JP2003250358A - Plant culturing facility - Google Patents

Plant culturing facility

Info

Publication number
JP2003250358A
JP2003250358A JP2002058634A JP2002058634A JP2003250358A JP 2003250358 A JP2003250358 A JP 2003250358A JP 2002058634 A JP2002058634 A JP 2002058634A JP 2002058634 A JP2002058634 A JP 2002058634A JP 2003250358 A JP2003250358 A JP 2003250358A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
concentration
greenhouse
plant cultivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002058634A
Other languages
Japanese (ja)
Inventor
Kazunori Adachi
和則 足立
Naoya Murakami
直也 村上
Koji Hoshino
孝二 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002058634A priority Critical patent/JP2003250358A/en
Publication of JP2003250358A publication Critical patent/JP2003250358A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plant culturing facility excellent in energy saving, economical efficiency and environmental protection. <P>SOLUTION: The plant culturing facility 20 is equipped with a fuel cell 1 outside a greenhouse. CO<SB>2</SB>gas contained in a discharge gas of the fuel cell 1 is used as CO<SB>2</SB>gas source for plant culture and the waste heat is used as a heater heat source for obtaining adequate temperature for rearing plants and electric output is used as electric power source in the greenroom 10. The plant culturing facility 20 is equipped with a heat exchange means 3 for separating the discharge gas into CO<SB>2</SB>gas and water by cooling the discharge gas and a flow rate controller 3 for controlling CO<SB>2</SB>gas inflow into the greenroom based on detection signal from a CO<SB>2</SB>gas densitometer for measuring CO<SB>2</SB>gas concentration in the greenroom. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池の排ガス
をハウス栽培用のCO2 源および暖房用の熱源に用いた
直物栽培施設に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spot cultivation facility using exhaust gas from a fuel cell as a CO 2 source for greenhouse cultivation and a heat source for heating.

【0002】[0002]

【従来の技術】冬期あるいは夏期の露地作物の端境期に
新鮮な園芸生産物を消費者に提供できる園芸形態として
ハウス栽培が知られている。近年、このハウス栽培にお
ける環境管理(気温、湿度、CO2 濃度のコントロー
ル)や栽培管理(農薬、肥料、成長調整物質、人工培土
等)の技術が充実し、生産量の多量化や生産物の多様化
が進み、野菜を始めとして、果樹、花の栽培等、多種多
様な園芸生産物(植物)が季節を問わず安価に提供され
るようになってきている。
2. Description of the Related Art House cultivation is known as a horticultural form that can provide consumers with fresh horticultural products during the off-season of outdoor crops in winter or summer. In recent years, technologies for environmental management (control of temperature, humidity, CO 2 concentration) and cultivation management (agricultural chemicals, fertilizers, growth regulating substances, artificial soil, etc.) in this greenhouse cultivation have been enhanced, and the production volume has been increased and As diversification progresses, a wide variety of horticultural products (plants) such as vegetables, fruit trees, flower cultivation, etc. are being provided inexpensively regardless of the season.

【0003】ところで、大気中のCO2 濃度は300p
pm程度であり、1m3 の大気中に約630mgのCO
2 ガスが含まれている。閉鎖環境に近い植物栽培施設内
において、CO2 は光合成により短時間で消費され、そ
の濃度が大きく低下して植物の生育は抑制される。従っ
て、ハウス栽培においては、CO2 の施用は極めて重要
な事項であり、人工的にCO2 ガスを発生し、その濃度
を好適(300ppm以上)に調整・管理することによ
り、光合成の速度を活発にして植物の生育を促進するこ
とができる。
By the way, the concentration of CO 2 in the atmosphere is 300 p
pm, about 630 mg of CO in 1 m 3 of air
Contains 2 gases. In a plant cultivation facility close to a closed environment, CO 2 is consumed in a short time by photosynthesis, its concentration is greatly reduced, and plant growth is suppressed. Therefore, in greenhouse cultivation, the application of CO 2 is a very important matter, and by artificially generating CO 2 gas and adjusting and controlling its concentration to be suitable (300 ppm or more), the rate of photosynthesis can be activated. The growth of plants can be promoted.

【0004】[0004]

【発明が解決しようとする課題】従来では、CO2 を人
工的に発生させるものとして、プロパンガス、天然ガ
ス、白灯油等の炭化水素を燃焼させる燃焼型のCO2
生方式が最も良く利用されている。白灯油燃焼方式で
は、ガス燃焼機を室外に設置して、ダクトを用いて高C
2 濃度の燃焼空気を温室内に導入するもので、燃焼に
て得られる熱はまた温室内の暖房熱源として使用され
る。
In [0006] Conventionally, the CO 2 as causing artificially generated, propane gas, natural gas, combustion type CO 2 generating system for burning a hydrocarbon such as kerosene is best utilized ing. In the white kerosene combustion method, a gas combustor is installed outdoors and a high C
Combustion air with an O 2 concentration is introduced into the greenhouse, and the heat obtained by combustion is also used as a heating heat source in the greenhouse.

【0005】ところが、このような燃焼型のCO2 発生
方式では、上記した炭化水素を燃焼する際にCO(一酸
化炭素)、NOx(窒素酸化物) 、SOx(硫黄酸化
物)等の環境汚が懸念される有害ガスが発生し易いとい
う問題を有していた。
However, in such a combustion type CO 2 generation system, when burning the above-mentioned hydrocarbon, environmental pollution such as CO (carbon monoxide), NOx (nitrogen oxide), SOx (sulfur oxide), etc. However, there is a problem that harmful gas, which is concerned about, is likely to be generated.

【0006】本発明は、このような従来の問題に鑑みて
成されたもので、省エネ性および経済性と共に環境保全
性に優れる植物栽培施設を提供することを目的としてい
る。
The present invention has been made in view of such conventional problems, and an object thereof is to provide a plant cultivation facility which is excellent in energy conservation and economic efficiency as well as environmental conservation.

【課題を解決するための手段】すなわち、請求項1に記
載の本発明は、燃料電池を備え、この燃料電池の排ガス
中に含まれるCO2 ガスを植物栽培のCO2 源とし、排
熱を植物の育成適温を得る暖房熱源とし、電気出力を温
室内での電力源として使用する。
That is, the present invention according to claim 1 is provided with a fuel cell, wherein CO 2 gas contained in the exhaust gas of the fuel cell is used as a CO 2 source for plant cultivation, and exhaust heat is removed. It is used as a heating heat source to obtain a suitable temperature for growing plants, and the electric output is used as a power source in a greenhouse.

【0007】また、請求項2に記載の本発明は、請求項
1に記載の植物栽培施設において、前記排ガスを冷却し
てCO2 ガスと水に分離する熱交換手段と、温室内のC
2ガス濃度を測定するCO2 濃度計と、当該濃度計か
らの検知信号に基づいて温室内へ流入するCO2 ガスの
量を制御する流量制御装置とを備える。
The present invention according to claim 2 is the plant cultivation facility according to claim 1, wherein heat exchange means for cooling the exhaust gas to separate CO 2 gas and water, and C in a greenhouse.
A CO 2 densitometer for measuring the O 2 gas concentration and a flow rate control device for controlling the amount of CO 2 gas flowing into the greenhouse based on the detection signal from the densitometer.

【0008】また、請求項3に記載の本発明は、請求項
2に記載の植物栽培施設において、前記熱交換手段とし
て、排ガスを水にバブリングしてCO2 ガス含む蒸気を
得るバブリング装置を備えている。
Further, the present invention according to claim 3 is the plant cultivation facility according to claim 2, wherein the heat exchange means is provided with a bubbling device for bubbling exhaust gas into water to obtain steam containing CO 2 gas. ing.

【0009】また、請求項4に記載の本発明は、請求項
2または請求項3の何れかに記載の植物栽培施設におい
て、前記蒸気中のNOx濃度が1ppm以下、CO濃度
が5ppm以下、SOx濃度が0.5ppm以下にして
いる。
The present invention according to claim 4 is the plant cultivation facility according to claim 2 or 3, wherein NOx concentration in the steam is 1 ppm or less, CO concentration is 5 ppm or less, and SOx is 5 ppm or less. The concentration is 0.5 ppm or less.

【0010】また、請求項5に記載の本発明は、請求項
1から請求項4までの何れかに記載の植物栽培施設にお
いて、前記燃料電池として固体酸化物形燃料電池を使用
している。
The present invention according to claim 5 uses the solid oxide fuel cell as the fuel cell in the plant cultivation facility according to any one of claims 1 to 4.

【0011】上記のように、燃料電池で生じた電力およ
び排出ガス(CO2 ガスや高温水蒸気)を温室内で植物
育成のために有効に活用することにより、省エネ性およ
び経済性と共に環境保全に優れる植物栽培施設を実現で
きる。本来、燃料電池では、排ガス中に含まれるNOx
やCOの濃度は少ないが、特に、請求項3に記載の構成
のように、冷却のために排ガスを水中にバブリングする
ことにより、これら有害ガスの濃度を更に一層低減する
ことができる。また、極少量含まれる可能性のあるSO
xも除去可能である。また、請求項5に記載のように、
固体酸化物形燃料電池を使用すると、他の燃料電池に比
べて濃度の高いCO2 ガスが得られるため、植物栽培の
CO2 源として好適であり、温室内のCO2 濃度を制御
し易くなる。
As described above, by effectively utilizing the electric power and exhaust gas (CO 2 gas and high temperature steam) generated in the fuel cell for growing plants in the greenhouse, it is possible to save energy and economy, and to conserve the environment. An excellent plant cultivation facility can be realized. Originally, in a fuel cell, NOx contained in exhaust gas
Although the concentration of CO and CO is low, the concentration of these harmful gases can be further reduced by bubbling the exhaust gas into water for cooling, as in the structure described in claim 3. Also, SO that may be contained in a very small amount
x can also be removed. In addition, as described in claim 5,
Use of a solid oxide fuel cell provides CO 2 gas with a higher concentration than other fuel cells, and is therefore suitable as a CO 2 source for plant cultivation and facilitates control of the CO 2 concentration in a greenhouse. .

【0012】[0012]

【発明の実施の形態】以下、図1に基づいて本発明に係
る植物栽培施設の一実施形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a plant cultivation facility according to the present invention will be described below with reference to FIG.

【0013】図1に示すように、本実施形態の植物栽培
施設20は、ガラス室、塩化ビニルハウス(またはプラ
スチックハウス)等の光透過性の高い資材で被覆された
温室10と、温室外に設置された燃料電池1を備え、更
に、この燃料電池1の排ガスを冷却するバブリング装置
2と、バブリングにより得られたCO2 ガスの温室内へ
の流入量を制御する流量制御装置3と、流量制御装置3
からのCO2 ガス流出量を計測する流量計4と、温室内
のCO2 濃度を測定するCO2 濃度計5等を備えてい
る。
As shown in FIG. 1, the plant cultivation facility 20 of the present embodiment includes a greenhouse 10 covered with a material having a high light transmission property such as a glass room, a vinyl chloride house (or a plastic house), and the outside of the greenhouse. A bubbling device 2 for cooling the exhaust gas of the fuel cell 1, a flow rate control device 3 for controlling the inflow amount of CO 2 gas obtained by bubbling into the greenhouse, and a flow rate. Control device 3
And CO 2 flow meter 4 for measuring the gas outflow from, and a CO 2 concentration meter 5 or the like for measuring the CO 2 concentration in the greenhouse.

【0014】燃料電池1は、空気極側に酸素(空気)
が、燃料極側に燃料ガス(H2 、CO 2 、CH4 等)を
供給して、燃料を電気化学的に連続的に反応させること
により直接電気出力を得る発電装置である。
The fuel cell 1 has oxygen (air) on the air electrode side.
However, the fuel gas (H2, CO 2 , CHFourEtc.)
Supplying and continuously reacting fuel electrochemically
Is a power generation device that directly obtains an electric output.

【0015】燃料電池1としては、溶融炭酸塩形(MC
FC)、燐酸形(PAFC)、固体高分子形(PEF
C)、固体酸化物形(SOFC)等公知のものが利用可
能であるが、本実施形態では、高い排熱が得られ、且
つ、排ガス中に比較的濃度の高いCO2 を含む固体酸化
物形燃料電池を使用している。因みに、燃料にH2 を用
いた場合の電極反応は次のようになる。 空気極: 1/2 O2 + 2e- → O2- 燃料極: H2 + O2- → H2 O+2e- 全体 : H2 + 1/2 O2 → H2
As the fuel cell 1, a molten carbonate type (MC
FC), phosphoric acid type (PAFC), solid polymer type (PEF)
Known materials such as C) and solid oxide form (SOFC) can be used, but in the present embodiment, high exhaust heat is obtained, and the solid oxide containing a relatively high concentration of CO 2 in the exhaust gas. I am using a fuel cell. Incidentally, the electrode reaction when H 2 is used as the fuel is as follows. Air electrode: 1/2 O 2 + 2e → O 2 Fuel electrode: H 2 + O 2 → → H 2 O + 2e Overall: H 2 + 1/2 O 2 → H 2 O

【0016】このように、燃料電池は直流の発電出力と
共に、反応生成物としてH2 O(高温水蒸気)とCO2
を生じ、NOx、SOx、CO等の有害ガスの排出量が
極めて少ないクリーンな発電装置である。
As described above, the fuel cell generates direct current power and produces H 2 O (high temperature steam) and CO 2 as reaction products.
It is a clean power generation device that produces a small amount of harmful gas such as NOx, SOx, and CO.

【0017】上記構成において、燃料電池1から排出さ
れる高温水蒸気やCO2 ガスはバブリング装置2に誘導
され、水中にバブリングされる。バブリング槽の水Wは
高温水蒸気との熱交換により温水にされると共に、冷却
された排ガス中よりCO2 を含む蒸気が得られる。既述
したように、本来、燃料電池1の排ガス中に含まれるN
OxやCOの濃度は少ないが、本実施形態のように、排
ガスを水中にバブリングすることにより、これら有害ガ
スの濃度を更に一層低減することができる。また、極少
量含まれる可能性のあるSOxも除去できる。これによ
り、蒸気中のNOx濃度が1ppm以下、CO濃度が5
ppm以下、SOx濃度が0.5ppm以下に抑えるこ
とができる。
In the above structure, the high temperature steam and CO 2 gas discharged from the fuel cell 1 are guided to the bubbling device 2 and bubbled in water. The water W in the bubbling tank is made into warm water by heat exchange with high temperature steam, and steam containing CO 2 is obtained from the cooled exhaust gas. As described above, the N originally contained in the exhaust gas of the fuel cell 1
Although the concentration of Ox and CO is low, the concentration of these harmful gases can be further reduced by bubbling exhaust gas into water as in the present embodiment. Also, SOx that may be contained in a very small amount can be removed. As a result, the NOx concentration in the vapor is 1 ppm or less and the CO concentration is 5
It is possible to suppress the concentration of SOx to less than 0.5 ppm and the SOx concentration to less than 0.5 ppm.

【0018】図1において、バブリング装置2で熱交換
された温水は、配管を介して温室10内に導入されて温
室内空気や植物の温度を高めるために使われる。植物の
光合成の速度や夜間の呼吸速度はCO2 ガスと共に温度
にも大いに依存し、温室内温度25〜40℃でその速度
はピークを持つと言われている。従って、冬期のよう
に、温室内の気温が植物生育適温(25〜40℃)を下
回る場合は、園芸植物が育成不良となり、多くの収穫を
望めず、甚だしい場合は、枯死することになる。従っ
て、園芸者にとって冬期の温度管理(暖房費)は大きな
経済負担となるが、本実施形態ではバブリング時の温水
を暖房用の熱源に使用することにより、冬期の暖房費を
節約することができる。尚、排ガスの冷却手段として上
記バブリングによらず、冷却フィンや水道水等による熱
交換機構を用いても良い。
In FIG. 1, the hot water that has been heat-exchanged by the bubbling device 2 is introduced into the greenhouse 10 through a pipe and used to raise the temperature of the greenhouse air and plants. It is said that the rate of photosynthesis of plants and the respiration rate at night depend greatly on the temperature together with CO 2 gas, and the rate has a peak at a greenhouse temperature of 25 to 40 ° C. Therefore, when the temperature in the greenhouse is lower than the optimum temperature for plant growth (25 to 40 ° C.) as in the winter season, the horticultural plants are poorly grown, and many harvests cannot be expected, and when they are severe, they die. Therefore, the temperature control (heating cost) in winter is a great economic burden for the horticulturist, but in the present embodiment, by using the hot water at the time of bubbling as the heat source for heating, the heating cost in winter can be saved. . A heat exchange mechanism using cooling fins or tap water may be used as the exhaust gas cooling means instead of the bubbling.

【0019】また、バブリングにより得られたCO2
スは流量制御装置3に誘導される。この流量制御装置3
では、CO2 濃度計5からの検知信号に基づき、例え
ば、図示しない電磁弁の開口を制御して温室内へのCO
2 ガス流入量を常に好適値(温室内のCO2 濃度が30
0ppm以上)に維持するようにしている。本実施形態
では、燃料電池1として比較的排ガス中のCO2 濃度が
高い固体酸化物形燃料電池を使用することにより、前記
流量制御装置3によるCO2 ガスの流量制御を容易にし
ている。
The CO 2 gas obtained by bubbling is guided to the flow rate control device 3. This flow control device 3
Then, based on the detection signal from the CO 2 concentration meter 5, for example, by controlling the opening of a solenoid valve (not shown), CO
2 The gas inflow rate is always a suitable value (CO 2 concentration in the greenhouse is 30
(0 ppm or more). In this embodiment, a solid oxide fuel cell having a relatively high CO 2 concentration in the exhaust gas is used as the fuel cell 1 to facilitate the flow rate control of the CO 2 gas by the flow rate control device 3.

【0020】また、燃料電池1の電気出力(直流電流)
は、そのまま、あるいは図示しないインバーターを介し
て交流に変換し、温室内の照明6や、その他各種園芸機
械の駆動電力として使用される。
Further, the electric output (DC current) of the fuel cell 1
Is used as a driving power for the lighting 6 in the greenhouse or other various gardening machines, as it is or converted into an alternating current through an inverter (not shown).

【0021】また、締め切った温室内は、晴天の日中は
乾燥し易いが、燃料電池から排出されるH2 O(液体)
を、高温期における通路への散水や空気中への水の噴霧
等に利用し、植物への水分補給や温室内の湿度確保のた
めに有効に活用している。
Further, the Shimeki' was greenhouse, easily drying in sunny days, but is discharged from the fuel cell H 2 O (liquid)
Is used for watering the passages and spraying water in the air during high temperature periods, and is effectively used for hydrating plants and ensuring humidity in the greenhouse.

【0022】このように、燃料電池の発電作用で生じた
電気エネルギー、熱エネルギー(排熱)や副生成物(二
酸化炭素)を温室内で有効に活用する(リサイクル)こ
とにより、省エネ性および経済性と共に環境保全性に優
れる植物栽培施設20を実現することができる。
As described above, by effectively utilizing (recycling) electric energy, heat energy (exhaust heat) and by-products (carbon dioxide) generated by the power generation operation of the fuel cell in the greenhouse, energy saving and economy can be achieved. It is possible to realize the plant cultivation facility 20 that is excellent in environmental protection as well as in nature.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
燃料電池で生じた電力および排出ガス(CO2 ガスや高
温水蒸気)を温室内で植物育成のために有効に活用する
ことができ、これにより、省エネ性および経済性と共に
環境保全に優れる植物栽培施設を実現できる。
As described above, according to the present invention,
Electric power generated by the fuel cell and exhaust gas (CO 2 gas and high temperature steam) can be effectively utilized for growing plants in the greenhouse, and as a result, it is a plant cultivation facility that is excellent in energy conservation and economy as well as environmental conservation. Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施形態に係る植物栽培施設の構成を示す
図。
FIG. 1 is a diagram showing a configuration of a plant cultivation facility according to the present embodiment.

【符号の説明】 1 燃料電池(固体酸化物形燃料電池) 2 熱交換手段(バブリング装置) 3 流量制御装置 5 CO2 濃度計 6 照明 10 温室 20 植物栽培施設[Explanation of reference numerals] 1 fuel cell (solid oxide fuel cell) 2 heat exchange means (bubbling device) 3 flow control device 5 CO 2 concentration meter 6 lighting 10 greenhouse 20 plant cultivation facility

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/12 H01M 8/12 (72)発明者 村上 直也 茨城県那珂郡那珂町向山1002−14 三菱マ テリアル株式会社総合研究所那珂研究セン ター内 (72)発明者 星野 孝二 茨城県那珂郡那珂町向山1002−14 三菱マ テリアル株式会社総合研究所那珂研究セン ター内 Fターム(参考) 2B029 JA02 JA06 MA04 SA10 5H026 AA06 5H027 AA06 DD05 KK31 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 8/12 H01M 8/12 (72) Inventor Naoya Murakami 1002-14 Mukaiyama, Naka-cho, Naka-gun, Ibaraki Prefecture Mitsubishi Ma Terari Co., Ltd. Naka Research Center (72) Inventor Koji Hoshino 1002-14 Mukaiyama, Naka-machi, Naka-gun, Ibaraki Prefecture Mitsubishi Material Co., Ltd. Naka Research Center F-term (reference) 2B029 JA02 JA06 MA04 SA10 5H026 AA06 5H027 AA06 DD05 KK31

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池を備え、この燃料電池の排ガス
中に含まれるCO2ガスを植物栽培のCO2 源とし、排
熱を植物の育成適温を得る暖房熱源とし、電気出力を温
室内での電力源として使用することを特徴とする植物栽
培施設。
Comprising a 1. A fuel cell, the CO 2 gas contained in the exhaust gas of the fuel cell CO 2 MinamotoToshi of plant cultivation, the exhaust heat and the heating heat source to obtain a foster appropriate temperature plants, the electrical output greenhouse at A plant cultivation facility characterized by being used as a power source of electricity.
【請求項2】 前記排ガスを冷却してCO2 ガスと水に
分離する熱交換手段と、温室内のCO2 濃度を測定する
CO2 濃度計と、当該濃度計からの検知信号に基づいて
温室内へ流入するCO2 ガスの量を制御する流量制御装
置とを備えることを特徴とする請求項1に記載の植物栽
培施設。
2. A heat exchange means for cooling the exhaust gas to separate CO 2 gas and water, a CO 2 densitometer for measuring the CO 2 concentration in the greenhouse, and a greenhouse based on a detection signal from the densitometer. The plant cultivation facility according to claim 1, further comprising a flow rate control device that controls the amount of CO 2 gas flowing into the inside.
【請求項3】 前記熱交換手段として、排ガスを水にバ
ブリングしてCO2ガス含む蒸気を得るバブリング装置
を備えることを特徴とする請求項2に記載の植物栽培施
設。
3. The plant cultivation facility according to claim 2, wherein a bubbling device for bubbling exhaust gas into water to obtain vapor containing CO 2 gas is provided as the heat exchange means.
【請求項4】 前記蒸気中のNOx濃度が1ppm以
下、CO濃度が5ppm以下、SOx濃度が0.5pp
m以下であることを特徴とする請求項2または請求項3
の何れかに記載の植物栽培施設。
4. The NOx concentration in the vapor is 1 ppm or less, the CO concentration is 5 ppm or less, and the SOx concentration is 0.5 pp.
It is m or less, Claim 2 or Claim 3 characterized by the above-mentioned.
The plant cultivation facility according to any one of 1.
【請求項5】 前記燃料電池として固体酸化物形燃料電
池を使用した請求項1から請求項4までの何れかに記載
の植物栽培施設。
5. The plant cultivation facility according to claim 1, wherein a solid oxide fuel cell is used as the fuel cell.
JP2002058634A 2002-03-05 2002-03-05 Plant culturing facility Pending JP2003250358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002058634A JP2003250358A (en) 2002-03-05 2002-03-05 Plant culturing facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002058634A JP2003250358A (en) 2002-03-05 2002-03-05 Plant culturing facility

Publications (1)

Publication Number Publication Date
JP2003250358A true JP2003250358A (en) 2003-09-09

Family

ID=28668552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002058634A Pending JP2003250358A (en) 2002-03-05 2002-03-05 Plant culturing facility

Country Status (1)

Country Link
JP (1) JP2003250358A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505904A (en) * 2005-08-31 2009-02-12 バッテル メモリアル インスティテュート Power device and oxygen generator
JP2010246397A (en) * 2009-04-10 2010-11-04 Honda Motor Co Ltd Method and apparatus for cultivating plant
CN103858705A (en) * 2014-03-12 2014-06-18 济南大学 Fuel cell-based auxiliary eco-agricultural exhaust utilization system
CN104094805A (en) * 2013-04-11 2014-10-15 电联运通股份有限公司 Greenhouse cultivation system capable of being automatically controlled
US20150264871A1 (en) * 2014-03-20 2015-09-24 Watt Fuel Cell Corp. Plant cultivation system and method
CN109640624A (en) * 2016-08-22 2019-04-16 双叶产业株式会社 Appliance for applying carbon dioxide
CN110120538A (en) * 2019-04-17 2019-08-13 华电电力科学研究院有限公司 It is a kind of for modern agriculture processing fuel cell comprehensive energy utilize system and method
KR20210041732A (en) * 2019-10-08 2021-04-16 주식회사 디이앤씨 Fuel cell power generation system for greenhouse
JP2022046201A (en) * 2020-09-10 2022-03-23 株式会社光エンジニア Solar sharing system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505904A (en) * 2005-08-31 2009-02-12 バッテル メモリアル インスティテュート Power device and oxygen generator
JP2010246397A (en) * 2009-04-10 2010-11-04 Honda Motor Co Ltd Method and apparatus for cultivating plant
CN104094805A (en) * 2013-04-11 2014-10-15 电联运通股份有限公司 Greenhouse cultivation system capable of being automatically controlled
CN103858705A (en) * 2014-03-12 2014-06-18 济南大学 Fuel cell-based auxiliary eco-agricultural exhaust utilization system
US20150264871A1 (en) * 2014-03-20 2015-09-24 Watt Fuel Cell Corp. Plant cultivation system and method
CN109640624A (en) * 2016-08-22 2019-04-16 双叶产业株式会社 Appliance for applying carbon dioxide
CN109640624B (en) * 2016-08-22 2022-02-01 双叶产业株式会社 Carbon dioxide supply device
CN110120538A (en) * 2019-04-17 2019-08-13 华电电力科学研究院有限公司 It is a kind of for modern agriculture processing fuel cell comprehensive energy utilize system and method
KR20210041732A (en) * 2019-10-08 2021-04-16 주식회사 디이앤씨 Fuel cell power generation system for greenhouse
KR102254370B1 (en) * 2019-10-08 2021-05-21 주식회사 디이앤씨 Fuel cell power generation system for greenhouse
JP2022046201A (en) * 2020-09-10 2022-03-23 株式会社光エンジニア Solar sharing system
JP7347737B2 (en) 2020-09-10 2023-09-20 株式会社光エンジニア solar sharing system

Similar Documents

Publication Publication Date Title
US6446385B1 (en) Greenhouse system with co-generation power supply, heating and exhaust gas fertilization
CA2831835C (en) Method and device for providing heat and carbon dioxide to vegetables and/or algae using power station flue gas
Badji et al. Design, technology, and management of greenhouse: A review
CN103194377B (en) Biogas engineering product and agricultural planting combined comprehensive utilization system
KR101063372B1 (en) Combined heat and power system for greenhouse carbon dioxide enrichment
JP2006262852A (en) Culture system and method for controlling the same
JP2018134104A (en) Carbon dioxide application system, carbon dioxide control device, carbon dioxide application method and program
KR101044375B1 (en) Combined heat and power system with heat recovery steam generator for greenhouse carbon dioxide enrichment
JP2003250358A (en) Plant culturing facility
KR101454416B1 (en) Method and apparatus for supplying exaust gas from combustion apparatus to plants growing facility
US7392615B2 (en) Process to produce a commercial soil additive by extracting waste heat, exhaust gas, and other combustion by-products from a coal power generator
CN216906126U (en) Crop planting shelter for frontier defense and field stations, power supply, rain-drenching irrigation and air-out dehumidification system
CN201398338Y (en) Waterweeds reproduction system
KR20190143045A (en) Plant Growth System Linked to Distributed Generation System
JP2011172541A (en) Multistage utilization system for recyclable energy
JPH11235130A (en) Device for culturing plant
CN214735788U (en) Microalgae culture system utilizing power plant for heating, carbon supplying and light supplementing
KR101533721B1 (en) Clean Energy Farming System
CN210432469U (en) Plant factory based on solar power generation
CN206851512U (en) A kind of colored fish symbiosis greenhouse
CN203256265U (en) Comprehensive utilization system for combining biogas engineering products and agricultural planting
JPH07255280A (en) Ocean mooring type vegetable rearing unit
EP1758445A1 (en) Energy-saving combination
KR970004327B1 (en) Device for providing carbon dioxide
Nenu et al. Energetic and economic considerations on thermal regime effectiveness in a greenhouse.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808