JP7165562B2 - リニア電源回路 - Google Patents

リニア電源回路 Download PDF

Info

Publication number
JP7165562B2
JP7165562B2 JP2018205815A JP2018205815A JP7165562B2 JP 7165562 B2 JP7165562 B2 JP 7165562B2 JP 2018205815 A JP2018205815 A JP 2018205815A JP 2018205815 A JP2018205815 A JP 2018205815A JP 7165562 B2 JP7165562 B2 JP 7165562B2
Authority
JP
Japan
Prior art keywords
voltage
power supply
current
linear power
differential amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018205815A
Other languages
English (en)
Other versions
JP2020071710A (ja
Inventor
勲 田古部
雄平 山口
健 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2018205815A priority Critical patent/JP7165562B2/ja
Publication of JP2020071710A publication Critical patent/JP2020071710A/ja
Application granted granted Critical
Publication of JP7165562B2 publication Critical patent/JP7165562B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous-Control Power Sources That Use Transistors (AREA)

Description

本発明は、リニア電源回路に関する。
LDO[low drop out]などのリニア電源回路は様々なデバイスの電源手段として用いられている。
なお、上記に関連する従来技術の一例としては、特許文献1を挙げることができる。
特開2003-84843号公報
リニア電源回路は、負荷が急激に変化した場合でも出力電圧の変動を小さく抑えられるように、高速応答が可能であることが望ましい。また、例えば車載品の電源手段として用いられるリニア電源回路に関しては、車載品の品質要求の高まりに伴い、天絡したときでもリニア電源回路を確実に保護する需要が高まっている。しかしながら、単純に高耐圧の内部素子でリニア電源回路を構成して天絡保護を実現すると、回路面積が大幅に増大してしまう。したがって、リニア電源回路は、回路面積を大幅に増大させることなく天絡したときの内部素子の破壊を防止できることが望ましい。
本発明は、上記の状況に鑑み、高速応答が可能であって、回路面積を大幅に増大させることなく天絡保護が可能なリニア電源回路を提供することを目的とする。
上記目的を達成するために、本発明に係るリニア電源回路は、入力電圧が印加される入力端と出力電圧が印加される出力端との間に設けられた出力トランジスタと、前記出力電圧の分圧と基準電圧との差に基づいて前記出力トランジスタを駆動するドライバと、電圧クランプ回路と、を備え、前記ドライバは、前記分圧と前記基準電圧との差に応じた電圧を出力する差動増幅器と、前記差動増幅器の出力が一端に印加されグランド電位が他端に印加される容量と、前記差動増幅器の出力に基づく電圧を電流に変換して出力する変換器と、前記変換器の出力を電流増幅する電流増幅器と、を備え、前記差動増幅器及び前記変換器の電源電圧は、前記出力電圧に基づく電圧であり、前記電圧クランプ回路を介して、前記差動増幅器及び前記変換器に供給される構成(第1の構成)とする。
また、上記第1の構成であるリニア電源回路において、前記電圧クランプ回路は、電流ソース型であって前記出力端に接続されるカレントミラー回路と、前記カレントミラー回路の一端に接続される電流源と、前記カレントミラー回路の他端並びに前記差動増幅器及び前記変換器に接続されるツェナーダイオードと、を備える構成(第2の構成)であってもよい。
また、上記第1又は第2の構成であるリニア電源回路において、前記入力端である第1ピンと、前記出力端である第2ピンと、前記グランド電位が印加される第3ピンと、を備え、前記第1ピンと前記第2ピンとが隣り合っている構成(第3の構成)であってもよい。
また、上記第1~第3いずれかの構成であるリニア電源回路において、前記分圧は前記差動増幅器及び前記変換器の電源電圧より低い構成(第4の構成)であってもよい。
また、上記1~第4いずれかの構成であるリニア電源回路において、前記差動増幅器及び前記変換器の耐圧は、前記入力電圧より低い構成(第5の構成)であってもよい。
また、上記第1~第5いずれかの構成であるリニア電源回路において、前記差動増幅器及び前記変換器の耐圧は、前記入力電圧に前記出力電圧に対する前記分圧の比を乗じた値以上である構成(第6の構成)であってもよい。
また、上記第1~第6いずれかの構成であるリニア電源回路において、前記電流増幅器の電源電圧が定電圧である構成(第7の構成)であってもよい。
また、上記第7の構成であるリニア電源回路において、前記差動増幅器及前記変換器の耐圧は、前記電流増幅器の耐圧より低い構成(第8の構成)であってもよい。
また、上記第1~第8いずれかの構成であるリニア電源回路において、前記差動増幅器のゲインは、前記電流増幅器のゲインより小さい構成(第9の構成)であってもよい。
また、上記第1~第9いずれかの構成であるリニア電源回路において、前記電流増幅器は、電流シンク型カレントミラー回路と電流ソース型カレントミラー回路とをそれぞれ複数備え、複数の前記電流シンク型カレントミラー回路と複数の前記電流ソース型カレントミラー回路とが交互に多段に接続され、前記電流シンク型カレントミラー回路それぞれのミラー比が5以下であり、前記電流ソース型カレントミラー回路それぞれのミラー比が5以下である構成(第10の構成)であってもよい。
また、本発明に係る車両は、上記第1~第10いずれかの構成であるリニア電源回路を備える構成(第11の構成)とする。
本発明によれば、リニア電源回路におい高速応答が可能であって、回路面積を大幅に増大させることなく天絡保護が可能である。
本発明者が開発したリニア電源回路の構成を示す図 図1に示すリニア電源回路の出力特性を示すタイムチャート 一実施形態に係るリニア電源回路の構成を示す図 電流増幅器の一構成例を示す図 図3に示すリニア電源回路におけるピン配置の一例を示す平面図である。 図3に示すリニア電源回路におけるピン配置の他の例を示す平面図である。 車両の外観図
<1.高速応答が可能なリニア電源回路>
図1は、高速応答が可能なリニア電源回路として本発明者が開発したリニア電源回路の構成を示す図である。図1に示すリニア電源回路は、入力端T1と、出力端T2と、出力トランジスタ1と、ドライバ2と、基準電圧生成部3と、抵抗4及び5と、を備える。
図1に示すリニア電源回路には出力コンデンサ6及び負荷7が外付けされる。具体的には、出力コンデンサ6及び負荷7が外付けで出力端T2に並列接続される。図1に示すリニア電源回路は、入力電圧VINを降圧して出力電圧VOUTを生成し、出力電圧VOUTを負荷7に供給する。
出力トランジスタ1は、入力電圧VINが印加される入力端T1と出力電圧VOUTが印加される出力端T2との間に設けられる。
ドライバ2は、出力トランジスタ1を駆動する。具体的には、ドライバ2は、出力トランジスタ1のゲートにゲート信号G1を供給して出力トランジスタ1を駆動する。出力トランジスタ1の導通度(裏を返せばオン抵抗値)はゲート信号G1によって制御される。なお、図1に示す構成では、出力トランジスタ1として、PMOSFET[P-channel type MOSFET]が用いられている。従って、ゲート信号G1が低いほど、出力トランジスタ1の導通度が高くなり、出力電圧VOUTが上昇する。逆に、ゲート信号G1が高いほど、出力トランジスタ1の導通度が低くなり、出力電圧VOUTが低下する。ただし、出力トランジスタ1としては、PMOSFETに代えて、NMOSFETを用いてもよいし、バイポーラトランジスタを用いてもよい。
基準電圧生成部3は基準電圧VREFを生成する。抵抗4及び5は、出力電圧VOUTの分圧である帰還電圧VFBを生成する。
ドライバ2の非反転入力端(+)に基準電圧VREFが印加され、ドライバ2の反転入力端(-)に帰還電圧VFBが印加される。ドライバ2は、帰還電圧VFBと基準電圧VREFとの差分値ΔV(=VREF-VFB)に基づいて出力トランジスタ1を駆動する。ドライバ2は、差分値ΔVが大きいほどゲート信号G1をくし、逆に、差分値ΔVが小さいほどゲート信号G1をくする。
ドライバ2は、差動増幅器21と、容量22と、PMOSFET23と、電流増幅器24と、PMOSFET25と、を備える。
差動増幅器21は、帰還電圧VFBと基準電圧VREFとの差に応じた電圧を出力する。差動増幅器21の電源電圧は出力電圧VOUTである。すなわち、差動増幅器21は、出力電圧VOUTとグランド電位との間の電圧で駆動する。
差動増幅器21の耐圧は、電流増幅器24の耐圧より低い。また差動増幅器21のゲインは、電流増幅器24のゲインより小さい。これにより、差動増幅器21の小型化を図ることができる。
容量22の一端に差動増幅器21の出力が印加され、容量22の他端にグランド電位が印加される。
PMOSFET23のソースに出力電圧VOUTが印加され、PMOSFET23のゲートに差動増幅器21の出力に基づく電圧(差動増幅器21と容量22との接続ノード電圧)が印加される。PMOSFET23は、差動増幅器21の出力に基づく電圧を電流に変換してドレインから出力する。差動増幅器21と容量22との接続ノードが高周波帯域でグランド接地になるため、ドライバ2の高速応答を実現することができる。
電流増幅器24は、PMOSFET23のドレインから出力される電流Iaを電流増幅する。電流増幅器24の電源電圧は定電圧VREGである。すなわち、電流増幅器24は、定電圧VREGとグランド電位との間の電圧で駆動する。
PMOSFET25は、出力トランジスタ1とともにカレントミラー回路を構成している。PMOSFET25は、電流増幅器24から出力される電流Ibを電圧に変換して出力トランジスタ1のゲートに供給する。
図2は、図1に示すリニア電源回路の出力特性を示すタイムチャートである。図2は、出力電圧VOUTの設定値がVSであり、出力コンデンサ6の静電容量が所定値である状態において、負荷7を第1の状態から第2の状態に切り替えた後再び第1の状態に戻した場合のタイムチャートである。第1の状態は出力電流IOUTの理論値がI1となる軽負荷状態であり、第2の状態は出力電流IOUTの理論値がI2(>I1)となる重負荷状態である。
図1に示すリニア電源回路は高速応答が可能であるため、行き過ぎ量OSを小さくすることができる。ここで、図1に示す回路構成において天絡保護を実現すると、差動増幅器21及びPMOSFET23の耐圧を入力電圧VIN以上にする必要があり、入力電圧VINの値が出力電圧VOUTの設定値に比して非常に大きい場合に、差動増幅器21及びPMOSFET23の回路面積が大幅に増大してしまう。その結果、差動増幅器21での応答時間に遅延が生じて図1に示すリニア電源回路の応答性が劣化する。
<2.一実施形態>
図3は、図1に示すリニア電源回路の問題点を解決するために本発明者が開発したリニア電源回路の一実施形態を示す図である。図3において図1と同一の部分には同一の符号を付し詳細な説明を省略する。
図3に示すリニア電源回路は、電圧クランプ回路8を備える点で、図1に示すリニア電源回路と異なっている。
図3に示すリニア電源回路は、図1に示すリニア電源回路と同様に、差動増幅器21と容量22との接続ノードが高周波帯域でグランド接地になるため、ドライバ2の高速応答を実現することができる。
図3に示すリニア電源回路は、上記の通り電圧クランプ回路8を備える。そして、差動増幅器21及びPMOSFET23の電源電圧は、出力電圧VOUTであり、電圧クランプ回路8を介して差動増幅器21及びPMOSFET23に供給される。したがって、図3に示すリニア電源回路は、天絡が生じた場合でも差動増幅器21及びPMOSFET23の電源電圧を電圧クランプ回路8によってクランプされる電圧に抑えることができる。つまり、図3に示すリニア電源回路は、差動増幅器21及びPMOSFET23の高耐圧化を行うことなく電圧クランプ回路8の追加のみで天絡保護を実現できるので、回路面積を大幅に増大させることなく天絡保護が可能である。具体的には、図3に示すリニア電源回路において、差動増幅器21及びPMOSFET23の耐圧を入力電圧VINより低くすればよい。
また、図3に示すリニア電源回路によると、天絡保護が可能である構成であっても、差動増幅器21の高耐圧化(回路面積増加)を抑えることができるので、高速応答が可能である。
電圧クランプ回路8は、カレントミラー回路81と、電流源82と、ツェナーダイオード83と、を備える。カレントミラー回路81は電流ソース型のカレントミラー回路である。カレントミラー回路81を構成する第1PMOSFET及び第2PMOSFETの各ソースに出力電圧VOUTが印加される。上記第1PMOSFETのゲート及びドレイン並びに上記第2PMOSFETのゲートは電流源82の一端に接続される。電流源82の他端にグランド電位が接続される。上記第2PMOSFETのドレインはツェナーダイオード83のカソード、差動増幅器21の電源電圧入力端子、及びPMOSFET23のソースに接続される。ツェナーダイオード83のアノードはグランド電位に接続される。
電圧クランプ回路8は、差動増幅器21及びPMOSFET23の電源電圧をツェナーダイオード83のツェナー電圧にクランプする。ツェナーダイオード83のツェナー電圧は、例えば想定される負荷7の変動から求まる出力電圧VOUTの最大値より大きい値に設定すればよい。これにより、負荷7の変動が想定される範囲内であれば、差動増幅器21及びPMOSFET23の電源電圧を、常時、出力電圧VOUTに依存する電圧にすることができるので、高速応答が可能である。したがって、クランプ電圧(電圧クランプ回路8の回路構成ではツェナーダイオード83のツェナー電圧)は、出力電圧VOUTの設定値VS(図2参照)より大きいことが望ましい。
また、電圧クランプ回路8の回路構成によると、天絡が生じている場合でも電圧クランプ回路8から差動増幅器21及びPMOSFET23に供給される電流が、電流源82のインピーダンス及びカレントミラー回路81のミラー比(上記第1PMOSFETのサイズに対する上記第2PMOSFETのサイズ)によって制限される。したがって、天絡が生じている場合でも消費電流を抑えることができる。
なお、差動増幅器21及びPMOSFET23の電源電圧として、出力電圧VOUTの代わりに、出力電圧VOUTより低い電圧であって出力電圧VOUTに依存する電圧を用いてもよい。すなわち、電圧クランプ回路8に出力電圧VOUTより低い電圧であって出力電圧VOUTに依存する電圧を供給してもよい。ただし、帰還電圧VFBを差動増幅器21及びPMOSFET23の電源電圧より低くする。これにより、差動増幅器21が正常に動作する。
差動増幅器21及びPMOSFET23の耐圧は、入力電圧VINに出力電圧VOUTに対する帰還電圧VFBの比(=VFB/VOUT)を乗じた値以上である。これにより、天絡時にドライバ2の非反転入力端(+)に印加される電圧によって差動増幅器21が破壊することを防止することができる。
差動増幅器21の耐圧は、電流増幅器24の耐圧より低い。また差動増幅器21のゲインは、電流増幅器24のゲインより小さい。これにより、差動増幅器21の小型化を図ることができる。
PMOSFET23の耐圧は、電流増幅器24の耐圧より低い。これにより、PMOSFET23の小型化を図ることができる。
<3.電流増幅器の一構成例>
図4は、電流増幅器24一構成例を示す図である。電流増幅器24は、電流シンク型カレントミラー回路CM_1、CM_2、・・・、及びCM_nと、電流ソース型カレントミラー回路CM_3、・・・、及びCM_n-1(ただしCM_n-1は図4において不図示)と、を備える。電流シンク型カレントミラー回路CM_1及び定電流I1を流す定電流源CS1と電流シンク型カレントミラー回路CM_nとの間において電流増幅器24の入力から出力に向かって、電流シンク型カレントミラー回路と電流ソース型カレントミラー回路とが交互に配置される。各カレントミラー回路で発生するポールをできるだけ低帯域に寄らないようにするために、各カレントミラー回路のミラー比(入力側トランジスタのサイズに対する出力側トランジスタのサイズ)は5以下であることが好ましく、より好ましくは3以下である。但し、各カレントミラー回路のミラー比を小さくするほど、電流増幅器24の回路面積は大きくなってしまうので、周波数特性の改善と小型化とのトレードオフを考慮して各カレントミラー回路のミラー比を決定すればよい。
<4.ピン配置>
図5は、半導体集積回路装置(パッケージ品)である図3に示すリニア電源回路におけるピン配置の一例を示す平面図である。図5に示すピン配置例では、略矩形であるパッケージの一辺SD1に第1ピンP1~第3ピンP1が設けられる。第1ピンP1は、図3に示すリニア電源回路の外部から入力電圧VINが印加されるピンである。第2ピンP2は、図3に示すリニア電源回路によって生成される出力電圧VOUTが印加されるピンである。第3ピンP3は、グランド電位が接続されるピンである。図5に示すピン配置例では、第1ピンP1と第2ピンP2との間に第3ピンP3が配置される。この配置により、単一の隣接ピン間ショート(第1ピンP1と第3ピンP3とのショート、又は、第2ピンP2と第3ピンP3とのショート)が生じただけでは天絡が生じないので、天絡の発生を抑制することができる。
しかしながら、図3に示すリニア電源回路は天絡保護を行う回路であるため、仮に天絡が発生しても破壊を防止することができる。したがって、図3に示すリニア電源回路において図6に示すピン配置例を採用してもよい。すなわち、図3に示すリニア電源回路は、ピン配置の自由度が高い。なお、図6において図5と同一の部分には同一の符号を付す。
図6に示すピン配置例でも、図5に示すピン配置例と同様に、略矩形であるパッケージの一辺SD1に第1ピンP1~第3ピンP1が設けられる。図6に示すピン配置例は、第1ピンP1と第2ピンP2とが隣接し、第2ピンP2と第3ピンP3とが隣接する点で図5に示すピン配置例と異なっている。
<5.用途>
図7は、車両Xの外観図である。本構成例の車両Xは、不図示のバッテリから出力される電圧の供給を受けて動作する種々の電子機器X11~X18を搭載している。なお、本図における電子機器X11~X18の搭載位置は、図示の便宜上、実際とは異なる場合がある。
電子機器X11は、エンジンに関連する制御(インジェクション制御、電子スロットル制御、アイドリング制御、酸素センサヒータ制御、及び、オートクルーズ制御など)を行うエンジンコントロールユニットである。
電子機器X12は、HID[high intensity discharged lamp]やDRL[daytime running lamp]などの点消灯制御を行うランプコントロールユニットである。
電子機器X13は、トランスミッションに関連する制御を行うトランスミッションコントロールユニットである。
電子機器X14は、車両Xの運動に関連する制御(ABS[anti-lock brake system]制御、EPS[electric power steering]制御、電子サスペンション制御など)を行う制動ユニットである。
電子機器X15は、ドアロックや防犯アラームなどの駆動制御を行うセキュリティコントロールユニットである。
電子機器X16は、ワイパー、電動ドアミラー、パワーウィンドウ、ダンパー(ショックアブソーバー)、電動サンルーフ、及び、電動シートなど、標準装備品やメーカーオプション品として、工場出荷段階で車両Xに組み込まれている電子機器である。
電子機器X17は、車載A/V[audio/visual]機器、カーナビゲーションシステム、及び、ETC[electronic toll collection system]など、ユーザオプション品として任意で車両Xに装着される電子機器である。
電子機器X18は、車載ブロア、オイルポンプ、ウォーターポンプ、バッテリ冷却ファンなど、高耐圧系モータを備えた電子機器である。
なお、先に説明したリニア電源回路は、電子機器X11~X18のいずれにも組み込むことが可能である。
<6.その他>
上記実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態の説明ではなく、特許請求の範囲によって示されるものであり、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。例えば、リニア電源回路は、図3中の電圧クランプ回路8とは異なる回路構成の電圧クランプ回路を備えてもよい。
1 出力トランジスタ
2 ドライバ
8 電圧クランプ回路
81 カレントミラー回路
82 電流源
83 ツェナーダイオード
21 差動増幅器
22 容量
23 PMOSFET(変換器の一例)
24 電流増幅器
X 車両

Claims (11)

  1. 入力電圧が印加される入力端と出力電圧が印加される出力端との間に設けられた出力トランジスタと、
    前記出力電圧の分圧と基準電圧との差に基づいて前記出力トランジスタを駆動するドライバと、
    電圧クランプ回路と、
    を備え、
    前記ドライバは、前記分圧と前記基準電圧との差に応じた電圧を出力する差動増幅器と、前記差動増幅器の出力が一端に印加されグランド電位が他端に印加される容量と、前記差動増幅器の出力に基づく電圧を電流に変換して出力する変換器と、前記変換器の出力を電流増幅する電流増幅器と、を備え、
    前記差動増幅器及び前記変換器の電源電圧は、前記出力電圧に基づく電圧であり、前記電圧クランプ回路を介して、前記差動増幅器及び前記変換器に供給される、
    リニア電源回路。
  2. 前記電圧クランプ回路は、
    電流ソース型であって前記出力端に接続されるカレントミラー回路と、
    前記カレントミラー回路の一端に接続される電流源と、
    前記カレントミラー回路の他端並びに前記差動増幅器及び前記変換器に接続されるツェナーダイオードと、
    を備える、請求項1に記載のリニア電源回路。
  3. 前記入力端である第1ピンと、
    前記出力端である第2ピンと、
    前記グランド電位が印加される第3ピンと、を備え、
    前記第1ピンと前記第2ピンとが隣り合っている、請求項1又は請求項2に記載のリニア電源回路。
  4. 前記分圧は前記差動増幅器及び前記変換器の電源電圧より低い、請求項1~3のいずれか一項に記載のリニア電源回路。
  5. 前記差動増幅器及び前記変換器の耐圧は、前記入力電圧より低い、請求項1~4のいずれか一項に記載のリニア電源回路。
  6. 前記差動増幅器及び前記変換器の耐圧は、前記入力電圧に前記出力電圧に対する前記分圧の比を乗じた値以上である、請求項1~5のいずれか一項に記載のリニア電源回路。
  7. 前記電流増幅器の電源電圧が定電圧である、請求項1~6のいずれか一項に記載のリニア電源回路。
  8. 前記差動増幅器及前記変換器の耐圧は、前記電流増幅器の耐圧より低い、請求項7に記載のリニア電源回路。
  9. 前記差動増幅器のゲインは、前記電流増幅器のゲインより小さい、請求項1~8のいずれか一項に記載のリニア電源回路。
  10. 前記電流増幅器は、電流シンク型カレントミラー回路と電流ソース型カレントミラー回路とをそれぞれ複数備え、
    複数の前記電流シンク型カレントミラー回路と複数の前記電流ソース型カレントミラー回路とが交互に多段に接続され、
    前記電流シンク型カレントミラー回路それぞれのミラー比が5以下であり、
    前記電流ソース型カレントミラー回路それぞれのミラー比が5以下である、請求項1~9のいずれか一項に記載のリニア電源回路。
  11. 請求項1~10のいずれか一項に記載のリニア電源回路を備える、車両。
JP2018205815A 2018-10-31 2018-10-31 リニア電源回路 Active JP7165562B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018205815A JP7165562B2 (ja) 2018-10-31 2018-10-31 リニア電源回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018205815A JP7165562B2 (ja) 2018-10-31 2018-10-31 リニア電源回路

Publications (2)

Publication Number Publication Date
JP2020071710A JP2020071710A (ja) 2020-05-07
JP7165562B2 true JP7165562B2 (ja) 2022-11-04

Family

ID=70547837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018205815A Active JP7165562B2 (ja) 2018-10-31 2018-10-31 リニア電源回路

Country Status (1)

Country Link
JP (1) JP7165562B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7489244B2 (ja) * 2020-07-09 2024-05-23 ローム株式会社 リニア電源回路
WO2023132118A1 (ja) * 2022-01-06 2023-07-13 ローム株式会社 リニア電源回路及び車両
WO2023228552A1 (ja) * 2022-05-24 2023-11-30 ローム株式会社 リニアレギュレータ、半導体装置、スイッチング電源

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353020A (ja) 1999-06-09 2000-12-19 Toshiba Corp レギュレータ回路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6369554B1 (en) * 2000-09-01 2002-04-09 Marvell International, Ltd. Linear regulator which provides stabilized current flow
JP5697382B2 (ja) * 2010-08-31 2015-04-08 富士通テン株式会社 定電圧回路
JP6110615B2 (ja) * 2012-08-29 2017-04-05 ローム株式会社 リーク電流吸収回路、電圧生成回路、および電源装置
JP6370126B2 (ja) * 2014-06-23 2018-08-08 新日本無線株式会社 電圧レギュレータ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353020A (ja) 1999-06-09 2000-12-19 Toshiba Corp レギュレータ回路

Also Published As

Publication number Publication date
JP2020071710A (ja) 2020-05-07

Similar Documents

Publication Publication Date Title
JP7177661B2 (ja) リニア電源回路
US11728719B2 (en) Linear power supply circuit and source follower circuit
JP7165562B2 (ja) リニア電源回路
US11870241B2 (en) Power control device
JP7230249B2 (ja) リニア電源回路
US11550349B2 (en) Linear power supply circuit
US11068003B2 (en) Differential amplifier
JP7489244B2 (ja) リニア電源回路
WO2023132118A1 (ja) リニア電源回路及び車両
WO2022185945A1 (ja) リニア電源回路
JP2023115986A (ja) 電源回路及び車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221024

R150 Certificate of patent or registration of utility model

Ref document number: 7165562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150