JP7172221B2 - Method for adjusting temperature of heating element and method for manufacturing glass article - Google Patents

Method for adjusting temperature of heating element and method for manufacturing glass article Download PDF

Info

Publication number
JP7172221B2
JP7172221B2 JP2018135126A JP2018135126A JP7172221B2 JP 7172221 B2 JP7172221 B2 JP 7172221B2 JP 2018135126 A JP2018135126 A JP 2018135126A JP 2018135126 A JP2018135126 A JP 2018135126A JP 7172221 B2 JP7172221 B2 JP 7172221B2
Authority
JP
Japan
Prior art keywords
temperature
intermediate portion
heating element
heating
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018135126A
Other languages
Japanese (ja)
Other versions
JP2020011865A (en
Inventor
大介 百々
一平 井元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2018135126A priority Critical patent/JP7172221B2/en
Priority to PCT/JP2019/023616 priority patent/WO2020017204A1/en
Publication of JP2020011865A publication Critical patent/JP2020011865A/en
Application granted granted Critical
Publication of JP7172221B2 publication Critical patent/JP7172221B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/033Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by using resistance heaters above or in the glass bath, i.e. by indirect resistance heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)
  • Furnace Details (AREA)

Description

本発明は、発熱体の温度調整方法及びガラス物品の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for adjusting the temperature of a heating element and a method for manufacturing a glass article.

特許文献1には、溶融ガラスを加熱するための発熱体として、二珪化モリブデンを主成分とする発熱体が開示されている。この種の発熱体は、400℃~600℃の低い温度域に長時間維持されると、ケイ素及びモリブデンが同時に酸化する。すると、酸化ケイ素及び酸化モリブデンからなる多孔質層が発熱体の表面に形成される「ペスト化」と呼ばれる現象が起こる。 Patent Document 1 discloses a heating element containing molybdenum disilicide as a main component as a heating element for heating molten glass. When this type of heating element is maintained in a low temperature range of 400° C. to 600° C. for a long time, silicon and molybdenum are simultaneously oxidized. Then, a phenomenon called "pesting" occurs in which a porous layer composed of silicon oxide and molybdenum oxide is formed on the surface of the heating element.

特開2016-115620号公報JP 2016-115620 A

棒状の発熱体にペスト化が起こると、ペスト化した部分が膨張することで外径が太くなることがある。このため、発熱体を挟むようにして発熱体を支持する支持部があるときに、発熱体の支持部に支持される部位にペスト化が起こると、支持部に負荷が作用するおそれがある。本発明の目的は、発熱体のペスト化により、発熱体を支持する支持部に負荷が作用することを抑制できる発熱体の温度調整方法及びガラス物品の製造方法を提供することである。 When pesting occurs in the rod-shaped heating element, the outer diameter may increase due to expansion of the pesting portion. Therefore, when there are support portions that support the heat generating element so as to sandwich the heat generating element, if pestification occurs in the portion supported by the support portions of the heat generating element, there is a risk that a load will act on the support portion. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for adjusting the temperature of a heating element and a method for manufacturing a glass article, which can suppress the application of a load to a supporting portion that supports the heating element due to pesting of the heating element.

以下、上記課題を解決するための手段及びその作用効果について記載する。
上記課題を解決する発熱体の温度調整方法は、通電により発熱する発熱部と、電極が取り付けられる端子部と、発熱部及び端子部を接続する中間部と、を有する二珪化モリブデンを含んで構成される発熱体と、前記発熱体の前記中間部の周囲を囲うように支持する支持部と、前記発熱体の前記発熱部が配置される加熱室と、を備える加熱装置における前記発熱体の温度調整方法であって、前記中間部の前記支持部に支持される部分を第1中間部としたとき、前記支持部を介した前記第1中間部からの放熱量を変化させることにより、前記第1中間部の温度を調整する。
Means for solving the above problems and their effects will be described below.
A method for adjusting the temperature of a heating element that solves the above problems includes molybdenum disilicide having a heating portion that generates heat when energized, a terminal portion to which an electrode is attached, and an intermediate portion that connects the heating portion and the terminal portion. temperature of the heat generating element in a heating device comprising: In the adjustment method, when the portion of the intermediate portion supported by the support portion is assumed to be a first intermediate portion, the amount of heat released from the first intermediate portion via the support portion is changed to adjust the first intermediate portion. 1 Adjust the temperature of the middle part.

上記加熱装置において、発熱体の中間部は、支持部を介した外部への放熱量が大きいほど温度が低下する。そこで、上記温度調整方法は、支持部における放熱量を変化させることで、発熱体の第1中間部の温度がペスト化の起こる温度域にならないように、発熱体の第1中間部の温度を調整する。こうして、上記温度調整方法は、第1中間部のペスト化に伴う膨張により、支持部に負荷が作用することを抑制できる。 In the above heating device, the temperature of the intermediate portion of the heating element decreases as the amount of heat released to the outside through the support portion increases. Therefore, in the above-described temperature adjustment method, the temperature of the first intermediate portion of the heating element is adjusted by changing the amount of heat released from the supporting portion so that the temperature of the first intermediate portion of the heating element does not fall within the temperature range in which pestification occurs. adjust. Thus, the temperature adjustment method described above can suppress the load acting on the support portion due to the expansion of the first intermediate portion caused by the pestification.

上記発熱体の温度調整方法において、前記支持部の周囲に配置する保温材の量を変化することにより、前記第1中間部の温度を調整することが好ましい。
上記温度調整方法は、支持部の周囲に配置する保温材の量を変化することで、支持部を介した外部への放熱量を変化させる。つまり、上記温度調整方法は、簡易な方法で、第1中間部の温度調整を行うことができる。
In the method for adjusting the temperature of the heating element, it is preferable that the temperature of the first intermediate portion is adjusted by changing the amount of heat insulating material arranged around the support portion.
In the temperature control method described above, the amount of heat insulating material arranged around the support is changed to change the amount of heat released to the outside through the support. That is, the temperature adjustment method described above is a simple method, and the temperature of the first intermediate portion can be adjusted.

上記発熱体の温度調整方法において、前記発熱体に供給する電力量を調整することにより、前記第1中間部の温度を調整することが好ましい。
発熱体は、熱伝導体でもあるため、発熱部における発熱量の変化に応じて、発熱部に接続する中間部の温度が変化する。そこで、上記温度調整方法は、発熱体に供給する電力量を調整することにより、第1中間部に加えられる熱量を変化させ、第1中間部の温度がペスト化の起こる温度域にならないようにする。こうして、上記温度調整方法は、第1中間部のペスト化に伴う膨張により、支持部に負荷が作用することを抑制できる。
In the method for adjusting the temperature of the heating element, it is preferable that the temperature of the first intermediate portion is adjusted by adjusting the amount of electric power supplied to the heating element.
Since the heat generating element is also a heat conductor, the temperature of the intermediate portion connected to the heat generating portion changes according to the change in the amount of heat generated in the heat generating portion. Therefore, in the above-described temperature adjustment method, the amount of heat applied to the first intermediate portion is changed by adjusting the amount of power supplied to the heating element so that the temperature of the first intermediate portion does not fall within the temperature range where pesto formation occurs. do. Thus, the temperature adjustment method described above can suppress the load acting on the support portion due to the expansion of the first intermediate portion caused by the pestification.

上記発熱体の温度調整方法において、前記中間部の前記第1中間部及び前記端子部の間の部分を第2中間部としたとき、前記第2中間部の温度に基づいて、前記第1中間部の温度を調整することが好ましい。 In the method for adjusting the temperature of the heating element, when a portion of the intermediate portion between the first intermediate portion and the terminal portion is defined as a second intermediate portion, the temperature of the first intermediate portion is determined based on the temperature of the second intermediate portion. It is preferable to adjust the temperature of the part.

発熱体は、発熱部の温度が最も高くなりやすく、端子部の温度が最も低くなりやすい。このため、第2中間部の温度がペスト化の起こる温度以上の場合、第2中間部よりも発熱部に近い第1中間部の温度は第2中間部のペスト化の起こる温度以上となりやすい。そこで、上記構成の温度調整方法は、支持部に支持されない点で温度を測定しやすい第2中間部の温度に基づいて、第1中間部の温度を調整する。したがって、温度調整方法は、支持部に支持される点で温度を測定しにくい第1中間部の温度を測定しなくても、第1中間部の温度を適切に調整できる。 In the heat generating element, the temperature of the heat generating portion tends to be the highest, and the temperature of the terminal portion tends to be the lowest. Therefore, when the temperature of the second intermediate portion is higher than the pesting temperature, the temperature of the first intermediate portion, which is closer to the heat-generating portion than the second intermediate portion, tends to be higher than the pesting temperature of the second intermediate portion. Therefore, in the temperature adjusting method having the configuration described above, the temperature of the first intermediate portion is adjusted based on the temperature of the second intermediate portion, which is not supported by the supporting portion and whose temperature can be easily measured. Therefore, the temperature adjustment method can appropriately adjust the temperature of the first intermediate portion without measuring the temperature of the first intermediate portion, which is difficult to measure because it is supported by the supporting portion.

上記課題を解決するガラス物品の製造方法は、上述した発熱体の温度調整方法により、前記発熱体の温度を調整する温度調整工程と、前記加熱室内でガラスを加熱する加熱工程と、を備える。 A method for manufacturing a glass article that solves the above problems includes a temperature adjustment step of adjusting the temperature of the heating element and a heating step of heating the glass in the heating chamber by the temperature adjustment method of the heating element described above.

上記構成によれば、ガラス物品の製造方法において、上述した発熱体の温度調整方法が奏する作用効果と同等の作用効果を得ることができる。 According to the above configuration, in the method for manufacturing a glass article, it is possible to obtain the same effects as those of the method for adjusting the temperature of the heating element described above.

上記構成によれば、発熱体のペスト化により、発熱体を支持する支持部に負荷が作用することを抑制できる。 According to the above configuration, it is possible to suppress the application of a load to the support portion that supports the heat generating element due to the heat generating element becoming a pesto.

一実施形態に係るガラス物品の製造装置の概略図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic of the manufacturing apparatus of the glass article which concerns on one Embodiment. 上記製造装置が備える加熱装置の部分断面図。FIG. 2 is a partial cross-sectional view of a heating device included in the manufacturing apparatus;

以下、加熱装置を備えるガラス物品の製造装置及びガラス物品の製造方法の一実施形態について説明する。
図1に示すように、ガラス物品の製造装置10(以下、「製造装置10」とも言う。)は、ガラス原料を供給する供給装置11と、ガラス原料を加熱する加熱装置12と、溶融ガラスをガラス物品に成形する成形装置13と、を備える。
An embodiment of a glass article manufacturing apparatus and a glass article manufacturing method provided with a heating device will be described below.
As shown in FIG. 1, a glass article manufacturing apparatus 10 (hereinafter also referred to as "manufacturing apparatus 10") includes a supply device 11 that supplies frit, a heating device 12 that heats frit, and molten glass. a forming device 13 for forming into a glass article.

供給装置11は、加熱装置12にガラス原料を供給する。ガラス原料は、例えば、硅砂、石灰及びソーダ灰などの混合物である。
加熱装置12は、ガラス原料を溶融ガラスMGに溶融する「加熱室」の一例としての溶融炉20と、溶融炉20の炉内21を加熱する加熱ユニット30と、を備える。
The supply device 11 supplies the raw material for glass to the heating device 12 . Glass raw materials are, for example, mixtures of silica sand, lime and soda ash.
The heating device 12 includes a melting furnace 20 as an example of a “heating chamber” that melts frit into molten glass MG, and a heating unit 30 that heats a furnace interior 21 of the melting furnace 20 .

図1に示すように、溶融炉20は、例えば、煉瓦などの耐火物からなる底壁22、側壁23及び上壁24を有する。側壁23には、ガラス原料の投入口25と、溶融ガラスMGの流出口26と、が形成される。図2に示すように、上壁24には、炉内21に向けて凹み窪んでいる凹部27と、凹部27及び溶融炉20の炉内21を接続する接続孔28と、が形成される。凹部27及び接続孔28は、後述する加熱ユニット30の発熱体40を炉内21に向けて配置するための空間である。本実施形態において、凹部27及び接続孔28は、加熱ユニット30の発熱体40の数に応じて形成される。図2に示す断面視において、凹部27の幅は、接続孔28の幅よりも大きくなっている。 As shown in FIG. 1, the melting furnace 20 has a bottom wall 22, side walls 23 and top wall 24 made of a refractory material such as brick. The side wall 23 is formed with an inlet 25 for frit and an outlet 26 for molten glass MG. As shown in FIG. 2 , the upper wall 24 is formed with a recess 27 that is recessed toward the furnace interior 21 and a connection hole 28 that connects the recess 27 and the furnace interior 21 of the melting furnace 20 . The recessed portion 27 and the connection hole 28 are spaces for arranging a heating element 40 of the heating unit 30 (to be described later) toward the furnace interior 21 . In this embodiment, the recesses 27 and the connection holes 28 are formed according to the number of the heating elements 40 of the heating unit 30 . In the cross-sectional view shown in FIG. 2 , the width of the recess 27 is larger than the width of the connection hole 28 .

図2に示すように、加熱ユニット30は、通電により発熱する発熱体40と、発熱体40を支持する支持部50と、支持部50の周囲を覆う保温材61と、を有する。また、図1に示すように、加熱ユニット30は、発熱体40に電力を供給する電源62と、発熱体40及び電源62を接続する電線63と、発熱体40の温度を検出する温度測定部64と、を有する。 As shown in FIG. 2 , the heating unit 30 has a heating element 40 that generates heat when energized, a support section 50 that supports the heating element 40 , and a heat insulating material 61 that surrounds the support section 50 . Further, as shown in FIG. 1, the heating unit 30 includes a power source 62 that supplies electric power to the heating element 40, an electric wire 63 that connects the heating element 40 and the power source 62, and a temperature measuring unit that detects the temperature of the heating element 40. 64 and .

発熱体40は、二珪化モリブデンを主成分とし、通電により発熱する抵抗発熱体である。一例として、発熱体40は、70重量%以上の二珪化モリブデンと、30重量%未満のガラス又はセラミックスと、を含んで構成される。本実施形態の発熱体40は、略U字状に成形されるが、波型状に成形してもよいし、棒状に成形してもよい。また、発熱体40は、長手方向と直交する断面形状が略円形をなしている。 The heating element 40 is a resistive heating element containing molybdenum disilicide as a main component and generating heat when energized. As an example, the heating element 40 comprises 70% by weight or more of molybdenum disilicide and less than 30% by weight of glass or ceramics. The heating element 40 of this embodiment is formed in a substantially U shape, but it may be formed in a wave shape or in a bar shape. Further, the heating element 40 has a substantially circular cross-sectional shape perpendicular to the longitudinal direction.

図2に示すように、発熱体40は、通電により発熱する発熱部41と、電線63の電極631が取り付けられる端子部42と、発熱部41及び端子部42を接続する中間部43と、を有する。発熱部41は、抵抗値が端子部42及び中間部43よりも高くなるように、断面積が端子部42及び中間部43よりも小さくされる。このため、発熱体40に通電される場合には、発熱部41が選択的に発熱する。端子部42は、U字状をなす発熱体40の両端部である。端子部42の表面には、電極631との電気接触を良好とするために、例えば、アルミ層を形成することが好ましい。中間部43は、支持部50に支持される第1中間部431と、第1中間部431及び端子部42を接続する第2中間部432と、第1中間部431及び発熱部41を接続する第3中間部433と、を有する。そして、発熱体40は、発熱部41が炉内21に位置するとともに、端子部42が上壁24から突出するように、支持部50に支持される。 As shown in FIG. 2, the heating element 40 includes a heating portion 41 that generates heat when energized, a terminal portion 42 to which the electrode 631 of the electric wire 63 is attached, and an intermediate portion 43 that connects the heating portion 41 and the terminal portion 42. have. The heat generating portion 41 has a cross-sectional area smaller than that of the terminal portion 42 and the intermediate portion 43 so that the resistance value is higher than that of the terminal portion 42 and the intermediate portion 43 . Therefore, when the heating element 40 is energized, the heating portion 41 selectively generates heat. The terminal portions 42 are both end portions of the U-shaped heating element 40 . For example, an aluminum layer is preferably formed on the surface of the terminal portion 42 in order to make good electrical contact with the electrode 631 . The intermediate portion 43 connects the first intermediate portion 431 supported by the support portion 50, the second intermediate portion 432 connecting the first intermediate portion 431 and the terminal portion 42, and the first intermediate portion 431 and the heat generating portion 41. and a third intermediate portion 433 . The heat generating element 40 is supported by the supporting portion 50 so that the heat generating portion 41 is positioned inside the furnace 21 and the terminal portion 42 protrudes from the upper wall 24 .

支持部50は、煉瓦などの耐火物によって形成される。支持部50は、略直方体状をなす第1支持部51と、平板状をなす第2支持部52と、を有する。
図2に示す断面視において、第1支持部51の幅は、凹部27の幅よりも狭く、接続孔28の幅よりも広い。第1支持部51には、長手方向に2つの貫通孔511が形成される。貫通孔511の内径は、発熱体40の中間部43の外径よりも大きい。第1支持部51の貫通孔511には、発熱体40の端子部42及び中間部43が挿通される。
The support portion 50 is made of a refractory such as brick. The support portion 50 has a first support portion 51 having a substantially rectangular parallelepiped shape and a second support portion 52 having a flat plate shape.
In the cross-sectional view shown in FIG. 2, the width of the first support portion 51 is narrower than the width of the recess 27 and wider than the width of the connection hole 28 . Two through holes 511 are formed in the first support portion 51 in the longitudinal direction. The inner diameter of the through hole 511 is larger than the outer diameter of the intermediate portion 43 of the heating element 40 . The terminal portion 42 and the intermediate portion 43 of the heating element 40 are inserted through the through hole 511 of the first support portion 51 .

第2支持部52は、第1支持部51の貫通孔511の数に応じて配置される。図2に示す断面視において、第2支持部52の幅は、第1支持部51の貫通孔511の内径よりも大きい。第2支持部52は、例えば、クランプなどの固定具により、発熱体40の第1中間部431の上端に固定される。つまり、第2支持部52は、発熱体40の第1中間部431を径方向に締め付けるようにして、第1中間部431に固定される。 The second support portions 52 are arranged according to the number of through holes 511 of the first support portion 51 . In the cross-sectional view shown in FIG. 2 , the width of the second support portion 52 is larger than the inner diameter of the through hole 511 of the first support portion 51 . The second support portion 52 is fixed to the upper end of the first intermediate portion 431 of the heating element 40 by a fixture such as a clamp, for example. That is, the second support portion 52 is fixed to the first intermediate portion 431 of the heating element 40 by radially tightening the first intermediate portion 431 .

図2に示すように、第1支持部51の貫通孔511に挿通した発熱体40の第1中間部431に第2支持部52を固定すると、発熱体40の端子部42が鉛直上方に向くように第1支持部51を配置したときに、第2支持部52が第1支持部51の上面に接触する。こうして、支持部50は、発熱体40の中間部43(第1中間部431)の周囲を囲うように、発熱体40を支持する。 As shown in FIG. 2, when the second support portion 52 is fixed to the first intermediate portion 431 of the heating element 40 inserted through the through hole 511 of the first supporting portion 51, the terminal portion 42 of the heating element 40 faces vertically upward. When the first support portion 51 is arranged as above, the second support portion 52 contacts the upper surface of the first support portion 51 . In this way, the supporting portion 50 supports the heating element 40 so as to surround the intermediate portion 43 (first intermediate portion 431) of the heating element 40. As shown in FIG.

そして、支持部50は、溶融炉20の凹部27に配置される。支持部50が凹部27に配置されると、接続孔28を介して、発熱体40の発熱部41が炉内21に向かって延びる状態となる。 The support portion 50 is arranged in the recess 27 of the melting furnace 20 . When the support portion 50 is arranged in the recess 27 , the heat generating portion 41 of the heat generating element 40 extends toward the furnace interior 21 through the connection hole 28 .

保温材61は、例えば、ガラスウールなどの無機質繊維であって、溶融炉20から外部に熱が移動することを抑制するための構成である。保温材61は、溶融炉20の上壁24の凹部27に、支持部50の周囲を囲うように配置される。保温材61の形状は、ブロック状、シート状あるいは綿状としてもよい。 The heat insulating material 61 is, for example, an inorganic fiber such as glass wool, and is configured to suppress heat transfer from the melting furnace 20 to the outside. The heat insulating material 61 is arranged in the concave portion 27 of the upper wall 24 of the melting furnace 20 so as to surround the support portion 50 . The shape of the heat insulating material 61 may be block-like, sheet-like, or cotton-like.

電源62は、複数の発熱体40に対して一律の電力を供給してもよいし、複数の発熱体40に供給する電力を個別に変更してもよい。電源62から供給される電力量により、発熱体40の発熱量が変化する。つまり、溶融炉20の炉内21の温度が変化する。 The power source 62 may uniformly supply electric power to the plurality of heating elements 40 , or may individually change the electric power to be supplied to the plurality of heating elements 40 . The amount of heat generated by the heating element 40 changes depending on the amount of power supplied from the power source 62 . That is, the temperature in the furnace interior 21 of the melting furnace 20 changes.

温度測定部64は、発熱体40の第2中間部432の温度を測定する。温度測定部64は、接触式の温度計としてもよいし、非接触式の温度計としてもよい。
成形装置13は、ガラス物品の種類に応じた成形方法が選択される。ガラス物品の成形方法は、例えば、ロールアウト法、アップドロー法、フロート法及びダウンドロー法が挙げられる。成形装置13で成形されるガラス物品は、例えば、板ガラス、ガラス繊維又は管ガラスなどである。
The temperature measuring section 64 measures the temperature of the second intermediate portion 432 of the heating element 40 . The temperature measurement unit 64 may be a contact thermometer or a non-contact thermometer.
For the molding device 13, a molding method is selected according to the type of glass article. Examples of the method for molding the glass article include a roll-out method, an up-draw method, a float method and a down-draw method. The glass article molded by the molding device 13 is, for example, sheet glass, glass fiber, tube glass, or the like.

本実施形態の作用について説明する。
以降の説明では、二珪化モリブデンにおいて、ペスト化が進行する400度~600度の温度を「NG温度」とも言う。
The operation of this embodiment will be described.
In the following description, the temperature of 400 to 600 degrees Celsius at which pesting progresses in molybdenum disilicide is also referred to as "NG temperature".

溶融炉20を使用する場合には、発熱体40の発熱部41の温度が1000度以上となるように、発熱体40に電力が供給される。一方、発熱体40は、発熱部41が炉内21に配置され、端子部42が炉外に配置されるため、発熱部41から端子部42に向かうに連れて次第に温度が低くなる。このため、発熱体40の第2中間部432の温度が例えば「NG温度-50度」未満の場合、第1中間部431の温度がNG温度となる可能性が高い。この場合に、第1中間部431の温度がNG温度に維持されると、第1中間部431のペスト化に伴い第1中間部431が膨張し、支持部50に負荷が作用するおそれがある。 When the melting furnace 20 is used, electric power is supplied to the heating element 40 so that the temperature of the heating portion 41 of the heating element 40 is 1000 degrees or higher. On the other hand, since the heating element 40 has the heating part 41 arranged inside the furnace 21 and the terminal part 42 outside the furnace, the temperature gradually decreases from the heating part 41 toward the terminal part 42 . Therefore, if the temperature of the second intermediate portion 432 of the heating element 40 is lower than, for example, "NG temperature -50 degrees", the temperature of the first intermediate portion 431 is highly likely to be the NG temperature. In this case, if the temperature of the first intermediate portion 431 is maintained at the NG temperature, the first intermediate portion 431 expands as the first intermediate portion 431 becomes pestified, and a load may be applied to the support portion 50. .

そこで、発熱体40の温度調整方法は、図2に二点鎖線で示すように、第2中間部432の温度が「NG温度-50度」未満の場合、支持部50を囲う保温材61の量を増やす。すると、支持部50を介した第1中間部431からの放熱量が減少し、第1中間部431の温度が高くなる。温度調整方法において、保温材61の増量は、第2中間部432の温度が「NG温度-50度」以上となるまで行われる。これは、第2中間部432の温度が「NG温度-50度」以上となれば、第2中間部432よりも発熱部41に近い第1中間部431の温度がNG温度よりも高くなるためである。なお、上記判断の対象となる温度(=「NG温度-50度」)は、一例であり、通電時における発熱体40の第1中間部431及び第2中間部432の温度差に応じて適宜に設定されることが好ましい。 Therefore, in the method of adjusting the temperature of the heat generating element 40, as shown by the two-dot chain line in FIG. Increase quantity. Then, the amount of heat radiation from the first intermediate portion 431 via the support portion 50 is reduced, and the temperature of the first intermediate portion 431 is increased. In the temperature adjustment method, the amount of the heat insulating material 61 is increased until the temperature of the second intermediate portion 432 becomes "NG temperature -50 degrees" or higher. This is because if the temperature of the second intermediate portion 432 becomes "NG temperature -50 degrees" or higher, the temperature of the first intermediate portion 431 closer to the heat generating portion 41 than the second intermediate portion 432 becomes higher than the NG temperature. is. Note that the temperature (=“NG temperature−50 degrees”) subject to the above determination is an example, and the temperature difference between the first intermediate portion 431 and the second intermediate portion 432 of the heating element 40 when energized is preferably set to

また、発熱体40は、熱伝導体であるため、発熱部41で発生した熱が熱伝導により端子部42に向けて伝熱する。そこで、発熱体40の温度調整方法は、第2中間部432の温度が「NG温度-50度」未満の場合、発熱体40に供給する電力量を増大させる。すると、発熱部41の発熱量が増大する関係で、第1中間部431の吸熱量が増大する。その結果、第1中間部431の温度が高くなる。 Moreover, since the heat generating body 40 is a heat conductor, the heat generated in the heat generating portion 41 is transferred toward the terminal portion 42 by thermal conduction. Therefore, the method for adjusting the temperature of the heating element 40 increases the amount of electric power supplied to the heating element 40 when the temperature of the second intermediate portion 432 is less than the "NG temperature -50 degrees." Then, the amount of heat absorbed by the first intermediate portion 431 increases because the amount of heat generated by the heat generating portion 41 increases. As a result, the temperature of the first intermediate portion 431 increases.

こうして、本実施形態では、第2中間部432の温度が「NG温度-50度」未満の場合、発熱体40の第1中間部431の放熱量を減少させたり、発熱体40の第1中間部431の吸熱量を増大させたりすることで、第1中間部431をNG温度よりも高い温度とする。その結果、第1中間部431のペスト化が抑制され、第1中間部431を支持する支持部50に負荷が作用することが抑制される。 Thus, in the present embodiment, when the temperature of the second intermediate portion 432 is less than the “NG temperature −50 degrees”, the heat radiation amount of the first intermediate portion 431 of the heating element 40 is reduced, or the first intermediate portion 431 of the heating element 40 By increasing the heat absorption amount of the portion 431, the temperature of the first intermediate portion 431 is set higher than the NG temperature. As a result, the plague of the first intermediate portion 431 is suppressed, and the application of a load to the support portion 50 that supports the first intermediate portion 431 is suppressed.

なお、保温材61の量の調整及び発熱体40に供給する電力の調整は、人の手によって行ってもよいし、コントローラーにより自動化してもよい。
その一方で、発熱体40の温度が過度に高くなる場合には、温度調整方法は、第1中間部431の温度がNG温度とならない範囲で、保温材61を減量したり、発熱体40に供給する電力量を減少させたりしてもよい。
The adjustment of the amount of the heat insulating material 61 and the adjustment of the electric power supplied to the heating element 40 may be performed manually or may be automated by a controller.
On the other hand, when the temperature of the heating element 40 becomes excessively high, the temperature adjustment method is to decrease the heat insulating material 61 or increase the temperature of the heating element 40 within a range in which the temperature of the first intermediate portion 431 does not become an NG temperature. The amount of power supplied may be reduced.

そして、上述した発熱体40の温度を調整する温度調整工程の後に、または、温度調整工程と並行して、溶融炉20でガラス原料を溶融する溶融工程(加熱工程)及び溶融ガラスMGを成形する成形工程が実行されて、ガラス物品が製造される。 Then, after the temperature adjustment step of adjusting the temperature of the heating element 40 described above, or in parallel with the temperature adjustment step, a melting step (heating step) of melting the frit in the melting furnace 20 and forming the molten glass MG. A molding process is performed to produce a glass article.

本実施形態の効果について説明する。
(1)温度調整方法は、支持部50を介した発熱体40の第1中間部431における放熱量を変化させることで、第1中間部431の温度がペスト化の起こる温度(NG温度)にならないようにする。こうして、上記温度調整方法は、第1中間部431のペスト化に伴う膨張により、支持部50に負荷が作用することを抑制できる。
Effects of the present embodiment will be described.
(1) The temperature adjustment method is to change the amount of heat radiation in the first intermediate portion 431 of the heating element 40 via the support portion 50 so that the temperature of the first intermediate portion 431 reaches the temperature at which pesto formation occurs (NG temperature). prevent it from happening. In this way, the above-described temperature adjustment method can suppress the load acting on the support portion 50 due to the expansion of the first intermediate portion 431 caused by the pestification.

(2)詳しくは、温度調整方法は、支持部50の周囲に配置する保温材61の量を変化することで、支持部50を介した発熱体40の第1中間部431の放熱量を変化させる。つまり、上記温度調整方法は、簡易な方法で、発熱体40の第1中間部431の温度調整を行うことができる。 (2) Specifically, the temperature adjustment method changes the amount of heat-insulating material 61 disposed around the support portion 50, thereby changing the amount of heat released from the first intermediate portion 431 of the heating element 40 via the support portion 50. Let In other words, the temperature adjustment method described above can adjust the temperature of the first intermediate portion 431 of the heating element 40 by a simple method.

(3)温度調整方法は、発熱体40に供給する電力量を調整することにより、第1中間部431に加えられる熱量を変化させ、第1中間部431の温度がペスト化の起こる温度(NG温度)にならないようにする。こうして、温度調整方法は、第1中間部431のペスト化に伴う膨張により、支持部50に負荷が作用することを抑制できる。 (3) The temperature adjustment method changes the amount of heat applied to the first intermediate portion 431 by adjusting the amount of electric power supplied to the heating element 40, and the temperature of the first intermediate portion 431 increases to the temperature at which pesto formation occurs (NG temperature). In this way, the temperature adjustment method can suppress the load acting on the support portion 50 due to the expansion of the first intermediate portion 431 caused by the pestification.

(4)温度調整方法は、支持部50に周囲を囲まれない点で温度を測定しやすい第2中間部432の温度に基づいて、第1中間部431の温度を調整する。したがって、温度調整方法は、支持部50に周囲を囲まれる点で温度を測定しにくい第1中間部431の温度を測定しなくても、第1中間部431の温度を適切に調整できる。 (4) The temperature adjustment method adjusts the temperature of the first intermediate portion 431 based on the temperature of the second intermediate portion 432 whose temperature is easy to measure because it is not surrounded by the support portion 50 . Therefore, the temperature adjustment method can appropriately adjust the temperature of the first intermediate portion 431 without measuring the temperature of the first intermediate portion 431 which is difficult to measure because it is surrounded by the support portion 50 .

本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・温度調整方法は、保温材61の量を変えなくても、例えば、使用中の保温材61を断熱性能の異なる保温材61に交換することにより発熱体40の第1中間部431の温度を調整してもよい。また、温度調整方法は、複数のブロック状の保温材61を第1中間部431の周囲に配置する場合には、複数の保温材61の隙間の大きさを変更することにより第1中間部431の温度を調整してもよい。
This embodiment can be implemented with the following modifications. This embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
The temperature adjustment method can adjust the temperature of the first intermediate portion 431 of the heating element 40 without changing the amount of the heat insulating material 61, for example, by replacing the heat insulating material 61 in use with a heat insulating material 61 having a different heat insulation performance. may be adjusted. In addition, when a plurality of block-shaped heat insulating materials 61 are arranged around the first intermediate portion 431, the temperature adjusting method is such that the first intermediate portion 431 is adjusted by changing the size of the gaps between the plurality of heat insulating materials 61. temperature may be adjusted.

・加熱装置12が発熱体40の第1中間部431の温度を直接測定できる温度測定部を備える場合、温度調整方法は、第1中間部431の温度に基づいて、第1中間部431の温度の調整を行ってもよい。 If the heating device 12 is equipped with a temperature measuring part that can directly measure the temperature of the first intermediate part 431 of the heating element 40 , the temperature adjustment method is based on the temperature of the first intermediate part 431 . may be adjusted.

・温度測定部64は、第1中間部431の温度と対応する温度となる部分を測定してもよい。この場合、温度調整方法は、上記対応する部分の温度に基づいて、第1中間部431の温度調整を行ってもよい。 - The temperature measurement unit 64 may measure a portion having a temperature corresponding to the temperature of the first intermediate portion 431 . In this case, the temperature adjustment method may adjust the temperature of the first intermediate portion 431 based on the temperature of the corresponding portion.

・加熱装置12が複数の発熱体40を備える場合、全ての発熱体40の発熱量を増大させると、炉内21の温度が必要以上に高くなるおそれがある。そこで、温度調整方法は、複数の発熱体40のうち、一の発熱体40の発熱量を増大させる一方で、他の発熱体40の発熱量を減少させてもよい。これによれば、発熱量を増大させた一の発熱体40の第1中間部431の温度をNG温度以上にでき、発熱量を減少させた他の発熱体40の第1中間部431の温度をNG温度未満にできる。他の発熱体40の発熱量を減少する場合には、他の発熱体40の支持部50を囲う保温材61の量をさらに減らしてもよい。 - When the heating device 12 includes a plurality of heat generating elements 40, increasing the amount of heat generated by all the heat generating elements 40 may increase the temperature inside the furnace 21 more than necessary. Therefore, the temperature adjustment method may increase the amount of heat generated by one of the plurality of heat generating elements 40 while decreasing the amount of heat generated by the other heat generating elements 40 . According to this, the temperature of the first intermediate portion 431 of the one heating element 40 whose heat generation amount is increased can be set to the NG temperature or higher, and the temperature of the first intermediate portion 431 of the other heat generating element 40 whose heat generation amount is decreased can be increased to the NG temperature or higher. can be made below the NG temperature. In order to reduce the amount of heat generated by the other heating element 40, the amount of the heat insulating material 61 surrounding the support portion 50 of the other heating element 40 may be further reduced.

・加熱装置12において、発熱体40の配置は適宜変更してもよい。例えば、発熱体は、溶融炉20の底壁22を突き抜けるように配置してもよいし、溶融炉20の側壁23を突き抜けるように配置してもよい。 - In the heating device 12, the arrangement of the heating element 40 may be changed as appropriate. For example, the heating element may be arranged to penetrate the bottom wall 22 of the melting furnace 20 or may be arranged to penetrate the side wall 23 of the melting furnace 20 .

・加熱装置12は、ガラス以外の物品を加熱してもよい。加熱装置12は、例えば、金属及びセラミックスを加熱してもよい。
・溶融炉20は、ガラス原料を溶融ガラスMGに溶融する以外にも、溶融ガラスMGを保温するための加熱室であればよい。例えば、加熱室は、清澄室、スロート、フィーダ及びガラス原料の予備加熱室であってよい。
- The heating device 12 may heat articles other than glass. The heating device 12 may heat metals and ceramics, for example.
- The melting furnace 20 may be a heating chamber for keeping the temperature of the molten glass MG in addition to melting the frit into the molten glass MG. For example, the heating chamber may be a fining chamber, a throat, a feeder and a frit preheating chamber.

10…製造装置、11…供給装置、12…加熱装置、13…成形装置、20…溶融炉(加熱室の一例)、21…炉内、22…底壁、23…側壁、24…上壁、25…投入口、26…流出口、27…凹部、28…接続孔、30…加熱ユニット、40…発熱体、41…発熱部、42…端子部、43…中間部、431…第1中間部、432…第2中間部、433…第3中間部、50…支持部、51…第1支持部、511…貫通孔、52…第2支持部、61…保温材、62…電源、63…電線、631…電極、64…温度測定部。 DESCRIPTION OF SYMBOLS 10... Manufacturing apparatus 11... Supply apparatus 12... Heating apparatus 13... Molding apparatus 20... Melting furnace (an example of a heating chamber) 21... Furnace interior 22... Bottom wall 23... Side wall 24... Top wall, 25... Inlet 26... Outlet 27... Recessed portion 28... Connection hole 30... Heating unit 40... Heat generating element 41... Heat generating part 42... Terminal part 43... Intermediate part 431... First intermediate part , 432... Second intermediate part 433... Third intermediate part 50... Support part 51... First support part 511... Through hole 52... Second support part 61... Heat insulating material 62... Power source 63... Electric wire 631...Electrode 64...Temperature measuring part.

Claims (5)

通電により発熱する発熱部と、電極が取り付けられる端子部と、発熱部及び端子部を接続する中間部と、を有する二珪化モリブデンを含んで構成される発熱体と、
前記発熱体の前記中間部の周囲を囲うように支持する耐火物からなる支持部と、
前記支持部の周囲を覆う無機質繊維からなる保温材と、
前記発熱体の前記発熱部が配置される加熱室と、を備える加熱装置における前記発熱体の温度調整方法であって、
前記中間部の前記支持部に支持される部分を第1中間部としたとき、
前記支持部を介した前記第1中間部からの放熱量を変化させることにより、前記第1中間部の温度を調整する温度調整工程を備え、
前記温度調整工程は、前記保温材の量を変化させることにより、前記第1中間部の温度を調整する工程を含む
ことを特徴とする発熱体の温度調整方法。
a heating element comprising molybdenum disilicide having a heating portion that generates heat when energized, a terminal portion to which an electrode is attached, and an intermediate portion that connects the heating portion and the terminal portion;
a support portion made of a refractory material that surrounds and supports the intermediate portion of the heating element;
a heat insulating material made of inorganic fibers and covering the periphery of the support;
A temperature adjustment method of the heating element in a heating device comprising a heating chamber in which the heating part of the heating element is arranged,
When the portion of the intermediate portion supported by the support portion is the first intermediate portion,
A temperature adjustment step of adjusting the temperature of the first intermediate portion by changing the amount of heat radiation from the first intermediate portion via the support portion,
The temperature adjusting step includes adjusting the temperature of the first intermediate portion by changing the amount of the heat insulating material.
A method for adjusting the temperature of a heating element, characterized by:
前記発熱体の前記第1中間部は、前記加熱室を構成する壁を貫通するように配置され、
前記加熱装置は、前記加熱室の外方から、前記第1中間部を支持する前記支持部と前記壁との間に、前記保温材が挿入可能に構成されている
請求項1に記載の発熱体の温度調整方法。
The first intermediate portion of the heating element is arranged so as to penetrate a wall constituting the heating chamber,
2. The heating device according to claim 1, wherein the heat insulating material can be inserted between the wall and the support portion that supports the first intermediate portion from the outside of the heating chamber. body temperature regulation.
前記発熱体に供給する電力量を調整することにより、前記第1中間部の温度を調整する
請求項1又は請求項2に記載の発熱体の温度調整方法。
3. The method for adjusting the temperature of the heating element according to claim 1, wherein the temperature of the first intermediate portion is adjusted by adjusting the amount of power supplied to the heating element.
前記中間部の前記第1中間部及び前記端子部の間の部分を第2中間部としたとき、
前記第2中間部の温度に基づいて、前記第1中間部の温度を調整する
請求項1~請求項3の何れか一項に記載の発熱体の温度調整方法。
When a portion of the intermediate portion between the first intermediate portion and the terminal portion is defined as a second intermediate portion,
The temperature adjustment method of the heating element according to any one of claims 1 to 3, wherein the temperature of the first intermediate section is adjusted based on the temperature of the second intermediate section.
請求項1~請求項4の何れか一項に記載の発熱体の温度調整方法により、前記発熱体の前記第1中間部の温度を調整する前記温度調整工程と、
前記加熱室内でガラスを加熱する加熱工程と、を備える
ガラス物品の製造方法。
the temperature adjusting step of adjusting the temperature of the first intermediate portion of the heating element by the temperature adjusting method of the heating element according to any one of claims 1 to 4;
A method for manufacturing a glass article, comprising: a heating step of heating the glass in the heating chamber.
JP2018135126A 2018-07-18 2018-07-18 Method for adjusting temperature of heating element and method for manufacturing glass article Active JP7172221B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018135126A JP7172221B2 (en) 2018-07-18 2018-07-18 Method for adjusting temperature of heating element and method for manufacturing glass article
PCT/JP2019/023616 WO2020017204A1 (en) 2018-07-18 2019-06-14 Method for controlling temperature of heating element, and method for manufacturing glass article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018135126A JP7172221B2 (en) 2018-07-18 2018-07-18 Method for adjusting temperature of heating element and method for manufacturing glass article

Publications (2)

Publication Number Publication Date
JP2020011865A JP2020011865A (en) 2020-01-23
JP7172221B2 true JP7172221B2 (en) 2022-11-16

Family

ID=69163498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018135126A Active JP7172221B2 (en) 2018-07-18 2018-07-18 Method for adjusting temperature of heating element and method for manufacturing glass article

Country Status (2)

Country Link
JP (1) JP7172221B2 (en)
WO (1) WO2020017204A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187424A (en) 2006-01-16 2007-07-26 Tdk Corp Batch type kiln
JP2012114327A (en) 2010-11-26 2012-06-14 Hitachi Kokusai Electric Inc Substrate processing equipment
JP2016115620A (en) 2014-12-17 2016-06-23 日本電気硝子株式会社 Exothermic body and manufacturing method of the same
JP2016531379A (en) 2013-06-14 2016-10-06 サンドビック株式会社 Molybdenum disilicide ceramic heating element holding structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04155822A (en) * 1990-10-18 1992-05-28 Tokyo Electron Sagami Ltd Heat treatment device
JP3174379B2 (en) * 1992-02-03 2001-06-11 東京エレクトロン株式会社 Heating equipment
DE60316133T2 (en) * 2002-04-05 2008-05-29 Sandvik Intellectual Property Ab METHOD FOR PRODUCING A MOLYBEDENESILICIDE-TYPE HEATING ELEMENT
JP6665435B2 (en) * 2015-07-01 2020-03-13 日本電気硝子株式会社 Method for manufacturing glass articles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187424A (en) 2006-01-16 2007-07-26 Tdk Corp Batch type kiln
JP2012114327A (en) 2010-11-26 2012-06-14 Hitachi Kokusai Electric Inc Substrate processing equipment
JP2016531379A (en) 2013-06-14 2016-10-06 サンドビック株式会社 Molybdenum disilicide ceramic heating element holding structure
JP2016115620A (en) 2014-12-17 2016-06-23 日本電気硝子株式会社 Exothermic body and manufacturing method of the same

Also Published As

Publication number Publication date
WO2020017204A1 (en) 2020-01-23
JP2020011865A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
KR101660968B1 (en) Planar heater device for thermal process of substrate
JP5766348B2 (en) Tubular heater
JP7172221B2 (en) Method for adjusting temperature of heating element and method for manufacturing glass article
JP2009234873A (en) Manufacturing apparatus for glass tube or glass rod
CZ20002574A3 (en) Method of equalizing temperature differences in melted glass and apparatus for making the same
KR20160043536A (en) Method and Apparatus for Glass Sheet Manufacturing Including an Induction Heated Enclosure
JP5686467B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
WO2019235474A1 (en) Immersion heater for non-ferrous molten metal
JP2000310491A (en) Continuous tunnelling electric kiln
US20050184057A1 (en) Molybdenum silicide type element
WO2020191899A1 (en) Setting furnace
WO2024084985A1 (en) Manufacturing method and manufacturing device of glass article
CN112393593A (en) Heating rod and hearth structure for improving uniformity of furnace temperature
JP4310563B2 (en) Heater and terminal structure of heater
JP7396430B2 (en) Feeder and glass article manufacturing method
CN212779670U (en) Thermocouple verification furnace utilizing double-zone temperature control
CN220892908U (en) Spiral heating rod device of muffle furnace and muffle furnace
WO2024214473A1 (en) Method and device for manufacturing glass article
WO2018111210A1 (en) A holding furnace for low pressure casting benches
KR20040108654A (en) Device for dosing a glass melt into a feed channel of a float system in order to produce a float glass strip
KR200471723Y1 (en) Heater for furnace and muffle type furnace using the same
WO2022118781A1 (en) Glass melting furnace monitoring method and glass article manufacturing method
KR20190089553A (en) Heater and apparatus for processing substrate
CN205748690U (en) Diffusion furnace thermocouple assembly
JP6121305B2 (en) Firing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7172221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150