JP7168842B1 - How to reduce carbon dioxide - Google Patents

How to reduce carbon dioxide Download PDF

Info

Publication number
JP7168842B1
JP7168842B1 JP2022033907A JP2022033907A JP7168842B1 JP 7168842 B1 JP7168842 B1 JP 7168842B1 JP 2022033907 A JP2022033907 A JP 2022033907A JP 2022033907 A JP2022033907 A JP 2022033907A JP 7168842 B1 JP7168842 B1 JP 7168842B1
Authority
JP
Japan
Prior art keywords
carbon dioxide
greenhouse
air
exhaust air
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022033907A
Other languages
Japanese (ja)
Other versions
JP2023118634A (en
Inventor
睦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022033907A priority Critical patent/JP7168842B1/en
Application granted granted Critical
Publication of JP7168842B1 publication Critical patent/JP7168842B1/en
Publication of JP2023118634A publication Critical patent/JP2023118634A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Greenhouses (AREA)
  • Cultivation Of Plants (AREA)

Abstract

【課題】特定建築物からの二酸化炭素濃度が高い排気空気を光合成が最大化する濃度として使用し二酸化炭素を削減する方法を提供する。【解決手段】特定建築物の換気設備から排出される排気空気の二酸化炭素濃度は900ppm程度でありそのまま大気へ放出されている。一方で施設栽培の温室ハウスは閉空間であり植物の光合成により二酸化炭素が消費されるため二酸化炭素発生装置を使用する必要があった。特定建築物の屋上部等へ温室ハウスを設置し建物からの排気空気をそのまま温室ハウスへ導くことにより植物の光合成を最大まで高め、且つ二酸化炭素を消費し二酸化炭素濃度を500~600ppm程度まで減少した後に大気へ放出する方法である。生産される農産物は光合成が盛んになることにより従来に比べ高収量、高品質となり収益増加に貢献し、且つ今まで施設栽培で使用せざるを得なかった二酸化炭素発生装置の運転自体が不要となる。【選択図】図1A method for reducing carbon dioxide by using exhaust air with a high carbon dioxide concentration from a specific building as a concentration that maximizes photosynthesis. SOLUTION: The concentration of carbon dioxide in the exhaust air discharged from the ventilation equipment of a specific building is about 900 ppm, and the carbon dioxide is released into the atmosphere as it is. On the other hand, a greenhouse for greenhouse cultivation is a closed space, and since carbon dioxide is consumed by photosynthesis of plants, it was necessary to use a carbon dioxide generator. By installing a greenhouse on the roof of a specific building, and directing the exhaust air from the building to the greenhouse as it is, the photosynthesis of plants is maximized, and carbon dioxide is consumed to reduce the carbon dioxide concentration to about 500 to 600 ppm. This is a method of discharging into the atmosphere after As photosynthesis becomes more active, the produced agricultural products have higher yields and higher quality than before, contributing to an increase in profits. Become. [Selection drawing] Fig. 1

Description

本発明は建築物環境衛生管理基準に従って管理されている特定建築物から排出される二酸化炭素を900ppm程度含む排気空気と、植物の光合成が最大となる二酸化炭素濃度がほぼ同じであることを組み合わせることにより、排出する二酸化炭素量を低減させる方法に関する。 The present invention combines exhaust air containing about 900 ppm of carbon dioxide emitted from a specific building that is managed in accordance with the Building Environmental Sanitation Management Standards and that the concentration of carbon dioxide at which plant photosynthesis is maximized is approximately the same. It relates to a method for reducing the amount of carbon dioxide emitted.

特定建築物は「建築物における衛生的環境の確保に関する法律」(略称「建築物衛生法」)により「建築物環境衛生管理基準」に従って維持管理されている。その中の空気環境基準の一項目として「二酸化炭素の含有率は1000ppm以下」と定められ、これによりビル内の空気は適切に換気されることになる。ただ空調の省エネルギーを考える場合換気量は少ない方が良く、基準値を超えない範囲で換気量を少なく運用されている為、多くの特定建築物において二酸化炭素濃度が900ppm前後となった空気を排出することになる。 Specified buildings are maintained and managed according to the "Environmental Sanitation Management Standards for Buildings" under the "Act on Ensuring Sanitary Environments in Buildings" (abbreviated as "Building Sanitation Law"). One of the air environment standards is defined as "the content of carbon dioxide is 1000 ppm or less", which means that the air in the building will be properly ventilated. However, when considering the energy saving of air conditioning, it is better to have less ventilation, and since ventilation is operated in a range that does not exceed the standard value, many specific buildings emit air with a carbon dioxide concentration of around 900 ppm. will do.

温室ハウスは外気温が低い場合でも中の温度を維持するために閉空間となっている。従って太陽光を受け植物の光合成により内部の二酸化炭素が消費されると外気よりも濃度が低下し二酸化炭素欠乏が生じる場合がある。従って二酸化炭素発生装置によって前記温室ハウス内に二酸化炭素を供給する二酸化炭素施肥が行われている。 A greenhouse is a closed space in order to maintain the temperature inside even when the outside temperature is low. Therefore, when sunlight is received and the carbon dioxide inside the plant is consumed by photosynthesis, the concentration may be lower than that in the outside air, resulting in carbon dioxide deficiency. Therefore, carbon dioxide fertilization is performed by supplying carbon dioxide into the greenhouse by means of a carbon dioxide generator.

二酸化炭素施肥の一般的な方法として▲1▼化石燃料の燃焼ガスとしての供給(二酸化炭素発生装置の発生方法である)▲2▼液化炭酸ガスボンベからの供給、の二つの方法が主であるが▲1▼は二酸化炭素の供給と共に燃焼ガスであるためガス温度も高く温室ハウス内の温度を植物の生育環境に適さなくなるほど上昇させてしまう。従って二酸化炭素施肥は午前中の短時間に限られている。▲2▼は供給に伴う温度上昇は無いがコスト的に割高であるという面がある。 There are two main methods of carbon dioxide fertilization: (1) Supplying fossil fuel as combustion gas (a method of generating carbon dioxide generator) (2) Supplying from liquefied carbon dioxide cylinders. Since (1) supplies carbon dioxide and is combustion gas, the gas temperature is also high, and the temperature inside the greenhouse rises to the extent that it becomes unsuitable for the growth environment of plants. Therefore, carbon dioxide fertilization is limited to a short time in the morning. (2) does not cause a temperature rise due to supply, but has an aspect of being relatively expensive in terms of cost.

その他火力発電所等から発生する排ガスから二酸化炭素を分離して植物の育成に役立てるCCU(Carbon dioxide Capture and Utilization:二酸化炭素の有効利用技術)という手段もあるが、大型の設備が必要であることや発電と施設栽培といった異部門の連携が必要となる。 There is also CCU (Carbon dioxide capture and utilization), which separates carbon dioxide from the exhaust gas emitted from thermal power plants and uses it for plant growth, but it requires large-scale equipment. It is necessary to cooperate with different departments such as power generation and greenhouse cultivation.

特開2011-135817号公報JP 2011-135817 A

Figure 0007168842000002
Figure 0007168842000002

特許文献1においては、施設で発生した二酸化炭素を栽培ハウス内の販売対象植物に吸収させることで二酸化炭素を削減する方法が示されており、その実施としては施設から排出される排ガスから二酸化炭素を回収し、回収された二酸化炭素を栽培ハウスへ供給するシステムとなっている。その構成上二酸化炭素回収装置が必要となるが二酸化炭素の回収方法については具体的に示されてはいない。どのような方法であるにしても前記二酸化炭素回収装置の設備費用が発生するという課題がある。 In Patent Document 1, a method of reducing carbon dioxide by absorbing carbon dioxide generated in the facility by plants to be sold in the cultivation house is shown. is collected and the collected carbon dioxide is supplied to the cultivation house. A carbon dioxide recovery device is required due to its configuration, but the method for recovering carbon dioxide is not specifically shown. Regardless of the method, there is a problem that the equipment cost for the carbon dioxide recovery device is incurred.

非特許文献1においては、多くの施設栽培で使用されている灯油の燃焼による二酸化炭素発生装置であり、且つ燃焼ガスの温度を下げる工夫が盛り込まれているが、施設栽培で二酸化炭素を消費するとはいえ、あえて温室効果ガスである二酸化炭素を作り出しているという課題がある。 In Non-Patent Document 1, it is a carbon dioxide generator by burning kerosene used in many greenhouse cultivations, and it incorporates a device to lower the temperature of the combustion gas, but when carbon dioxide is consumed in greenhouse cultivation Nonetheless, there is the problem of daring to produce carbon dioxide, which is a greenhouse gas.

第1の本発明の二酸化炭素削減方法は、建築物環境衛生管理基準に従って管理されている特定建築物から排出される排気空気中の二酸化炭素を削減する方法であって、前記排気空気に含まれる900ppm程度の二酸化炭素濃度と、植物の光合成が最大となる二酸化炭素濃度が一致することを利用し、前記排気空気を温室ハウスへ導き、そのまま施設栽培として使用することで収穫物の増収と品質向上を実現することを特徴とする。 A first carbon dioxide reduction method of the present invention is a method for reducing carbon dioxide in the exhaust air emitted from a specific building that is managed in accordance with the Building Environment Sanitation Management Standards, wherein the exhaust air contains Utilizing the fact that the carbon dioxide concentration of about 900 ppm matches the carbon dioxide concentration at which the photosynthesis of the plant is maximized, the exhaust air is led to the greenhouse house and used as it is for greenhouse cultivation, thereby increasing the yield and improving the quality of the harvested product. is characterized by realizing

第2の本発明の二酸化炭素削減方法は、前記特定建築物の屋上部に設置した植物を栽培する温室ハウスと、前記特定建築物の排気口のダクトと前記温室ハウスの給気口のダクトとの間に間隙を設けておき、排気空気を取り込むために給気口へ常時運転する給気用のファンを設けた前記温室ハウス内で栽培する植物の光合成により二酸化炭素を削減する方法である。間隙があることにより昼間は前記特定建築物の排気空気は前記温室ハウス内に供給され、夜間に前記特 定建築物の排気が停止した場合は何らの操作無く常時運転している給気ファンにより前記間隙から外気を前記温室ハウスに供給するようにしたことを特徴とする。The carbon dioxide reduction method of the second aspect of the present invention comprises a greenhouse house for cultivating plants installed on the roof of the specific building, an exhaust duct of the specific building, and an air supply duct of the greenhouse. It is a method of reducing carbon dioxide by photosynthesis of plants cultivated in the greenhouse house, in which a gap is provided between the greenhouses and an air-supply fan that is constantly operated is provided at the air supply port to take in the exhaust air. Due to the gap, exhaust air from the specific building is supplied into the greenhouse during the daytime, and when the exhaust air from the specific building is stopped at night, the air is supplied by the air supply fan which is always in operation without any operation. It is characterized in that outside air is supplied to the greenhouse through the gap.

第3の本発明の二酸化炭素削減方法は、夜間も稼働する前記特定建築物においては前記温室ハウスの給気口に切り替えダンパーを設けて給気箇所を切り替え可能としておくことで夜間に排気空気は前記間隙から大気放出され、前記温室ハウスには排気空気は入らずその代わりに切り替えダンパーから前記温室ハウスの給気口に外気を取り入れ可能としたことを特徴とする。In the carbon dioxide reduction method of the third aspect of the present invention, in the specific building that operates even at night, a switching damper is provided at the air supply port of the greenhouse house so that the air supply point can be switched, so that the exhaust air is reduced at night. The exhaust air is discharged to the atmosphere through the gap, and the exhaust air does not enter the greenhouse house.

請求項1の本発明によれば特定建築物から換気として排出される排気空気中の二酸化炭素の削減が可能であり、特定建築物の排気空気中の二酸化炭素濃度を900ppmから500ppm程度までに連続的に低減させることが可能である。但し温室ハウスの大きさや植物の栽培量によって二酸化炭素濃度の低減値は変化する。 According to the present invention of claim 1, it is possible to reduce the carbon dioxide in the exhaust air discharged from the specific building as ventilation, and the carbon dioxide concentration in the exhaust air of the specific building is continuously increased from 900 ppm to about 500 ppm. can be effectively reduced. However, the reduction value of the carbon dioxide concentration changes depending on the size of the greenhouse and the amount of plants cultivated.

前記温室ハウスへ供給する排気空気の温度は夏期28~32度、冬期18~20度程度であり夏の異常昇温、冬の低温防止に効果が有り温室ハウスの加温・冷房用設備が不要であるとともに排気空気は前記の温度を保つことから温室ハウス内の温度を二酸化炭素施肥により上昇させることはないため、今まで短時間に限られていた二酸化炭素施肥を日照時間中連続して実施可能である。よって従来以上に光合成を活発にさせる環境を長く保ちながら、且つ今まで使用せざるを得なかった二酸化炭素発生装置は不要となり、それに費やされていた燃料や電気代も不要となる。 The exhaust air supplied to the greenhouse has a temperature of 28 to 32 degrees Celsius in summer and 18 to 20 degrees Celsius in winter, which is effective in preventing abnormal temperature rise in summer and low temperature in winter. In addition, since the exhaust air maintains the above-mentioned temperature, the temperature in the greenhouse house is not raised by carbon dioxide fertilization, so carbon dioxide fertilization, which was limited to a short time until now, is performed continuously during the sunshine hours. It is possible. Therefore, the environment for activating photosynthesis can be maintained for a longer period of time than in the past, and the carbon dioxide generator, which had to be used until now, is no longer necessary, and the fuel and electricity costs that have been spent therefor are also no longer needed.

請求項2の本発明によれば前記特定建築物の排気口のダクトと前記温室ハウスの給気口の間に間隙を設けた構成とすることにより、昼間のワーキングタイム中は排気空気を前記温室ハウス内に供給し、夜間は前記特定建築物の排気が停止して排気空気が供給されなくなると、その代わりに前記間隙から外気を吸い込み前記温室ハウスに供給することが出来る。夜間は稼働しない特定建築物では前記間隙を設けておくだけで排気空気と外気との切り替え装置を設ける必要は無い。 According to the present invention of claim 2, a gap is provided between the duct of the exhaust port of the specific building and the air supply port of the greenhouse house. When exhaust air from the specific building is stopped at night and the exhaust air is no longer supplied, outside air can be drawn in through the gap and supplied to the greenhouse house. In a specific building that does not operate at night, it is not necessary to provide a switching device between the exhaust air and the outside air just by providing the gap.

請求項3の本発明によれば夜間も稼働する前記特定建築物においては前記温室ハウスの給気口に切り替えダンパーを設けて夜間は切り替え操作により排気空気を前記間隙から大気放出し、切り替えダンパーから前記温室ハウスの給気口に外気を取り入れ可能とし、夜間に植物が呼吸する際の適切な環境を保つことが出来る。 According to the present invention of claim 3, in the specific building that operates at night, a switching damper is provided at the air supply port of the greenhouse house, and at night, the exhaust air is released to the atmosphere from the gap through the switching operation by the switching operation, and the switching damper It is possible to take outside air into the air supply port of the greenhouse house and maintain an appropriate environment for plants to breathe at night.

その他次のような効果がある。環境に配慮している優良企業としてのイメージアップに貢献すること、グリーンが有る事により建物のユーザーにとってのバイオフィリアとしてのリフレッシュ効果や、特定建築物は都市部に多く農産物の消費地へも近いため前記温室ハウス内で生産された農産物は建物内での消費や近隣での販売に提供すれば輸送エネルギーはほぼゼロとなり究極の「地産地消」となる。 Other effects are as follows. Contribute to improving the image of an excellent company that cares about the environment, have a refreshing effect as biophilia for building users by having greenery, and many specific buildings are located in urban areas and are close to agricultural consumption areas. Therefore, if the agricultural products produced in the greenhouse can be consumed within the building or sold in the neighborhood, the transportation energy will be almost zero, resulting in the ultimate "local production for local consumption".

本発明全体のシステム概要図であるIt is a system outline figure of the whole present invention. 切り替えダンパーの動作説明図であるFIG. 4 is an explanatory diagram of the operation of the switching damper;

対象とする建物は「建築物衛生法」による特定建築物とする。これは「建築物環境衛生管理基準」に基づいて管理されている建物であることから排気空気中の二酸化炭素濃度が前述の理由からほぼ900ppmとなる事が前提である。 The target buildings shall be specified buildings under the Building Sanitation Act. This is based on the premise that the concentration of carbon dioxide in the exhaust air is about 900 ppm because the building is managed based on the "Environmental Sanitation Control Standards for Buildings" for the reason described above.

[第1実施形態]
昼間がワーキングアワーで夜間は人のいない建物の場合について示す。図1は本発明のシステム概要図であり、特定建築物からの排気空気は全熱交換機11を経て排出される。排気空気は人の呼気として排出された二酸化炭素により濃度が900ppm程度となった空気であり、直前まで人が活動しているエリアからの空気であるためクリーンでありそのまま温室ハウス3へ供給される。
[First embodiment]
A case of a building with working hours during the day and no people at night is shown. FIG. 1 is a schematic diagram of the system of the present invention. Exhaust air from a specific building passes through a total heat exchanger 11 and is discharged. Exhaust air is air with a concentration of about 900 ppm due to carbon dioxide discharged as human exhalation, and is clean because it is air from an area where people are active until just before, and is supplied to the greenhouse house 3 as it is. .

温室ハウス3内部にはトマトやいちご等の果菜類もしくはその他の葉物野菜類(二酸化炭素の濃度の増加と共に光合成が活発となる植物の中から販売に適した植物を選択する)を養液栽培する。そのための設備として必要な給水や肥料の供給設備等、設備一式を設置する。 Fruit vegetables such as tomatoes and strawberries or other leafy vegetables (plants suitable for sale are selected from plants whose photosynthesis becomes active as the concentration of carbon dioxide increases) are cultivated in the greenhouse house 3 with hydroponics. do. A complete set of equipment such as water supply and fertilizer supply equipment will be installed for this purpose.

多くの植物において光が一定であれば1000ppm程度までは二酸化炭素の濃度に比例して光合成が活発に行われるがそれ以上に濃度を高くしても光合成はあまり変化しないという特徴がある。従って前記排気空気の二酸化炭素の濃度とほぼ一致し二酸化炭素施肥として有効である。 In many plants, if the light is constant, photosynthesis is actively carried out in proportion to the concentration of carbon dioxide up to about 1000 ppm, but photosynthesis does not change much even if the concentration is increased beyond that. Therefore, the concentration of carbon dioxide in the exhaust air is almost the same, and it is effective as carbon dioxide fertilization.

一般的に建物の換気設備は屋上部2へ設置されるため空気搬送のためのダクトをなるべく短くし、設備コストを小さくするためにも屋上部等の換気設備の近傍に温室ハウス3を設置することが望ましい。強風で破壊されない様に適切な耐風強度を持つ温室ハウスとする。 Since the ventilation equipment of a building is generally installed on the roof 2, the greenhouse 3 is installed near the ventilation equipment such as the roof in order to shorten the duct for conveying air as much as possible and to reduce the equipment cost. is desirable. The greenhouse house should have appropriate wind resistance so that it will not be destroyed by strong winds.

温室ハウス3の空気取り入れ口には給気ファン4を設けておき通常連続運転とする。給気ファン4の吸い込み口近傍まで導かれた前記特定建築物の排気口のダクトから排気空気が排出され間隙7を隔てた状態で給気ファン4により吸い込まれ温室ハウス3へ供給される。ここで、前記排気口ダクトの寸法形状と前記給気ファン4の吸込み口の寸法形状は一致させ、向かい合わせでダクトの通り芯を合わせておく。排出される排気空気の風量と給気ファン4の風量は同等とすることで排気空気のほとんどが温室ハウス3へ導かれる。たとえ排気空気の量が変化し給気ファン4との風量が異なった場合でも間隙7により外気との空気の出入りが可能となりバッファの役目を果たす。又、夜間に建物の排気ファンが停止した場合には間隙7から外気を吸い込む為の外気取入口になる。よって、前記排気口ダクトのダクト周長と間隙7による開放面積は前記排気口ダクトの断面積と同等となる寸法で有ることが望ましい。例えば前記排気口ダクトの1辺が1mの正方形とした場合ダクト周長は4mであるため間隙7は0.25m程度とする。間隙7には虫やゴミなどを吸い込まないように金網を設けることが適切である。 An air supply fan 4 is provided at the air intake port of the greenhouse house 3 and is normally operated continuously. Exhaust air is discharged from the duct of the exhaust port of the specific building led to the vicinity of the suction port of the air supply fan 4, is sucked by the air supply fan 4 with the gap 7 therebetween, and is supplied to the greenhouse house 3. Here, the size and shape of the exhaust port duct and the size and shape of the suction port of the air supply fan 4 are matched, and the alignment of the ducts is aligned by facing each other. Most of the exhaust air is guided to the greenhouse house 3 by setting the air volume of the discharged exhaust air and the air volume of the air supply fan 4 to be equal. Even if the amount of exhaust air changes and the air amount of the air supply fan 4 differs, the gap 7 allows the air to flow in and out of the outside air, thus serving as a buffer. Also, when the exhaust fan of the building stops at night, it becomes an outside air intake for sucking outside air from the gap 7 . Therefore, it is desirable that the open area formed by the duct circumference of the exhaust port duct and the gap 7 be equal to the cross-sectional area of the exhaust port duct. For example, if the exhaust port duct is a square with one side of 1 m, the circumference of the duct is 4 m, so the gap 7 is about 0.25 m. It is appropriate to provide a wire mesh in the gap 7 so as not to suck in insects, dust, and the like.

給気ファン4により温室ハウス3へ取り込まれた排気空気は温室内の植物9へなるべく均等に接触するようにするために温室ハウス3の内部にダクトを設け均一に分散させる。給気ファン4とは反対側へ温室ハウス3の空気出口としての排出ガラリ8を設けておく。二酸化炭素の削減量の把握のために二酸化炭素濃度を測定する場合は給気ファン4通過後の濃度と排出ガラリ8通過後の濃度を測定する事により実施する。 The exhaust air taken into the greenhouse house 3 by the air supply fan 4 is uniformly dispersed by providing a duct inside the greenhouse house 3 so as to contact the plants 9 in the greenhouse as evenly as possible. A discharge louver 8 as an air outlet of the greenhouse house 3 is provided on the opposite side of the air supply fan 4. - 特許庁When measuring the concentration of carbon dioxide in order to grasp the reduction amount of carbon dioxide, the concentration after passing through the air supply fan 4 and the concentration after passing through the discharge louver 8 are measured.

建物内の空気は空調10により冷暖房されており、全熱交換機11を経て排気される。建物内は夏期25~28℃、冬期は20~22℃程度に維持されるため排気空気は全熱交換機で外気と熱交換されて夏期は28~32℃、冬期は18~20℃程度の温度となって温室ハウス3へ供給されるため夏期の異常高温、冬期の低温を避けることが出来る。従来の温室ハウスで二酸化炭素発生装置を使用した場合には温室ハウスの内部温度が高温になり過ぎるために外気を導入せざるを得ず、これにより温室ハウスは解放状態となり二酸化炭素濃度を高く維持することが出来なかった。温室ハウス内が高温にならず二酸化炭素濃度の高い排気空気を連続して供給することにより外気と同等以上の二酸化炭素濃度の状態を長時間にわたり維持することが出来る。 Air in the building is cooled and heated by an air conditioner 10 and exhausted through a total heat exchanger 11 . The inside of the building is maintained at 25-28°C in the summer and 20-22°C in the winter, so the exhaust air is heat-exchanged with the outside air by a total heat exchanger, resulting in a temperature of 28-32°C in the summer and 18-20°C in the winter. and supplied to the greenhouse house 3, it is possible to avoid abnormally high temperatures in summer and low temperatures in winter. When a carbon dioxide generator is used in a conventional greenhouse, the internal temperature of the greenhouse becomes too high, so outside air has to be introduced, and the greenhouse becomes open and maintains a high carbon dioxide concentration. I couldn't. By continuously supplying exhaust air with a high carbon dioxide concentration without increasing the temperature inside the greenhouse, it is possible to maintain a carbon dioxide concentration equal to or higher than that of the outside air for a long period of time.

建物の排気は通常のワーキングアワー(日中9:00~17:00)に合わせて運転される。この時間が日照時間とほぼ同じであるために植物が光合成をする時間帯は二酸化炭素濃度の高い排気空気を供給することが出来ることで光合成の促進が適切に行われるわけである。 The building exhaust is operated according to normal working hours (9:00 to 17:00 during the day). Since this time is almost the same as the sunshine time, it is possible to supply exhaust air with a high carbon dioxide concentration during the time period when plants are photosynthesizing, so that photosynthesis is appropriately promoted.

植物は夜間には呼吸をするために二酸化炭素濃度が高い環境は適切ではない。冬期に日照時間が短くなりワーキングタイム中に日没した場合にも切り替えダンパー5を切り替え操作することにより日没からワーキングアワーの終了時刻まで二酸化炭素濃度の高い排気空気を大気放出し、外気を温室ハウス3へ供給することで植物の生育環境を適切に保つことが出来る。ただ日没後からワーキングタイム終了時刻までは短時間であることから第1実施形態の場合は切り替えダンパー5を省略することも可能である。 An environment with a high concentration of carbon dioxide is not suitable for plants to breathe at night. Even when the sunshine hours are shortened in winter and the sun sets during the working hours, the switching damper 5 is switched to release exhaust air with a high concentration of carbon dioxide into the atmosphere from sunset to the end of the working hours, and the outside air is released into the greenhouse. By supplying to the house 3, the plant growth environment can be properly maintained. However, the switching damper 5 can be omitted in the case of the first embodiment because the time from sunset to the end of the working time is short.

[第2実施形態]
24時間稼働している建物や深夜まで稼働している建物の場合について示す。この場合夜間の排気も二酸化炭素濃度が高い状態が継続する事になるが前記の理由により切り替えダンパー5の操作により夜間は排気空気を温室ハウス内に供給せずに大気放出し、その代わりに外気を温室ハウスに供給する。
[Second embodiment]
A building that operates 24 hours a day and a building that operates until late at night are shown. In this case, the high concentration of carbon dioxide in the exhaust air at night will continue. to the greenhouse.

図2は切り替えダンパー5の動作を示す。昼間の日照時間中ダンパー5の仕切り板6の位置はa部にあり排気空気を吸い込み、日没後は仕切り板6をb位置へ切り替える事により排気空気を遮り外気を導入出来る構成とする。これにより排気空気は大気へ放出され、温室ハウス3へは外気が導入される。夜明けと共に仕切り板6をa位置へ戻し、排気空気を導入できる構成とする。本操作は日の出と日没に合わせて自動切り替えとしておくのが適切である。 FIG. 2 shows the operation of the switching damper 5. FIG. The partition plate 6 of the damper 5 is positioned at the part a during the daytime sunshine and sucks the exhaust air, and after sunset, the partition plate 6 is switched to the position b to block the exhaust air and introduce outside air. As a result, exhaust air is released to the atmosphere, and outside air is introduced into the greenhouse house 3 . At dawn, the partition plate 6 is returned to the position a so that exhaust air can be introduced. It is appropriate that this operation is automatically switched according to sunrise and sunset.

[その他の実施形態]
切り替えダンパー5での切り替え方法は仕切り板6の切り替え動作で説明されているが、他の方法として排気空気、外気の取入口各々に開閉ダンパーを設け、一方が開の場合は他方を閉とする事で同様に吸い込む空気を切り替えることが出来る。導入空気の切り替えについての方法は問わない。
[Other embodiments]
The switching method of the switching damper 5 has been explained in the switching operation of the partition plate 6, but as another method, opening and closing dampers are provided at each of the exhaust air and outside air intakes, and when one is open, the other is closed. It is possible to switch the air to be inhaled in the same way. Any method for switching the introduced air may be used.

前述の実施形態説明では温室ハウス3は屋上設置で示しているが、これは換気設備の排気部と温室ハウス3までの排気空気の搬送距離を短くし設備コストを小さくするためであるので建物の敷地内で適切に設置可能な場所が屋上以外にもあれば温室ハウス3はどこに設置しても構わない。 In the above description of the embodiment, the greenhouse house 3 is installed on the roof. The greenhouse 3 may be installed anywhere in the site as long as there is a place other than the rooftop where it can be installed appropriately.

特定建築物では建築物環境衛生管理基準に従った空気環境が維持されており、ほとんどの特定建築物から排出される排気空気の二酸化炭素濃度は同程度といえるが、たとえ特定建築物ではない建物であっても人が集合しそこからの排気空気が発生する構築物であればどの様な場所でも本発明の活用は可能であり、二酸化炭素濃度が900ppm程度に満たない場合であったとしても外気より二酸化炭素濃度の高い排気空気を供給することが出来れば農産物の収量増と二酸化炭素削減を期待できる。 The air environment in specified buildings is maintained in accordance with the Building Environment Sanitation Management Standards, and although it can be said that the concentration of carbon dioxide in the exhaust air emitted from most specified buildings is about the same, even buildings that are not specified buildings However, the present invention can be utilized in any place as long as it is a structure where people gather and exhaust air is generated from there, and even if the carbon dioxide concentration is less than about 900 ppm, the outside air If exhaust air with a higher carbon dioxide concentration can be supplied, an increase in the yield of agricultural products and a reduction in carbon dioxide can be expected.

屋上部等への温室ハウス3の設置が不可能な場合でも特定建築物の隣地で施設栽培農家の温室ハウスが有り、そこへ前記排気空気を供給することが出来れば特定建築物を二酸化炭素供給ステーションとしての機能を持たせ同様に活用することが出来る。 Even if it is impossible to install the greenhouse house 3 on the roof or the like, if there is a greenhouse house of a greenhouse farmer adjacent to the specific building, and the exhaust air can be supplied to the greenhouse house, the specific building can be supplied with carbon dioxide. It can be used in the same way by giving it a function as a station.

1 特定建築物
2 屋上部
3 温室ハウス
4 給気用ファン
5 切り替えダンパー
6 仕切り板
7 一定の間隙
8 排出ガラリ
9 温室内の植物
10 建物内の空調
11 全熱交換機
1 Specific Building 2 Rooftop 3 Greenhouse House 4 Air Supply Fan 5 Switching Damper 6 Partition Plate 7 Certain Gap 8 Exhaust Gutter 9 Plant in Greenhouse 10 Air Conditioning in Building 11 Total Heat Exchanger

多くのオフィスビルが建ち並ぶ都市の特定建築物に適用し施設野菜の収量増加及び品質向上というメリットを得るとともに今まで大気放出していた二酸化炭素を削減可能である。 It can be applied to specific buildings in cities where many office buildings are lined up, and it is possible to obtain the merits of increasing the yield and improving the quality of vegetables in the facilities, as well as reduce the carbon dioxide that has been emitted into the atmosphere.

本発明による二酸化炭素量の削減の一例として特定建築物の規模が最も小さい床面積3,000mのオフィスビルにおける一年間の二酸化炭素削減量を試算する。
<設定条件>
・床面積:3,000mのオフィスビル
・事務所(一般)の必要換気量:7.2m/m・h(空調・衛生工学規格より)
・20℃時の二酸化炭素の重量:1.8kg/m
・1日の換気時間:8時間
・排気空気の二酸化炭素濃度:900ppm
・温室通過後の二酸化炭素濃度(仮定):600ppm
・年間のビル稼働日数:220日/年
<試算数値>
・1日の換気量
7.2m/m・h×3,000m×8h/日=172,800m/日
・1日の換気量中の排気二酸化炭素の削減量
1.8kg/m×172,800m/日×(900-600)/1,000,000=93.3kg/日
・1年間の二酸化炭素の削減量
93.3kg/日×220日/年=20,526kg/年
となり規模的に最も小さい特定建築物1棟において1年間で約20tonの二酸化炭素を削減する事が出来ると共に従来なら施設栽培で二酸化炭素発生装置を運転する際に使用していた燃料及び電気代も不要である。
As an example of the reduction of the amount of carbon dioxide according to the present invention, the amount of reduction of carbon dioxide for one year in an office building with a floor area of 3,000 m 2 , which is the smallest scale of a specific building, is estimated.
<Setting conditions>
・Floor area: 3,000 m 2 office building ・Required ventilation for offices (general): 7.2 m 3 /m 2 h (according to air conditioning and sanitary engineering standards)
・ Weight of carbon dioxide at 20°C: 1.8 kg/m 3
・Ventilation time per day: 8 hours ・Carbon dioxide concentration in exhaust air: 900ppm
・ Carbon dioxide concentration after passing through the greenhouse (assumed): 600 ppm
・Number of days the building is in operation per year: 220 days/year <Estimated figures>
・Ventilation volume per day 7.2 m 3 /m 2・h × 3,000 m 2 × 8 h/day = 172,800 m 3 /day ・Reduction of exhaust carbon dioxide in ventilation volume per day 1.8 kg/m 3 x 172,800 m 3 /day x (900-600)/1,000,000 = 93.3 kg/day ・Amount of carbon dioxide reduction for one year 93.3 kg/day x 220 days/year = 20,526 kg/year It is possible to reduce about 20 tons of carbon dioxide in one year in one specific building, which is the smallest in scale, and the fuel and electricity costs that were conventionally used when operating the carbon dioxide generator in greenhouse cultivation. is also unnecessary.

奈良県農業試験場の「施設栽培におけるCO施用の現状と課題」によれば終日750ppmの濃度で二酸化炭素施肥を行い栽培したいちごの一例として二酸化炭素施肥をしない場合に比べて収穫量は70%増加し色艶の向上と糖度上昇等の品質向上が報告されている。二酸化炭素施肥は日照中の長時間の実施に効果があるために本発明のように二酸化炭素施肥時間も長く二酸化炭素濃度も900ppm程度と高い濃度で供給されることでそれ以上の収量増加と品質向上が見込まれる。それと同時に今までの二酸化炭素発生装置の稼働は不要である。According to the Nara Prefectural Agricultural Experiment Station's "Current Status and Issues of CO 2 Application in Facility Cultivation", as an example of strawberries cultivated with carbon dioxide fertilization at a concentration of 750 ppm all day, the yield is 70% compared to the case where carbon dioxide fertilization is not applied. It is reported that quality improvement such as increase in color and luster and increase in sugar content is reported. Since carbon dioxide fertilization is effective for long periods of time under sunshine, as in the present invention, the carbon dioxide fertilization time is long and the carbon dioxide concentration is supplied at a high concentration of about 900 ppm, resulting in a further increase in yield and quality. expected to improve. At the same time, the operation of conventional carbon dioxide generators is not required.

特に商業施設(例えばスーパーマーケット等)で実施する場合では温室ハウスと販売場所は同じ場所であるために収穫した直後に売り場での販売が可能となるため新鮮さや品質の高さでは他の産地から輸送された物とは大きく異なり究極の地産地消として差別化出来る。 Especially when it is carried out in commercial facilities (for example, supermarkets), the greenhouse and the sales place are the same place, so it is possible to sell at the sales floor immediately after harvesting. It can be differentiated as the ultimate local production for local consumption, which is greatly different from the thing that was done.

人の呼気からの二酸化炭素を有効活用して栽培された野菜ということで新規性のある新しいブランドとして差別化し付加価値を付けて販売出来ると共に、商業施設の屋上で栽培している場合では、来客者に栽培の様子を見て頂く等の販売促進に貢献することも可能である。 Vegetables cultivated by effectively utilizing carbon dioxide from human exhalation can be differentiated as a new brand with novelty and can be sold with added value. It is also possible to contribute to sales promotion by having people observe the state of cultivation.

Claims (3)

建築物環境衛生管理基準に従って管理されている特定建築物から排出される排気空気中の二酸化炭素を削減する方法であって、前記排気空気に含まれる900ppm程度の二酸化炭素濃度と、植物の光合成が最大となる二酸化炭素濃度が一致することを利用し、前記排気空気を温室ハウスへ導き、そのまま施設栽培として使用することで収穫物の増収と品質向上を実現することを特徴とする二酸化炭素を削減する方法。 A method for reducing carbon dioxide in the exhaust air emitted from a specific building that is managed in accordance with the Building Environment Sanitation Management Standards, wherein the carbon dioxide concentration of about 900 ppm contained in the exhaust air and the photosynthesis of plants Utilizing the fact that the maximum carbon dioxide concentration is the same, the exhaust air is led to the greenhouse house and used as it is for greenhouse cultivation, thereby increasing the yield and improving the quality of the harvested product. how to. 前記特定建築物の排気口のダクトと前記温室ハウスの給気口のダクトとの間に間隙を設けておき、排気空気を取り込むために給気口へ常時運転する給気用のファンを設けた前記温室ハウス内で栽培する植物の光合成により二酸化炭素を削減する方法であり、間隙があることにより昼間は前記特定建築物の排気空気は前記温室ハウス内に供給され、夜間に前記特定建築物の排気が停止した場合は何らの操作無く常時運転している給気ファンにより前記間隙から外気を前記温室ハウスに供給するようにしたことを特徴とする請求項1に記載の二酸化炭素を削減する方法。A gap is provided between the duct of the exhaust port of the specific building and the duct of the air supply port of the greenhouse, and an air supply fan that operates constantly is provided to the air supply port to take in the exhaust air. It is a method of reducing carbon dioxide through photosynthesis of plants cultivated in the greenhouse, wherein the exhaust air from the specific building is supplied into the greenhouse during the daytime due to the presence of a gap, and the exhaust air from the specific building is supplied to the greenhouse during the night. 2. The method for reducing carbon dioxide according to claim 1, wherein outside air is supplied to said greenhouse house through said gap by means of an air supply fan which is always operated without any operation when exhaust is stopped. . 夜間も稼働する前記特定建築物においては前記温室ハウスの給気口に切り替えダンパーを設けて給気箇所を切り替え可能としておくことで夜間に排気空気は前記間隙から大気放出され、前記温室ハウスには排気空気は入らずその代わりに切り替えダンパーから前記温室ハウスの給気口に外気を取り入れ可能としたことを特徴とする請求項2に記載の二酸化炭素を削減する方法。In the specific building that operates even at night, a switching damper is provided at the air supply port of the greenhouse house so that the air supply point can be switched. 3. A method according to claim 2, characterized in that no exhaust air enters and instead outside air is allowed to enter the air supply of said greenhouse from a switching damper.
JP2022033907A 2022-02-15 2022-02-15 How to reduce carbon dioxide Active JP7168842B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022033907A JP7168842B1 (en) 2022-02-15 2022-02-15 How to reduce carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022033907A JP7168842B1 (en) 2022-02-15 2022-02-15 How to reduce carbon dioxide

Publications (2)

Publication Number Publication Date
JP7168842B1 true JP7168842B1 (en) 2022-11-10
JP2023118634A JP2023118634A (en) 2023-08-25

Family

ID=83995254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022033907A Active JP7168842B1 (en) 2022-02-15 2022-02-15 How to reduce carbon dioxide

Country Status (1)

Country Link
JP (1) JP7168842B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440833A (en) * 1990-06-04 1992-02-12 Hitachi Plant Eng & Constr Co Ltd Plant cultivation system
JP6007619B2 (en) * 2012-06-28 2016-10-12 株式会社大林組 Carbon dioxide supply method and carbon dioxide supply system to plant cultivation facility
US20190390868A1 (en) * 2018-06-21 2019-12-26 Brad Reid Living atmosphere control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440833A (en) * 1990-06-04 1992-02-12 Hitachi Plant Eng & Constr Co Ltd Plant cultivation system
JP6007619B2 (en) * 2012-06-28 2016-10-12 株式会社大林組 Carbon dioxide supply method and carbon dioxide supply system to plant cultivation facility
US20190390868A1 (en) * 2018-06-21 2019-12-26 Brad Reid Living atmosphere control system

Also Published As

Publication number Publication date
JP2023118634A (en) 2023-08-25

Similar Documents

Publication Publication Date Title
CN102210247B (en) Method and equipment for providing heat and carbon dioxide for vegetables and/or algae by using flue gas of power plant
JP5603658B2 (en) Plant environmental management system
EP1908809A1 (en) Assembly of a horticultural facility and a livestock-breeding facility
CN103592924A (en) Intelligent photovoltaic greenhouse monitoring system and monitoring method
CN111448923A (en) Ventilation circulating device and method for plant factories and collective places in high-altitude and high-cold regions
CN102032628B (en) Air supply system of earth source heat pump air conditioner in edible fungus culture chamber
CN201821292U (en) Solar PV grid-connected power generation system for agricultural greenhouses
WO2012043381A1 (en) Plant factory
Giacomelli et al. Greenhouse production systems for people
Al-Helal Effects of ventilation rate on the environment of a fan-pad evaporatively cooled, shaded greenhouse in extreme arid climates
CN109156225A (en) A kind of closed plant factor of mixing light source comprehensively utilizing sunlight and artificial light
CN214282454U (en) Utilize fertile green house big-arch shelter system of thermal power plant heat supply gas supply
CN101322464A (en) Solar energy multipurpose field greenhouse for high yield of organic farm livestock
JPH0622653A (en) Method for cultivating in semi-hermetically closed gas exchange type greenhouse and apparatus therefor
JP7168842B1 (en) How to reduce carbon dioxide
CN112703933A (en) Thermal power plant coupled low-temperature heat supply agricultural greenhouse system and control method
CN206294604U (en) A kind of roof greening system of cold district
CN105892411A (en) Photovoltaic greenhouse intelligent monitoring system and method
CN104808524A (en) Dry hot air environment simulating and monitoring device for crops
CN201595031U (en) Energy-saving fungus culturing room
CN207400020U (en) A kind of novel air processing system for agricultural greenhouse greenhouse
CN215188486U (en) Movable planting shelter
CN209151773U (en) A kind of closed plant factor of mixing light source comprehensively utilizing sunlight and artificial light
CN202178983U (en) Temperature-humidity control system for cultivation of pleurotus eryngii
JP2003250358A (en) Plant culturing facility

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221006

R150 Certificate of patent or registration of utility model

Ref document number: 7168842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150