP2021512213 A JP 2021512213A JP 7182696 B2 JP7182696 B2 JP 7182696B2
Authority
JP
Japan
Prior art keywords
control
converter
feedback
cycle time
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021512213A
Other languages
English (en)
Other versions
JP2021535719A (ja
Inventor
クァー,シンフア
ブーフマン,ビート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Energy Ltd
Original Assignee
Hitachi Energy Switzerland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Energy Switzerland AG filed Critical Hitachi Energy Switzerland AG
Publication of JP2021535719A publication Critical patent/JP2021535719A/ja
Application granted granted Critical
Publication of JP7182696B2 publication Critical patent/JP7182696B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/01Current loop, i.e. comparison of the motor current with a current reference

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

技術分野
本開示は、パワーエレクトロニクスコンバータからパワーグリッドへの電力出力を制御するための電流コントローラに関する。
背景
パワーエレクトロニクスコンバータは、さまざまな用途のための多くのさまざまなタイプおよびトポロジで存在している。一般に、それらは、1つまたは複数の直流(DC)または交流(AC)グリッドに接続されており、半導体スイッチを備える複数のバルブを含む。コンバータタイプの例としては、鉄道インタータイ、静止型無効電力補償装置(STATCOM)および揚水発電コンバータまたは風力発電コンバータなどのそれぞれの用途のためのさまざまなトポロジにおける中性点クランプ式(NPC)3レベルコンバータおよびモジュラーマルチレベルコンバータ(MMC)が挙げられる。
能動的な挙動を有するグリッド接続パワーエレクトロニクスコンバータは、グリッドオペレータから歓迎されない。なぜなら、この場合、コンバータが能動的である周波数範囲において振動/共振がグリッドに生じると、コンバータは、エネルギを消費することによって振動を減衰させる代わりに、振動/共振をサポートするようにエネルギを供給するための供給源として機能するからである。したがって、関連する周波数範囲においてはパワーエレクトロニクスコンバータが受動的であることが望ましい。
能動的な挙動は、さまざまな用途でさまざまなトポロジを有するパワーエレクトロニクスコンバータにおいて観察されてきた。これは、特に時間離散的な電流コントローラを有するパワーエレクトロニクスコンバータの制御のために、一般に300~1000Hzの周波数範囲で起こる。能動的な挙動は、時間離散的な制御によって導入される遅延に関連している。能動的な挙動は、たとえば、鉄道インタータイ、STATCOM、および揚水発電コンバータまたは風力発電コンバータなどのさまざまな用途で、NPC3レベルコンバータおよびMMCにおいて観察されてきた。一例を挙げれば、鉄道インタータイ用途では、パワーエレクトロニクスコンバータの能動的な挙動は、350~850Hzの周波数範囲において50Hzパブリックグリッド側で観察された。
概要
本発明の目的は、パワーエレクトロニクスコンバータのグリッド側での能動的な挙動を減少させることであり、すなわちコンバータが有するであろう振動/共振の場合に、少なくとも関連する周波数範囲内において共振の刺激を回避するためにグリッドへの有効電力の注入を減少させるまたは行わないことである。
本発明の一局面に従って、パワーエレクトロニクスコンバータの制御システムによって実行される方法が提供される。上記コンバータは、バルブ機構を備え、パワーグリッドに接続される。上記方法は、上記コンバータから上記グリッドへの電力出力を制御するためのグリッド側電流コントローラを設けるステップを備える。上記方法は、上記コントローラの第1の部分として(または、において)、予め定められた電流基準と上記コンバータにおける電流の第1のフィードバック電流測定値との間の差に基づく入力により第1のフィードバック制御アルゴリズムを実行するステップも備える。上記第1のフィードバック制御アルゴリズムは、第1の制御サイクル時間を有し、比例ゲインを使用する比例制御を少なくとも含む。上記方法は、上記コントローラの第3の部分として(または、において)、上記第1のフィードバック電流測定値に基づく入力により第3のフィードバック制御アルゴリズムを実行するステップも備える。上記第3のフィードバック制御アルゴリズムは、上記第1の制御サイクル時間を有し、SOA制限が上記第1の制御アルゴリズムからの出力に適用された後に上記第1の制御アルゴリズムの出力に作用し、上記比例ゲインを使用する上記第1のフィードバック制御アルゴリズムの上記比例制御を打ち消すことを含む。上記方法は、上記コントローラの第2の部分として(または、において)、上記電流の第2のフィードバック電流測定値に基づく入力により第2のフィードバック制御アルゴリズムを実行するステップも備える。上記第2のフィードバック制御アルゴリズムは、第2の制御サイクル時間を有し、上記第1の制御アルゴリズムと同一の極性を有する上記第3の制御アルゴリズムからの出力に作用し、上記比例ゲインを使用する比例制御を含む。上記第2の制御サイクル時間は、上記第1の制御サイクル時間未満である。
本発明の別の局面に従って、コンピュータによって実行可能なコンポーネントを備えるコンピュータプログラム製品が提供され、上記コンピュータによって実行可能なコンポーネントは、上記コンピュータによって実行可能なコンポーネントが、制御システムに含まれる処理回路で実行されたときに、本開示に記載の方法の実施形態を上記制御システムに実行させる。
本発明の別の局面に従って、パワーエレクトロニクスコンバータのための制御システムが提供され、上記パワーエレクトロニクスコンバータは、バルブ機構を備え、パワーグリッドに接続される。上記制御システムは、処理回路と、上記処理回路によって実行可能な命令を格納するデータストレージとを備え、それによって、上記制御システムは、上記コンバータから上記グリッドへの電力出力を制御するためのグリッド側電流コントローラを設けるように作動する。また、上記制御システムは、上記コントローラの第1の部分として、予め定められた電流基準と上記コンバータにおける電流の第1のフィードバック電流測定値との間の差に基づく入力により第1のフィードバック制御アルゴリズムを実行するように作動し、上記第1のフィードバック制御アルゴリズムは、第1の制御サイクル時間を有し、比例ゲインを使用する比例制御を少なくとも含む。また、上記制御システムは、上記コントローラの第3の部分として、上記第1のフィードバック電流測定値に基づく入力により第3のフィードバック制御アルゴリズムを実行するように作動し、上記第3のフィードバック制御アルゴリズムは、上記第1の制御サイクル時間を有し、SOA制限が上記第1の制御アルゴリズムからの出力に適用された後に上記第1の制御アルゴリズムの出力に作用し、上記比例ゲインを使用する上記第1のフィードバック制御アルゴリズムの上記比例制御を打ち消すことを含む。また、上記制御システムは、上記コントローラの第2の部分として、上記電流の第2のフィードバック電流測定値に基づく入力により第2のフィードバック制御アルゴリズムを実行するように作動し、上記第2のフィードバック制御アルゴリズムは、第2の制御サイクル時間を有し、上記第1の制御アルゴリズムと同一の極性を有する上記第3の制御アルゴリズムからの出力に作用し、上記比例ゲインを使用する比例制御を含む。上記第2の制御サイクル時間は、上記第1の制御サイクル時間未満である。
高速タスクにおいて、すなわち短い(本明細書では、「第2の」と呼ばれる)制御サイクル時間を有するタスクにおいて、グリッド側電流コントローラの比例フィードバックを適用することによって、コンバータの受動性を向上させることができる。電流コントローラの他の部分、たとえば積分制御または共振制御は、長い(本明細書では、「第1の」と呼ばれる)制御サイクル時間を有する低速タスクに残ることができる。また、電流制御全体、すなわちその比例制御を含む電流制御が適用された後にSOA制限が低速タスクに適用されるべきであるので、比例制御も低速タスクに残る。低速タスクの比例フィードバックに加えて高速タスクの比例フィードバックを行わないように、SOA制限の適用後に低速タスクにおいて比例制御が打ち消される。
なお、これらの局面のうちのいずれの局面のいずれの特徴も、適当と認められる場合にはその他の局面に適用されてもよい。同様に、これらの局面のうちのいずれの局面のいずれの利点も、他の局面のうちのいずれの局面にも適用されてもよい。同封の実施形態の他の目的、特徴および利点は、以下の詳細な開示、添付の従属請求項および図面から明らかであろう。
一般に、特許請求の範囲で使用されている用語は全て、本明細書に明示的に別段の定義がない限り、技術分野におけるそれらの通常の意味に従って解釈される。「要素、装置、構成要素、手段、ステップなど」への参照は全て、明示的に別段の指示がない限り、当該要素、装置、構成要素、手段、ステップなどの少なくとも1つの例を参照するものとしてオープンに解釈される。本明細書に開示されているいずれの方法のステップも、明示的に指示がない限り、開示されている厳密な順序で実行されなくてもよい。本開示のさまざまな特徴/構成要素のための「第1の」、「第2の」などの使用は、これらの特徴/構成要素を他の同様の特徴/構成要素と区別することを意図しているに過ぎず、これらの特徴/構成要素に対していかなる順序または階層も付与することを意図したものではない。
実施形態について、例示として添付の図面を参照して説明する。
少なくとも1つのパワーグリッドに接続されたパワーエレクトロニクスコンバータの実施形態の概略回路図である。 本発明の実施形態に係る、低速タスクにおけるフィードバック電流制御の概略機能ブロック図である。 パワーグリッドに接続されたパワーエレクトロニクスコンバータの実施形態のより簡略化された概略ブロック図である。 本発明の実施形態に係る、低速タスクにおける第1の電流制御部分Aの概略機能ブロック図である。 本発明の実施形態に係る、低速タスクおよび高速タスクにおける第1および第2の電流制御部分AおよびBのそれぞれの概略機能ブロック図である。 本発明の実施形態に係る、低速タスクにおける第1および第3の電流制御部分AおよびCならびに高速タスクにおける第2の電流制御部分Bの概略機能ブロック図である。 本発明の実施形態に係る、低速タスクにおける第1および第3の電流制御部分AおよびCならびに高速タスクにおける第2の電流制御部分Bのより詳細な概略機能ブロック図である。 本発明の実施形態に係るパワーエレクトロニクスコンバータの制御システムの実施形態の概略ブロック図である。 本発明の実施形態に係る方法の概略フローチャートである。
詳細な説明
ここで、特定の実施形態が示されている添付の図面を参照して、実施形態を以下でさらに十分に説明する。しかし、本開示の範囲内で多くのさまざまな形態の他の実施形態が可能である。むしろ、以下の実施形態は、本開示が完璧かつ完全であり、当業者に対して本開示の範囲を十分に伝えるように、例示として提供されている。明細書全体を通して同様の番号は同様の要素を指す。
本明細書における制御サイクル時間は、各制御サイクルの期間、すなわち2つの制御サイクル同士の間の時間間隔である。制御システムの高速タスクでは、制御システムの低速タスクよりも短い制御サイクル時間が使用される。制御サイクル時間が短くなれば、制御システムの反応が素早くなるが、制御サイクルが長くなれば、処理資源に対する制御システムの重さが軽くなる。
コントローラの第2の部分(本明細書では、「B」と呼ばれる)の比例制御は、第1の部分(本明細書では、「A」と呼ばれる)の比例制御と同一の極性を有するべきである一方、第3の部分(本明細書では、「C」と呼ばれる)の比例制御は、第1の部分の比例制御と比較して異なる極性を有するべきである。すなわち、第1の部分の比例制御が基準電流からの減算を行う場合、第3の部分は、第1の部分の比例制御を打ち消すように基準電流への加算を行い、第2の部分は、再び基準電流からの減算を行い、逆の場合も同様である。
図1は、少なくとも1つのパワーグリッド2に接続されたパワーエレクトロニクスコンバータ1を示す。図1の実施形態では、コンバータ1は、第1のグリッド2aと第2のグリッド2bとの間に接続されている。本発明は、コンバータ1のこのトポロジに限定されるものではなく、それが接続されているグリッド2のタイプに限定されるものでもない。たとえば、パワーエレクトロニクスコンバータ1は、中性点クランプ式(NPC)3レベルコンバータまたはモジュラーマルチレベルコンバータ(MMC)であってもよい。
コンバータ1は、コンバータ1からグリッド2への電力出力(正または負)を制御するための電流制御を含む制御システム3を有する。コンバータ1が2つ以上のグリッド2に接続されている場合、一般に制御システム3によってグリッドの各々に対して別々の電流制御が提供される。
コンバータ1が接続されているグリッド2またはグリッド2aおよび2bのいずれかは、一般に、たとえば公称周波数が50または60Hzである交流(AC)グリッド、任意の数の位相を有するACグリッド(一相または三相ACグリッド、たとえば三相グリッドなど)であってもよい。たとえば、パワーエレクトロニクスコンバータは、(図1に見られるような)三相対一相鉄道インタータイとして、静止型無効電力補償装置(STATCOM)として、または揚水発電コンバータ、バック・ツー・バックコンバータもしくは風力発電コンバータなどの三相対三相コンバータとして動作するように構成されてもよい。
コンバータ1は、一般に、そのバルブ機構4とグリッド2またはグリッド2aおよび2bの各々との間に変圧器5を備える。いくつかの実施形態では、変圧器の代わりにリアクトルが使用されてもよい。コンバータとグリッドとは、共通接続/結合点(PCC)6において接続されている。
図1の例示的な実施形態では、コンバータ1は、パブリック(たとえば、配電または送電)三相グリッド2aと一相鉄道グリッド2bとの間に接続されている。パブリックグリッド2aは、第1のPCC6aにおいてコンバータ1に接続され、第1の変圧器5aを介してバルブ機構4に接続されている一方、鉄道グリッド2bは、第2のPCC6bにおいてコンバータ1に接続され、第2の変圧器5bを介してバルブ機構4に接続されている。制御システム3は、たとえばグリッド2aおよび2bの各々または1つのために少なくとも1つのグリッド側電流コントローラ20を備える。
能動的な挙動は、さまざまな用途でさまざまなトポロジを有するパワーエレクトロニクスコンバータ1において観察されてきた。これは、特に時間離散的な電流コントローラを有する(すなわち、規定のサイクル時間で動作する)パワーエレクトロニクスコンバータの制御システム3のために、一般に300~1000Hzの周波数範囲で起こる。能動的な挙動は、時間離散的な制御によって導入される遅延に関連している。本開示は、制御アルゴリズムにおける安全動作領域(SOA)に影響を及ぼすことなく、(閉ループ制御における遅延を有する通常の電流フィードバックと比べて)高速の電流フィードバック経路を適用することによって、パワーエレクトロニクスコンバータの受動性を向上させるための技術的解決策の実現に関する。他の不必要な構造的変更、特に制御ソフトウェアにおけるさまざまなSOA制限を導入することなくパワーエレクトロニクスコンバータの受動性を向上させるという目的が実現され得る。また、実施形態は、コンバータトポロジから独立して、電流コントローラを有するいかなるパワーエレクトロニクスコンバータにも適用され得る。
能動的な挙動を有するグリッド接続パワーエレクトロニクスコンバータ1は、ネットワークオペレータから歓迎されない。なぜなら、この場合、コンバータが能動的である周波数範囲において振動/共振がグリッド2に生じると、コンバータは、エネルギを消費することによって振動を減衰させる代わりに、振動/共振をサポートするようにエネルギを供給するための供給源として機能するからである。したがって、用途次第で、関連する周波数範囲においてはパワーエレクトロニクスコンバータが受動的であることが好ましい。
また、各グリッド2のための制御システム3の電流コントローラは、一般に、複数のサブコントローラ、たとえばABCフレームが使用される場合には各相に1つのサブコントローラ、を備えているということに注意されたい。本発明によれば、電流コントローラ20は、第1の部分A、第2の部分Bおよび第3の部分Cに分割され、それらの各々は、使用されるフレーム次第で、結果としてサブコントローラを備えていてもよい。異なる部分A,BおよびCは、いずれのフレームを使用してもよい。従来のフレームは、ABCフレーム(各相につき1つの正弦波信号を有する)、αβフレーム(複素平面において正弦波信号を有する)、および直接直交(dq)フレーム(「xyフレーム」とも呼ばれる)を含む。三相グリッド2の場合、ABCフレームは3つのサブコントローラの使用を暗に意味しており、αβフレームは2つのサブコントローラの使用を暗に意味しており、dqフレームは2つのサブコントローラの使用を暗に意味している。
電流コントローラ20の異なる部分A,BおよびCにおいて、同一のまたは異なるいずれかのフレーム、たとえばABCフレーム、αβフレームおよび/またはdqフレームを使用することができる。いくつかの実施形態では、たとえばサブコントローラの数を減らすために低速タスク部分AおよびCではdqフレームを使用することが好都合であり得る一方、高速タスク部分Bではdqフレームは不都合であり得る。なぜなら、直接直交では位相角についての情報が必要であり、これはより多くの労力が必要であることを暗に意味しており、高速タスクでは望ましくない可能性があるからである。
以下では、図2~図7を参照して、電流コントローラ20は、添え字「x」によって示されるdqフレームを低速タスクにおいて使用し、添え字「ABC」によって示されるABCフレームを高速タスクにおいて使用する。
図2は、制御システム3の、第1の(長い)制御サイクル時間で動作する低速タスク22のためのフィードバックループの実施形態を示し、この実施形態は、従来技術にも係るものである。時間連続的なドメインにおいて、電流測定24を実行して、測定電流Imeas(ここでは、ABCフレームでの測定電流(IABC,meas)である)を提供し、測定電流Imeasは、時間離散的なドメインに入力される。次いで、たとえばアンチエイリアシングフィルタ25(依然として高速タスク23内にあってもよい)および/または変流もしくは電流スケーリング26を必要に応じて(低速タスク22を入力した後であってもよい)適用することによって測定電流を従来の態様で処理して、低速タスク測定電流Imeas,slow(ここでは、dqフレームでの低速タスク測定電流(Ix,meas,slow)である)を提供してもよい。この低速タスク測定電流を基準電流Iref(ここでは、dqフレームでの基準電流(Ix,ref)である)から差し引いて、電流コントローラ20で操作されるエラーEを提供する。電流コントローラは、たとえば、比例制御に加えて積分制御または共振制御を備えていてもよい。電流コントローラ20は、制御電圧Yctrl,outを出力する。しかし、コントローラ出力Yctrl,outは、コンバータの安全動作領域(SOA)21制限外である可能性があるため、SOA21制限の適用によって生じるコンバータの基準電圧Uconv,ref(ここでは、dqフレームでの基準電圧(Uconv,x,ref)である)がバルブ機構4のバルブによって安全に処理され得ることを確実にするために、SOA制限がコントローラ出力に適用される。基準電圧Uconv,refは、従来から、たとえば必要に応じて低速タスク22および高速タスク23のそれぞれにおける電圧協調または変圧27および28によって処理され得る。図2の例では、基準電圧Uconv,refは、変調器28に送られる前に、dqフレーム(Uconv,x,ref)からABCフレーム(Uconv,ABC,ref)に変換される。次いで、生成されたスイッチング信号は、時間連続的なドメインにおけるバルブ機構におけるコンバータバルブの半導体スイッチのゲートに送られる。図に示されているように、他の(たとえば、従来の)制御ループおよび入力がフィードバックループに作用していてもよいが、これは通常は本開示の範囲外である。
グリッド接続パワーエレクトロニクスコンバータ1は、グリッド側に電流コントローラ20を有していることが多いため、負荷ステップおよび/またはグリッド過渡事象(グリッド故障)中に素早く応答し、その間にコンバータとグリッド2との間で有効/無効電力をやりとりすることができる。図2は、電流コントローラ20のためのこのような閉ループ制御構造を示す。コントローラは、差動(D)部分を有しているもしくは有していない比例積分(PI)コントローラであってもよく、または比例共振(PR)コントローラであってもよい。三相システムの場合、コントローラは、電力システムの基本周波数で回転する公知の回転xy(「dq」とも呼ばれる)座標系(フレーム)で実現されてもよく、またはいくつかの実施形態では、選択されたコントローラタイプに応じてαβフレームまたはABCフレームで実現されてもよい。コントローラは、電流測定に加えて、電流コントローラと相互作用する他の制御ループ/入力も有していてもよい。電流コントローラの線形部分に加えて、よりよい制御パフォーマンスの目的でおよび/または保護の目的で、制御アルゴリズムにおける電流コントローラの出力においてさまざまなリミッタが実現されてもよい。これらのリミッタは、実質電圧(または、その等価物)安全動作領域(SOA)リミッタ、および/または、アクチュエータが飽和したときに電流コントローラの積分部分の積分ワインドアップを防止するアンチワインドアップロジックを含んでいてもよい。この文脈において、この説明に関連するこのようなリミッタは全て、SOAと略されてもよい。
一般に、電流コントローラ20には、固定されたステップサイズで動作するデジタルコントローラが使用される。しかし、閉ループでは遅延が発生する。フィードバック経路におけるこの遅延は、サンプリングによって引き起こされる遅延および電流測定24からコントローラ20への通信遅延に対応し得る。前向き経路において発生する遅延は、コントローラ20からバルブ機構4のパワーエレクトロニクススイッチのゲートへの通信遅延および制御アルゴリズムタスク時間で構成され得て、この制御アルゴリズムタスク時間は、制御アルゴリズム実行およびIO(入力/出力)読み取り/書き込みを含む。制御ハードウェアセットアップおよび制御アルゴリズムの複雑性によっては、引き起こされる遅延は、百マイクロ秒~数百マイクロ秒であり得る。
基本周波数では、遅延は従来から補償され得る。なぜなら、ほとんどの場合、電流コントローラは回転dq座標系で実現されるからである。しかし、これを全ての周波数成分について行うことはできず、一般に約300Hz~約1000Hzの範囲においてはパワーエレクトロニクスコンバータの能動的な挙動につながる。
因果関係により、遅延(tと表記される)は、たとえそれらの遅延を周波数ドメインにおいてe‐tdsで厳密に数学的に記載できたとしても、フィードバック経路においてetds)の逆関数を乗算するだけで補償することはできない。したがって、コンバータの受動性を向上させるため、たとえば能動的な部分を減少させてそれをより高い周波数範囲にシフトさせるために、他の方法が使用されてきた。
図3は、グリッド2からコンバータに入る電流Iと、パワーエレクトロニクスコンバータ1またはグリッド2の端子同士の間の電圧Uとを有するグリッド接続コンバータ1を示す。このコンバータは、周波数ドメインにおいてアドミタンス曲線Y(jω)として見られる。受動性の測定値は、PCC6において測定されるコンバータアドミタンスの位相曲線である。コンバータアドミタンスの位相曲線が±90°の範囲内にとどまる場合、すなわち消費者システムを参照して周波数範囲全体においてアドミタンスが正の実数部分を有する場合、すなわち正の電流Iの方向がコンバータに向かっている場合に限り、コンバータは受動的である。全ての周波数成分についてこの条件が満たされる場合、コンバータは、常に消費者用のままであろう(有効電力P≧0)。これにより、共振がグリッド2において生じた場合に、コンバータは、エネルギを提供するのではなく、エネルギを消費する。
閉ループ制御速度を減速させてアンチエイリアシングフィルタコーナ周波数を増加させることに加えて、電流フィードバック経路における遅延を減少させることは、コンバータの受動性を向上させるための効果的かつ低コストの方法である。しかし、制御アルゴリズムにおける複雑な制御および保護機能のために、フィールドプログラマブルゲートアレイ(FPGA)において実現することなどによってコントローラ20全体を高速タスク23のうちの1つに移動させるには大きな労力を要する。これを行うことができる場合でも、各々の離散時間ステップ内になされる計算の量のために、受動性要件を満たすことを目的として制御ソフトウェアのステップサイズを任意に小さくしなくてもよい。
図4および図5を参照して、PIコントローラを一例として挙げて、線形の観点から、図4の電流コントローラ20全体を移動させる代わりに、図5に示されるように、PIコントローラを一例として挙げて、正確なゲイン(破線の箱B)を有する電流フィードバック経路のみを高速タスク23の方に移動させ、電流フィードバック経路を持たないコントローラを低速タスク(破線の箱A)に残す。この解決策により、高速電流フィードバック経路において同一の比例ゲインKが使用される場合に、閉ループシステムが安定して、定常状態エラーを持たない。コンバータ1は、ナイキスト周波数まで受動的である。しかし、この解決策は、さまざまなSOA制限21が電流コントローラ20の第1の部分Aの出力Yctrl,outに適用されるために、実際には機能しない場合がある。
図4に見られるように、コントローラ出力Yctrl,outは、2つの部分、すなわち比例部分Yctrl,Poutおよび積分部分Yctrl,Ioutで構成されている。定常状態では、電流セットポイントと測定電流との間のエラーEはゼロである傾向があり、比例部分Yctrl,Poutはゼロである傾向があり、コントローラ出力Yctrl,outは、他の制御入力/ループからの寄与を無視して、コントローラの積分部分Yctrl,Ioutによって定義される。一般に、これは、おおよそ公称電圧である(または、たとえばフィードフォワード電圧を考慮しなければ、単位法(pu)で1.0puに近い)。しかし、図5に示される制御構造では、エラーEは、定常状態では依然としてゼロである傾向があり、コントローラの積分部分Yctrl,Ioutは、依然としておおよそ公称電圧である。しかし、この場合、電流フィードバックはSOA21の後になされるので、SOAによって見られる比例部分Yctrl,Pout*はKp×Ix,refである。言い換えれば、コントローラ出力Yctrl,Ioutの絶対値は、電流セットポイントIx,refによっては高すぎる場合がある。
SOAは、システムにおけるいくつかの他の量に基づく複合関数であってもよい。往々にして、これらの制限は他の制御ループとも相互作用する。図6を参照して、SOAの実施を変更することなく高速フィードバックを実現することができるようにするために、元の電流コントローラ(図6における破線の箱A)およびSOA21はそのまま残されている。電流コントローラにおいて使用される低速電流フィードバックは、SOA21の後にKp×Ix,meas,slow(図6における破線の箱C)を加算することによって取り除かれ、その結果、フィードバックの比例部分は、制御構造の中に二度現れることはない。SOA21の後であるが電圧基準が変調器に書き込まれる前に、高速ネガティブフィードバック経路Kp×IABC,meas,fast(図6における破線の箱B)が構築される。
一般的な閉ループ制御における本発明に係る解決策が、図6よりも詳細に図7に示されており、この解決策は、以下の3つの部分を備える:
1)低速タスク22における完全な従来の電流コントローラ実現例(破線の箱A)
2)低速タスク22におけるSOA21の後の新たな低速フィードバック経路補償(破線の箱C)
3)高速タスク23のうちの1つにおける新たな高速フィードバック経路構造(破線の箱B)。
本発明の実施形態では、コンバータ1は受動的であり、または、少なくともナイキスト周波数までは、少なくとも従来の手段よりも受動的である。
なお、高速タスク23における高速電流フィードバック経路は、この例では、ABC-dq変換のための正確なωtの生成を伴うことなくABCフレームにおいて実現される。
図8は、本開示のコンバータ1の制御システム3の実施形態を概略的に示す。この制御システムは、本明細書に記載されている異なる部分A,BおよびCを有するグリッド側電流コントローラ20を設けるように構成される。制御システムは、基準を使用して、上記基準に基づいてバルブ機構4のバルブスイッチの導通状態および非導通状態を制御することによってコンバータを制御するように配置されている。制御システム3は、処理回路81、たとえば中央処理装置(CPU)を備える。処理回路81は、マイクロプロセッサの形態の1つまたは複数の処理ユニットを備えていてもよい。しかし、計算機能を有する他の好適なデバイス、たとえば特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)または複合プログラマブルロジックデバイス(CPLD)が処理回路81に含まれていてもよい。処理回路81は、1つまたはいくつかのストレージユニット、たとえばメモリのデータストレージ82に格納された1つまたはいくつかのコンピュータプログラムまたはソフトウェア(SW)83を実行するように構成される。ストレージユニットは、本明細書に記載されているコンピュータ読取可能手段と見なされ、たとえばランダムアクセスメモリ(RAM)、フラッシュメモリもしくは他のソリッドステートメモリ、またはハードディスク、またはそれらの組み合わせの形態であってもよい。また、処理回路81は、必要に応じてデータをストレージ82に格納するように構成されてもよい。
図9は、本明細書に記載されている方法のいくつかの実施形態を示す。この方法は、パワーエレクトロニクスコンバータ1の制御システム3によって実行され、パワーエレクトロニクスコンバータ1は、バルブ機構4を備え、パワーグリッド2に接続される。コンバータ1からグリッド2への電力出力を制御するためのグリッド側電流コントローラ20を設ける(M1)。上記設けられた(M1)コントローラ20の第1の部分Aとして、予め定められた電流基準Irefとコンバータにおける電流Iの第1のフィードバック電流測定値Imeas,slowとの間の差Eに基づく入力により第1のフィードバック制御アルゴリズムを実行し(M2)、第1のフィードバック制御アルゴリズムは、第1の制御サイクル時間を有し、比例ゲインKを使用する比例制御を少なくとも含む。上記設けられた(M1)コントローラ20の第3の部分Cとして、第1のフィードバック電流測定値Imeas,slowに基づく入力により第3のフィードバック制御アルゴリズムを実行し(M3)、第3のフィードバック制御アルゴリズムは、第1の制御サイクル時間を有し、SOA制限21が第1の制御アルゴリズムからの出力Yctrl,outに適用された後に上記第1の制御アルゴリズムの出力に作用し、比例ゲインKを使用する第1のフィードバック制御アルゴリズムの比例制御を打ち消すことを含む。上記設けられた(M1)コントローラ20の第2の部分Bとして、電流Iの第2のフィードバック電流測定値Imeas,fastに基づく入力により第2のフィードバック制御アルゴリズムを実行し(M4)、第2のフィードバック制御アルゴリズムは、第2の制御サイクル時間を有し、第1の制御アルゴリズムと同一の極性を有する第3の制御アルゴリズムからの出力Uconv,refに作用し、比例ゲインKを使用する比例制御を含む。第2の制御サイクル時間は、第1の制御サイクル時間未満である。
いくつかの実施形態では、第2のフィードバック制御アルゴリズムは、図6および図7に見られるように、電圧協調/変圧(27)の後に第3の制御アルゴリズムからの出力(Uconv,ref)に作用する。
本発明のいくつかの実施形態では、第1のフィードバック制御アルゴリズムは、比例制御に加えて、積分ゲイン(K)または共振ゲインをそれぞれ使用する積分制御または共振制御をさらに含む。
本発明のいくつかの実施形態では、第1の制御サイクル時間は、第2の制御サイクル時間よりも少なくとも2倍、5倍または10倍長い。第2の制御サイクル時間が短いことにより、コントローラに対する負担が大きくなるが、十分な受動性をよりよく得ることができる。したがって、第1の制御サイクル時間が第2の制御サイクル時間よりも5倍、より好ましくは10倍長いことが好ましい。
本発明のいくつかの実施形態では、第1の制御サイクル時間は、少なくとも50μsまたは100μsであり、たとえば100~250μsまたは200μsの範囲内である。好ましくは、第1の制御サイクル時間は、少なくとも100μsであり、たとえば100~200μsの範囲内である。
さらにまたは代替的に、本発明のいくつかの実施形態では、第2の制御サイクル時間は、せいぜい10μsなどのせいぜい50μsであり、たとえば5~50または10μsの範囲内である。本明細書に記載されているように、十分な受動性を得るためには、より短い第2の制御サイクル時間が必要であり得るため、第2の制御サイクル時間がせいぜい10μs、たとえば5~10μsの範囲内であることが好ましいであろう。
本明細書に記載されているように、第1、第2および第3のフィードバック制御アルゴリズムの各々は、ABC、αβまたはdq(「xy」とも呼ばれる)のうちのいずれかなどの任意の好適なフレームで動作することができる。いくつかの実施形態では、第2のフィードバック制御アルゴリズムではdqはそれほど好ましくない。なぜなら、それは位相角についての情報を必要とするからであり、これはより多くの労力が必要であることを暗に意味しており、高速タスク23では望ましくないからである。しかし、いくつかの実施形態では、第1および第3のフィードバック制御アルゴリズムがdqフレームで動作することが好ましいであろう。その代わりに、第2のフィードバック制御アルゴリズムは、ABCフレームまたは正弦波複素平面信号を有するαβフレームで動作することが好都合であり、好ましくはいくつかの実施形態ではABCフレームで動作することが好都合であろう。
本発明のいくつかの実施形態では、第1および第2のフィードバック電流測定値Imeas,slowおよびImeas,fastは、バルブ機構4とグリッド2との間の電流Iのものであり、たとえばコンバータ1の変圧器5もしくはリアクトルのバルブ側もしくはグリッド側、またはバルブ機構4内の電流Iのものであり、たとえば鉄道インタータイのためのダブルスター(「ダブルワイ」または「ダブルY」とも呼ばれる)トポロジを有するMMCにおける位相の2つの分岐(「レッグ」または「アーム」とも呼ばれる)における測定値による電流Iのものであり、またはたとえばSTATCOMのためのデルタ(Δ)トポロジを有するMMCの位相レッグにおける電流Iのものである。
本発明のいくつかの実施形態では、中性点クランプ式(NPC)3レベルコンバータまたはモジュラーマルチレベルコンバータ(MMC)である。NPCおよびMMCは、しばしば使用されるコンバータタイプの例である。しかし、本発明の実施形態は、グリッドに接続されるように構成された任意のトポロジの任意のタイプのパワーエレクトロニクスコンバータで有用であろう。
本発明のいくつかの実施形態では、パワーエレクトロニクスコンバータは、三相グリッドであるグリッド2用に構成される。しかし、本発明の実施形態は、任意の数の位相を有する任意のタイプのACグリッド、たとえば単相グリッドで有用であろう。
本発明のいくつかの実施形態では、パワーエレクトロニクスコンバータは、三相一相鉄道インタータイとして、STATCOMとして、または揚水発電コンバータもしくは風力発電コンバータなどの三相三相コンバータとして動作するように構成される。しかし、本発明の実施形態は、任意のタイプのパワーエレクトロニクスコンバータおよび任意のタイプのACグリッドで有用であろう。
本発明の方法の実施形態は、たとえば電流コントローラ20を含む制御システム3によって実行されてもよく、制御システム3は、データストレージ82に関連付けられた処理回路81を備える。この処理回路は、必要な機能を入手するために関連付けられたメモリに格納された適切なソフトウェアを実行するマイクロプロセッサの形態の1つまたは複数の処理ユニットCPUを備えていてもよい。しかし、コンバータ1におけるバルブ機構4の半導体バルブスイッチを制御して、たとえば好適なデータストレージ82(RAM、フラッシュメモリもしくはハードディスクなど)または処理回路自体(たとえば、FPGAの場合)に格納された適切なソフトウェア83を実行しながら、本開示の方法の実施形態を実行するために、計算機能を有する他の好適なデバイス(たとえば、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、複合プログラマブルロジックデバイス(CPLD)など)がプロセッサに含まれていてもよい。
本発明の実施形態は、本開示の教示に従ってプログラムされた1つまたは複数のプロセッサ、メモリおよび/またはコンピュータ読取可能記憶媒体を含む1つまたは複数の従来の汎用もしくは専門的なデジタルコンピュータ、コンピューティングデバイス、マシンまたはマイクロプロセッサを使用して、好都合に実現されてもよい。ソフトウェア分野の当業者に明らかであるように、本開示の教示に基づいて、熟練のプログラマによって適切なソフトウェアコーディングを容易に準備することができる。
いくつかの実施形態では、本発明は、コンピュータによって実行可能なコンポーネントまたはソフトウェア(SW)の形態の命令83が格納された非一時的な記憶媒体またはコンピュータ読取可能媒体(複数の媒体)であるコンピュータプログラム製品82を含み、命令83は、本発明の方法/プロセスのうちのいずれかを実行するようにコンピュータをプログラムするのに使用することができる。記憶媒体の例としては、フロッピー(登録商標)ディスク、光ディスク、DVD、CD-ROM、マイクロドライブおよび光磁気ディスクを含む任意のタイプのディスク、ROM、RAM、EPROM、EEPROM、DRAM、VRAM、フラッシュメモリデバイス、磁気もしくは光カード、ナノシステム(分子メモリICを含む)、または命令および/もしくはデータの格納に好適な任意のタイプの媒体もしくはデバイスを挙げることができるが、これらに限定されるものではない。
より一般的な実施形態では、本発明は、パワーエレクトロニクスコンバータ1の制御システム3によって実行される方法に関する。この方法は、コンバータからパワーグリッド2への電力出力を制御するためのグリッド側電流コントローラ20を設けるステップを備える。コントローラの第1の部分Aは、第1の制御サイクル時間を有する第1のフィードバック制御アルゴリズムを実行し、比例ゲインKを使用する比例制御を少なくとも含む。コントローラの第3の部分Cは、第1の制御サイクル時間を有し、SOA制限21が適用された後に第1の制御アルゴリズムからの出力Yctrl,outに作用する第3のフィードバック制御アルゴリズムを実行し、第1のフィードバック制御アルゴリズムの比例制御を打ち消すことを含む。コントローラの第2の部分Bは、第1の制御サイクル時間未満の第2の制御サイクル時間を有し、第1の制御アルゴリズムと同一の極性を有する第3の制御アルゴリズムからの出力Uconv,refに作用する第2のフィードバック制御アルゴリズムを実行し、比例ゲインKを使用する比例制御を含む。
主にいくつかの実施形態を参照して本開示について上で説明してきた。しかし、当業者によって容易に理解されるように、上に開示されている実施形態以外の他の実施形態が、添付の特許請求の範囲によって定義される本開示の範囲内で同様に可能である。

Claims (20)

  1. パワーエレクトロニクスコンバータ(1)の制御システム(3)によって実行される方法であって、前記パワーエレクトロニクスコンバータ(1)は、バルブ機構(4)を備え、パワーグリッド(2)に接続され、前記方法は、
    前記コンバータ(1)から前記グリッド(2)への電力出力を制御するためのグリッド側電流コントローラ(20)を設けるステップ(M1)と、
    前記コントローラ(20)の第1の部分(A)として、予め定められた電流基準(Ix,ref)と前記コンバータにおける電流(I)の第1のフィードバック電流測定値(Ix,meas,slow)との間の差(E)に基づく入力により第1のフィードバック制御アルゴリズムを実行するステップ(M2)とを備え、前記第1のフィードバック制御アルゴリズムは、第1の制御サイクル時間を有し、比例ゲイン(K)を使用する比例制御を少なくとも含み、前記方法はさらに、
    前記コントローラ(20)の第3の部分(C)として、前記第1のフィードバック電流測定値(Ix,meas,slow)に基づく入力により第3のフィードバック制御アルゴリズムを実行するステップ(M3)を備え、前記第3のフィードバック制御アルゴリズムは、前記第1の制御サイクル時間を有し、安全動作領域(SOA)制限(21)が前記第1のフィードバック制御アルゴリズムからの出力(Yctrl,out)に適用された後に前記第1のフィードバック制御アルゴリズムの出力に作用し、前記第3のフィードバック制御アルゴリズムは、前記比例ゲイン(K)を使用するが前記第1のフィードバック制御アルゴリズムと比較して異なる極性を有する比例制御を含み、前記方法はさらに、
    前記コントローラ(20)の第2の部分(B)として、前記電流(I)の第2のフィードバック電流測定値(IABC,meas,fast)に基づく入力により第2のフィードバック制御アルゴリズムを実行するステップ(M4)を備え、前記第2のフィードバック制御アルゴリズムは、第2の制御サイクル時間を有し、前記第1のフィードバック制御アルゴリズムと同一の極性を有する前記第3のフィードバック制御アルゴリズムからの出力(Uconv,x,ref)に作用し、前記比例ゲイン(K)を使用する比例制御を含み、
    前記第2の制御サイクル時間は、前記第1の制御サイクル時間未満である、方法。
  2. 前記第2のフィードバック制御アルゴリズムは、電圧協調/変圧(27)の後に前記出力(Uconv,x,ref)に作用する、請求項1に記載の方法。
  3. 前記第1のフィードバック制御アルゴリズムは、積分ゲイン(K)または共振ゲインを使用する積分制御または共振制御をさらに含む、請求項1または2に記載の方法。
  4. 前記第1の制御サイクル時間は、前記第2の制御サイクル時間よりも少なくとも2倍、5倍または10倍長い、請求項1~3のいずれか1項に記載の方法。
  5. 前記第1の制御サイクル時間は、少なくとも50μsまたは100μsである、請求項1~4のいずれか1項に記載の方法。
  6. 前記第1の制御サイクル時間は、100μs~250μsの範囲内である、請求項5に記載の方法。
  7. 前記第1の制御サイクル時間は、100μs~200μsの範囲内である、請求項6に記載の方法。
  8. 前記第2の制御サイクル時間は、最大で50μsである、請求項1~7のいずれか1項に記載の方法。
  9. 前記第2の制御サイクル時間は、5μs~50μsの範囲内である、請求項8に記載の方法。
  10. 前記第2の制御サイクル時間は、最大で10μsである、請求項8に記載の方法。
  11. 前記第2の制御サイクル時間は、5μs~10μsの範囲内である、請求項10に記載の方法。
  12. 前記第1および第3のフィードバック制御アルゴリズムは、直接直交(dq)フレームにおいて動作する、請求項1~11のいずれか1項に記載の方法。
  13. 前記第2のフィードバック制御アルゴリズムは、ABCフレームにおいて動作する、請求項1~12のいずれか1項に記載の方法。
  14. 前記第1および第2のフィードバック電流測定値(Ix,meas,slow,IABC,meas,fast)は、前記バルブ機構(4)と前記グリッド(2)との間の前記電流(I)のものである、請求項1~13のいずれか1項に記載の方法。
  15. コンピュータによって実行可能なコンポーネント(83)を備えるコンピュータプログラム製品(82)であって、前記コンピュータによって実行可能なコンポーネント(83)は、前記コンピュータによって実行可能なコンポーネントが、前記制御システム(3)に含まれる処理回路(81)で実行されたときに、請求項1~14のいずれか1項に記載の方法を前記制御システム(3)の前記処理回路(81)に実行させるコンピュータプログラム製品(82)。
  16. パワーエレクトロニクスコンバータ(1)のための制御システム(3)であって、前記パワーエレクトロニクスコンバータ(1)は、バルブ機構(4)を備え、パワーグリッド(2)に接続され、前記制御システムは、
    処理回路(81)と、
    前記処理回路によって実行可能な命令(83)を格納するデータストレージ(82)とを備え、それによって、前記制御システムは、
    前記コンバータ(1)から前記グリッド(2)への電力出力を制御するためのグリッド側電流コントローラ(20)を設けるように作動し、
    前記コントローラ(20)の第1の部分(A)として、予め定められた電流基準(Ix,ref)と前記コンバータにおける電流(I)の第1のフィードバック電流測定値(Ix,meas,slow)との間の差(E)に基づく入力により第1のフィードバック制御アルゴリズムを実行するように作動し、前記第1のフィードバック制御アルゴリズムは、第1の制御サイクル時間を有し、比例ゲイン(K)を使用する比例制御を少なくとも含み、前記制御システムはさらに、
    前記コントローラ(20)の第3の部分(C)として、前記第1のフィードバック電流測定値(Ix,meas,slow)に基づく入力により第3のフィードバック制御アルゴリズムを実行するように作動し、前記第3のフィードバック制御アルゴリズムは、前記第1の制御サイクル時間を有し、安全動作領域(SOA)制限(21)が前記第1のフィードバック制御アルゴリズムからの出力(Yctrl,out)に適用された後に前記第1のフィードバック制御アルゴリズムの出力に作用し、前記第3のフィードバック制御アルゴリズムは、前記比例ゲイン(K)を使用するが前記第1のフィードバック制御アルゴリズムと比較して異なる極性を有する比例制御を含み、前記制御システムはさらに、
    前記コントローラ(20)の第2の部分(B)として、前記電流(I)の第2のフィードバック電流測定値(IABC,meas,fast)に基づく入力により第2のフィードバック制御アルゴリズムを実行するように作動し、前記第2のフィードバック制御アルゴリズムは、第2の制御サイクル時間を有し、前記第1のフィードバック制御アルゴリズムと同一の極性を有する前記第3のフィードバック制御アルゴリズムからの出力(Uconv,x,ref)に作用し、前記比例ゲイン(K)を使用する比例制御を含み、
    前記第2の制御サイクル時間は、前記第1の制御サイクル時間未満である、制御システム。
  17. 請求項16に記載の制御システム(3)と前記バルブ機構(4)とを備えるパワーエレクトロニクスコンバータ(1)。
  18. 前記パワーエレクトロニクスコンバータ(1)は、中性点クランプ式(NPC)3レベルコンバータまたはモジュラーマルチレベルコンバータ(MMC)である、請求項17に記載のパワーエレクトロニクスコンバータ。
  19. 前記パワーエレクトロニクスコンバータは、単相または三相グリッドである前記グリッド(2)用に構成される、請求項17または18に記載のパワーエレクトロニクスコンバータ。
  20. 前記パワーエレクトロニクスコンバータは、三相一相鉄道インタータイとして、静止型無効電力補償装置(STATCOM)として、または三相三相コンバータとして動作するように構成される、請求項17から19のいずれか1項に記載のパワーエレクトロニクスコンバータ。
JP2021512213A 2018-09-03 2018-09-03 パワーコンバータの受動性のための電流制御 Active JP7182696B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/073587 WO2020048579A1 (en) 2018-09-03 2018-09-03 Current control for passivity of a power converter

Publications (2)

Publication Number Publication Date
JP2021535719A JP2021535719A (ja) 2021-12-16
JP7182696B2 true JP7182696B2 (ja) 2022-12-02

Family

ID=63517869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021512213A Active JP7182696B2 (ja) 2018-09-03 2018-09-03 パワーコンバータの受動性のための電流制御

Country Status (5)

Country Link
US (1) US11695318B2 (ja)
EP (1) EP3847743B1 (ja)
JP (1) JP7182696B2 (ja)
CN (1) CN112689950A (ja)
WO (1) WO2020048579A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022097864A (ja) * 2020-12-21 2022-07-01 株式会社Ihiエアロスペース ドッキング装置におけるリニアアクチュエータの電力制御装置
CN113346777B (zh) * 2021-04-28 2024-04-02 西安交通大学 一种模块化多电平换流器的pi无源控制方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070133233A1 (en) 2005-12-09 2007-06-14 Cameron Robert F Power factor correction using current sensing on an output
JP2009201248A (ja) 2008-02-21 2009-09-03 Toshiba Mitsubishi-Electric Industrial System Corp クランプ式電力変換装置
JP2011120322A (ja) 2009-11-30 2011-06-16 Aisin Aw Co Ltd 電動機駆動装置の制御装置
JP2014048807A (ja) 2012-08-30 2014-03-17 Origin Electric Co Ltd 静止型無効電力補償装置及び電圧制御方法
DE102012218889A1 (de) 2012-10-17 2014-04-17 Robert Bosch Gmbh Verfahren und Vorrichtung zum Übertragen von elektrischer Leistung
JP2014533921A (ja) 2011-11-21 2014-12-15 ジニアテック リミテッド 単相、二相または三相単極電気を供給するよう協調的に制御される単相インバータ
JP2015012636A (ja) 2013-06-26 2015-01-19 日立三菱水力株式会社 揚水発電システム
US20150229234A1 (en) 2014-02-11 2015-08-13 Korea Electrotechnology Research Institute Driving apparatus and method for modular multi-level converter
WO2017159117A1 (ja) 2016-03-15 2017-09-21 株式会社 東芝 電力変換装置
JP6336236B1 (ja) 2017-10-04 2018-06-06 三菱電機株式会社 電力変換装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869479A (ja) 1981-10-16 1983-04-25 Brother Ind Ltd モ−タ駆動制御回路
JP2737632B2 (ja) * 1994-01-10 1998-04-08 株式会社日立製作所 誘導電動機の制御装置
US7362254B2 (en) 2006-01-31 2008-04-22 D2Audio Corporation Systems and methods for minimizing delay in a control path
US8060349B2 (en) 2007-03-16 2011-11-15 Chang Gung University Method of designing a static synchronous compensator based on passivity-based control
EP3023291A1 (de) * 2014-11-20 2016-05-25 ABB Technology AG Umrichtersystem zum elektrischen antreiben eines fahrzeuges
US10404064B2 (en) * 2015-08-18 2019-09-03 Virginia Tech Intellectual Properties, Inc. Modular multilevel converter capacitor voltage ripple reduction
CN106374452B (zh) 2016-09-30 2019-04-02 浙江大学 一种直流微电网变流器的反馈无源化控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070133233A1 (en) 2005-12-09 2007-06-14 Cameron Robert F Power factor correction using current sensing on an output
JP2009201248A (ja) 2008-02-21 2009-09-03 Toshiba Mitsubishi-Electric Industrial System Corp クランプ式電力変換装置
JP2011120322A (ja) 2009-11-30 2011-06-16 Aisin Aw Co Ltd 電動機駆動装置の制御装置
JP2014533921A (ja) 2011-11-21 2014-12-15 ジニアテック リミテッド 単相、二相または三相単極電気を供給するよう協調的に制御される単相インバータ
JP2014048807A (ja) 2012-08-30 2014-03-17 Origin Electric Co Ltd 静止型無効電力補償装置及び電圧制御方法
DE102012218889A1 (de) 2012-10-17 2014-04-17 Robert Bosch Gmbh Verfahren und Vorrichtung zum Übertragen von elektrischer Leistung
JP2015012636A (ja) 2013-06-26 2015-01-19 日立三菱水力株式会社 揚水発電システム
US20150229234A1 (en) 2014-02-11 2015-08-13 Korea Electrotechnology Research Institute Driving apparatus and method for modular multi-level converter
WO2017159117A1 (ja) 2016-03-15 2017-09-21 株式会社 東芝 電力変換装置
JP6336236B1 (ja) 2017-10-04 2018-06-06 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
WO2020048579A1 (en) 2020-03-12
EP3847743B1 (en) 2022-07-27
CN112689950A (zh) 2021-04-20
US11695318B2 (en) 2023-07-04
JP2021535719A (ja) 2021-12-16
US20210328495A1 (en) 2021-10-21
EP3847743A1 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
Wang et al. Virtual-impedance-based control for voltage-source and current-source converters
Dong et al. A robust decentralized load frequency controller for interconnected power systems
Escobar et al. An adaptive controller in stationary reference frame for D-statcom in unbalanced operation
Low et al. Model predictive control of parallel-connected inverters for uninterruptible power supplies
Samanes et al. Control design and stability analysis of power converters: The MIMO generalized bode criterion
Sedhom et al. Robust adaptive H‐infinity based controller for islanded microgrid supplying non‐linear and unbalanced loads
Gui et al. Passivity-based control with nonlinear damping for type 2 STATCOM systems
Ye et al. A new flexible power quality conditioner with model predictive control
JP7182696B2 (ja) パワーコンバータの受動性のための電流制御
Tambara et al. A discrete-time robust adaptive controller applied to grid-connected converters with LCL filter
Sedhom et al. A multistage H‐infinity–based controller for adjusting voltage and frequency and improving power quality in islanded microgrids
Ochoa-Gimenez et al. Comprehensive control for unified power quality conditioners
Tran et al. Harmonic and unbalanced voltage compensation with VOC‐based three‐phase four‐leg inverters in islanded microgrids
Gonzalez et al. Advantages of the passivity based control in dynamic voltage restorers for power quality improvement
Wu et al. Advanced control of power electronic systems—An overview of methods
Lin et al. Angle stability analysis for voltage-controlled converters
Huang et al. Model‐based discrete sliding mode control with disturbance observer for three‐phase LCL‐filtered grid‐connected inverters
Kouadria et al. A hybrid fuzzy sliding-mode control for a three-phase shunt active power filter
Lin et al. Coordinated‐control strategy of scalable superconducting magnetic energy storage under an unbalanced voltage condition
Liu et al. Control strategy of clustered micro‐grids for grid voltage unbalance compensation without communications
Shi et al. Improved discretization-based decoupled feedback control for a series-connected converter of SCC
Srivastava et al. A PSO based fractional order PI (FOPI) controller design for a shunt active power filter for harmonic elimination
Liu et al. Design nonlinear robust damping controller for static synchronous series compensator based on objective holographic feedback-H∞.
Sivadas et al. Stability analysis of three-loop control for three phase voltage source inverter interfacing to the grid based on state variable estimation
Dou et al. An optimal grid current control strategy with grid voltage observer (GVO) for LCL‐filtered grid‐connected inverters

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A529

Effective date: 20210421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221121

R150 Certificate of patent or registration of utility model

Ref document number: 7182696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350