JP7176999B2 - 燃料要素、燃料集合体及び炉心 - Google Patents

燃料要素、燃料集合体及び炉心 Download PDF

Info

Publication number
JP7176999B2
JP7176999B2 JP2019085054A JP2019085054A JP7176999B2 JP 7176999 B2 JP7176999 B2 JP 7176999B2 JP 2019085054 A JP2019085054 A JP 2019085054A JP 2019085054 A JP2019085054 A JP 2019085054A JP 7176999 B2 JP7176999 B2 JP 7176999B2
Authority
JP
Japan
Prior art keywords
fuel
region
core
length
gas plenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019085054A
Other languages
English (en)
Other versions
JP2020180907A (ja
Inventor
幸治 藤村
順一 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2019085054A priority Critical patent/JP7176999B2/ja
Priority to US16/850,829 priority patent/US11398315B2/en
Publication of JP2020180907A publication Critical patent/JP2020180907A/ja
Application granted granted Critical
Publication of JP7176999B2 publication Critical patent/JP7176999B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/16Details of the construction within the casing
    • G21C3/17Means for storage or immobilisation of gases in fuel elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
    • G21C1/022Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders characterised by the design or properties of the core
    • G21C1/024Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders characterised by the design or properties of the core where the core is divided in zones with fuel and zones with breeding material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
    • G21C1/028Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders cooled by a pressurised coolant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/042Fuel elements comprising casings with a mass of granular fuel with coolant passages through them
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/08Casings; Jackets provided with external means to promote heat-transfer, e.g. fins, baffles
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/16Details of the construction within the casing
    • G21C3/18Internal spacers or other non-active material within the casing, e.g. compensating for expansion of fuel rods or for compensating excess reactivity
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/322Means to influence the coolant flow through or around the bundles
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C5/00Moderator or core structure; Selection of materials for use as moderator
    • G21C5/18Moderator or core structure; Selection of materials for use as moderator characterised by the provision of more than one active zone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は、金属燃料を使用する高速中性子炉(以下「高速炉」と称して説明する)において、安全性を向上する燃料要素、燃料集合体及び炉心に関する。
本技術分野の背景技術として、特開2011-137735号公報(特許文献1)がある。この特許文献1には、軽水炉の炉心は、複数の燃料集合体を装荷し、燃料集合体は、下端部が下部タイプレートに支持され、上端部が上部タイプレートに支持される複数の燃料棒を有し、燃料棒は、核燃料物質充填領域の上方にプレナムを形成し、核燃料物質充填領域の上方に中性子吸収材充填領域を形成し、上部タイプレートに取り付けられた中性子吸収部材が、核燃料物質充填領域の上方で、隣接する燃料棒のプレナム相互間に配置されることが記載されている。そして、特許文献1には、仮に炉心が100%ボイドの状態になったと想定しても、正の反応度が炉心に投入されず、軽水炉の経済性を損なうことなく、安全余裕をさらに増大させることができることが記載されている(要約参照)。
特開2011-137735号公報
特許文献1には、軽水炉の炉心が仮に100%ボイドの状態になったと想定しても、正の反応度が炉心に投入されず、安全余裕を増大させることができることが記載されている。
しかし、特許文献1には、高速炉に関しては記載されていない。更に、特許文献1には、金属燃料を使用する高速炉(以下「金属燃料高速炉」と称して説明する場合がある)において、安全性が向上することに関しては記載されていない。
そこで、本発明は、金属燃料を使用する高速炉において、ボイド反応度を低減し、安全性が向上する燃料要素、燃料集合体及び炉心を提供する。
上記課題を解決するため、本発明の燃料要素は、被覆管と被覆管に内包される金属燃料を有し、金属燃料の上方であって、被覆管の内部にガスプレナム領域が形成され、ガスプレナム領域に、細径部を有し、細径部が、ガスプレナム領域の冷却材密度係数が正の領域の一部領域に形成され、一部領域から燃料スェリングを吸収する領域を除く領域に形成されることを特徴とする。
また、本発明の燃料集合体は、本発明の燃料要素と燃料要素を取り囲むラッパ管とを有し、燃料要素と燃料要素との間に冷却材流路が形成されることを特徴とする。
また、本発明の炉心は、本発明の燃料集合体を装荷する内側炉心燃料領域と、本発明の燃料集合体を装荷する外側炉心燃料領域と、を有することを特徴とする。
本発明によれば、金属燃料を使用する高速炉において、ボイド反応度を低減し、安全性が向上する燃料要素、燃料集合体及び炉心を提供することができる。
なお、上記した以外の課題、構成及び効果は、下記する実施例の説明により明らかにされる。
実施例1の金属燃料高速炉の燃料要素の縦断面を説明する説明図である。 実施例1の金属燃料高速炉の燃料集合体の水平断面を説明する説明図である。 実施例1の金属燃料高速炉の高さ方向の冷却材密度係数の分布を説明する説明図である。 実施例1の金属燃料高速炉の炉心の縦断面を説明する説明図である。 実施例1の金属燃料高速炉の炉心1/2領域の水平断面を説明する説明図である。 実施例2の金属燃料高速炉の外側炉心及び内側炉心の燃料要素の縦断面を説明する説明図である。 実施例2の金属燃料高速炉の炉心の縦断面を説明する説明図である。
以下、本発明の実施例を、図面を使用して説明する。なお、実質的に同一又は類似の構成には、同一の符号を付し、説明が重複する場合には、その説明を省略する場合がある。
本実施例に記載する高速炉は、原子炉容器の内部に、炉心を配置し、冷却材である液体ナトリウム(Na)を原子炉容器の内部に充填する。その炉心に装荷される燃料集合体は、金属燃料(プルトニウム(Pu)とウラン(U)とが主要な燃料元素である合金)を封入した複数の燃料棒(以下「燃料要素」と称して説明する場合がある)、束ねられた複数の燃料要素を取り囲むラッパ管、これら燃料要素の下方に位置して、中性子遮へい体を支持し、冷却材流入孔を形成するエントランスノズル、これら燃料要素の上方に位置する冷却材流出部、を有する。
また、炉心は、内側炉心燃料集合体が装荷される内側炉心燃料領域及びこの内側炉心燃料領域を取り囲む外側炉心燃料集合体が装荷される外側炉心燃料領域を有する炉心燃料領域、この炉心燃料領域を取り囲む燃料集合体が装荷されるブランケット燃料領域、ブランケット領域を取り囲む遮へい体領域を有する。
なお、標準的な均質炉心の場合、外側炉心燃料領域に装荷される外側炉心燃料集合体のPu富化度は、内側炉心燃料領域に装荷される内側炉心燃料集合体のPu富化度よりも高くなる。この結果、炉心の半径方向における出力分布が平坦化される。
また、炉心燃料領域を取り囲むブランケット燃料領域には、複数の燃料要素を有するブランケット燃料集合体が装荷される。炉心燃料領域に装荷される燃料集合体の内部で生じる核分裂反応で発生した中性子のうち、炉心燃料領域に装荷される燃料集合体の各燃料要素から漏れた中性子が、ブランケット燃料領域に装荷されるブランケット燃料集合体の各燃料要素の内部のU-238に吸収される。この結果、ブランケット燃料集合体の各燃料要素の内部で、核分裂性核種であるPu-239が新たに生成される。
また、高速炉の起動時、停止時及び出力調節時には、制御棒が使用される。制御棒は、炭化ホウ素(BC)ペレットをステンレス製の被覆管に封入した複数の中性子吸収棒を有する。これら中性子吸収棒は、内側炉心燃料集合体及び外側炉心燃料集合体と同様に、水平断面(横断面)が正六角形のラッパ管に収納される。制御棒は、主炉停止系及び後備炉停止系の独立した2系統で構成され、主炉停止系及び後備炉停止系のいずれか一方により、高速炉の緊急停止が可能になる。
なお、金属燃料高速炉の炉心は、酸化物燃料の高速炉の炉心と比較して、重金属の密度が大きいため、炉心の中性子スペクトルが硬く、増殖比が高いなどの利点がある。
一方、金属燃料高速炉の炉心は、冷却材である液体Naが、仮に沸騰した場合には、酸化物燃料の高速炉の炉心と比較して、炉心に挿入されるボイド反応度が大きくなる傾向がある。例えば、スクラム失敗を伴う過渡事象(ATWS:Anticipated Transient Without Scram)のうち、外部電源の喪失などによりポンプ流量が低下する冷却材流量喪失(ULOF:Unprotected Loss of Flow)に対しては、ボイド反応度を小さくすることができれば、より安全性を向上させることができる。
金属燃料高速炉では、燃料要素に配置される燃料スラグ(金属燃料)は、1本の丸棒であり、照射に伴う金属燃料のスェリングに伴う半径方向の膨張を吸収するため、金属燃料のスミヤ密度が75%TDとなるように、金属燃料を内包する被覆管と金属燃料との間に、比較的大きいギャップが形成される。そして、このギャップに、液体Naがボンド材として充填される。つまり、金属燃料はボンドNaに、浸漬される。
そして、金属燃料の核分裂に伴って発生する核分裂生成物(FP: Fission Product)の内、気体のもの(FPガス)を保持するため、燃料要素の上部(金属燃料の上方であって被覆管の内部)には、ガスプレナムが配置される。
図1Aは、実施例1の金属燃料高速炉の燃料要素の縦断面を説明する説明図である。
本実施例に記載する燃料要素1は、3元合金であるU-Pu-Zr(ウラン-プルトニウム-ジルコニウム)である金属燃料3、金属燃料3を内包する被覆管2、被覆管2に充填され、金属燃料3を浸漬するボンドNa(燃料スェリングを吸収する領域のボンドNa4及び細径部12を形成する領域のボンドNa5)、上部端栓7、下部端栓8、金属燃料3の上方であって被覆管2の内部に配置されるガスプレナム6、を有する。そして、金属燃料3の核分裂に伴って発生するFPガスは、ガスプレナム6に保持される。
図1Aにおいて、Lfは金属燃料3の縦方向の長さ、Lsは金属燃料3がスェリングによって軸方向に膨張した際に、燃料スェリングを吸収する領域の縦方向の長さ、Lはガスプレナム6の直径(以下「径」と称して説明する場合がある)を細くする領域(細径部12が形成される領域)の縦方向の長さ、Lvは冷却材密度係数(冷却材密度が変化した時、炉心の反応度を冷却材密度の変化割合で割った密度反応度係数)が正の領域の縦方向の長さを示す。ULOF時に冷却材密度が減少すると、冷却材密度係数が正のLvの領域では、負の反応度が投入されることになる。
そして、本実施例に記載する燃料要素1は、被覆管2のガスプレナム(ガスプレナム領域)6に、細径部12(縦方向の長さL)を形成する。つまり、本実施例に記載する燃料要素1は、被覆管2と被覆管2に内包される金属燃料3及び冷却材とを有し、金属燃料3の上方であって、被覆管2の内部にガスプレナム(ガスプレナム領域)6が形成される。そして、このガスプレナム領域に、細径部12が形成される。
この細径部12は、被覆管2が括(くび)れている部分であり、ガスプレナム(ガスプレナム領域)6が括れている部分である。この括れている部分(細径部12)は、金属燃料3を内包する被覆管2の径及び上部端栓7に接するガスプレナム6(ガスプレナム6の上方部分)の径よりも、細い径を有する部分である。つまり、ガスプレナム6は、細径部12と細径部12よりも太い径を有する部分とを有する。
また、この細径部12は、冷却材の面積を増加させる部分であり、冷却材(Na)の量を増加させる部分である。
このように、本実施例によれば、被覆管2のガスプレナム(ガスプレナム領域)6に細径部12を形成することにより、ボイド反応度を低減し、安全性がより向上する燃料要素1を提供することができる。つまり、本実施例によれば、金属燃料高速炉において、通常運転時の核特性や経済性に優れ、ボイド反応度を低減し、ULOF時における安全性がより向上する燃料要素1を提供することができる。
図1Bは、実施例1の金属燃料高速炉の燃料集合体の水平断面を説明する説明図である。
本実施例に記載する燃料集合体9は、燃料要素1、束ねられた複数の燃料要素1を取り囲むラッパ管10、これら燃料要素1の下方に位置する中性子遮へい体(図示ぜず)を支持すると共に冷却材流入孔(図示せず)を形成するエントランスノズル(図示せず)、これら燃料要素1の上方に位置する冷却材流出部(図示せず)、を有する。そして、燃料要素1と燃料要素1との間には、冷却材流路11が形成される。
このように、本実施例によれば、被覆管2のガスプレナム(ガスプレナム領域)6に細径部12を有する燃料要素1を使用することにより、ボイド反応度を低減し、安全性がより向上する燃料集合体9を提供することができる。
図2は、実施例1の金属燃料高速炉の高さ方向(縦方向)の冷却材密度係数の分布を説明する説明図である。
図2において、横軸23は冷却材(Na)に対する密度係数(冷却材密度係数)(%Δk/kk`/Δρ/ρ)22、縦軸24は金属燃料3の下端からガスプレナム6の上方部分への縦方向の長さ(高さ方向位置)を示す。ここで、ρは冷却材(Na)の密度である。
本実施例において、電気出力30万kWe、取出平均燃焼度100GWd/t、燃料有効長100cmの金属燃料3では、金属燃料3の縦方向の長さLfは約100cm、冷却材密度係数が正の領域の縦方向の長さLvは約40cmとなる。
例えば、最も厳しいATWSのうちULOFの場合、冷却材の温度が上昇し、密度ρが減少するため、冷却材密度係数(%Δk/kk`/Δρ/ρ)22は、金属燃料3が配置される金属燃料領域(Lf:金属燃料3の縦方向の長さ)25では、冷却材反応度(%Δk/kk`)が正であるために負の値となり、ガスプレナム6が配置されるガスプレナム領域26の一部領域(Lv:冷却材密度係数が正の領域の縦方向の長さ)では、冷却材反応度(%Δk/kk`)が負であるために正の値となる。
ULOF時に、冷却材の温度が上昇し、密度ρが減少(Δρ<0)すると、金属燃料領域25では正の反応度が挿入され、ガスプレナム領域26の一部領域では負の反応度が挿入される。
通常、金属燃料高速炉の燃料要素1は、ガスプレナム領域26の被覆管2の径と金属燃料領域25の被覆管2の径(金属燃料3を内包する被覆管2の径)とは同じである。ULOF時に、冷却材の温度が上昇し、密度が減少すると、ガスプレナム領域26の一部領域の冷却材密度係数は正であるため、ガスプレナム領域26の一部領域では負の反応度が挿入される。
そこで、本実施例では、この負の反応度が挿入されるガスプレナム領域26の一部領域の被覆管2の径を、金属燃料領域25の被覆管2の径よりも細くし、つまり、ガスプレナム領域26の一部領域に、細径部12(括れている部分)を形成し、被覆管外側で、ラッパ管に囲まれる冷却材の面積を増加させる。
これにより、ULOF時に挿入される負の反応度を負側に大きくすることができる。そして、燃料要素1、燃料集合体9、及び炉心の冷却材反応度又はボイド反応度を低減することができ、安全性を向上することができる。
一方、ボイド反応度を低減するため、金属燃料領域25の被覆管2の径よりも、ガスプレナム領域26の被覆管2の径を一様に細くすると(細径部12(括れている部分)を形成しない場合)、ガスプレナム領域26の一部領域を除くガスプレナム領域26の長さ(A)を、相当に長くする必要がある。例えば、ガスプレナム領域26の一部領域の被覆管2の径を、金属燃料領域25の被覆管2の径の1/2とすると、細径部12を形成しない場合は、細径部12を形成する場合に比較して、ガスプレナム領域26の一部領域を除くガスプレナム領域26の長さ(A)を、核分裂生成物(FP:Fission product)のうち、気体のものを保持するため、4倍にする必要がある。
しかし、本実施例に記載する燃料要素1は、ガスプレナム領域26の一部領域を除くガスプレナム領域26の長さ(A)の長くする割合を小さくすることができ、コンパクト性を維持することができる。その結果炉心領域の圧力損失を低減することができる。
本実施例では、ボイド反応度を低減させる効果がある領域が、ガスプレナ領域26の一部領域(Lv)であることに着目する。つまり、本実施例では、ガスプレナ領域26の一部領域(Lv)に、細径部12を形成することにより、コンパクト性を維持しつつ、ボイド反応度を低減する。
本実施例に記載する燃料要素1は、金属燃料3と、金属燃料3を内包する被覆管2と、被覆管2に充填され、金属燃料3を浸漬する冷却材と、金属燃料3の上方に形成されるガスプレナム6(ガスプレナム領域26)、を有し、このガスプレナ領域26の一部領域(冷却材密度係数が正の領域)に、細径部12を形成する。
このように、本実施例に記載する燃料要素1は、被覆管2のガスプレナ領域26の一部領域に、細径部12を形成することにより、コンパクト性を維持しつつ、ボイド反応度を低減し、安全性をより向上させることができる。
また、金属燃料3は、中性子の照射に伴い、スェリングし、取出平均燃焼度150GWd/tの条件では、軸方向スェリング率が8%に達するとの知見もある。被覆管2において、金属燃料領域25の被覆管2の上部(ガスプレナム領域26の被覆管2の下部)の径を細くすると、軸方向スェリングによって膨張する金属燃料3によって、条件によっては、被覆管2が損傷する可能性がある。
そこで、被覆管2に、軸方向スェリングによって膨張する金属燃料3を吸収する領域(金属燃料3がスェリングによって軸方向に膨張した際に、冷却材を吸収する領域(燃料スェリングを吸収する領域:Ls)を配置することが好ましい。
本実施例に記載する燃料要素1は、特に、ガスプレナム領域26の一部領域(Lv)から、燃料スェリングを吸収する領域(Ls)を除く領域(L)に、細径部12を形成することが好ましい。また、本実施例に記載する燃料要素1は、ガスプレナム領域26の冷却材密度係数が正の領域(Lv)から、燃料スェリングを吸収する領域(Ls)を除く領域(L)に、細径部12を形成することが好ましい。
ここで、燃料スェリングを吸収する領域の縦方向の長さ(Ls)は、金属燃料3の縦方向の長さ(燃料有効長)をLf(cm)、取出平均燃焼度をE(GWd/t)とすると、式(1)で表現される。
Ls=(0.08/150×E)×Lf・・・・・・・・・・・・・・・・・(1)
なお、これは取出平均燃焼度150GWd/tの条件で、軸方向スェリング率が8%に達するとの知見に基づくものである。
本実施例では、E=100GWd/t、Lf=100cmであり、Ls=5.3(四捨五入あり)cmとなる。そして、本実施例では、ガスプレナム領域26の冷却材密度係数が正の領域(ガスプレナム領域26の一部領域)の長さ(Lv)が40cmであり、ガスプレナム領域26の冷却材密度係数が正の領域(ガスプレナム領域26の一部領域)(Lv)から、燃料スェリングを吸収する領域の縦方向の長さ(Ls)を除く領域の縦方向の長さ(L)は、L=Lv-Ls=40-5.3=34.7cmとなる。
このように、本実施例では、特に、燃料スェリングを吸収する領域(Ls)を配置して、長さがLの細径部12を形成することにより、コンパクト性を維持しつつ、ボイド反応度を低減し、安全性をより向上させることができると共に、被覆管2が損傷する可能性も払拭することができる。
図3は、実施例1の金属燃料高速炉の炉心の縦断面(垂直断面)を説明する説明図である。
本実施例に記載する炉心31は、内側炉心燃料領域32に配置される内側炉心燃料集合体35のPu富化度を、外側炉心燃料領域33に配置される外側炉心燃料集合体36のPu富化度よりも低くし、炉心31の半径方向の出力分布を平坦化する、いわゆる均質炉心である。
つまり、本実施例に記載する炉心31は、金属燃料のPu含有率が低い内側炉心燃料集合体35を装荷する内側炉心燃料領域32と、金属燃料のPu含有率が高い外側炉心燃料集合体36を装荷する外側炉心燃料領域33と、これら領域の上方に配置されるガスプレナム領域34とを有する。なお、これら燃料集合体は、図1Bに示すものである。
図4は、実施例1の金属燃料高速炉の炉心1/2領域の水平断面(横断面)を説明する説明図である。
本実施例に記載する炉心41は、内側炉心燃料領域42と、内側炉心燃料領域42を取り巻く外側炉心燃料領域43と、外側炉心燃料領域43の外周側に1層配置される径方向ブランケット集合体領域44と、径方向ブランケット集合体領域44を取り巻く2層の径方向遮へい体集合体領域45とを有する。また、これら炉心燃料領域には、制御棒集合体46が配置される。
このように、本実施例によれば、コンパクト性を維持しつつ、圧力損失を低減し、ボイド反応度を低減し、特に、ULOFに対する安全性をより向上させることができると共に、被覆管2の損傷の可能性を払拭し、経済性を向上させることができる燃料要素、燃料集合体及び炉心を提供することができる。
図5は、実施例2の金属燃料高速炉の外側炉心及び内側炉心の燃料要素の縦断面を説明する説明図である。
本実施例に記載する炉心は、金属燃料3がU-Pu-Zrの3元合金であり、外側炉心燃料集合体に使用する燃料要素51のPu含有率を、内側炉心燃料集合体に使用する燃料要素56のPu含有率よりも高くし、内側炉心燃料集合体を装荷する内側炉心燃料領域の半径方向の外側に、外側炉心燃料集合体を装荷する外側炉心燃料領域を配置する、いわゆる均質炉心ある。
そして、本実施例に記載する炉心は、内側炉心燃料集合体42(図4参照)における燃料要素56の燃料有効長(炉心高さ)57が、外側炉心燃料集合体43(図4参照)における燃料要素51の燃料有効長(炉心高さ)52よりも、短いことを特徴とする。これは、内側炉心燃料集合体42が、外側炉心燃料集合体43よりも、ボイド反応度への寄与が大きいためである。
ここでは、燃料有効長(金属燃料3の縦方向の長さ)Lfが相違する2種類の燃料要素(燃料集合体)の炉心を使用するため、燃料有効長の相違による燃料要素の仕様について検討する。
式(1)に示すように、取出平均燃焼度Eが同一の場合、燃料有効長Lfを短くすると、燃料スェリングを吸収する領域の縦方向の長さ(軸方向スェリングによって膨張する金属燃料3を吸収する領域の縦方向の長さ)Lsを短くすることができる。一方、燃料有効長Lfを短くすると、炉心からの軸方向への中性子の漏れ割合が増加するため、ボイド反応度が小さくなり、冷却材密度係数が正の領域の縦方向の長さLvが長くなる。
ここで、中性子束をφ(1/cm・s)、形状バックリングをBgとすると、炉心からの中性子の漏れ量は、φ×Bgに比例する。炉心からの軸方向(1次元方向)への中性子の漏れ量を考慮すると、Bgは、式(2)で表現される。
Bg=(π/Lf)・・・・・・・・・・・・・・・・・・・・・・・・・・(2)
燃料有効長(炉心高さ)Lfが100cmの場合、中性子の漏れ量が、冷却材密度係数に、顕著に影響する長さLvは40cmとなる。このように、中性子の漏れ量は、バックリングBgに比例し、燃料有効長(炉心高さ)Lfの2乗に反比例する。
また、燃料有効長(炉心高さ)Lfの場合、冷却材密度係数が正の領域の縦方向の長さLvは、式(3)で表現される。
Lv=(100/Lf)×Lf×40/100・・・・・・・・・・・・・・(3)
なお、(100/Lf)の項は、中性子の漏れ量を規定する項であり、Lf×40/100の項は、Lfが約100cm、Lvが約40cmの場合に比例することを規定する項である。
式(1)と式(3)とにより、炉心高さLf及び取出平均燃焼度Eに対する、Lv(冷却材密度係数が正の領域の縦方向の長さ(ガスプレナム領域のボイド反応度への寄与が大きな領域の縦方向の長さ))、Ls(燃料スェリングを吸収する領域の縦方向の長さ)、L(ガスプレナム6の径を細くする領域の縦方向の長さ)が決定する。
なお、代表的な3つのケースについて、炉心高さ及び取出平均燃焼度に対する、本実施例の燃料要素の各領域の縦方向の長さを、表(1)に示す。
表1 炉心高さ及び取出平均燃焼度に対する、本実施例の燃料要素の各領域の縦方向の長さ
Figure 0007176999000001
本実施例に記載する炉心は、外側炉心燃料集合体で使用する燃料要素51と、内側炉心燃料集合体で使用する燃料要素56と、を有する。
そして、燃料要素51における炉心高さ(燃料有効長)52(Lf)は100cm、燃料要素56における炉心高さ(燃料有効長)57(Lf)は80cmであり、燃料要素51は、表(1)のケース3に対応し、燃料要素56は、表(1)のケース2に対応する。
したがって、燃料要素51の各領域の縦方向の長さは、Lv(55)40cm、Ls(53)5.3cm、L(54)34、7cmとなり、燃料要素56の各領域の縦方向の長さは、Lv(60)50cm、Ls(58)4.3cm、L(59)45、7cmとなる。
本実施例において、取出平均燃焼度Eを一定とする。
そして、外側炉心燃料集合体で使用する燃料要素51の炉心高さをLf51、燃料要素51の冷却材密度係数が正の領域の縦方向の長さをLv51、燃料要素51の燃料スェリングを吸収する領域の縦方向の長さをLs51、燃料要素51のガスプレナム6の径を細くする領域の縦方向の長さをL51とする。
そして、内側炉心燃料集合体で使用する燃料要素56の炉心高さをLf56、燃料要素56の冷却材密度係数が正の領域の縦方向の長さをLv56、燃料要素56の燃料スェリングを吸収する領域の縦方向の長さをLs56、燃料要素56のガスプレナム6の径を細くする領域の縦方向の長さをL56とする。
この場合、Lf51>Lf56、Ls51>Ls56、Lv56>Lv51、L56>L51となる。
また、外側炉心燃料集合体で使用する燃料要素51のガスプレナム領域26の一部領域(細径部12が形成される領域)を除くガスプレナム領域26の長さをA516とする。
また、内側炉心燃料集合体で使用する燃料要素56のガスプレナム領域26の一部領域(細径部12が形成される領域)を除くガスプレナム領域26の長さをA566とする。
この場合、A516<A566となる。
特に、本実施例に記載する炉心は、外側炉心燃料集合体で使用する燃料要素51における金属燃料3が配置される領域の被覆管2の径よりも細くしたガスプレナム領域(細径部12が形成される領域)の縦方向の長さ54(L51)が、内側炉心燃料集合体で使用する燃料要素56における金属燃料3が配置される領域の被覆管2の径よりも細くしたガスプレナム領域(細径部12が形成される領域)の縦方向の長さ59(L56)よりも、短いことを特徴とする。
図6は、実施例2の金属燃料高速炉の炉心の縦断面(垂直断面)を説明する説明図である。
本実施例に記載する炉心61は、内側炉心燃料領域62に配置される炉心高さが低い内側炉心燃料集合体65と、外側炉心燃料領域63に配置される炉心高さが高い外側炉心燃料集合体66とを、有する。
つまり、本実施例に記載する炉心61は、炉心高さが低い内側炉心燃料集合体65を装荷する内側炉心燃料領域62と、炉心高さが高い外側炉心燃料集合体66を装荷する外側炉心燃料領域63と、これら領域の上方に配置されるガスプレナム領域64とを有する。
このように、本実施例に記載する炉心は、燃料要素56の燃料有効長(炉心高さ)57が、燃料要素51の燃料有効長(炉心高さ)52よりも、短いことを特徴とする。これは、内側炉心燃料集合体42が、外側炉心燃料集合体43よりも、ボイド反応度への寄与が大きいためである。
本実施例によれば、コンパクト性を維持しつつ、圧力損失を低減し、ボイド反応度を、より低減する。特に、ULOFに対する安全性をより向上させることができると共に、被覆管2の損傷の可能性を払拭し、経済性を向上させることができる燃料要素、燃料集合体及び炉心を提供することができる。
なお、実施例1及び実施例2では、金属燃料3として、ウラン、プルトニウム及びジルコニウムの三元合金を使用するが、ウラン、TRU(超ウラン元素)及びジルコニウムの合金を、使用してもよい。また、ウランについては、劣化ウランや濃縮ウランを、使用してもよい。また、冷却材として、ナトリウムを使用するが、水、鉛、鉛ビスマス、溶融塩などを使用してもよい。
また、本実施例は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を有するものに限定されるものではない。また、ある実施例の構成の一部と他の構成の一部とを置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
1…燃料要素、2…被覆管、3…金属燃料、4…ボンドNa、5…ボンドNa、6…ガスプレナム、7…上部端栓、8…下部端栓、9…燃料集合体、10…ラッパ管、11…冷却材流路、12…細径部、22…冷却材密度係数、23…冷却材密度係数、24…高さ方向位置、25…金属燃料領域、26…ガスプレナム領域、31…炉心、32…内側炉心燃料領域、33…外側炉心燃料領域、34…ガスプレナム領域、35…内側炉心燃料集合体、36…外側炉心燃料集合体、41…炉心、42…内側炉心燃料領域、43…外側炉心燃料領域、44…径方向ブランケット燃料集合体領域、45…径方向遮へい体集合体領域、46…制御棒集合体、51、56…燃料要素、52、57…燃料有効長、53、58…燃料スェリングを吸収する領域の縦方向の長さ、54、59…ガスプレナム6の径を細くする領域の縦方向の長さ、55、60…冷却材密度係数が正の領域の縦方向の長さ、61…炉心、62…内側炉心燃料領域、63…外側炉心燃料領域、64…ガスプレナム領域、65…内側炉心燃料集合体、66…外側炉心燃料集合体。

Claims (7)

  1. 被覆管と前記被覆管に内包される金属燃料を有し、前記金属燃料の上方であって、前記被覆管の内部にガスプレナム領域が形成される燃料要素であって、前記ガスプレナム領域に、細径部を有し、
    前記細径部が、前記ガスプレナム領域の冷却材密度係数が正の領域の一部領域に形成され、前記一部領域から燃料スェリングを吸収する領域を除く領域に形成されることを特徴とする燃料要素。
  2. 前記一部領域の縦方向の長さが、前記金属燃料の燃料有効長をLfとする場合、(100/Lf)2×Lf×40/100であることを特徴とする請求項1に記載の燃料要素。
  3. 請求項1に記載の燃料要素と前記燃料要素を取り囲むラッパ管とを有し、前記燃料要素と前記燃料要素との間に冷却材流路が形成されることを特徴とする燃料集合体。
  4. 請求項3に記載の燃料集合体を装荷する内側炉心燃料領域と、前記燃料集合体を装荷する外側炉心燃料領域と、を有することを特徴とする炉心。
  5. 前記金属燃料がU-Pu-Zrの3元合金であり、外側炉心燃料集合体に使用する請求項1に記載の燃料要素のPu含有率が、内側炉心燃料集合体に使用する前記燃料要素のPu含有率よりも高いことを特徴とする炉心。
  6. 内側炉心燃料集合体における請求項1に記載の燃料要素の燃料有効長が、外側炉心燃料集合体における前記燃料要素の燃料有効長よりも短いことを特徴とする炉心。
  7. 外側炉心燃料集合体で使用する請求項1に記載の燃料要素における細径部が形成される領域の縦方向の長さが、内側炉心燃料集合体で使用する前記燃料要素における細径部が形成される領域の縦方向の長さよりも、短いことを特徴とする炉心。
JP2019085054A 2019-04-26 2019-04-26 燃料要素、燃料集合体及び炉心 Active JP7176999B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019085054A JP7176999B2 (ja) 2019-04-26 2019-04-26 燃料要素、燃料集合体及び炉心
US16/850,829 US11398315B2 (en) 2019-04-26 2020-04-16 Fuel element, fuel assembly, and core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019085054A JP7176999B2 (ja) 2019-04-26 2019-04-26 燃料要素、燃料集合体及び炉心

Publications (2)

Publication Number Publication Date
JP2020180907A JP2020180907A (ja) 2020-11-05
JP7176999B2 true JP7176999B2 (ja) 2022-11-22

Family

ID=72916817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019085054A Active JP7176999B2 (ja) 2019-04-26 2019-04-26 燃料要素、燃料集合体及び炉心

Country Status (2)

Country Link
US (1) US11398315B2 (ja)
JP (1) JP7176999B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137735A (ja) 2009-12-28 2011-07-14 Hitachi-Ge Nuclear Energy Ltd 軽水炉の炉心及び燃料集合体
JP2016085118A (ja) 2014-10-27 2016-05-19 日立Geニュークリア・エナジー株式会社 高速炉用燃料集合体及びそれを装荷する炉心
JP2017026372A (ja) 2015-07-17 2017-02-02 日立Geニュークリア・エナジー株式会社 高速炉用燃料要素及び燃料集合体並びにそれを装荷される炉心
JP2018185205A (ja) 2017-04-25 2018-11-22 日立Geニュークリア・エナジー株式会社 高速炉の炉心および高速炉の燃料装荷方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769447B2 (ja) * 1987-06-19 1995-07-31 株式会社日立製作所 燃料集合体
JP3221989B2 (ja) * 1993-09-08 2001-10-22 株式会社東芝 高速炉炉心
SE504360C2 (sv) * 1995-05-24 1997-01-20 Asea Atom Ab Bränslepatron för kokarvattenreaktor innefattande en grupp bränslestavar med ett fissionsgasplenum omslutet av ett plenumrör
JP2000019280A (ja) * 1998-06-30 2000-01-21 Toshiba Corp 軽水冷却型原子炉の炉心および同原子炉の運転方法
JP2006226905A (ja) * 2005-02-18 2006-08-31 Japan Nuclear Cycle Development Inst States Of Projects 金属燃料高速炉炉心

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137735A (ja) 2009-12-28 2011-07-14 Hitachi-Ge Nuclear Energy Ltd 軽水炉の炉心及び燃料集合体
JP2016085118A (ja) 2014-10-27 2016-05-19 日立Geニュークリア・エナジー株式会社 高速炉用燃料集合体及びそれを装荷する炉心
JP2017026372A (ja) 2015-07-17 2017-02-02 日立Geニュークリア・エナジー株式会社 高速炉用燃料要素及び燃料集合体並びにそれを装荷される炉心
JP2018185205A (ja) 2017-04-25 2018-11-22 日立Geニュークリア・エナジー株式会社 高速炉の炉心および高速炉の燃料装荷方法

Also Published As

Publication number Publication date
JP2020180907A (ja) 2020-11-05
US20200343006A1 (en) 2020-10-29
US11398315B2 (en) 2022-07-26

Similar Documents

Publication Publication Date Title
US20130170603A1 (en) Nuclear fuel rod for fast reactor
JP6568348B2 (ja) 高速炉用燃料集合体及びそれを装荷する炉心
JP2015166700A (ja) 高速炉用燃料集合体及びそれが装荷される炉心
JP7176999B2 (ja) 燃料要素、燃料集合体及び炉心
JP6579842B2 (ja) 高速炉用燃料要素及び燃料集合体並びにそれを装荷される炉心
JP7011542B2 (ja) 高速炉の炉心
US5610959A (en) Hafnium doped replacement rod for nuclear fuel reconstitution
JP5302156B2 (ja) 高速増殖炉の炉心
JP2510565B2 (ja) 原子炉の燃料集合体
JP6862261B2 (ja) 高速炉の炉心および高速炉の燃料装荷方法
JP7297699B2 (ja) 高速炉の炉心および高速炉の運転方法
JP2010145140A (ja) 高速炉の燃料装荷方法
JPH0588439B2 (ja)
JP2009085650A (ja) 高速炉の炉心構成要素,炉心燃料集合体、及び炉心並びに原子炉構造
US20240177876A1 (en) Fuel assemblies in fast reactor and fast reactor core
JP2015059791A (ja) 高速炉炉心および当該炉心を備えた高速炉
JP6588155B2 (ja) 燃料集合体及びそれを装荷する原子炉の炉心
US20230071843A1 (en) Fuel assembly and core of fast reactor
JP3514869B2 (ja) 沸騰水型原子炉用燃料集合体
JP3039001B2 (ja) 原子炉の炉心
JP7278937B2 (ja) 核燃料要素の製造方法
JP2024154562A (ja) ナトリウム冷却金属燃料高速炉用の燃料集合体、炉心、及び燃料集合体の製造方法
JP2019178896A (ja) 燃料集合体
US20240355487A1 (en) Fuel Assembly for Sodium-Cooled Metal Fuel Fast Reactor, Reactor Core, and Manufacturing Method of Fuel Assembly
JPH0634779A (ja) 軽水炉用燃料集合体及び軽水炉炉心

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221110

R150 Certificate of patent or registration of utility model

Ref document number: 7176999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150