JP7164723B2 - 複数のメモリセルに同時にアクセスするためのシステムおよび技法 - Google Patents

複数のメモリセルに同時にアクセスするためのシステムおよび技法 Download PDF

Info

Publication number
JP7164723B2
JP7164723B2 JP2021533840A JP2021533840A JP7164723B2 JP 7164723 B2 JP7164723 B2 JP 7164723B2 JP 2021533840 A JP2021533840 A JP 2021533840A JP 2021533840 A JP2021533840 A JP 2021533840A JP 7164723 B2 JP7164723 B2 JP 7164723B2
Authority
JP
Japan
Prior art keywords
memory
memory cell
polarity
programming
read
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021533840A
Other languages
English (en)
Other versions
JP2022512436A (ja
Inventor
フェデリコ ピオ
Original Assignee
マイクロン テクノロジー,インク.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロン テクノロジー,インク. filed Critical マイクロン テクノロジー,インク.
Publication of JP2022512436A publication Critical patent/JP2022512436A/ja
Application granted granted Critical
Publication of JP7164723B2 publication Critical patent/JP7164723B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/003Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0033Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0061Timing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0064Verifying circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • G11C2013/0045Read using current through the cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0073Write using bi-directional cell biasing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0088Write with the simultaneous writing of a plurality of cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)

Description

クロスリファレンス
本特許出願は、2019年12月13日に提出された、Pioによる「SYSTEMS AND TECHNIQUES FOR ACCESSING MULTIPLE MEMORY CELLS CONCURRENTLY」という表題のPCT出願番号PCT/US2019/066202に対する優先権を主張するものであり、それは、2019年12月12日に提出された、Pioによる「SYSTEMS AND TECHNIQUES FOR ACCESSING MULTIPLE MEMORY CELLS CONCURRENTLY」という表題の米国特許出願第16/712,682号、および2018年12月19日に提出された、Pioによる「SYSTEMS AND TECHNIQUES FOR ACCESSING MULTIPLE MEMORY CELLS CONCURRENTLY」という表題の米国仮特許出願第62/782,015号に対する優先権を主張するものであり、これらの各々が、本出願の譲受人に委譲されかつ全体が参照により明白に本明細書に組み込まれている。
以下は、概して、メモリセルにおけるプログラミング強化、およびより詳細には、自己選択メモリにおけるプログラミング強化に関する。
メモリデバイスは、コンピュータ、ワイヤレス通信デバイス、カメラ、デジタルディスプレイ、および同様のものなど、様々な電子デバイスに情報を格納するために広く使用される。情報は、メモリデバイスの異なる状態をプログラムすることによって格納される。例えば、バイナリデバイスは、論理‘1’または論理‘0’によってしばしば表される2つの状態を有する。他のシステムでは、3つ以上の状態が格納される場合がある。格納された情報にアクセスするため、電子デバイスの構成要素は、メモリデバイス内の格納された状態を読み出す、または感知することができる。情報を格納するため、電子デバイスの構成要素は、メモリデバイス内の状態を書き込む、またはプログラムすることができる。
磁気ハードディスク、ランダム・アクセス・メモリ(RAM)、ダイナミックRAM(DRAM)、同期型ダイナミックRAM(SDRAM)、強誘電体RAM(FeRAM)、磁気RAM(MRAM)、抵抗性RAM(RRAM)、リード・オンリ・メモリ(ROM)、フラッシュメモリ、相変化メモリ(PCM)、およびその他を含む、複数のタイプのメモリデバイスが存在する。メモリデバイスは、揮発性または不揮発性であり得る。不揮発性メモリ、例えば、FeRAMは、たとえ外部電源がなくても、それらの格納された論理状態を長期間にわたって維持し得る。揮発性メモリデバイス、例えば、DRAMは、それらが外部電源によって定期的にリフレッシュされない限り、それらの格納された状態を経時的に失い得る。メモリデバイスを改善することは、いくつかある尺度の中でも、メモリセル密度を増大させること、読み出し/書き込み速度を増大させること、信頼性を増大させること、データ保持を増大させること、電力消費を低減すること、または製造費用を低減することを含み得る。
一部のメモリデバイスは、メモリセルのアレイを含む複数のメモリタイルを含み得る。各メモリタイルは、メモリタイルのメモリセルにアクセスするために使用され得る単一の行デコーダおよび単一の列デコーダを含み得る。一部のメモリタイルにおいては、単一のメモリセルのみが、アクセス動作中にアクセスされ得る。
本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートする例となるメモリアレイを例証する図である。 本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートする例となるメモリアレイを例証する図である。 本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートする略図の例を例証する図である。 本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートするメモリタイルの例を例証する図である。 本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートする略図の例を例証する図である。 本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートするメモリタイルの例を例証する図である。 本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートする略図の例を例証する図である。 本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートする略図の例を例証する図である。 本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートする回路の例を例証する図である。 本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートするメモリタイルの例を例証する図である。 本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートするメモリデバイスの例を例証する図である。 本開示の実施形態に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法のための方法を例証する図である。 本開示の実施形態に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法のための方法を例証する図である。 本開示の実施形態に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法のための方法を例証する図である。 本開示の実施形態に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法のための方法を例証する図である。 本開示の実施形態に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法のための方法を例証する図である。 本開示の実施形態に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法のための方法を例証する図である。
一部のメモリセルは、カルコゲナイド材料で形成され得、このカルコゲナイド材料は、電圧が印加されるとき、イオンをカルコゲナイド材料の片面の方へ移動させるか、または密集させる。時に自己選択メモリセルと称されるこれらのメモリセルは、論理状態(例えば、論理‘0’または論理‘1’)をメモリセルに格納するために、イオン移動または密集を利用し得る。カルコゲナイド材料の性質に起因して、自己選択メモリセルは、異なる極性のプログラミングパルスを使用してプログラムされ得、自己選択メモリセルは、異なる極性の読み出しパルスを使用して読み出され得る。多くのメモリタイルにおいて、単一のメモリセルのみが一度にアドレス指定可能であり、このことが欠点および制限をもたらす。アクセスパルスにおける異なる極性の使用は、自己選択メモリセルを含むメモリデバイスの機能においていくつかの利点を提供し得る。
メモリタイルの複数のメモリセルに同時にアクセスするための技法が提供される。メモリタイルは、行デコーダおよび列デコーダを使用してアドレス指定可能な複数の自己選択メモリセルを含み得る。メモリタイルの第1の自己選択メモリセルにアクセスするため、メモリコントローラは、第1の極性を有する第1のパルスを第1の自己選択メモリセルに印加し得る。メモリコントローラはまた、第1の極性とは異なる第2の極性を有する第2のパルスを使用して、第1の自己選択メモリセルにアクセスすることと同時にメモリタイルの第2の自己選択メモリセルにアクセスし得る。メモリコントローラは、メモリタイルの非選択の自己選択メモリセルのディスターバンスを緩和するために第1のパルスおよび第2のパルスの特性を決定し得る。そのようなメモリタイルにおいて、2つの自己選択メモリセルが同時に読み出され得るか、または2つの自己選択メモリセルが同時にプログラムされ得、あるいは、ある自己選択メモリセルが読み出され得、別の自己選択メモリセルが同時にプログラムされ得る。
図1は、本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートするメモリタイル100の例を例証する。メモリデバイスは、複数のメモリタイル100を含み得る。メモリタイル100は、異なる状態を格納するようにプログラム可能であるメモリセル105を含む。各メモリセル105は、論理‘0’および論理‘1’で表される2つの状態を格納するようにプログラム可能であり得る。場合によっては、メモリセル105は、3つ以上の論理状態を格納するように構成される。
メモリタイル100は、アクセス動作中にアドレス指定可能であるメモリセルのブロックを表し得る。メモリタイル100は、アクセス動作中にメモリタイル100の選択メモリセルをアドレス指定するための行デコーダ120および列デコーダ130を含み得る。一部のメモリ技術において、メモリタイル100の単一のメモリセル105のみが一度にアクセス可能である。これは、複数のアクセス線(例えば、ワード線110および/またはディジット線115)が同じアクセス動作中にバイアスされる場合に発生し得る非選択のメモリセルに対するディスターバンスに起因する。同じアクセス動作持続期間中に同じメモリタイル100の2つ以上のメモリセル105に同時にアクセスするためのシステムおよび技法が本明細書に提供される。
メモリタイル100は、2次元(2D)メモリアレイが互いの上に形成される3次元(3D)メモリアレイであり得る。これは、2Dアレイと比較して単一のダイまたは基板に形成され得るメモリセルの数を増大させ得、ひいてはこれが、生産費用を低減させ得るか、またはメモリアレイの性能を増大させ得るか、またはその両方であり得る。図1に描写される例によると、メモリタイル100は、2段のメモリセル105を含み、故に、3次元メモリアレイと見なされ得るが、段の数は2に限定されない。各段は、メモリセル105が各段にわたって互いとほぼ整列され得るように整列または位置付けられ得、メモリセルスタック145を形成する。
メモリセル105の各行は、アクセス線110およびアクセス線115に接続される。アクセス線110は、それぞれワード線110およびディジット線115としても知られ得る。ディジット線115は、ディジット線115としても知られ得る。ワード線およびディジット線、またはそれらの類似物への言及は、理解または動作を失うことなく置き換え可能である。ワード線110およびディジット線115は、アレイを作成するために、互いに対して実質的に垂直であり得る。メモリセルスタック145内の2つのメモリセル105は、ディジット線115などの共通の導電線を共有し得る。すなわち、ディジット線115は、上方メモリセル105の下部電極および下方メモリセル105の上部電極と電子通信状態にあり得る。他の構成が可能であり得、例えば、メモリセル105は、図3に関連したメモリセル105-cなど、非対称形状であり得る。
一般に、1つのメモリセル105は、ワード線110およびディジット線115などの2つの導電線の交差点に位置し得る。この交差点は、メモリセルのアドレスと称され得る。標的メモリセル105(すなわち、選択メモリセル)は、励起されたワード線110およびディジット線115の交差点に位置するメモリセル105であり得、すなわち、ワード線110およびディジット線115は、それらの交差点におけるメモリセル105を読み出す、またはこれに書き込むために、励起され得る。同じワード線110またはディジット線115と電子通信状態にある(例えば、接続される)他のメモリセル105は、非標的メモリセル105と称され得る。いくつかのメモリタイルにおいて、メモリタイル100の他の非標的メモリセル105に対して発生し得るディスターバンスに起因して、単一のメモリセル105のみが、アクセス動作中に標的にされ得る。本開示において、単一のアクセス動作持続期間中にメモリタイル100の2つ以上のメモリセルを標的とするためのシステムおよび技法が論じられる。
上で論じられるように、電極は、メモリセル105およびワード線110またはディジット線115に結合され得る。電極という用語は、導電体を指し得、また場合によっては、メモリセル105への電気接点として用いられ得る。電極は、メモリタイル100の素子または構成要素間の導電経路を提供する、トレース、ワイヤ、導電線、導電層、または同様のものを含み得る。
読み出しおよび書き込みなどの動作は、ワード線110およびディジット線115を活性化または選択することによって、メモリセル105に対して実施され得、これは、電圧または電流をそれぞれの線に印加すること(例えば、読み出しパルス)を含み得る。ワード線110およびディジット線115は、金属(例えば、銅(Cu)、アルミニウム(Al)、金(Au)、タングステン(W)、チタン(Ti)など)、金属合金、炭素、導電的にドープされた半導体、または他の導電材料、合金、もしくは化合物など、導電材料で作製され得る。メモリセル105を選択する際、例えば、セレン(Se)イオンの移動が、セルの論理状態を設定するために利用され得る。追加的または代替的に、他の導電材料のイオンが、セレン(Se)イオンに加えて、またはその代わりに、移動し得る。
例えば、メモリセルは、セレンを含むメモリストレージ素子を含み得るメモリセル105に電気パルス(例えば、プログラミングパルス)を提供することによってプログラムされ得る。プログラミングパルスは、例えば、第1のアクセス線(例えば、ワード線110)または第2のアクセス線(例えば、ディジット線115)を介して提供され得る。プログラミングパルスを提供する際、イオンは、プログラミングパルスの極性および/またはメモリセル105の電流状態に応じて、メモリストレージ素子内を移動し得る。故に、メモリストレージ素子の第1の側面または第2の側面に対するイオンおよび/またはセレンの集中は、第1のアクセス線および第2のアクセス線によってメモリストレージ素子に印加される電圧の極性および/または大きさに少なくとも部分的に基づき得る。場合によっては、メモリストレージ素子は、非対称形状を有し得る。そのような非対称形状は、イオンを、メモリストレージ素子の1つの部分に、メモリストレージ素子の別の部分よりも密集させ得る。
セルを読み出すため、電圧(例えば、読み出しパルス)が、メモリセル105に印加され得、結果として生じる電流または電流が流れ始める閾値電圧は、論理‘1’または論理‘0’状態を表し得る。メモリストレージ素子の一方の端または他方の端におけるセレンイオンの密集は、抵抗率および/または閾値電圧に影響を及ぼし得、結果として、論理状態間のセル応答により大きい違いをもたらす。
メモリセル105にアクセスすることは、行デコーダ120および列デコーダ130を通じて制御され得る。例えば、行デコーダ120は、メモリコントローラ140から行アドレスを受信し、受信した行アドレスに基づいて適切なワード線110を活性化し得る。同様に、列デコーダ130は、メモリコントローラ140から列アドレスを受信し、適切なディジット線115を活性化する。故に、ワード線110およびディジット線115を活性化することによって、メモリセル105はアクセスされ得る。
アクセスの際、メモリセル105は、感知構成要素125によって読み出され得るか、または感知され得る。例えば、感知構成要素125は、メモリセル105にアクセスすることによって生成される信号に基づいて、メモリセル105の格納された論理状態を決定するように構成され得る。信号は、電圧または電流を含み得、感知構成要素125は、電圧センス増幅器、電流センス増幅器、または両方を含み得る。例えば、電圧が、(対応するワード線110およびディジット線115を使用して)メモリセル105に印加され得、結果として生じる電流の大きさは、メモリセル105の電気抵抗に依存し得る。同様に、電流が、メモリセル105に印加され得、電流を作成するための電圧の大きさは、メモリセル105の電気抵抗に依存し得る。感知構成要素125は、信号を検出および増幅するために様々なトランジスタまたは増幅器を含み得、これは、ラッチングと称され得る。メモリセル105の検出された論理状態は、次いで、入力/出力135として出力され得る。場合によっては、感知構成要素125は、列デコーダ130または行デコーダ120の部分であり得る。または、感知構成要素125は、列デコーダ130もしくは行デコーダ120に接続され得るか、またはこれと電子通信状態にあり得る。
メモリセル105は、関連ワード線110およびディジット線115を同様に活性化することによって、プログラムされ得、または書き込まれ得、すなわち、論理値が、メモリセル105に格納され得る。列デコーダ130または行デコーダ120は、メモリセル105に書き込まれるべきデータ、例えば、入力/出力135を受容し得る。自己選択メモリの場合、メモリセル105は、メモリストレージ素子に電流を流すことによって、書き込まれ得る(またはプログラムされ得る)。メモリセル105に書き込まれた論理状態(例えば、論理‘1’または論理‘0’)に応じて、セレンイオンは、メモリストレージ素子と接触している特定の電極において、またはその近くに密集し得る。例えば、メモリセル105の極性に基づいて、第1の電極における、またはその近くでのイオン密集は、論理‘1’状態を表す第1の閾値電圧を結果としてもたらし得、第2の電極における、またはその近くでのイオン密集は、論理‘0’状態を表す、第1の閾値電圧とは異なる第2の閾値電圧を結果としてもたらし得る。第1の閾値電圧と第2の閾値電圧との差は、図3を参照して説明されるものを含む、非対称であるメモリストレージ素子においてより顕著であり得る。
いくつかのメモリアーキテクチャにおいて、メモリセル105にアクセスすることは、格納された論理状態を劣化させる、または破壊し得、再書き込みまたはリフレッシュ動作が、元の論理状態をメモリセル105へ戻すために実施され得る。DRAMにおいては、例えば、論理格納キャパシタは、感知動作中、部分的または完全に放電され得、格納された論理状態を破損させる。そのため、論理状態は、感知動作後に再書き込みされ得る。追加的に、単一のワード線110を活性化することは、行内のすべてのメモリセルの放電を結果としてもたらし得、故に、行内のすべてのメモリセル105が再書き込みされる必要があり得る。しかしながら、PCMおよび/または自己選択メモリなどの不揮発性メモリにおいては、メモリセル105にアクセスすることは、論理状態を破壊しないことがあり、故に、メモリセル105は、アクセス後に再書き込みを必要としない場合がある。
DRAMを含むいくつかのメモリアーキテクチャは、それらが外部電源によって定期的にリフレッシュされない限り、それらの格納された状態を経時的に失い得る。例えば、荷電キャパシタは、漏れ電流により次第に放電されるようになり得、結果として、格納された情報の損失をもたらす。これらのいわゆる揮発性メモリデバイスのリフレッシュレートは、比較的高く、例えば、DRAMでは1秒あたり数十回のリフレッシュ動作であり得、これは、著しい電力消費を結果としてもたらし得る。メモリアレイが大きくなればなるほど、増大した電力消費が、特に、バッテリなどの有限の電源に依存するモバイルデバイスでは、メモリアレイの展開または動作(例えば、電力供給、熱生成、材料制限など)を抑制し得る。以下に論じられるように、不揮発性PCMおよび/または自己選択メモリセルは、他のメモリアーキテクチャに対して改善した性能を結果としてもたらし得る有益な性質を有し得る。例えば、PCMおよび/または自己選択メモリは、DRAMに匹敵する読み出し/書き込み速度をもたらし得るが、不揮発性であり、増大したセル密度を可能にし得る。
メモリコントローラ140は、様々な構成要素、例えば、行デコーダ120、列デコーダ130、および感知構成要素125を通じて、メモリセル105の動作(読み出し、書き込み、再書き込み、リフレッシュ、放電など)を制御し得る。場合によっては、行デコーダ120、列デコーダ130、および感知構成要素125のうちの1つまたは複数は、メモリコントローラ140と共同設置され得る。メモリコントローラ140は、所望のワード線110およびディジット線115を活性化するために、行および列アドレス信号を生成し得る。メモリコントローラ140はまた、メモリタイル100の動作中に使用される様々な電圧または電流を生成および制御し得る。例えば、それは、1つまたは複数のメモリセル105にアクセスした後、ワード線110またはディジット線115に放電電圧を印加し得る。
一般に、本明細書内で論じられる印加された電圧または電流の振幅、形状、極性、または持続期間は、調整され得るか、または様々であり得、メモリタイル100を動作することにおいて論じられる様々な動作によって異なり得る。さらには、メモリタイル100内の1つ、複数、またはすべてのメモリセル105は、同時にアクセスされ得、例えば、メモリタイル100の複数またはすべてのセルは、すべてのメモリセル105、またはメモリセル105の群が単一の論理状態に設定されるリセット動作中、同時にアクセスされ得る。
図2は、本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートする例となるメモリアレイ200を例証する。メモリアレイ200は、図1を参照して説明されるメモリタイル100の例であり得る。
メモリアレイ200は、複数のメモリセル105-a、105-bなど、複数のワード線110-a、110-b、および複数のディジット線115-a、115-bを含み得、これらは、図1を参照して説明されるメモリセル105、ワード線110、およびディジット線115の例であり得る。メモリセル105-aは、上部電極210、下部電極215、および、カルコゲナイドメモリ構成要素と称され得るメモリストレージ素子205を含み得る。場合によっては、メモリセル105-aは、自己選択メモリセルの例であり得る。
メモリアレイ200のアーキテクチャは、交差点アーキテクチャと称され得る。それは、ピラー構造とも称され得る。例えば、図2に示されるように、ピラーは、第1の導電線(例えば、ワード線110-aなどのアクセス線)および第2の導電線(例えば、ディジット線115-aなどのアクセス線)と接触状態にあり得る。ピラーは、メモリセル105-aを含み得、メモリセル105-aは、第1の電極(例えば、上部電極210)、メモリストレージ素子205、および第2の電極(例えば、下部電極215)を含む。メモリストレージ素子205は、非対称形状であり得る。この非対称形状は、メモリセル105-aの極性に応じてイオンを上部電極210または下部電極215に密集させ得る。上部電極210または下部電極215におけるイオン密集は、上に説明されるように、メモリセル105-aのより正確な感知を可能にし得る。
図2に描写される交差点またはピラーアーキテクチャは、他のメモリアーキテクチャと比較して生産費用がより低い、比較的高密度のデータストレージを提供し得る。例えば、交差点アーキテクチャは、他のアーキテクチャと比較して、低減した面積、および故に増大したメモリセル密度を伴う、メモリセルを有し得る。例えば、このアーキテクチャは、4Fメモリセル面積を有し得、Fは、3端子選択を伴うものなど、6Fメモリセル面積を有する他のアーキテクチャと比較して、最小特徴サイズである。例えば、DRAMは、各メモリセルのための選択構成要素として、3端子デバイスであるトランジスタを使用し得、ピラーアーキテクチャと比較してより大きいメモリセル面積を有し得る。
メモリストレージ素子205は、場合によっては、第1の導電線と第2の導電線との間、例えば、ワード線110-aとディジット線115-aとの間に、直列で接続され得る。メモリストレージ素子205は、上部電極210と下部電極215との間に位置し得、故に、メモリストレージ素子205は、ディジット線115-aとワード線110-aとの間に直列で位置し得る。他の構成が可能である。
メモリストレージ素子205は、カルコゲナイドメモリ構成要素と称され得るカルコゲナイド材料を含み得る。カルコゲナイドメモリ構成要素は、メモリセル105-aに格納される論理状態を示すために、イオンの非均一分布を使用するように構成され得る。カルコゲナイドメモリ構成要素の閾値電圧は、メモリセル105-aをプログラムするために使用されるパルスの極性に基づいて可変であり得る。例えば、第1の極性パルス(例えば、正極性)でプログラムされる自己選択メモリセルは、特定の抵抗および/または電気的性質、故に第1の閾値電圧を有し得る一方、第2の極性パルス(例えば、負極性)でプログラムされる自己選択メモリセルは、異なる抵抗および/または電気的性質、故に第2の閾値電圧を有し得る。カルコゲナイド材料のこれらの電気的特徴は、プログラミングパルスの極性、大きさ、および/または形状を含むプログラミングパルスの特性に基づいて発生するイオン移動における差によって引き起こされ得る。
例えば、イオンは、所与のメモリセルに印加されるプログラミングパルスの極性に応じて、特定の電極の方へ移動し得る。メモリセルに格納される論理状態は、カルコゲナイドメモリ構成要素内のイオンの分布に基づき得る。
セルプログラミングは、異なる論理状態を達成するために、カルコゲナイドメモリ構成要素の結晶構造または原子配位を利用し得る。例えば、結晶または非晶質原子配位を有する材料は、材料に印加されるプログラミングパルスにおける差に基づいて、異なる電気的性質を呈し得る。カルコゲナイドメモリ構成要素は、少なくとも2つの状態を有し得る。
場合によっては、カルコゲナイドメモリ構成要素は、セット状態およびリセット状態であり得る。セット状態は、低い電気抵抗を呈し得、場合によっては、結晶状態と称され得る。リセット状態は、高い電気抵抗を呈し得、非晶質状態と称され得る。メモリセル105-aに印加される電圧(例えば、プログラミングパルス)は、故に、メモリストレージ素子205が特定の状態(例えば、セット状態またはリセット状態)に入ること、またはこれを維持することを引き起こし得る。印加された電圧(例えば、プログラミングパルス)の大きさおよび極性は、イオンの分布に影響を及ぼし得、故に、カルコゲナイド材料を使用して形成されるメモリストレージ素子205を含むメモリセル105-aに格納される論理状態に影響を及ぼし得る。
メモリストレージ素子205の各々の状態は、それと関連付けられた閾値電圧を有し得、すなわち、電流は、閾値電圧が超過された後に流れる。故に、印加された電圧が閾値電圧未満である場合、電流は、メモリストレージ素子205を通って流れない場合がある。場合によっては、メモリストレージ素子205の状態のうちの1つは、閾値電圧を有さなくてもよく(すなわち、ゼロの閾値電圧)、故に、電流は、印加された電圧に応答して流れ得る。場合によっては、メモリストレージ素子205は、複数の異なる抵抗および複数の閾値電圧を結果としてもたらし得る3つ以上の状態を有し得る。そのような場合、メモリセル105-aは、4つ以上の状態を有するように構成され得、また1ビット超のディジット論理データを格納するように構成され得る。
場合によっては、メモリストレージ素子205は、上部電極210または下部電極215における、またはその近くでのイオン密集を促進するために、非対称形状で構成され得る。例えば、メモリストレージ素子205は、台形プリズムの形状にあり得、メモリストレージ素子205の断面は、台形を含み得る。代替的に、メモリストレージ素子205は、錐台であり得る。錐台は、本明細書で使用される場合、上方部分が除去された円錐もしくはピラミッドの形状、またはその部分に類似した形状、あるいは、頂点より下の円錐もしくはピラミッドを遮断する第1の平面と、底部における、もしくは底部より上の第2の平面との間の円錐もしくはピラミッドの形状、またはその部分に類似した形状を含む。メモリストレージ素子205は、第1のアクセス線110-aと第2のアクセス線115-aとの間に直列構成で配置され得る。メモリストレージ素子205は、セレンを含む第1のカルコゲナイドガラスを含み得る。いくつかの例では、メモリストレージ素子205は、セレン、ヒ素(As)、テルル(Te)、シリコン(Si)、ゲルマニウム(Ge)、またはアンチモン(Sb)のうちの少なくとも1つの組成物を含む。電圧がメモリストレージ素子205に印加されるときまたは、上部電極210と下部電極215との間に電圧差があるとき、イオンは、一方または他方の電極の方へ移動し得る。例えば、TeおよびSeイオンは、正電極の方へ移動し得、GeおよびAsイオンは、負電極の方へ移動し得る。メモリストレージ素子205は、セレクタデバイスとしての役割も果たし得る。このタイプのメモリアーキテクチャは、自己選択メモリ技術の例であり得る。
図3は、本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートする略図300の例を例証する。略図300は、カルコゲナイド材料を含むメモリセル105-eに対する、プログラミングパルスの異なる極性および読み出しパルスの異なる極性の効果を例証し得る。メモリセル105-eは、メモリストレージ素子205-a、上部電極210-a、下部電極215-aを含み得る。メモリセル105-eは、ワード線110-eおよびディジット線115-eと結合され得る。
略図300-aは、メモリセル105-eに対する異なる極性を有するプログラミングパルスの効果を例証する。正極性を有する(例えば、メモリセル105-eにわたる総電圧がゼロよりも大きい)第1のプログラミングパルス305がメモリセル105-eに印加される場合、メモリストレージ素子205-a内のイオンは、メモリストレージ素子205-aおよび上部電極210-aの界面近くに密集し得る。第1のプログラミングパルス305は、元素集中が上部電極210-aの近位にある状態で、メモリストレージ素子205-a内の元素(例えば、イオンまたはセレンまたはセレンイオン)の非均一分布を生成し得る。正極性を有する第1のプログラミングパルス305を生成するため、第1の電圧がディジット線115-eに印加され得、第1の電圧よりも小さい第2の電圧が、ワード線110-eに印加され得る。
負極性を有する(例えば、メモリセル105-eにわたる総電圧がゼロよりも小さい)第2のプログラミングパルス310がメモリセル105-eに印加される場合、メモリストレージ素子205-a内のイオンは、メモリストレージ素子205-aおよび下部電極215-aの界面近くに密集し得る。第2のプログラミングパルス310は、元素集中が下部電極215-aの近位にある状態で、メモリストレージ素子205-a内の元素(例えば、イオンまたはセレンまたはセレンイオン)の非均一分布を生成し得る。負極性を有する第2のプログラミングパルス310を生成するため、第1の電圧がワード線110-eに印加され得、第1の電圧よりも小さい第2の電圧が、ディジット線115-eに印加され得る。
略図300-bは、メモリセル105-eに対する異なる極性を有する読み出しパルスの効果を例証する。メモリセル105-eを読み出すとき、メモリセル105-eに格納されているものとしてメモリコントローラによって識別される論理状態は、メモリストレージ素子205-a内の元素の分布、および読み出し動作中に印加されている読み出しパルスの極性に基づき得る。
例えば、メモリコントローラは、読み出し動作の部分として、正極性(例えば、メモリセル105-eにわたる総電圧がゼロよりも大きい)を有する第1の読み出しパルス315をメモリセル105-eに印加し得る。メモリセル105-eに格納されているものとしてメモリコントローラによって識別される論理状態は、メモリセル内のイオンの分布に基づき得る。メモリセル105-eが正極性プログラミングパルス(例えば、第1のプログラミングパルス305)によりプログラムされていた場合、メモリコントローラは、論理‘1’がメモリセル105-eに格納されていることを決定し得る。しかしながら、メモリセル105-eが負極性プログラミングパルス(例えば、第2のプログラミングパルス310)によりプログラムされていた場合、メモリコントローラは、論理‘0’がメモリセル105-eに格納されていることを決定し得る。
そのような現象は、メモリストレージ素子205-a内のイオンの分布がどのようにして印加されたパルスと相互作用するかが理由で発生し得る。読み出しパルスの正電圧が、イオンの集中の最も近くの電極(例えば、上部電極210または下部電極215)に印加される場合、メモリコントローラは、大量の電荷または高抵抗率を感知し得る。メモリコントローラは、大量の電荷を論理‘1’と識別し得る。読み出しパルスの正電圧が、イオンの集中から最も離れたところの電極(例えば、上部電極210または下部電極215)に印加される場合、メモリコントローラは、少量の電荷または低抵抗率を感知し得る。メモリコントローラは、少量の電荷を論理状態‘0’と識別し得る。
同じ原理が、負極性(例えば、メモリセル105-eにわたる総電圧がゼロよりも小さい)を有する第2の読み出しパルス320が、読み出し動作の部分として、メモリセル105-eに印加されるときに当てはまり得る。メモリセル105-eに格納されているものとしてメモリコントローラによって識別される論理状態は、メモリセル内のイオンの分布に基づき得る。メモリセル105-eが正極性プログラミングパルス(例えば、第1のプログラミングパルス305)によりプログラムされていた場合、メモリコントローラは、論理‘0’がメモリセル105-eに格納されていることを決定し得る。しかしながら、メモリセル105-eが負極性プログラミングパルス(例えば、第2のプログラミングパルス310)によりプログラムされていた場合、メモリコントローラは、論理‘1’がメモリセル105-eに格納されていることを決定し得る。
場合によっては、メモリコントローラは、データを、それがホストデバイスに出力される前に、反転させるように構成され得る。自己選択メモリセルに格納される論理状態を正しく識別するため、メモリコントローラは、メモリストレージ素子内のイオンの分布を知る必要があり得る。イオンの分布を識別するための1つのやり方は、自己選択メモリセルをプログラムするために使用されるプログラミングパルスの極性を知ることである。いくつかの場合において、メモリコントローラは、自己選択メモリセルをプログラムするために使用されるプログラミングパルスの極性、および自己選択メモリセルを読み出すための読み出しパルスの極性を識別し得る。メモリコントローラは、プログラミングパルスの極性および読み出しパルスの極性の両方に基づいて、自己選択メモリセルに格納される論理状態を識別し得る。いくつかの場合において、メモリタイルの特定のメモリセルに印加されるパルスの極性は、静的または準静的に構成され得る。特定のメモリセルへのパルスの極性が動的に構成される場合、メモリコントローラは、極性を識別するために追加の動作を実施し得る。
メモリコントローラは、同じ時に同じメモリタイル上のメモリセルに同時にアクセスするために、複数の極性のパルスを使用してアクセスされるという自己選択メモリセルの能力を利用するように構成され得る。単一のアクセス動作持続期間中に各メモリセルアクセスのためのアクセス線に印加される電圧は、メモリタイルの非選択のメモリセルに印加される電圧が、非選択のメモリセルのプログラミング閾値、読み出し閾値、または何らかの他のディスターバンス閾値を超越しないように構成され得る。実際には、アクセス動作中に異なるアクセス線に印加される電圧は、非選択のセルの場合は各々と負に干渉するが、メモリタイル上の選択メモリセルの場合は各々と建設的に干渉するように構成され得る。
図4は、本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートするメモリタイル400の例を例証する。具体的には、図4は、メモリタイル400上の2つのメモリセルが、同じアクセス動作持続期間中に同じタイプのアクセス動作を使用して同時にアクセスされることを例証する。例えば、メモリタイル400内の任意の2つのメモリセルは、同時に読み出され得るか、またはメモリタイル400内の任意の2つのメモリセルは、同時にプログラムされ得る。
メモリタイル400は、複数のメモリセル405、410、複数のワード線110-f、および複数のディジット線115-fを含む。メモリタイル400は、どのようにして、第1の選択メモリセル405-aが、第1の極性を有する第1のパルスを使用してアクセス(例えば、読み出しまたは書き込み)され得、また第2の選択メモリセル405-bが、第1の極性とは異なる第2の極性を有する第2のパルスを使用してアクセス(例えば、読み出しまたは書き込み)され得るかを例証し、選択メモリセル405は、同時にアクセス(例えば、読み出しまたは書き込み)される。メモリタイル400はまた、複数の非選択のメモリセル410を含み得る。メモリセル405、410は、図1~図3を参照して説明されるメモリセル105の例であり得る。
メモリタイル400と関連付けられたメモリコントローラ(図示せず)は、単一のアクセス動作持続期間中に読み出し動作または書き込み動作を使用して同時にアクセスするために第1の選択メモリセル405-aおよび第2の選択メモリセル405-bを識別し得る。多くのメモリアーキテクチャにおいては、単一のメモリセルのみが、単一のアクセス動作持続期間中にアクセスされ得る。
メモリコントローラは、選択メモリセル405に印加するために、印加されるべきパルス(例えば、2つの読み出しパルスまたは2つのプログラミングパルス)の極性を選択し得る。各々の選択メモリセルのためのパルスの特定の極性は、選択メモリセル405の場所、選択メモリセル405のイオンの分布、選択メモリセル405、405-bをプログラムするために使用されるプログラミングパルスの特性(例えば、極性および他の特性)、またはそれらの組み合わせを含み得る様々な因子に基づいて選択され得る。メモリコントローラは、各々の選択メモリセル405、405-bがパルスの異なる極性を使用してアクセス(例えば、読み出しまたは書き込み)されることになることを決定し得る。例えば、第1の選択メモリセル405-aが、正極性読み出しパルスで読み出されることになる場合、メモリコントローラは、第2の選択メモリセル405-bが、負極性読み出しパルスで読み出されることになることを決定し得る。別の例において、第1の選択メモリセル405-aが、正極性プログラミングパルスでプログラムされることになる場合、メモリコントローラは、第2の選択メモリセル405-bが、負極性プログラミングパルスでプログラムされることになることを決定し得る。
メモリコントローラは、選択された極性および大きさを有するパルスを達成するように、ワード線110-fのバイアスおよびディジット線115-fのバイアスを制御し得る。例えば、正パルスは、+Va(例えば、読み出しパルスの場合は+Vr、またはプログラミングパルスの場合は+Vpであり、Vrは、Vpとは異なる)の大きさおよび極性を有し得、負パルスは、-Va(例えば、読み出しパルスの場合は-Vr、またはプログラミングパルスの場合は-Vpであり、Vrは、Vpとは異なる)の大きさおよび極性を有し得る。Vaは、アクセス動作(例えば、読み出し動作または書き込み動作)中の選択メモリセルにわたる総電圧差を表し得る。メモリコントローラは、選択メモリセルにわたる電圧差が所望の極性および/または大きさであるように、それぞれのワード線110-fおよびディジット線115-fに対する電圧を制御し得る。場合によっては、メモリコントローラは、第1の選択メモリセル405のアクセス線のうちの1つをゼロボルトに保持し得、他のアクセス線をVaの最大の大きさへバイアスし得る。そのような動作は、選択メモリセル405がアクセス(例えば、読み出しまたは書き込み)されることを引き起こすが、それはまた、Vaにバイアスされるアクセス線と結合される非選択のメモリセル410をディスターブし得る。非選択のメモリセル410は、メモリセルにわたる電圧差が、非選択のメモリセル410と関連付けられたプログラミング閾値、読み出し閾値、または何らかの他のディスターバンス閾値を超過するときにディスターブされ得る。
メモリコントローラは、パルス(例えば、Va)を、第1のアクセス線に印加される第1の電圧(例えば、+Va/2)、および第2のアクセス線に印加される第2の電圧(例えば、-Va/2)に分割し得る。第1の電圧および電圧の組み合わせは、Vaの最大電圧差が選択メモリセル405に印加されることを結果としてもたらすことになる。メモリコントローラは、選択メモリセル405にわたって最大電圧差を達成するために、第1の電圧および第2の電圧の大きさ、極性、形状、またはそれらの組み合わせを識別し得る。
メモリコントローラは、選択メモリセル405に印加されているパルスの極性に基づいて各電圧の極性を決定し得る。例えば、パルス(例えば、読み出しパルスまたはプログラミングパルス)が正極性パルスである場合、メモリコントローラは、+Va/2の正極性電圧を選択メモリセル405のディジット線115-fに、-Va/2の負極性電圧を選択メモリセル405のワード線110-fに印加し得る。
場合によっては、メモリコントローラは、パルス(Va)の大きさを2つのアクセス線の間で等しく分割し得る(例えば、Va/2が両方のアクセス線に印加される50%-50%分割)。他の場合において、メモリコントローラは、パルスを2つのアクセス線の間で不均等に分割し得る(例えば、51%-49%分割、60%-40%分割、66%-33%分割、75%-25%分割)。ここで示されるパーセンテージ分割は、例証の目的のためにすぎず、本開示を限定するものではない。
パルスを第1の電圧および第2の電圧に分割することは、非選択のメモリセル410にわたる電圧差が、非選択のメモリセル410のプログラミング閾値、読み出し閾値、または何らかの他のディスターブ閾値を超過する可能性を低減し得る。この様式では、メモリコントローラは、メモリタイル400内の非選択のメモリセル410がディスターブされる可能性を低減し得る。例えば、メモリタイル400は、各メモリセル405、410にわたって見られる電圧差がどのように、選択メモリセル405にアクセスする(例えば、読み出しまたは書き込み)ためにいくつかのアクセス線をバイアスすることに基づくかを例証する。
メモリタイル400に示されるように、アクセス線に印加される電圧は、選択メモリセル405において互いと建設的に干渉するように構成され得る。そのようなものとして、第1の選択メモリセル405-aは、アクセス動作持続期間中に正極性パルスを目にし、第2の選択メモリセル405-bは、アクセス動作中に負極性パルスを目にする。アクセス線に印加される電圧は、第1の選択メモリセル405-aおよび第2の選択メモリセル405-bに同時にアクセスするために共に協力するように構成される。
メモリタイル400に示されるように、アクセス線に印加される電圧はまた、非選択のメモリセル410のうちのいくつかにおいて互いと破壊的に干渉するように構成され得る。例えば、非選択のメモリセル410のうちのいくつかは、その非選択のメモリセルのアクセス線がアクセス動作(例えば、読み出し動作または書き込み動作)のために何らかの値へバイアスされるとしても、ゼロボルトの電圧差を目にし得る。電圧(例えば、第1の電圧および第2の電圧)を、互いと建設的および/または破壊的に干渉するようなやり方で構成することにより、選択メモリセル405とアクセス線を共有する非選択のメモリセル410がアクセス動作によってディスターブされる可能性は低減される。
アクセス線に印加される電圧はまた、メモリタイル内に建設的または破壊的干渉が発生しない場合、非選択のメモリセル410にわたって見られる電圧差がディスターブ閾値(例えば、プログラミング閾値または読み出し閾値)を満足しないように構成され得る。
場合によっては、メモリタイル400の選択メモリセル405の両方が同じ極性のパルスを使用してアクセスされる場合、非選択のメモリセル410のうちのいくつかもまた、意図せずしてアクセスされ得る。例えば、正パルスが第1の選択メモリセル405-aおよび第2の選択メモリセル405-bの両方にアクセスするために使用される場合、非選択のメモリセル410-a、410-bもまた、意図せずしてアクセスされ得る。そのような場合、アクセス線に印加される電圧は、選択された2つのメモリセルの代わりに4つのメモリセルにおいて互いに建設的に干渉し得る。
場合によっては、同時にアクセスされるように構成される選択メモリセル405は、共通のアクセス線を共有することができない。第1の選択メモリセル405-aは、第2の選択メモリセル405-bと同じディジット線115-fまたはワード線110-fと結合されることができないことを意味する。そのような条件は、1つまたは複数の非選択のメモリセル410がアクセス動作中にディスターブされる可能性を増大させ得る。
メモリコントローラは、メモリセルの場所、選択メモリセル405のアクセス線、または選択メモリセル405がアクセス線を共有するかどうかに少なくとも部分的に基づいて、同時アクセス動作のための選択メモリセル405を識別するように構成され得る。場合によっては、メモリコントローラは、メモリセルが選択された後に選択メモリセル405が共通アクセス線を共有するかどうかを決定するように構成され得る。メモリコントローラが、選択メモリセル405が共通アクセス線を共有することを決定する場合、メモリコントローラは、選択メモリセル405のうちの1つのためのアクセス動作をキャンセルし得る。そのような場合、単一のアクセス動作持続期間中に実施されるアクセス動作は、単一のメモリセルのみにアクセスするために使用され得る。
場合によっては、メモリセルの任意の組み合わせが、同時にアクセスされ得る。そのような場合、メモリコントローラは、ホストデバイスから受信したコマンドに基づいて、単一のアクセス動作持続期間中にアクセスされるべきメモリセルを動的に選択するように構成され得る。ホストデバイスから受信される読み出しコマンドまたは書き込みコマンドを実施するためのレイテンシを減少させるため、メモリデバイスは、同じメモリタイル400内で同時に2つ以上のメモリセル405にアクセスし得る。場合によっては、そのような同時アクセスは、コマンドを受信した後にホストデバイスに対して読み出しコマンドまたは書き込みコマンドを実行するためにメモリデバイスによって必要とされる合計時間を低減し得る。
同じタイプのアクセス動作(例えば、2つの読み出し動作または2つの書き込み動作)を使用してメモリタイル400の2つのメモリセルに同時にアクセスすることに関して説明される原理は、より一般的には、アクセス動作の任意の組み合わせにも当てはまる。例えば、メモリコントローラは、図4に説明されるような同様の原理を使用して、同じタイル上で同時に、第1のメモリセルに書き込み、第2のメモリセルから読み出すように構成され得る。
図5は、本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートする、メモリタイル内の非選択のメモリセルにおいて見られるアクセスパルスの略図500の例を例証する。いくつかの状況において、メモリコントローラは、非選択のメモリセルをディスターブする2つのアクセスパルスを使用して、メモリタイルの2つのメモリセルにアクセスすることを望み得る。非選択のメモリセルをディスターブすることを防ぎながら、依然として、単一のアクセス動作持続期間中に2つの選択メモリセルにアクセスするため、メモリコントローラは、アクセスパルスのうちの1つを遅延させ得る。
略図500の特徴は、図4を参照して説明されるメモリタイル400に組み込まれ得る。略図500を参照して説明されるアクセスパルスは、2つの読み出しパルスまたは2つのプログラミングパルスの例であり得る。
略図500-aは、アクセス動作中にメモリタイルの非選択のメモリセル(例えば、メモリタイル400の非選択のメモリセル410)によって見られる電圧505-a、510-aを例証する。略図500-aにおいて、電圧505-a、510-aは、非選択のメモリセルがディスターブされることを防ぐために、互いと「破壊的に」干渉し得る。例えば、第1の電圧505-aは、第1の極性および第1の大きさ(例えば、+Va/2)を有し得、電圧510は、同じ極性、および場合によっては、同じ大きさ(例えば、+Va/2)を有し得る。これら2つの電圧505-a、510-aの組み合わせは、非選択のメモリセルのディスターブ閾値(例えば、プログラミング閾値または読み出し閾値または何らかの他の閾値)を満足することができない電圧差515を結果としてもたらし得る。場合によっては、2つの電圧505-a、510-aの大きさおよび/または極性は、異なってもよいが、結果として生じる電圧差は、依然としてディスターブ閾値を満足することができない。
略図500-bは、アクセス動作中にメモリタイルの非選択のメモリセル(例えば、メモリタイル400の非選択のメモリセル410)によって見られる電圧505-b、510-bを例証する。略図500-bにおいて、電圧505-b、510-bは、アクセス動作(例えば、読み出し動作または書き込み動作)中に非選択のメモリセルがディスターブされるようにするために、互いと「建設的に」干渉し得る。例えば、第1の電圧505-bは、第1の極性および第1の大きさ(例えば、+Va/2)を有し得、電圧510-bは、異なる極性、および場合によっては、同じ大きさ(例えば、-Va/2)を有し得る。これら2つの電圧505-b、510-bの組み合わせは、非選択のメモリセルのディスターブ閾値(例えば、プログラミング閾値または読み出し閾値または何らかの他の閾値)を満足する電圧差520を結果としてもたらし得る。場合によっては、2つの電圧505、510の大きさおよび/または極性は、異なってもよいが、結果として生じる電圧差は、依然としてディスターブ閾値を満足し得る。
メモリコントローラは、メモリタイルの2つの選択メモリセルのための2つのアクセスパルス(例えば、読み出し-読み出しパルス、プログラミング-プログラミングパルス、またはプログラミング-読み出しパルス)が1つまたは複数の非選択のメモリセルをディスターブし得るときを識別し得る。メモリコントローラは、様々な手段を使用してこの状況を識別し得る。場合によっては、メモリコントローラは、アクセスパルスの電圧を禁止された電圧組み合わせの既定のリストと比較し得る。場合によっては、メモリコントローラは、メモリセル場所、大きさ、および/またはアクセスパルスの極性を禁止された組み合わせの既定のリストと比較し得る。場合によっては、メモリコントローラは、非選択のメモリセルがディスターブされ得るかどうかを識別するために、各メモリセルについての相互作用を動的に決定し得る。
メモリコントローラは、非選択のメモリセルがディスターブされ得る可能性に基づいて、メモリタイルの選択メモリセルのうちの1つのためのアクセスパルスのうちの1つを遅延するように構成され得る。略図500-cは、メモリコントローラが、第1の電圧505-cの後しばらくしてから発生するように第2の電圧510-cを遅延させる例を例証する。略図500-dは、メモリコントローラが、第2の電圧510-dの後しばらくしてから発生するように第1の電圧505-dを遅延させる例を例証する。そのような様式でアクセスパルスをスタガすることによって、メモリコントローラは、非選択のメモリセルにわたって見られる電圧差520がディスターバンス閾値を満足することを防ぐように構成され得る。
場合によっては、遅延パルスは、初期パルスが完了した後に発生し得る。場合によっては、初期パルスおよび遅延パルスは、少なくとも部分的に重複し得る。メモリコントローラは、メモリセル場所、パルスの極性、パルスの大きさ、パルスの形状、またはそれらの組み合わせに基づいて、どのパルスが遅延されるかを選択し得る。例えば、それらのそれぞれの大きさおよび/または形状に基づいて、パルスの重複の第1のタイプは、パルスの重複の第2のタイプよりも、非選択のメモリセルのディスターバンスを結果として生じる可能性が低い場合がある。
場合によっては、プログラミング動作は、事前読み出し動作を伴い得る。そのような場合、2つのセルが同時にプログラムされる場合、プログラミング動作および事前読み出し動作の部分のみが遅延され得る。例えば、事前読み出し動作は、同時に発生し得るが、プログラミングパルスのうちの1つは遅延され得る。
図6は、本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートするメモリタイル600の例を例証する。具体的には、図6は、メモリタイル600上の2つのメモリセルが、同じアクセス動作持続期間中に異なるタイプのアクセス動作(例えば、読み出し動作および書き込み動作)を使用して同時にアクセスされることを例証する。例えば、第1の選択メモリセル605-aが、アクセス動作持続期間中にプログラムされ得、第2の選択メモリセル605-bが、アクセス動作持続期間中に読み出され得るか、またはその逆も然りである。
メモリタイル600は、複数のメモリセル605、610、複数のワード線110-g、および複数のディジット線115-gを含む。メモリタイル600は、どのようにして、第1の選択メモリセル605-aが、第1の極性を有するプログラミングパルスを使用してプログラムされ得、また第2の選択メモリセル605-bが、第1の極性とは異なる第2の極性を有する読み出しパルスを使用して読み出され得るかを例証し、選択メモリセル605は、同時にアクセスされる。メモリタイル600は、2つの異なるタイプのパルスが同時に使用されるという原理を例証する。メモリタイル600はまた、複数の非選択のメモリセル610を含み得る。メモリタイル600は、図1および図4を参照して説明されるメモリタイル100および400の例であり得る。メモリセル605、610は、図1~図4を参照して説明されるメモリセル105、405、410の例であり得る。
メモリタイル600と関連付けられたメモリコントローラ(図示せず)は、メモリタイル400のためのメモリコントローラと同様に動作し得る。例えば、メモリコントローラは、アクセスされるべきメモリセル(例えば、選択メモリセル605)を選択し得、選択メモリセル605に印加されるべきパルスの特性(例えば、大きさ、極性、または形状)を選択し得、識別されたパルスに基づいてアクセス線に印加するための電圧を決定し得、非選択のメモリセル610がディスターブされないことを確実にするための動作を実施し得、他の動作および機能を実施し得るか、またはそれらの組み合わせであり得る。
異なるアクセス動作が、同じアクセス持続期間中に同じメモリタイルに対して実施されるとき、異なるタイプのパルス間の差は、非選択のメモリセル610にディスターバンスを引き起こし得る。例えば、プログラミングパルスは、1つまたは複数の特性読み出しパルスとは異なる1つまたは複数の特性を有し得る。場合によっては、プログラミングパルスの大きさは、読み出しパルスの大きさよりも大きくてもよい。さらに、プログラミングパルスおよび読み出しパルスの形状における差は、書き込み動作および読み出し動作の両方が同じメモリタイル600の異なるメモリセルに対して実施されるアクセス動作持続期間の少なくとも一部分の間、非選択のメモリセル610をディスターブする可能性を増大させ得る。
メモリコントローラは、パルスの特性を選択し、非選択のメモリセル610をディスターブする可能性を低減する様式で、アクセス線のための電圧へパルスを分割するように構成され得る。略図700および800は、メモリタイル内のプログラミングパルスと読み出しパルスとの間の相互作用に関連した問題およびソリューションを例証する。
図7は、本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートする、メモリタイル内の非選択のメモリセルにおいて見られるアクセスパルスの略図700の例を例証する。いくつかの状況において、メモリコントローラは、メモリタイルの第1のメモリセルを、同じメモリタイルの第2のメモリセルを読み出すことと同時に、アクセスプログラムすることを希望し得る。場合によっては、両方の動作を同時に実施することは、メモリタイルの非選択のメモリセルをディスターブし得る。非選択のメモリセルをディスターブすることを防ぎながら、依然として、単一のアクセス動作持続期間中に2つの選択メモリセルにアクセスするため、メモリコントローラは、様々な緩和動作を実施し得る。
略図700の特徴は、図6を参照して説明されるメモリタイル600に組み込まれ得る。略図700を参照して説明されるアクセスパルスは、読み出しパルスおよびプログラミングパルスの例であり得る。
略図700は、複数のアクセス動作持続期間715中にアクセス線に印加される、非選択のメモリセル(例えば、非選択のメモリセル610)によって見られる複数の電圧705、710を例証する。電圧705、710は、プログラミングパルスおよび読み出しパルスの部分であり得る。例えば、第1のアクセス動作持続期間715-a中、第1のプログラミング電圧705-aは、メモリタイルの非選択のメモリセルと結合される第1のアクセス線(例えば、ワード線110-gまたはディジット線115-g)に印加され得、第1の読み出し電圧710-aは、メモリタイルの非選択のメモリセルと結合される第2のアクセス線(例えば、ワード線110-gまたはディジット線115-g)に印加され得る。第1の読み出し電圧710-aは、第1のアクセス動作持続期間715-a中に第1のプログラミング電圧705-aと同時に印加され得る。
第1のアクセス動作持続期間715-a中、非選択のメモリセルによって見られる電圧差720は、非選択のメモリセルのディスターバンス閾値(例えば、プログラミング閾値、読み出し閾値、または他の閾値)を満足することができない場合がある。実際、第1のプログラミング電圧705-aおよび第1の読み出し電圧710-aは、互いと「破壊的に」干渉し、非選択のメモリセルがディスターブされることを防ぎ得る。
対照的な例において、第3のアクセス動作持続期間715-c中、非選択のメモリセルによって見られる電圧差725は、非選択のメモリセルのディスターバンス閾値(例えば、プログラミング閾値、読み出し閾値、または他の閾値)を満足し得る。第3のプログラミング電圧705-cは、ディスターバンス閾値を満足する電圧差725を生み出すために、第3の読み出し電圧710-cの第2の極性(第1の極性とは異なる)および第2の大きさと連携する第1の極性および第1の大きさを有し得る。実際、第3のプログラミング電圧705-cおよび第3の読み出し電圧710-cは、互いと「建設的に」干渉し、非選択のメモリセルがディスターブされることを引き起こし得る。
メモリコントローラは、第3のアクセス動作持続期間715-cに例証されるもののようなシナリオにおいて、非選択のメモリセルがディスターブされることを防ぐために1つまたは複数の緩和動作を実施し得る。場合によっては、メモリコントローラは、非選択のメモリセルがディスターブされ得るアクセス動作持続期間中にプログラミング動作または読み出し動作のいずれかをキャンセルし得る。場合によっては、メモリコントローラは、非選択のメモリセルのディスターバンスの可能性を低減するか、またはこれを防ぐ電圧へとプログラミングパルスを分割し得る。プログラミングパルスおよび読み出しパルスは、異なる大きさおよび/または形状を有し得るため、メモリコントローラは、非選択のメモリセルのディスターバンスのリスクが緩和されるようなやり方で、そのような2つのパルスに大きさを分割し得る。場合によっては、メモリコントローラは、図5を参照して説明されるものと同様に、電圧のうちの1つを遅延させ得る。
場合によっては、メモリコントローラは、パルスを、不等分割(例えば、50/50分割ではない)に分割し得る。場合によっては、各パルスおよび/または電圧は、特定の形状を有し得る。例えば、第3のプログラミング電圧705-cは、階段形状または傾斜形状を有し得、第3の読み出し電圧710-cは、階段形状または傾斜形状を有し得る。そのような場合、メモリコントローラは、非選択のメモリセルにおいて見られる電圧差がディスターバンス閾値を満足しないように、傾斜または階段を一致させ得る。例えば、第3のプログラミング電圧705-cは、増大する傾斜形状であり得、第3の読み出し電圧710-cは、第3のアクセス動作持続期間715-c中、減少する傾斜形状であり得る。
場合によっては、メモリコントローラは、非選択のメモリセルに対するディスターバンスを緩和するために、プログラミングパルス、読み出しパルス、および/またはそれらのパルスから生じる分割された電圧、の極性を選択し得る。場合によっては、メモリコントローラは、非選択のメモリセルに印加される2つの電圧の極性を異なる極性(例えば、一方は負、および一方は正)にさせ得る。
図8は、本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートする、メモリタイル内の非選択のメモリセルにおいて見られるアクセスパルスの略図800の例を例証する。略図は、第1の選択メモリセルが、第2の選択メモリセルが同じメモリタイル上で読み出されているのと同時にプログラムされるとき、非選択のメモリセルに対するディスターバンスを緩和するためのメモリコントローラによるプロセスを例証する。略図800の特徴は、図6を参照して説明されるメモリタイル600に組み込まれ得る。略図800を参照して説明されるアクセスパルスは、読み出しパルスおよびプログラミングパルスの例であり得る。
略図は、メモリコントローラが、プログラミングパルスの極性に基づいて、メモリタイルのアクセス線に印加される読み出しパルス(およびこれから転じて、読み出し電圧)の極性を選択する例を例証する。プログラミングパルスの極性に基づいて読み出しパルスの極性を選択することによって、メモリコントローラは、メモリタイルの非選択のメモリセルに対するディスターバンスの可能性を緩和し得る。場合によっては、メモリコントローラは、読み出しパルスの極性に基づいて、プログラミングパルスの極性を選択し得る。
メモリコントローラは、選択メモリセルのためのプログラミングパルスの極性を識別し得る。メモリコントローラは、選択メモリセルの電流状態(例えば、選択メモリセルの電流イオン分布)に基づいてこの識別を行い得る。メモリコントローラは次いで、メモリタイル上の2つのメモリセルの同時書き込みおよび読み出しによってメモリタイルの非選択のメモリセルがディスターブされる可能性を最小限にするために、読み出しパルスの極性をプログラミングパルスの極性の反対であるように選択し得る。
例えば、略図800は、複数のアクセス動作持続期間815中にアクセス線に印加される、非選択のメモリセル(例えば、非選択のメモリセル610)によって見られる複数の電圧805、810を例証する。電圧805、810は、プログラミングパルスおよび読み出しパルスの部分であり得る。各アクセス動作持続期間815中、メモリコントローラは、メモリタイルの非選択のメモリセルと結合される第1のアクセス線(例えば、ワード線110-gまたはディジット線115-g)に印加されるプログラミング電圧805の極性を識別し得る。メモリコントローラはまた、プログラミングパルスの識別された極性に基づいて読み出し電圧810の極性を選択し得る。
例えば、メモリコントローラは、第1のアクセス動作持続期間815-a中に第1のプログラミング電圧805-aが正極性を有することを識別し得る。メモリコントローラは、正極性を有するプログラミングパルスに基づいて、第1の読み出し電圧810-aを、負極性を有するように選択し得る。実際、メモリコントローラは、選択メモリセルに対して新規データをプログラムするために使用されるプログラミングパルスの極性に基づいて、読み出しパルスの極性をトグルし得る。場合によっては、メモリコントローラは、読み出しパルスの極性に基づいて、プログラミングパルスの極性をトグルするように構成され得る。
図9は、本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートする回路900の例を例証する。回路900は、アクセス動作中のプログラミングパルスおよび/または読み出しパルスの極性を動的に修正するために使用される構成要素を例証する。
回路900は、メモリセル905、ワード線110-h、およびディジット線115-hを含み得る。正極性電圧源910および負極性電圧源915は、アクセス線(例えば、ワード線110-hまたはディジット線115-h)に選択的に結合され得る。スイッチング構成要素920は、様々な電圧源910、915のうちの1つまたは複数をそれぞれのアクセス線に選択的に結合するように構成され得る。メモリセル905は、図1~図8を参照して説明されるメモリセル105、405、605の例であり得る。
電圧源910、915は、それらのそれぞれのアクセス線を電圧源と関連付けられた電圧振幅へバイアスするように構成され得る。場合によっては、各電圧源910、915は、複数の電圧振幅を出力するように構成される。例えば、正極性電圧源910は、プログラミングパルスと関連付けられた第1の電圧振幅、読み出しパルスと関連付けられた第2の電圧振幅、および/または異なる形状のパルスと関連付けられた複数の電圧振幅を出力するように構成され得る。場合によっては、各電圧源910、915は、単一の極性を有する単一の電圧振幅を出力するように構成される。そのような場合、アクセス線(例えば、ワード線110-hおよびディジット線115-h)は、スイッチング構成要素920を使用して、2つの電圧源910、915よりも多くの電圧源と選択的に結合され得る。
例えば、ワード線110-hは、プログラミングパルスのための正極性電圧源、読み出しパルスのための正極性電圧源、プログラミングパルスのための負極性電圧源、読み出しパルスのための負極性電圧源、またはそれらの組み合わせに、結合するように構成され得る。場合によっては、単一の電圧源が、メモリセル905にアクセスするために使用されるパルスのすべて(例えば、大きさ、極性、および形状)を生成するように構成され得る。そのような場合、回路900は、スイッチング構成要素920を含まなくてもよい。メモリコントローラはまた、アクセス動作中に電圧源910、915をアクセス線から隔離/分離するように構成され得る。
スイッチング構成要素920は、電圧源910、915とそれらのそれぞれのアクセス線との間に位置付けられる1つまたは複数のトランジスタであり得る。メモリコントローラは、トランジスタのゲート電圧を制御することによって様々な電圧源910、915を選択するように構成され得る。場合によっては、スイッチング構成要素920は、1つの電圧源のためのp型トランジスタおよび別の電圧源のためのn型トランジスタを含み得る。そのような場合、トランジスタのゲートは、1つの電圧源のみがアクセス線に一度に結合され得るように結びつけられ得る。場合によっては、両方のトランジスタが同じ型であってもよく、ゲートは一緒に結びつけられ得るが、ゲートのうちの一方は、インバータも含み得る。場合によっては、スイッチング構成要素920は、異なる構成要素間でトグルするように構成され得る。例えば、スイッチング構成要素920は、アクセスを正極性電圧源910または負極性電圧源915のいずれかと結合し得る。
回路900はまた、スイッチング構成要素935を使用してディジット線115-hと選択的に結合される第1の感知構成要素925および第2の感知構成要素930を含み得る(時に、感知構成要素は、センス増幅器と称される)。第1の感知構成要素925は、正極性読み出しパルスがアクセス動作中に使用されるとき、メモリセル905の状態を感知するように構成され得る。第2の感知構成要素930は、負極性読み出しパルスがアクセス動作中に使用されるとき、メモリセル905の状態を感知するように構成され得る。
メモリコントローラは、メモリセル905に印加されている読み出しパルスの極性に基づいて、ディジット線115-hを感知構成要素925、930のうちの一方に選択的に結合するように構成され得る。メモリコントローラはまた、アクセス動作中に感知構成要素925、930のうちの一方からディジット線を隔離/分離するように構成され得る。場合によっては、単一の感知構成要素が、正極性および負極性読み出しパルスの両方を使用して感知するように構成され得る。そのような場合、回路900は、スイッチング構成要素935を含まなくてもよい。感知構成要素は、図1を参照して説明される感知構成要素125の例であり得る。
スイッチング構成要素935は、感知構成要素925、930とそれらのディジットアクセス線115-hとの間に位置付けられる1つまたは複数のトランジスタであり得る。メモリコントローラは、トランジスタのゲート電圧を制御することによって様々な感知構成要素925、930を選択するように構成され得る。
場合によっては、スイッチング構成要素935は、感知構成要素のためのp型トランジスタおよび別の感知構成要素のためのn型トランジスタを含み得る。そのような場合、トランジスタのゲートは、1つの感知構成要素のみがアクセス線に一度に結合され得るように結びつけられ得る。場合によっては、両方のトランジスタが同じ型であってもよく、ゲートは一緒に結びつけられ得るが、ゲートのうちの一方は、インバータも含み得る。場合によっては、スイッチング構成要素935は、異なる構成要素間でトグルするように構成され得る。例えば、スイッチング構成要素935は、アクセスを感知構成要素925、930のいずれかと結合し得る。
1つの実施形態において、メモリデバイスは、メモリセル905、メモリセル905と結合されるディジット線115-h、ディジット線115-hと結合される第1の感知構成要素925であって、第1の極性を有する第1の読み出しパルスに少なくとも部分的に基づいて、メモリセルに格納された論理状態を識別するように構成され得る、第1の感知構成要素925、およびディジット線115-hに結合される第2の感知構成要素930であって、第1の極性とは異なる第2の極性を有する第2の読み出しパルスに少なくとも部分的に基づいて、メモリセルに格納された論理状態を識別するように構成される、第2の感知構成要素930を含み得る。
上に説明されるメモリデバイスのいくつかの例において、ディジット線115-hと結合された第1の電圧源910、第1の極性を有する第1の読み出しパルスの少なくとも一部を供給するように構成された第1の電圧源910。上に説明されるデバイスまたはシステムのいくつかの例において、ディジット線915と結合された第2の電圧源915、第2の極性を有する第2の読み出しパルスの少なくとも一部を給するように構成された第2の電圧源915。
上に説明されるメモリデバイスのいくつかの例において、アクセス動作中、ディジット線115-hを第1の電圧源910または第2の電圧源915と選択的に結合するように構成されたスイッチング構成要素920。
上に説明されるメモリデバイスのいくつかの例において、読み出し動作中にメモリセル905に印加される読み出しパルスのタイプに少なくとも部分的に基づいて、第1の感知構成要素925または第2の感知構成要素930からの信号を選択的に出力するように構成されたスイッチング構成要素935。
上に説明されるメモリデバイスのいくつかの例において、メモリセル905は、論理状態を示すためにイオンの非均一分布を使用するように構成されるカルコゲナイド材料を含む。上に説明されるメモリデバイスのいくつかの例において、メモリセル905は、自己選択メモリセルであり得る。
図10は、本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートするメモリタイル1000の例を例証する。メモリタイル1000は、静的または準静的に構成されるセミタイル1005、1010を含み得る。セミタイル1005、1010は、メモリタイル1000の2つのメモリセルに同時にアクセスする技法を実装するために使用され得る。メモリタイル1000は、図1、図4および図6を参照して説明されるメモリタイル100、400、600の例であり得る。
複数の自己選択メモリセルを含むメモリタイルは、メモリセルのほぼどんなペアリングも同時にアクセスするように構成され得る。しかしながら、パルスの様々な組み合わせを使用してメモリセルの様々な組み合わせに動的にアクセスすることは、メモリコントローラの処理負荷を増大させ得る。同じメモリタイル内の2つのメモリセルに対して同時にアクセス動作を実施することが必要とされる処理を低減するため、メモリタイル1000は、第1のセミタイル1005および第2のセミタイル1010を含み得る。
第1のセミタイル1005は、正極性読み出しパルスを使用して読み出されるように構成される複数のメモリセル1015を含み得る。第2のセミタイル1010は、負極性読み出しパルスを使用して読み出すように構成される複数のメモリセル1020を含み得る。メモリタイルは、複数のワード線110-iおよび複数のディジット線115-iを含み得る。そのような構成は、同じ読み出しパルスが所与のセミタイルのために毎回使用されることから、読み出し動作を実施することが必要とされる処理を低減し得る。加えて、そのような構成は、メモリタイル1000を動作させるために必要とされる構成要素の量を減少させ得る(例えば、感知構成要素、スイッチング構成要素、電圧源、またはそれらの組み合わせの数を減少させ得る)。
メモリタイル1000は、任意の様式で異なるセミタイルへ分けられ得る。場合によっては、メモリタイル1000-aは、ワード線110-iによってグループ化されるセミタイルを含み得る。第1のセミタイル1005-aが、ワード線110-iの第1のセットと電子通信状態にあるメモリセル1015-aを含み、第2のセミタイル1010-aが、第1のセットとは異なるワード線110-iの第2のセットと電子通信状態にあるメモリセル1020-aを含む。場合によっては、メモリタイル1000-bは、ディジット線115-iによってグループ化されるセミタイルを含み得る。第1のセミタイル1005-bが、ディジット線115-iの第1のセットと電子通信状態にあるメモリセル1015-bを含み、第2のセミタイル1010-bが、第1のセットとは異なるディジット線115-iの第2のセットと電子通信状態にあるメモリセル1020-bを含む。
メモリタイル1000のメモリセル1015、1020が読み出しパルスの特定の極性によって読み出されるように構成されるとしても、メモリセルの全メモリセル1015、1020は、正極性プログラミングパルスおよび負極性プログラミングパルスによってプログラムされるように構成され得る。そのような能力は、任意の所与のメモリセルにおけるイオンの分布を変化させるために必要とされ得る。
第1のメモリセルの読み出し動作および第2のメモリセルの読み出し動作を含むアクセス動作持続期間は、図4および図5を参照して説明されるように実施され得る。メモリコントローラは、単一のアクセス動作持続期間中に読み出されるべき第1のセミタイル1005内のメモリセル1015および第2のセミタイル1010内のメモリセル1020を選択し得る。セミタイル構成において、同じアクセス線に結合される2つのメモリセルを読み出すことは、セミタイルが構成される方法が理由で、不可能な場合がある。
例えば、メモリタイル1000-aにおいて、第1のセミタイル1005-aのためのワード線110-iは、読み出し動作中に負極性電圧を有するように構成され得、第2のセミタイル1010-aのためのワード線110-iは、読み出し動作中に負極性電圧を有するように構成され得る。メモリセルを読み出すため、それは、各セミタイル1005-a、1010-aのための対応するディジット線115-iが、その関連したワード線110-iと反対の極性を有する電圧へバイアスされ得ることを意味する。単一のディジット線115-iを、正極性電圧および負極性電圧の両方に同時にバイアスすることはできないため、セミタイル構成にある2つのメモリセルが同じアクセス動作持続期間中に読み出されることになる場合、それらは、共通のディジット線115-iまたは共通のワード線110-iを共有することはできない。場合によっては、メモリタイル1000の任意の2つのメモリセルは、2つのメモリセルが共通のアクセス線(共通のワード線または共通のディジット線のいずれか)を共有しない限り、同時に読み出され得る。
メモリタイル1000のセミタイル構成において、読み出しパルスの極性は、各セミタイルについて静的に構成される。例えば、第1のセミタイル1005のメモリセル1015が、正極性読み出しパルスを使用して読み出され得、第2のセミタイル1010のメモリセル1020が、負極性読み出しパルスを使用して読み出され得るか、またはその逆も然りである。読み出しパルスのこのような静的構成が理由で、メモリコントローラは、メモリセルがどのセミタイル内にあるか、メモリセルの所望の論理状態、メモリセルの電流状態、またはメモリセルを読み出すために使用されることになる読み出しパルスの極性、またはそれらの組み合わせに基づいて、プログラミングパルスの極性を選択するように構成され得る。
例えば、メモリセル1015が正極性読み出しパルスを使用して読み出される第1のセミタイル1005において、正極性プログラミングパルスがメモリセル1015に印加される場合、イオンの第1の分布が、メモリセル1015で発生し得、これは、正極性読み出しパルスが論理‘1’と解釈し得る。同様に、負極性プログラミングパルスがメモリセル1015に印加される場合、第1の分布とは異なるイオンの第2の分布が、メモリセル1015で発生し得、これは、正極性読み出しパルスが論理‘0’と解釈し得る。
逆に、メモリセル1020が負極性読み出しパルスを使用して読み出される第2のセミタイル1010において、正極性プログラミングパルスがメモリセル1020に印加される場合、イオンの第1の分布が、メモリセル1020で発生し得、これは、負極性読み出しパルスが論理‘0’と解釈し得る。同様に、負極性プログラミングパルスがメモリセル1020に印加される場合、イオンの第2の分布が、メモリセル1020で発生し得、これは、負極性読み出しパルスが論理‘1’と解釈し得る。そのような場合、論理‘1’は、異なる極性プログラミングパルスを使用して、異なるセミタイルのメモリセルに書き込まれる。例えば、論理‘1’は、正極性プログラミングパルスを使用して第1のセミタイル1005に格納され、論理‘1’は、負極性プログラミングパルスを使用して第2のセミタイル1010に格納される。場合によっては、メモリコントローラは、感知された論理状態を、それが出力される前に反転させるように構成され得る。そのような場合、論理‘1’は、プログラミングパルスの同じ極性を使用して両方のセミタイルに格納され得る。
場合によっては、メモリコントローラは、書き込み動作中にプログラミングパルスを印加しなくてもよい。例えば、メモリセルがそこに格納される論理‘1’をすでに格納しており、書き込みコマンドが、次の所望の論理状態が論理‘1’であることを示す場合、メモリコントローラは、書き込み動作中に何の行動も起こさず、所望の値がメモリセルに書き込まれることを示し得る。
メモリタイル1000のセミタイル構成において、プログラミングパルス、読み出しパルス、ビット遷移、またはそれらの組み合わせの様々な組み合わせが、メモリタイル1000の非選択のメモリセルをディスターブし得る。これは、読み出しパルスの静的構成がアクセス動作の柔軟性のいくらかを低減することが理由で発生し得る。メモリコントローラは、セミタイル1005、1010を有するメモリタイル1000内で同時に発生し得るアクセス動作の「禁止された」組み合わせを識別するように構成され得る。アクセス動作の禁止された組み合わせは、メモリタイル1000の非選択のメモリセルが、ディスターブ閾値(例えば、プログラミング閾値または読み出し閾値)を満足する電圧差を見るときに発生し得る。
表1は、メモリタイル1000内の2つのメモリセルが同時にプログラムされる(例えば、第1のセミタイル1005内の第1のメモリセル1015が、第2のセミタイル1010内の第2のメモリセル1020をプログラムすることと同時にプログラムされる)とき、メモリタイル1000の非選択のメモリセルにわたって発生し得る電圧差を例証する。表1は、どのプログラミングビット遷移が、ディスターブ閾値を満足する電圧差を見るメモリタイル1000の非選択のメモリセルを結果としてもたらし得るかを示す。
Figure 0007164723000001
セミタイル構成において、メモリコントローラは、メモリタイル内の非選択のメモリセルがセミタイルレベルでディスターブされ得るかどうかを決定するように構成され得る。そのような構成は、同時書き込み動作を実施するための処理を低減し、それにより、電力消費を低減し、処理時間(例えば、レイテンシ)を低減し、またはそれらの組み合わせであり得る。いくつかの例において、メモリコントローラは、同時アクセス動作中に各セミタイルについてビット遷移を識別し得、また、メモリタイル内の非選択のメモリセルがビット遷移に基づいてディスターブされることになるかどうかを決定し得る。そのような例において、メモリコントローラは、書き込み動作の組み合わせが、メモリセルベースでメモリセルにおいて許容可能であるかどうかを確認する必要がない場合があるが、むしろ、セミタイルベースでセミタイルに対して確認し得る。場合によっては、メモリコントローラは、メモリ内に格納されたルックアップテーブルを使用してビット遷移を比較し得る。
1つまたは複数の非選択のメモリセルが、セミタイルを有する同じメモリタイル内で2つの書き込み動作を同時に実施することによってディスターブされ得ることを決定する際、メモリコントローラは、1つまたは複数のディスターバンス緩和動作を実施し得る。例えば、メモリコントローラは、書き込み動作のうちの一方をキャンセルし、現在の持続期間以外の後のアクセス動作持続期間中にそれを実施し得る。いくつかの例において、メモリコントローラは、同じアクセス動作持続期間内のプログラミングパルスのうちの1つを遅延させ得る。場合によっては、メモリコントローラは、2つの同時書き込み動作中にメモリセルに印加される1つまたは複数の電圧の形状を修正し得る。
表2は、メモリタイル1000の第1のメモリセルが、メモリタイル1000の第2のメモリセルを読み出すことと同時にプログラムされる(例えば、第1のセミタイル1005内の第1のメモリセル1015が、第2のセミタイル1010内の第2のメモリセル1020を読み出すことと同時にプログラムされる)とき、メモリタイル1000の非選択のメモリセルにわたって発生し得る電圧差を例証する。表2は、読み出しパルス極性と組み合わせてどのプログラミングパルス極性が、ディスターブ閾値を満足する電圧差を見るメモリタイル1000の非選択のメモリセルを結果としてもたらし得るかを示す。
Figure 0007164723000002
表2では、定義上は読み出しパルスの単一の極性のみが各セミタイルと関連付けられることが理由で、正極性読み出しパルスのみがセミタイル1005について示され、負極性読み出しパルスのみがセミタイル1010について示される。場合によっては、各セミタイルに割り当てられる読み出しパルスの極性は、逆にされ得る。
セミタイル構成において、メモリコントローラは、同じメモリタイル1000に対して読み出し動作および書き込み動作を同時に実施することによってメモリタイル内の非選択のメモリセルがセミタイルレベルでディスターブされ得るかどうかを決定するように構成され得る。そのようなセミタイル構成は、同時書き込み動作および読み出し動作を実施するための処理を低減し、それにより、電力消費を低減し、処理時間(例えば、レイテンシ)を低減し、またはそれらの組み合わせであり得る。いくつかの例において、メモリコントローラは、同時アクセス動作中に各セミタイルについてパルス極性および/またはビット遷移を識別し得、また、メモリタイル内の非選択のメモリセルがパルス極性および/またはビット遷移に基づいてディスターブされることになるかどうかを決定し得る。
そのような例において、メモリコントローラは、書き込み動作および読み出し動作の組み合わせが、メモリセルベースでメモリセルにおいて許容可能であるかどうかを確認する必要がない場合があるが、むしろ、セミタイルベースでセミタイルに対して確認し得る。場合によっては、メモリコントローラは、メモリ内に格納されたルックアップテーブルを使用してパルス極性および/またはパルス極性を比較し得る。
1つまたは複数の非選択のメモリセルが、セミタイルを有する同じメモリタイル内で2つの書き込み動作を同時に実施することによってディスターブされ得ることを決定する際、メモリコントローラは、1つまたは複数のディスターバンス緩和動作を実施し得る。例えば、メモリコントローラは、アクセス動作(読み出し動作または書き込み動作のいずれか)のうちの一方をキャンセルし、現在の持続期間以外の後のアクセス動作持続期間中にそれを実施し得る。いくつかの例において、メモリコントローラは、同じアクセス動作持続期間内のパルス(読み出しパルスまたはプログラミングパルスのいずれか)のうちの1つを遅延させ得る。場合によっては、メモリコントローラは、2つの同時アクセス動作中にメモリセルに印加される1つまたは複数の電圧の形状を修正し得る。
1つの実施形態において、メモリデバイスは、メモリセルの第1の区域(例えば、第1のセミタイル1005)およびメモリセルの第2の区域(例えば、第2のセミタイル1010)を有するメモリタイル1000であって、第1の区域のメモリセル1015が、第1の極性を有する第1の読み出しパルスの印加に応答して読み出されるように構成され、第2の区域のメモリセル1020が、第1の極性とは異なる第2の極性を有する第2の読み出しパルスの印加に応答して読み出されるように構成される、メモリタイル1000と、メモリタイル1000のメモリセルの第1の区域と結合され、第1の極性を有する第1の読み出しパルスに少なくとも部分的に基づいてメモリセルの第1の区域の1つのメモリセルの論理状態を識別するように構成される第1の感知構成要素(例えば、感知構成要素1120または1155)と、メモリタイルのメモリセルの第2の区域と結合され、第2の極性を有する第2の読み出しパルスに少なくとも部分的に基づいてメモリセルの第2の区域の1つのメモリセルの論理状態を識別するように構成される第2の感知構成要素(例えば、感知構成要素1120または1155)と、を含み得る。
上に説明されるメモリデバイスのいくつかの例において、第1の部分のディジット線115と結合された第1の電圧源(例えば、電圧源910、915)、第1の極性を有する第1の読み出しパルスの少なくとも一部分を供給するように構成された第1の電圧源(例えば、電圧源910、915)。上に説明されるデバイスまたはシステムのいくつかの例において、第2の部分のディジット線と結合された第2の電圧源(例えば、電圧源910、915)、第2の極性を有する第2の読み出しパルスの少なくとも一部分を供給するように構成された第2の電圧源(例えば、電圧源910、915)。
上に説明されるメモリデバイスのいくつかの例において、メモリタイル1000のメモリセル1015、1020は、論理状態を示すためにイオンの非均一分布を使用するように構成されるカルコゲナイド材料で形成され得る。上に説明されるメモリデバイスのいくつかの例において、メモリセルの第1の部分のための1つまたは複数のトリムパラメータは、メモリセルの第2の部分のための1つまたは複数のトリムパラメータから独立していてもよい。
上に説明されるメモリデバイスのいくつかの例において、第1の感知構成要素(例えば、感知構成要素1120)および第2の感知構成要素(例えば、感知構成要素1120)は、メモリタイル1000のフットプリント(例えば、フットプリント1170)の下に位置し得る。上に説明されるメモリデバイスのいくつかの例において、メモリタイル1000は、メモリセルの2つ以上のデッキを含む。
図11は、本開示の様々な例に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法をサポートするメモリデバイス1100の例を例証する。メモリデバイス1100は、複数のメモリタイルを含み得る。メモリデバイスの各メモリタイルは、2つ以上のセミタイルに分けられ得る。メモリデバイス1100は、メモリタイルの少なくとも2つのメモリセルに対して同時にアクセス動作を実施するように構成される構成要素を例証する。
第1のメモリデバイス1100-aは、複数のメモリタイル1105を含み得、各メモリタイル1105は、正極性読み出しパルスによって読み出されるように構成される第1のセミタイル1110、および負極性読み出しパルスによって読み出されるように構成される第2のメモリタイル1115に分けられる。メモリタイル1105は、各セミタイル1110、1115と結合される感知構成要素1120を含み得る。感知構成要素1120は、そのセミタイルと関連付けられた読み出しパルスの極性に基づいてメモリセルの論理状態を識別するように構成され得る。
メモリタイル1105において、感知構成要素1120は、メモリセルのアレイのフットプリント1135の外側に位置付けられ得る。メモリタイル1105は、セミタイル1110、1115の両方のメモリセルをアドレス指定するように構成される行デコーダ1125および列デコーダ1130を含み得る。メモリタイル1105において、行デコーダ1125もしくは列デコーダ1130の少なくとも一方、または両方が、メモリセルのアレイのフットプリント1135の外側に位置付けられ得る。場合によっては、行デコーダ1125もしくは列デコーダ1130の少なくとも一方、または両方が、メモリセルのアレイの下、および/またはメモリセルのアレイのフットプリント1135内に位置付けられ得る。
第2のメモリデバイス1100-bは、複数のメモリタイル1140を含み得、各メモリタイル1140は、正極性読み出しパルスによって読み出されるように構成される第1のセミタイル1145、および負極性読み出しパルスによって読み出されるように構成される第2のメモリタイル1150に分けられる。メモリタイル1140は、各セミタイル1145、1150と結合される感知構成要素1155を含み得る。感知構成要素1155は、そのセミタイルと関連付けられた読み出しパルスの極性に基づいてメモリセルの論理状態を識別するように構成され得る。メモリタイル1140において、感知構成要素1155は、メモリセルのアレイのフットプリント1170に位置付けられ得る。
そのような構成において、感知構成要素1155は、アレイの下の相補型金属酸化膜半導体(CMOSに位置付けられ得る。メモリタイル1140は、セミタイル1145、1150の両方のメモリセルをアドレス指定するように構成される行デコーダ1160および列デコーダ1165を含み得る。メモリタイル1140において、行デコーダ1160もしくは列デコーダ130の少なくとも一方、または両方が、メモリセルのアレイの下、および/またはメモリセルのアレイのフットプリント1170内に位置付けられ得る。そのような構成において、行デコーダ1160もしくは列デコーダ130の少なくとも一方、または両方が、アレイの下のCMOSに位置付けられ得る。場合によっては、行デコーダ1160もしくは列デコーダ1165の少なくとも一方、または両方が、メモリセルのアレイのフットプリント1170の外側に位置付けられ得る。
メモリデバイス1100のメモリタイル1105、1140は、図示されない構成要素を含み得る。場合によっては、メモリタイル1105、1140は、1つもしくは複数の電圧源、および/または、1つもしくは複数の電圧源をそれらのそれぞれのアクセス線に選択的に結合するように構成される1つもしくは複数のスイッチング構成要素を含み得る。例えば、メモリタイル1105、1140は、図9を参照して説明される構成要素のうちのいくつかまたはすべてを含み得る。感知構成要素がセミタイル全体と関連付けられるいくつかの場合において、メモリタイル1105、1140は、異なる感知構成要素をディジット線に選択的に結合するように構成されるスイッチング構成要素を含まなくてもよい。
図12は、本開示の実施形態に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法のための方法1200を例証するフローチャートを示す。方法1200の動作は、メモリコントローラ140または本明細書に説明されるようなその構成要素によって実施され得る。いくつかの例において、メモリコントローラ140は、以下に説明される機能を実施するようにメモリデバイスの機能要素を制御するためにコードのセットを実行し得る。追加的または代替的に、メモリコントローラ140は、特殊目的ハードウェアを使用して以下に説明される機能の部分を実施し得る。
ブロック1205において、メモリコントローラ140は、読み出すメモリタイルの第1のメモリセルを識別し得る。1205の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1210において、メモリコントローラ140は、読み出すメモリタイルの第2のメモリセルを識別し得る。1210の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1215において、メモリコントローラ140は、第1のメモリセルを読み出すために第1の読み出しパルスの第1の極性、および第2のメモリセルを読み出すために第2の読み出しパルスの第2の極性を選択し得る。1215の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1220において、メモリコントローラ140は、第1の読み出しパルスを使用して第1のメモリセルを読み出し得る。1220の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1225において、メモリコントローラ140は、第1の極性および第2の極性を選択することに少なくとも部分的に基づいて、第1のメモリセルを読み出すことと同時に、第2の読み出しパルスを使用して第2のメモリセルを読み出し得る。1225の動作は、本明細書に説明される方法に従って実施され得る。
方法1200を実施するための装置が説明される。本装置は、読み出すメモリタイルの第1のメモリセルを識別するための手段と、読み出すメモリタイルの第2のメモリセルを識別するための手段と、第1のメモリセルを読み出すために第1の読み出しパルスの第1の極性、および第2のメモリセルを読み出すために第2の読み出しパルスの第2の極性を選択するための手段と、第1の読み出しパルスを使用して第1のメモリセルを読み出すための手段と、第1の極性および第2の極性を選択することに少なくとも部分的に基づいて、第1のメモリセルを読み出すことと同時に、第2の読み出しパルスを使用して第2のメモリセルを読み出すための手段と、を含み得る。
上に説明される方法1200および装置のいくつかの例において、第1の読み出しパルスの第1の極性は、第2の読み出しパルスの第2の極性の反対であり得る。上に説明される方法1200および装置のいくつかの例は、第1の極性および第2の極性を選択することに少なくとも部分的に基づいて、第1のメモリセルおよび第2のメモリセルと結合されるアクセス線に同時に電圧を印加するためのプロセス、特徴、手段、または命令をさらに含み得、第1のメモリセルと同時に第2のメモリセルを読み出すことは、アクセス線に電圧を印加することに少なくとも部分的に基づき得る。
上に説明される方法1200および装置のいくつかの例は、第1の読み出しパルスを、第1のアクセス線に印加するための第1の電圧および第2のアクセス線に印加するための第2の電圧に分割するためのプロセス、特徴、手段、または命令をさらに含み得、第1のアクセス線および第2のアクセス線が第1のメモリセルと結合される。上に説明される方法1200および装置のいくつかの例は、第1の読み出しパルスの第1の極性に少なくとも部分的に基づいて第1の電圧の大きさおよび極性を識別するためのプロセス、特徴、手段、または命令をさらに含み得る。上に説明される方法1200および装置のいくつかの例は、第1の読み出しパルスの第1の極性および第1の電圧に少なくとも部分的に基づいて、第1の電圧の大きさとは異なる第2の電圧の大きさ、および第1の電圧の極性とは異なる第2の電圧の極性を識別するためのプロセス、特徴、手段、または命令をさらに含み得、電圧を印加することは、分割することおよび識別することに少なくとも部分的に基づき得る。
上に説明される方法1200および装置のいくつかの例は、第1のメモリセルを読み出すことと同時に第2のメモリセルを読み出すことに少なくとも部分的に基づいて、第1のメモリセルに格納される第1の論理状態および第2のメモリセルに格納される第2の論理状態を識別するためのプロセス、特徴、手段、または命令をさらに含み得る。
上に説明される方法1200および装置のいくつかの例は、第1の極性を有する第1の読み出しパルスに少なくとも部分的に基づいて、第1のメモリセルを第1のタイプの感知構成要素に結合するためのプロセス、特徴、手段、または命令をさらに含み得る。上に説明される方法1200および装置のいくつかの例は、第2の極性を有する第2のパルスに少なくとも部分的に基づいて、第2のメモリセルを、第1のタイプとは異なる第2のタイプの感知構成要素に結合するためのプロセス、特徴、手段、または命令をさらに含み得る。
上に説明される方法1200および装置のいくつかの例において、第1の極性および第2の極性は、メモリタイルの第3のメモリセルにおいて第1の読み出しパルスまたは第2の読み出しパルスによって引き起こされる電圧差が、第3のメモリセルのプログラミング閾値を満足しないように選択され得る。
上に説明される方法1200および装置のいくつかの例は、第1のメモリセルおよび第2のメモリセルが共通のアクセス線と結合され得ることを決定するためのプロセス、特徴、手段、または命令をさらに含み得、第1の極性および第2の極性は、第1のメモリセルおよび第2のメモリセルが共通のアクセス線と結合され得ることを決定することに少なくとも部分的に基づいて、同じであってもよい。
図13は、本開示の実施形態に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法のための方法1300を例証するフローチャートを示す。方法1300の動作は、メモリコントローラ140または本明細書に説明されるようなその構成要素によって実施され得る。いくつかの例において、メモリコントローラ140は、以下に説明される機能を実施するようにメモリデバイスの機能要素を制御するためにコードのセットを実行し得る。追加的または代替的に、メモリコントローラ140は、特殊目的ハードウェアを使用して以下に説明される機能の部分を実施し得る。
ブロック1305において、メモリコントローラ140は、読み出すメモリタイルの第1のメモリセルを識別し得る。1305の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1310において、メモリコントローラ140は、読み出すメモリタイルの第2のメモリセルを識別し得る。1310の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1315において、メモリコントローラ140は、第1のメモリセルを読み出すために第1の読み出しパルスの第1の極性、および第2のメモリセルを読み出すために第2の読み出しパルスの第2の極性を選択し得る。1315の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1320において、メモリコントローラ140は、第1の極性および第2の極性を選択することに少なくとも部分的に基づいて、第1のメモリセルおよび第2のメモリセルと結合されるアクセス線に同時に電圧を印加し得る。1320の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1325において、メモリコントローラ140は、第1の読み出しパルスを使用して第1のメモリセルを読み出し得る。1325の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1330において、メモリコントローラ140は、第1の極性および第2の極性を選択すること、およびアクセス線に電圧を印加することに少なくとも部分的に基づいて、第1のメモリセルを読み出すことと同時に、第2の読み出しパルスを使用して第2のメモリセルを読み出し得る。1330の動作は、本明細書に説明される方法に従って実施され得る。
図14は、本開示の実施形態に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法のための方法1400を例証するフローチャートを示す。方法1400の動作は、メモリコントローラ140または本明細書に説明されるようなその構成要素によって実施され得る。いくつかの例において、メモリコントローラ140は、以下に説明される機能を実施するようにメモリデバイスの機能要素を制御するためにコードのセットを実行し得る。追加的または代替的に、メモリコントローラ140は、特殊目的ハードウェアを使用して以下に説明される機能の部分を実施し得る。
ブロック1405において、メモリコントローラ140は、書き込み動作を使用してプログラムするためにメモリタイルの第1のメモリセルを識別し得る。1405の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1410において、メモリコントローラ140は、書き込み動作または読み出し動作を使用してアクセスするためにメモリタイルの第2のメモリセルを識別し得る。1410の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1415において、メモリコントローラ140は、第1のメモリセルをプログラムすることと同時に第2のメモリセルにアクセスすることが、アクセス動作持続期間中にメモリタイルにおいて許可されることを決定し得る。1415の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1420において、メモリコントローラ140は、アクセス動作持続期間中にメモリタイルの第1のメモリセルをプログラムし得る。1420の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1425において、メモリコントローラ140は、第1のメモリセルをプログラムすることと同時に第2のメモリセルにアクセスすることが許可されることを決定することに少なくとも部分的に基づいて、アクセス動作持続期間中に第1のメモリセルをプログラムすることと同時にメモリタイルの第2のメモリセルにアクセスし得る。1425の動作は、本明細書に説明される方法に従って実施され得る。
方法1400を実施するための装置が説明される。本装置は、書き込み動作を使用してプログラムするためにメモリタイルの第1のメモリセルを識別するための手段と、書き込み動作または読み出し動作を使用してアクセスするためにメモリタイルの第2のメモリセルを識別するための手段と、第1のメモリセルをプログラムすることと同時に第2のメモリセルにアクセスすることが、アクセス動作持続期間中にメモリタイルにおいて許可されることを決定するための手段と、アクセス動作持続期間中にメモリタイルの第1のメモリセルをプログラムするための手段と、第1のメモリセルをプログラムすることと同時に第2のメモリセルにアクセスすることが許可されることを決定することに少なくとも部分的に基づいて、アクセス動作持続期間中に第1のメモリセルをプログラムすることと同時にメモリタイルの第2のメモリセルにアクセスするための手段とを含み得る。
上に説明される方法1400および装置のいくつかの例において、第1のメモリセルをプログラムすることと同時に第2のメモリセルにアクセスすることは、アクセス動作持続期間中に第1のプログラミングパルスを使用して第1のメモリセルをプログラムし、第1のメモリセルをプログラムすることと同時に、アクセス動作持続期間中に第2のプログラミングパルスを使用して第2のメモリセルをプログラムするためのプロセス、特徴、手段、または命令をさらに含み得る。
上に説明される方法1400および装置のいくつかの例は、アクセス動作持続期間中にメモリタイルにおけるプログラミング閾値を超過する非選択のメモリセルに印加される電圧に少なくとも部分的に基づいて、アクセス動作持続期間中に第1のプログラミングパルスまたは第2のプログラミングパルスの印加を遅延するためのプロセス、特徴、手段、または命令をさらに含み得、アクセス動作持続期間中に第1のメモリセルをプログラムすることと同時に第2のメモリセルにアクセスすることは、第1のプログラミングパルスを遅延することに少なくとも部分的に基づき得る。
上に説明される方法1400および装置のいくつかの例は、書き込み動作中の第1のメモリセルの第1のビット遷移、および書き込み動作中の第2のメモリセルの第2のビット遷移を識別するためのプロセス、特徴、手段、または命令をさらに含み得る。上に説明される方法1400および装置のいくつかの例は、第1のビット遷移および第2のビット遷移の組み合わせが、単一のアクセス動作持続期間中のメモリタイルにおけるプログラミング閾値を超過する非選択のメモリセルに印加される電圧を結果としてもたらすことを決定するためのプロセス、特徴、手段、または命令をさらに含み得、第1のプログラミングパルスまたは第2のプログラミングパルスの印加を遅延することは、第1のビット遷移および第2のビット遷移の組み合わせがプログラミング閾値を超過する非選択のメモリセルに印加される電圧を結果としてもたらすことを決定することに少なくとも部分的に基づき得る。
上に説明される方法1400および装置のいくつかの例は、非選択のメモリセルに非選択のメモリセルのプログラミング閾値を超過する電圧を印加する第1のプログラミングパルスおよび第2のプログラミングパルスの組み合わせに少なくとも部分的に基づいて、単一のアクセス動作持続期間中に第1のプログラミングパルスまたは第2のプログラミングパルスを印加しないようにするためのプロセス、特徴、手段、または命令をさらに含み得る。
上に説明される方法1400および装置のいくつかの例は、第1のメモリセルが第2のメモリセルとは異なるアクセス線と結合され得ることを決定するためのプロセス、特徴、手段、または命令をさらに含み得、アクセス動作持続期間中に第1のメモリセルをプログラムすることと同時に第2のメモリセルにアクセスすることは、第1のメモリセルが第2のメモリセルとは異なるアクセス線と結合され得ることを決定することに少なくとも部分的に基づき得る。
上に説明される方法1400および装置のいくつかの例において、第1のメモリセルをプログラムすることと同時に第2のメモリセルにアクセスすることは、アクセス動作持続期間中にプログラミングパルスを使用して第1のメモリセルをプログラムし、第1のメモリセルをプログラムすることと同時に、アクセス動作持続期間中に読み出しパルスを使用して第2のメモリセルを読み出すためのプロセス、特徴、手段、または命令をさらに含み得る。
上に説明される方法1400および装置のいくつかの例は、アクセス動作持続期間中に第1のメモリセルに印加されるプログラミングパルスの特性に少なくとも部分的に基づいて、アクセス動作持続期間中に第2のメモリセルに印加される読み出しパルスの極性を選択するためのプロセス、特徴、手段、または命令をさらに含み得る。
上に説明される方法1400および装置のいくつかの例において、プログラミングパルスの特性は、プログラミングパルスの極性、プログラミングパルスが印加され得る場所、プログラミングパルスと関連付けられるビット遷移、またはそれらの組み合わせであり得る。
上に説明される方法1400および装置のいくつかの例は、負極性を有する読み出しパルスに少なくとも部分的に基づいて、第2のメモリセルから読み出されるデータを反転させるためのプロセス、特徴、手段、または命令をさらに含み得る。上に説明される方法1400および装置のいくつかの例は、反転されたデータを出力するためのプロセス、特徴、手段、または命令をさらに含み得る。
上に説明される方法1400および装置のいくつかの例は、アクセス動作持続期間中にメモリタイルにおけるプログラミング閾値を超過する非選択のメモリセルに印加される電圧に少なくとも部分的に基づいて、アクセス動作持続期間中にプログラミングパルスまたは読み出しパルスの印加を遅延するためのプロセス、特徴、手段、または命令をさらに含み得、アクセス動作持続期間中に第1のメモリセルをプログラムすることと同時に第2のメモリセルにアクセスすることは、プログラミングパルスまたは読み出しパルスを遅延することに少なくとも部分的に基づき得る。
上に説明される方法1400および装置のいくつかの例は、プログラミングパルスおよび読み出しパルスの組み合わせが、アクセス動作持続期間中のメモリタイルにおけるプログラミング閾値を超過する非選択のメモリセルに印加される電圧を結果としてもたらすことを決定するためのプロセス、特徴、手段、または命令をさらに含み得、プログラミングパルスまたは読み出しパルスを遅延することは、プログラミングパルスおよび読み出しパルスの組み合わせがプログラミング閾値を超過する非選択のメモリセルに印加される電圧を結果としてもたらすことを決定することに少なくとも部分的に基づき得る。
上に説明される方法1400および装置のいくつかの例は、非選択のメモリセルに非選択のメモリセルのプログラミング閾値を超過する電圧を印加するプログラミングパルスおよび読み出しパルスの組み合わせに少なくとも部分的に基づいて、アクセス動作持続期間中にプログラミングパルスまたは読み出しパルスを印加しないようにするためのプロセス、特徴、手段、または命令をさらに含み得る。
上に説明される方法1400および装置のいくつかの例は、電圧がプログラミング閾値を満足しないことを識別することに少なくとも部分的に基づき得る、第1のメモリセルをプログラムすることと同時に第2のメモリセルにアクセスすることが許可され得ることを決定するためのプロセス、特徴、手段、または命令をさらに含み得る。
上に説明される方法1400および装置のいくつかの例は、電圧がプログラミング閾値を満足しないことを識別することに少なくとも部分的に基づき得る、第1のメモリセルをプログラムすることと同時に第2のメモリセルにアクセスすることが許可され得ることを決定するためのプロセス、特徴、手段、または命令をさらに含み得る。
上に説明される方法1400および装置のいくつかの例は、組み合わせをセットと比較することに少なくとも部分的に基づき得る、第1のメモリセルをプログラムすることと同時に第2のメモリセルにアクセスすることが許可され得ることを決定するためのプロセス、特徴、手段、または命令をさらに含み得る。
図15は、本開示の実施形態に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法のための方法1500を例証するフローチャートを示す。方法1500の動作は、メモリコントローラ140または本明細書に説明されるようなその構成要素によって実施され得る。いくつかの例において、メモリコントローラ140は、以下に説明される機能を実施するようにメモリデバイスの機能要素を制御するためにコードのセットを実行し得る。追加的または代替的に、メモリコントローラ140は、特殊目的ハードウェアを使用して以下に説明される機能の部分を実施し得る。
ブロック1505において、メモリコントローラ140は、書き込み動作を使用してプログラムするためにメモリタイルの第1のメモリセルを識別し得る。1505の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1510において、メモリコントローラ140は、書き込み動作または読み出し動作を使用してアクセスするためにメモリタイルの第2のメモリセルを識別し得る。1510の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1515において、メモリコントローラ140は、第1のメモリセルをプログラムすることと同時に第2のメモリセルにアクセスすることが、アクセス動作持続期間中にメモリタイルにおいて許可されることを決定し得る。1515の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1520において、メモリコントローラ140は、アクセス動作持続期間中に第1のプログラミングパルスを使用してメモリタイルの第1のメモリセルをプログラムし得る。1520の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1525において、メモリコントローラ140は、第1のメモリセルをプログラムすることと同時に第2のメモリセルにアクセスすることが許可されることを決定することに少なくとも部分的に基づいて、第1のメモリセルをプログラムすることと同時に、アクセス動作持続期間中に第2のプログラミングパルスを使用してメモリタイルの第2のメモリセルをプログラムし得る。1525の動作は、本明細書に説明される方法に従って実施され得る。
図16は、本開示の実施形態に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法のための方法1600を例証するフローチャートを示す。方法1600の動作は、メモリコントローラ140または本明細書に説明されるようなその構成要素によって実施され得る。いくつかの例において、メモリコントローラ140は、以下に説明される機能を実施するようにメモリデバイスの機能要素を制御するためにコードのセットを実行し得る。追加的または代替的に、メモリコントローラ140は、特殊目的ハードウェアを使用して以下に説明される機能の部分を実施し得る。
ブロック1605において、メモリコントローラ140は、書き込み動作を使用してプログラムするためにメモリタイルの第1のメモリセルを識別し得る。1605の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1610において、メモリコントローラ140は、書き込み動作または読み出し動作を使用してアクセスするためにメモリタイルの第2のメモリセルを識別し得る。1610の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1615において、メモリコントローラ140は、第1のメモリセルをプログラムすることと同時に第2のメモリセルにアクセスすることが、アクセス動作持続期間中にメモリタイルにおいて許可されることを決定し得る。1615の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1620において、メモリコントローラ140は、アクセス動作持続期間中にプログラミングパルスを使用してメモリタイルの第1のメモリセルをプログラムし得る。1620の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1625において、メモリコントローラ140は、アクセス動作持続期間中に第1のメモリセルに印加されるプログラミングパルスの特性に少なくとも部分的に基づいて、アクセス動作持続期間中に第2のメモリセルに印加される読み出しパルスの極性を選択し得る。1625の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1630において、メモリコントローラ140は、第1のメモリセルをプログラムすることと同時に第2のメモリセルにアクセスすることが許可されることを決定することに少なくとも部分的に基づいて、第1のメモリセルをプログラムすることと同時に、アクセス動作持続期間中に読み出しパルスを使用してメモリタイルの第2のメモリセルを読み出し得る。1630の動作は、本明細書に説明される方法に従って実施され得る。
図17は、本開示の実施形態に従う、複数のメモリセルに同時にアクセスするためのシステムおよび技法のための方法1700を例証するフローチャートを示す。方法1700の動作は、メモリコントローラ140または本明細書に説明されるようなその構成要素によって実施され得る。いくつかの例において、メモリコントローラ140は、以下に説明される機能を実施するようにメモリデバイスの機能要素を制御するためにコードのセットを実行し得る。追加的または代替的に、メモリコントローラ140は、特殊目的ハードウェアを使用して以下に説明される機能の部分を実施し得る。
ブロック1705において、メモリコントローラ140は、読み出されるべきメモリタイルの第1の区域の第1のメモリセルを識別し得、メモリタイルの第1の区域内のメモリセルは、第1の極性を有する第1の読み出しパルスの印加に応答して読み出されるように構成される。1705の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1710において、メモリコントローラ140は、読み出すメモリタイルの第2の区域の第2のメモリセルを識別し得、メモリタイルの第2の区域内のメモリセルは、第1の極性とは異なる第2の極性を有する第2の読み出しパルスの印加に応答して読み出されるように構成される。1710の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1715において、メモリコントローラ140は、第1のメモリセルを読み出し得る。1715の動作は、本明細書に説明される方法に従って実施され得る。
ブロック1720において、メモリコントローラ140は、第1の区域の第1のメモリセルおよび第2の区域の第2のメモリセルを識別することに少なくとも部分的に基づいて、第1のメモリセルを読み出すことと同時に第2のメモリセルを読み出し得る。1720の動作は、本明細書に説明される方法に従って実施され得る。
方法1700を実施するための装置が説明される。本装置は、読み出されるべきメモリタイルの第1の区域の第1のメモリセルを識別するための手段であって、メモリタイルの第1の区域内のメモリセルが、第1の極性を有する第1の読み出しパルスの印加に応答して読み出されるように構成される、手段と、読み出すメモリタイルの第2の区域の第2のメモリセルを識別するための手段であって、メモリタイルの第2の区域内のメモリセルが、第1の極性とは異なる第2の極性を有する第2の読み出しパルスの印加に応答して読み出されるように構成される、手段と、第1のメモリセルを読み出すための手段と、第1の区域の第1のメモリセルおよび第2の区域の第2のメモリセルを識別することに少なくとも部分的に基づいて、第1のメモリセルを読み出すことと同時に第2のメモリセルを読み出すための手段とを含み得る。
上に説明される方法1700および装置のいくつかの例は、第1のメモリセルが第2のメモリセルとは異なるアクセス線と結合され得ることを決定するためのプロセス、特徴、手段、または命令をさらに含み得、第1のメモリセルを読み出すことと同時に第2のメモリセルを読み出すことは、第1のメモリセルが第2のメモリセルとは異なるアクセス線と結合され得ることを決定することに少なくとも部分的に基づき得る。
上に説明される方法1700および装置のいくつかの例は、第1の極性を有する第1の読み出しパルスに少なくとも部分的に基づいて、第1の極性を有する第1の電圧を第1のメモリセルと結合される第1のディジット線に印加するためのプロセス、特徴、手段、または命令をさらに含み得る。上に説明される方法1700および装置のいくつかの例は、第2の極性を有する第2の読み出しパルスに少なくとも部分的に基づいて、第2の極性を有する第2の電圧を第2のメモリセルと結合される第2のディジット線に印加するためのプロセス、特徴、手段、または命令をさらに含み得る。
上に説明される方法1700および装置のいくつかの例は、第1の極性を有する第1の読み出しパルスに少なくとも部分的に基づいて、第2の極性を有する第1の電圧を第1のメモリセルと結合される第1のディジット線に印加するためのプロセス、特徴、手段、または命令をさらに含み得る。上に説明される方法1700および装置のいくつかの例は、第2の極性を有する第2の読み出しパルスに少なくとも部分的に基づいて、第1の極性を有する第2の電圧を第2のメモリセルと結合される第2のディジット線に印加するためのプロセス、特徴、手段、または命令をさらに含み得る。
上に説明される方法1700および装置のいくつかの例において、第1の極性は、メモリセルの第1の区域が、正極性読み出しパルスで読み出されるように構成され得、メモリセルの第2の区域が、負極性読み出しパルスで読み出されるように構成され得るように、第2の極性と反対であり得る。
電子メモリ装置が説明される。本装置は、メモリセル、メモリセルと結合されるディジット線、ディジット線と結合される第1の感知構成要素であって、第1の極性を有する第1の読み出しパルスに少なくとも部分的に基づいて、メモリセルに格納された論理状態を識別するように構成され得る、第1の感知構成要素、およびディジット線と結合される第2の感知構成要素であって、第1の極性とは異なる第2の極性を有する第2の読み出しパルスに少なくとも部分的に基づいて、メモリセルに格納された論理状態を識別するように構成される、第2の感知構成要素を含み得る。
いくつかの例において、本装置は、ディジット線と結合される第1の電圧源であって、第1の極性を有する第1の読み出しパルスの少なくとも一部を供給するように構成される、第1の電圧源と、ディジット線と結合される第2の電圧源であって、第2の極性を有する第2の読み出しパルスの少なくとも一部を供給するように構成される、第2の電圧源とを含み得る。いくつかの例において、本装置は、アクセス動作中、ディジット線を第1の電圧源または第2の電圧源と選択的に結合するように構成されるスイッチング構成要素を含み得る。
いくつかの例において、本装置は、読み出し動作中にメモリセルに印加される読み出しパルスのタイプに少なくとも部分的に基づいて、第1の感知構成要素または第2の感知構成要素からの信号を選択的に出力するように構成されるスイッチング構成要素を含み得る。いくつかの例において、メモリセルは、論理状態を示すためにイオンの非均一分布を使用するように構成されるカルコゲナイド材料を含む。いくつかの例において、メモリセルは、自己選択メモリセルである。
電子メモリ装置が説明される。いくつかの例において、本装置は、メモリセルの第1の区域およびメモリセルの第2の区域を有するメモリタイルであって、第1の区域のメモリセルが、第1の極性を有する第1の読み出しパルスの印加に応答して読み出されるように構成され、第2の区域のメモリセルが、第1の極性とは異なる第2の極性を有する第2の読み出しパルスの印加に応答して読み出されるように構成される、メモリタイルと、メモリタイルのメモリセルの第1の区域と結合され、第1の極性を有する第1の読み出しパルスに少なくとも部分的に基づいてメモリセルの第1の区域の1つのメモリセルの論理状態を識別するように構成される第1の感知構成要素と、メモリタイルのメモリセルの第2の区域と結合され、第2の極性を有する第2の読み出しパルスに少なくとも部分的に基づいてメモリセルの第2の区域の1つのメモリセルの論理状態を識別するように構成される第2の感知構成要素と、を含み得る。
いくつかの例において、本装置は、第1の区域のディジット線と結合される第1の電圧源であって、第1の極性を有する第1の読み出しパルスの少なくとも一部分を供給するように構成される、第1の電圧源と、第2の区域のディジット線と結合される第2の電圧源であって、第2の極性を有する第2の読み出しパルスの少なくとも一部分を供給するように構成される、第2の電圧源とを含み得る。いくつかの例において、メモリタイルのメモリセルは、論理状態を示すためにイオンの非均一分布を使用するように構成されるカルコゲナイド材料で形成される。
いくつかの例において、メモリセルの第1の区域のための1つまたは複数のトリムパラメータは、メモリセルの第2の区域のための1つまたは複数のトリムパラメータから独立している。いくつかの例において、第1の感知構成要素および第2の感知構成要素は、メモリタイルのフットプリントの下に位置付けられる。いくつかの例において、メモリタイルは、メモリセルの2つ以上のデッキを含む。
上に説明される方法は、可能な実装形態を説明するものであり、動作およびステップは、再配置され得るか、または別途修正され得、また他の実装形態が可能であるということに留意されたい。さらには、本方法のうちの2つ以上からの実施形態が組み合わされ得る。
本明細書に説明される情報および信号は、様々な異なる技術および技法のうちのいずれかを使用して表され得る。例えば、上の説明全体を通して言及され得るデータ、命令、コマンド、情報、信号、ビット、符号、およびチップは、電圧、電流、電磁波、磁場もしくは磁性粒子、光場もしくは光粒子、またはそれらの組み合わせによって表され得る。いくつかの図面は、信号を単一の信号として例証し得るが、信号は信号のバスを表し得、この場合、バスは、様々なビット幅を有し得るということは、当業者によって理解されるものとする。
「電子通信」および「結合」という用語は、構成要素間の電子流をサポートする構成要素同士の関係を指す。これは、構成要素同士の直接接続を含み得るか、または中間構成要素を含み得る。電子通信状態にあるか、または互いに結合される構成要素は、電子もしくは信号を積極的に交換していてもよく(例えば、励起された回路内)、または、電子もしくは信号を積極的に交換していなくてもよいが(例えば、励起されていない回路)、回路が励起される際に電子もしくは信号を交換するように構成され、またそのように動作可能であり得る。例として、スイッチ(例えば、トランジスタ)を介して物理的に接続される2つの構成要素は、電子通信状態にあるか、または、スイッチの状態(すなわち、開または閉)に関係なく結合され得る。
「隔離」という用語は、電子が現在、構成要素間を流れることができない構成要素同士の関係を指し、構成要素は、それらの間に開回路が存在する場合に互いから隔離される。例えば、スイッチによって物理的に接続される2つの構成要素は、スイッチが開であるときに互いから隔離され得る。
本明細書で使用される場合、「短絡」という用語は、問題の2つの構成要素間の単一の中間構成要素の活性化により導電経路が構成要素間に確立されている、構成要素同士の関係を指す。例えば、第2の構成要素へ短絡される第1の構成要素は、2つの構成要素間のスイッチが閉であるとき、第2の構成要素と電子を交換し得る。したがって、短絡は、電子通信状態にある構成要素(または線)間の電荷の流れを可能にする動的な動作であり得る。
メモリタイル100を含む、本明細書で論じられるデバイスは、シリコン、ゲルマニウム、シリコン-ゲルマニウム合金、ガリウムヒ素、窒化ガリウムなどの半導体基板上に形成され得る。場合によっては、基板は、半導体ウェハである。他の場合において、基板は、シリコン・オン・グラス(SOG)、もしくはシリコン・オン・サファイア(SOP)などのシリコン・オン・インシュレータ(SOI)基板、または別の基板上の半導体材料のエピタキシャル層であり得る。基板、または基板の小領域の導電性は、リン、ボロン、またはヒ素を含むがこれに限定されない、様々な化学種を使用したドーピングを通じて制御され得る。ドーピングは、イオン注入によって、または任意の他のドーピング手段によって、基板の初期形成または成長中に実施され得る。
カルコゲナイド材料は、硫黄(S)、セレン(Se)、およびテルル(Te)のうちの少なくとも1つの元素を含む材料または合金であり得る。本明細書で論じられる相変化材料は、カルコゲナイド材料であり得る。カルコゲナイド材料および合金は、Ge-Te、In-Se、Sb-Te、Ga-Sb、In-Sb、As-Te、Al-Te、Ge-Sb-Te、Te-Ge-As、In-Sb-Te、Te-Sn-Se、Ge-Se-Ga、Bi-Se-Sb、Ga-Se-Te、Sn-Sb-Te、In-Sb-Ge、Te-Ge-Sb-S、Te-Ge-Sn-O、Te-Ge-Sn-Au、Pd-Te-Ge-Sn、In-Se-Ti-Co、Ge-Sb-Te-Pd、Ge-Sb-Te-Co、Sb-Te-Bi-Se、Ag-In-Sb-Te、Ge-Sb-Se-Te、Ge-Sn-Sb-Te、Ge-Te-Sn-Ni、Ge-Te-Sn-Pd、またはGe-Te-Sn-Ptを含み得るがこれらに限定されない。ハイフンでつながれた化学組成表記は、本明細書で使用される場合、特定の化合物または合金に含まれる元素を示し、示された元素に関与するすべての化学量論を表すことが意図される。例えば、Ge-Teは、GeTeを含み得、xおよびyは、任意の正の整数であり得る。可変抵抗材料の他の例は、2つ以上の金属、例えば、遷移金属、アルカリ土類金属、および/または希土類金属を含む、二元金属酸化物材料または混合価電子酸化物を含み得る。実施形態は、メモリセルのメモリ素子と関連付けられた特定の可変抵抗材料に限定されない。例えば、可変抵抗材料の他の例は、メモリ素子を形成するために使用され得、数ある中でも、カルコゲナイド材料、巨大磁気抵抗材料、または高分子ベースの材料を含み得る。
本明細書で論じられるトランジスタは、電界効果トランジスタ(FET)を表し、ソース、ドレイン、およびゲートを含む三端子デバイスを含み得る。端子は、導電材料、例えば、金属を通じて他の電子素子に接続され得る。ソースおよびドレインは、導電性であり得、高濃度ドープされた、例えば、縮退した、半導体領域を含み得る。ソースおよびドレインは、軽濃度ドープされた半導体領域またはチャネルによって分離され得る。チャネルがn型である(すなわち、多数キャリアが電子である)場合、FETは、n型FETと称され得る。チャネルがp型である(すなわち、多数キャリアが正孔である)場合、FETは、p型FETと称され得る。チャネルは、絶縁ゲート酸化物によってキャップされ得る。チャネル導電性は、電圧をゲートに印加することによって制御され得る。例えば、正電圧または負電圧をn型FETまたはp型FETにそれぞれ印加することは、チャネルが導電性になることを結果としてもたらし得る。トランジスタは、トランジスタの閾値電圧よりも大きいか、またはそれと等しい電圧がトランジスタゲートに印加されるとき、「オン」であり得るか、または「活性化」され得る。トランジスタは、トランジスタの閾値電圧よりも小さい電圧がトランジスタゲートに印加されるとき、「オフ」であり得るか、または「非活性化」され得る。
本明細書に明記される説明は、添付の図面と関連して、例となる構成を説明するものであり、実施され得るすべての例または特許請求の範囲内であるすべての例を表すものではない。本明細書で使用される「例示的」という用語は、「例、例示、または例証としての役割を果たすこと」を意味し、「好ましい」または「他の例よりも有利である」ことは意味しない。詳細な説明は、説明された技法の理解を提供する目的のために特定の詳細事項を含む。しかしながら、これらの技法は、これらの特定の詳細事項なしに実践され得る。いくつかの場合において、周知の構造体およびデバイスは、説明される例の概念を不明瞭にすることを回避するために、ブロック略図形式で示される。
添付の図において、同様の構成要素または特徴は、同じ参照ラベルを有し得る。さらに、同じタイプの様々な構成要素は、破線による参照ラベルおよび同様の構成要素の中から区別する第2のラベルに従うことによって区別され得る。第1の参照ラベルだけが明細書において使用される場合、説明は、第2の参照ラベルにかかわりなく同じ第1の参照ラベルを有する同様の構成要素のうちの任意の1つに適用可能である。
本明細書に説明される情報および信号は、様々な異なる技術および技法のうちのいずれかを使用して表され得る。例えば、上の説明全体を通して言及され得るデータ、命令、コマンド、情報、信号、ビット、符号、およびチップは、電圧、電流、電磁波、磁場もしくは磁性粒子、光場もしくは光粒子、またはそれらの組み合わせによって表され得る。
本明細書内の開示に関連して説明される様々な例証的なブロックおよびモジュールは、本明細書に説明される機能を実施するように設計された、汎用プロセッサ、ディジット信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールド・プログラマブル・ゲートアレイ(FPGA)もしくは他のプログラマブル論理デバイス、離散ゲートもしくはトランジスタ論理、離散ハードウェア構成要素、またはそれらの任意の組み合わせを用いて実装または実施され得る。汎用プロセッサは、マイクロプロセッサであり得るが、代替案では、プロセッサは、任意の従来のプロセッサ、コントローラ、マイクロコントローラ、または状態マシンであり得る。プロセッサはまた、コンピューティングデバイスの組み合わせ(例えば、DSPおよびマイクロプロセッサの組み合わせ、複数のマイクロプロセッサ、DSPコアと併せた1つもしくは複数のマイクロプロセッサ、または任意の他のそのような構成)として実装され得る。
本明細書に説明される機能は、ハードウェア、プロセッサによって実行されるソフトウェア、ファームウェア、またはそれらの任意の組み合わせで実装され得る。プロセッサによって実行されるソフトウェアで実装される場合、機能は、コンピュータ可読媒体上の1つもしくは複数の命令またはコードとして格納され得る、またはそれを通じて伝送され得る。他の例および実装形態は、本開示の範囲および添付の特許請求の範囲内である。例えば、ソフトウェアの性質に起因して、上に説明される機能は、プロセッサによって実行されるソフトウェア、ハードウェア、ファームウェア、配線、またはこれらのうちのいずれかの組み合わせを使用して実施され得る。機能を実施する特徴はまた、機能の部分が異なる物理的場所において実施されるように分散されることを含め、物理的に様々な位置に位置し得る。また、特許請求項を含む本明細書で使用される場合、項目のリスト(例えば、「のうちの少なくとも1つ」または「のうちの1つまたは複数」などの表現を述べた項目のリスト)において使用される「または」は、例えば、A、B、またはCのうちの少なくとも1つのリストが、AまたはBまたはCまたはABまたはACまたはBCまたはABC(すなわち、AおよびBおよびC)を意味するように、包含的リストを示す。また、本明細書で使用される場合、「基づく」という表現は、条件の閉集合への言及と解釈されるべきではない。例えば、「条件Aに基づく」と説明される例示的なステップは、本開示の範囲から逸脱することなく、条件Aおよび条件Bの両方に基づき得る。言い換えると、本明細書で使用される場合、「基づく」という表現は、「少なくとも部分的に基づく」という表現と同じ様式で解釈されるべきである。
コンピュータ可読媒体は、非一時的なコンピュータ記憶媒体、および1つの場所から別の場所へのコンピュータプログラムの転送を促進する任意の媒体を含む通信媒体の両方を含む。非一時的な記憶媒体は、汎用または特殊用途コンピュータによってアクセスされ得る任意の利用可能な媒体であり得る。限定ではなく、例として、非一時的なコンピュータ可読媒体は、RAM、ROM、電気的に消去可能なプログラマブル・リード・オンリ・メモリ(EEPROM)、コンパクトディスク(CD)ROMもしくは他の光学ディスクストレージ、磁気ディスクストレージもしくは他の磁気ストレージデバイス、または、命令もしくはデータ構造の形態で所望のプログラムコード手段を保有もしくは格納するために使用され得、汎用もしくは特殊用途コンピュータ、あるいは汎用もしくは特殊用途プロセッサによってアクセスされ得る、任意の他の非一時的な媒体を含み得る。また、任意の接続が、正しくはコンピュータ可読媒体と呼ばれる。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者線(DSL)、または赤外線、無線、およびマイクロ波などのワイヤレス技術を使用して、ウェブサイト、サーバ、または他のリモートソースから伝送される場合、同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者線(DSL)、または赤外線、無線、およびマイクロ波などのワイヤレス技術は、媒体の定義に含まれる。ディスク(diskおよびdisc)は、本明細書で使用される場合、CD、レーザディスク、光学ディスク、デジタル多用途ディスク(DVD)、フロッピーディスク、およびブルーレイディスクを含み、ディスク(disk)は通常、データを磁気的に再現するが、ディスク(disc)は、データをレーザにより光学的に再現する。上の組み合わせもまた、コンピュータ可読媒体の範囲内に含まれる。
本明細書内の説明は、当業者が本開示を作成または使用することを可能にするために提供される。本開示に対する様々な修正は、当業者にとって容易に明白であるものとし、本明細書に規定される一般原理は、本開示の範囲から逸脱することなく他の変異形に適用され得る。故に、本開示は、本明細書に説明される例および設計に限定されず、本明細書に開示される原理および新規特徴と一致する広範な範囲とされるべきである。

Claims (41)

  1. 読み出すメモリタイルの第1のメモリセルを識別することと、
    読み出す前記メモリタイルの第2のメモリセルを識別することと、
    前記第1のメモリセルを読み出すために第1の読み出しパルスの第1の極性、および前記第2のメモリセルを読み出すために第2の読み出しパルスの第2の極性を選択することと、
    前記第1の読み出しパルスを使用して前記第1のメモリセルを読み出すことと、
    前記第1の極性および前記第2の極性を選択することに少なくとも部分的に基づいて、前記第1のメモリセルを読み出すことと同時に、前記第2の読み出しパルスを使用して前記第2のメモリセルを読み出すことと、を含む、方法。
  2. 前記第1の読み出しパルスの前記第1の極性は、前記第2の読み出しパルスの前記第2の極性の反対である、請求項1に記載の方法。
  3. 前記第1の極性および前記第2の極性を選択することに少なくとも部分的に基づいて、前記第1のメモリセルおよび前記第2のメモリセルと結合されるアクセス線に同時に電圧を印加することであって、前記第1のメモリセルと同時に前記第2のメモリセルを読み出すことが、前記アクセス線に前記電圧を印加することに少なくとも部分的に基づく、印加することをさらに含む、請求項1に記載の方法。
  4. 前記第1の読み出しパルスを、第1のアクセス線に印加するための第1の電圧、および第2のアクセス線に印加するための第2の電圧に分割することであって、前記第1のアクセス線および前記第2のアクセス線が前記第1のメモリセルに結合される、分割することと、
    前記第1の読み出しパルスの前記第1の極性に少なくとも部分的に基づいて、前記第1の電圧の大きさおよび極性を識別することと、
    前記第1の読み出しパルスの前記第1の極性および前記第1の電圧に少なくとも部分的に基づいて、前記第1の電圧の前記大きさとは異なる前記第2の電圧の大きさ、および前記第1の電圧の前記極性とは異なる前記第2の電圧の極性を識別することであって、前記電圧を印加することが、前記分割することおよび前記識別することに少なくとも部分的に基づく、識別することと、をさらに含む、請求項3に記載の方法。
  5. 前記第1のメモリセルを読み出すことと同時に前記第2のメモリセルを読み出すことに少なくとも部分的に基づいて、前記第1のメモリセルに格納される第1の論理状態および前記第2のメモリセルに格納される第2の論理状態を識別することをさらに含む、請求項1に記載の方法。
  6. 前記第1の極性を有する前記第1の読み出しパルスに少なくとも部分的に基づいて、前記第1のメモリセルを第1のタイプの感知構成要素に結合することと、
    前記第2の極性を有する前記第2の読み出しパルスに少なくとも部分的に基づいて、前記第2のメモリセルを前記第1のタイプとは異なる第2のタイプの感知構成要素に結合することと、をさらに含む、請求項1に記載の方法。
  7. 前記第1の極性および前記第2の極性は、前記メモリタイルの第3のメモリセルにおいて前記第1の読み出しパルスまたは前記第2の読み出しパルスによって引き起こされる電圧差が、前記第3のメモリセルのプログラミング閾値を満足しないように選択される、請求項1に記載の方法。
  8. 前記第1のメモリセルおよび前記第2のメモリセルが共通のアクセス線と結合されることを決定することであって、前記第1の極性および前記第2の極性が、前記第1のメモリセルおよび前記第2のメモリセルが前記共通のアクセス線と結合されることを決定することに少なくとも部分的に基づいて同じである、決定することをさらに含む、請求項1に記載の方法。
  9. 書き込み動作を使用してプログラムするためにメモリタイルの第1のメモリセルを識別することと、
    書き込み動作または読み出し動作を使用してアクセスするために前記メモリタイルの第2のメモリセルを識別することであって、前記第1のメモリセルが前記第2のメモリセルとは異なるワード線および異なるディジット線に結合される、識別することと、
    前記第1のメモリセルをプログラムすることと同時に前記第2のメモリセルにアクセスすることが、アクセス動作持続期間中に前記メモリタイルにおいて許可されることを決定することと、
    前記アクセス動作持続期間中に前記メモリタイルの前記第1のメモリセルをプログラムすることと、
    前記第1のメモリセルをプログラムすることと同時に前記第2のメモリセルにアクセスすることが許可されることを決定することに少なくとも部分的に基づいて、前記アクセス動作持続期間中に前記第1のメモリセルをプログラムすることと同時に前記メモリタイルの前記第2のメモリセルにアクセスすることと、を含む、方法。
  10. 前記第1のメモリセルをプログラムすることと同時に前記第2のメモリセルにアクセスすることは、前記アクセス動作持続期間中に第1のプログラミングパルスを使用して前記第1のメモリセルをプログラムすること、および前記第1のメモリセルをプログラムすることと同時に、前記アクセス動作持続期間中に第2のプログラミングパルスを使用して前記第2のメモリセルをプログラムすることを含む、請求項9に記載の方法。
  11. 前記アクセス動作持続期間中に前記メモリタイルにおけるプログラミング閾値を超過する非選択のメモリセルに印加される電圧に少なくとも部分的に基づいて、前記アクセス動作持続期間中に前記第1のプログラミングパルスまたは前記第2のプログラミングパルスの印加を遅延することであって、前記アクセス動作持続期間中に前記第1のメモリセルをプログラムすることと同時に前記第2のメモリセルにアクセスすることが、前記第1のプログラミングパルスを遅延することに少なくとも部分的に基づく、遅延することをさらに含む、請求項10に記載の方法。
  12. 前記書き込み動作中の前記第1のメモリセルの第1のビット遷移、および前記書き込み動作中の前記第2のメモリセルの第2のビット遷移を識別することと、
    前記第1のビット遷移および前記第2のビット遷移の組み合わせが、前記アクセス動作持続期間中の前記メモリタイルにおける前記プログラミング閾値を超過する前記非選択のメモリセルに印加される前記電圧を結果としてもたらすことを決定することであって、前記第1のプログラミングパルスまたは前記第2のプログラミングパルスの印加を遅延することは、前記第1のビット遷移および前記第2のビット遷移の組み合わせが前記プログラミング閾値を超過する前記非選択のメモリセルに印加される前記電圧を結果としてもたらすことを決定することに少なくとも部分的に基づく、決定することと、をさらに含む、請求項11に記載の方法。
  13. 非選択のメモリセルに前記非選択のメモリセルのプログラミング閾値を超過する電圧を印加する前記第1のプログラミングパルスおよび前記第2のプログラミングパルスの組み合わせに少なくとも部分的に基づいて、前記アクセス動作持続期間中に前記第1のプログラミングパルスまたは前記第2のプログラミングパルスを印加しないようにすることをさらに含む、請求項10に記載の方法。
  14. 前記第1のメモリセルが前記第2のメモリセルとは異なる前記ワード線および異なる前記ディジット線に結合されることを決定することであって、前記アクセス動作持続期間中に前記第1のメモリセルをプログラムすることと同時に前記第2のメモリセルにアクセスすることは、前記第1のメモリセルが前記第2のメモリセルとは異なる前記ワード線および異なる前記ディジット線と結合されることを決定することに少なくとも部分的に基づく、決定することをさらに含む、請求項9に記載の方法。
  15. 前記第1のメモリセルをプログラムすることと同時に前記第2のメモリセルにアクセスすることは、前記アクセス動作持続期間中にプログラミングパルスを使用して前記第1のメモリセルをプログラムすること、および前記第1のメモリセルをプログラムすることと同時に、前記アクセス動作持続期間中に読み出しパルスを使用して前記第2のメモリセルを読み出すことを含む、請求項9に記載の方法。
  16. 前記アクセス動作持続期間中に前記第1のメモリセルに印加される前記プログラミングパルスの特性に少なくとも部分的に基づいて、前記アクセス動作持続期間中に前記第2のメモリセルに印加される前記読み出しパルスの極性を選択することをさらに含む、請求項15に記載の方法。
  17. 前記プログラミングパルスの前記特性は、前記プログラミングパルスの極性、前記プログラミングパルスが印加されている場所、前記プログラミングパルスと関連付けられるビット遷移、またはそれらの組み合わせである、請求項16に記載の方法。
  18. 負極性を有する読み出しパルスに少なくとも部分的に基づいて、前記第2のメモリセルから読み出されるデータを反転させることと、
    反転された前記データを出力することと、をさらに含む、請求項15に記載の方法。
  19. 前記アクセス動作持続期間中に前記メモリタイルにおけるプログラミング閾値を超過する非選択のメモリセルに印加される電圧に少なくとも部分的に基づいて、前記アクセス動作持続期間中に前記プログラミングパルスまたは前記読み出しパルスの印加を遅延することであって、前記アクセス動作持続期間中に前記第1のメモリセルをプログラムすることと同時に前記第2のメモリセルにアクセスすることは、前記プログラミングパルスまたは前記読み出しパルスを遅延することに少なくとも部分的に基づく、遅延することをさらに含む、請求項15に記載の方法。
  20. 前記プログラミングパルスおよび前記読み出しパルスの組み合わせが、前記アクセス動作持続期間中の前記メモリタイルにおける前記プログラミング閾値を超過する前記非選択のメモリセルに印加される前記電圧を結果としてもたらすことを決定することであって、前記プログラミングパルスまたは前記読み出しパルスを遅延することは、前記プログラミングパルスおよび前記読み出しパルスの組み合わせが前記プログラミング閾値を超過する前記非選択のメモリセルに印加される前記電圧を結果としてもたらすことを決定することに少なくとも部分的に基づく、決定することをさらに含む、請求項19に記載の方法。
  21. 非選択のメモリセルに前記非選択のメモリセルのプログラミング閾値を超過する電圧を印加する前記プログラミングパルスおよび前記読み出しパルスの組み合わせに少なくとも部分的に基づいて、前記アクセス動作持続期間中に前記プログラミングパルスまたは前記読み出しパルスを印加しないようにすることをさらに含む、請求項15に記載の方法。
  22. プログラミングパルスおよび読み出しパルスの組み合わせが、前記アクセス動作持続期間中にプログラミング閾値を満足しない非選択のメモリセルに印加される電圧を結果としてもたらすことを識別することであって、前記第1のメモリセルをプログラミングすることと同時に前記第2のメモリセルにアクセスすることが許可されることを決定することは、前記電圧が前記プログラミング閾値を満足しないことを識別することに少なくとも部分的に基づく、識別することをさらに含む、請求項9に記載の方法。
  23. 前記第1のメモリセルおよび前記第2のメモリセルのペアリングに同時にアクセスすることが、前記アクセス動作持続期間中にプログラミング閾値を満足しない非選択のメモリセルに印加される電圧を結果としてもたらすことを識別することであって、前記第1のメモリセルをプログラミングすることと同時に前記第2のメモリセルにアクセスすることが許可されることを決定することは、前記電圧が前記プログラミング閾値を満足しないことを識別することに少なくとも部分的に基づく、識別することをさらに含む、請求項9に記載の方法。
  24. プログラミングパルスおよび読み出しパルスの組み合わせを事前構成された許容可能な組み合わせのセットと比較することであって、前記第1のメモリセルをプログラムすることと同時に前記第2のメモリセルにアクセスすることが許可されることを決定することが、前記組み合わせを前記セットと比較することに少なくとも部分的に基づく、比較することをさらに含む、請求項9に記載の方法。
  25. メモリセルと、
    前記メモリセルと結合されるディジット線と、
    前記ディジット線と結合される第1の感知構成要素であって、第1の極性を有する第1の読み出しパルスに少なくとも部分的に基づいて、前記メモリセルに格納される論理状態を識別するように構成される、第1の感知構成要素と、
    前記ディジット線と結合される第2の感知構成要素であって、前記第1の極性とは異なる第2の極性を有する第2の読み出しパルスに少なくとも部分的に基づいて、前記メモリセルに格納される前記論理状態を識別するように構成される、第2の感知構成要素と、を含む、電子メモリ装置。
  26. 前記ディジット線と結合される第1の電圧源であって、前記第1の極性を有する前記第1の読み出しパルスの少なくとも一部を供給するように構成される、第1の電圧源と、
    前記ディジット線と結合される第2の電圧源であって、前記第2の極性を有する前記第2の読み出しパルスの少なくとも一部を供給するように構成される、第2の電圧源と、をさらに含む、請求項25に記載の電子メモリ装置。
  27. アクセス動作中、前記ディジット線を前記第1の電圧源または前記第2の電圧源と選択的に結合するように構成されるスイッチング構成要素をさらに含む、請求項26に記載の電子メモリ装置。
  28. 読み出し動作中に前記メモリセルに印加される読み出しパルスのタイプに少なくとも部分的に基づいて、前記第1の感知構成要素または前記第2の感知構成要素からの信号を選択的に出力するように構成されるスイッチング構成要素をさらに含む、請求項25に記載の電子メモリ装置。
  29. 前記メモリセルは、前記論理状態を示すためにイオンの非均一分布を使用するように構成されるカルコゲナイド材料を含む、請求項25に記載の電子メモリ装置。
  30. 前記メモリセルは、自己選択メモリセルである、請求項25に記載の電子メモリ装置。
  31. 読み出されるべきメモリタイルの第1の区域の第1のメモリセルを識別することであって、前記メモリタイルの前記第1の区域内のメモリセルが、第1の極性を有する第1の読み出しパルスの印加に応答して読み出されるように構成される、識別することと、
    読み出す前記メモリタイルの第2の区域の第2のメモリセルを識別することであって、前記メモリタイルの前記第2の区域内のメモリセルが、前記第1の極性とは異なる第2の極性を有する第2の読み出しパルスの印加に応答して読み出されるように構成される、識別することと、
    前記第1のメモリセルを読み出すことと、
    前記第1の区域の前記第1のメモリセルおよび前記第2の区域の前記第2のメモリセルを識別することに少なくとも部分的に基づいて、前記第1のメモリセルを読み出すことと同時に前記第2のメモリセルを読み出すことと、を含む、方法。
  32. 前記第1のメモリセルが前記第2のメモリセルとは異なるアクセス線と結合されることを決定することであって、前記第1のメモリセルを読み出すことと同時に前記第2のメモリセルを読み出すことは、前記第1のメモリセルが前記第2のメモリセルとは異なるアクセス線と結合されることを決定することに少なくとも部分的に基づく、決定することをさらに含む、請求項31に記載の方法。
  33. 前記第1の極性を有する前記第1の読み出しパルスに少なくとも部分的に基づいて、前記第1の極性を有する第1の電圧を前記第1のメモリセルと結合される第1のディジット線に印加することと、
    前記第2の極性を有する前記第2の読み出しパルスに少なくとも部分的に基づいて、前記第2の極性を有する第2の電圧を前記第2のメモリセルと結合される第2のディジット線に印加することと、をさらに含む、請求項31に記載の方法。
  34. 前記第1の極性を有する前記第1の読み出しパルスに少なくとも部分的に基づいて、前記第2の極性を有する第1の電圧を前記第1のメモリセルと結合される第1のディジット線に印加することと、
    前記第2の極性を有する前記第2の読み出しパルスに少なくとも部分的に基づいて、前記第1の極性を有する第2の電圧を前記第2のメモリセルと結合される第2のディジット線に印加することと、をさらに含む、請求項31に記載の方法。
  35. 前記第1の極性は、前記メモリセルの第1の区域が、正極性読み出しパルスで読み出されるように構成され、前記メモリセルの第2の区域が、負極性読み出しパルスで読み出されるように構成されるように、前記第2の極性と反対である、請求項31に記載の方法。
  36. メモリセルの第1の区域およびメモリセルの第2の区域を有するメモリタイルであって、前記第1の区域の前記メモリセルが、第1の極性を有する第1の読み出しパルスの印加に応答して読み出されるように構成され、前記第2の区域の前記メモリセルが、前記第1の極性とは異なる第2の極性を有する第2の読み出しパルスの印加に応答して読み出されるように構成される、メモリタイルと、
    前記メモリタイルの前記メモリセルの第1の区域と結合され、前記第1の極性を有する前記第1の読み出しパルスに少なくとも部分的に基づいて前記メモリセルの第1の区域の1つのメモリセルの論理状態を識別するように構成される、第1の感知構成要素と、
    前記メモリタイルの前記メモリセルの第2の区域と結合され、前記第2の極性を有する前記第2の読み出しパルスに少なくとも部分的に基づいて前記メモリセルの第2の区域の1つのメモリセルの前記論理状態を識別するように構成される、第2の感知構成要素と、を含む、電子メモリ装置。
  37. 前記第1の区域のディジット線と結合される第1の電圧源であって、前記第1の極性を有する前記第1の読み出しパルスの少なくとも一部分を供給するように構成される、第1の電圧源と、
    前記第2の区域のディジット線と結合される第2の電圧源であって、前記第2の極性を有する前記第2の読み出しパルスの少なくとも一部分を供給するように構成される、第2の電圧源と、をさらに含む、請求項36に記載の電子メモリ装置。
  38. 前記メモリタイルのメモリセルは、前記論理状態を示すためにイオンの非均一分布を使用するように構成されるカルコゲナイド材料で形成される、請求項36に記載の電子メモリ装置。
  39. 前記メモリセルの第1の区域のための1つまたは複数のトリムパラメータは、前記メモリセルの第2の区域のための1つまたは複数のトリムパラメータから独立している、請求項36に記載の電子メモリ装置。
  40. 前記第1の感知構成要素および前記第2の感知構成要素は、前記メモリタイルのフットプリントの下に位置付けられる、請求項36に記載の電子メモリ装置。
  41. 前記メモリタイルは、メモリセルの2つ以上のデッキを含む、請求項36に記載の電子メモリ装置。
JP2021533840A 2018-12-19 2019-12-13 複数のメモリセルに同時にアクセスするためのシステムおよび技法 Active JP7164723B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862782015P 2018-12-19 2018-12-19
US62/782,015 2018-12-19
US16/712,682 US11335402B2 (en) 2018-12-19 2019-12-12 Systems and techniques for accessing multiple memory cells concurrently
US16/712,682 2019-12-12
PCT/US2019/066202 WO2020131613A1 (en) 2018-12-19 2019-12-13 Systems and techniques for accessing multiple memory cells concurrently

Publications (2)

Publication Number Publication Date
JP2022512436A JP2022512436A (ja) 2022-02-03
JP7164723B2 true JP7164723B2 (ja) 2022-11-01

Family

ID=71096931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021533840A Active JP7164723B2 (ja) 2018-12-19 2019-12-13 複数のメモリセルに同時にアクセスするためのシステムおよび技法

Country Status (6)

Country Link
US (3) US11335402B2 (ja)
EP (1) EP3899947A4 (ja)
JP (1) JP7164723B2 (ja)
KR (1) KR20210092838A (ja)
CN (1) CN113196398A (ja)
WO (1) WO2020131613A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985212B2 (en) * 2019-04-16 2021-04-20 Micron Technology, Inc. Multi-component cell architectures for a memory device
US11355209B2 (en) 2020-07-10 2022-06-07 Micron Technology, Inc. Accessing a multi-level memory cell
US11417398B2 (en) 2020-12-01 2022-08-16 Micron Technology, Inc. Memory cells for storing operational data
US11475970B1 (en) * 2021-06-03 2022-10-18 Micron Technology, Inc. Bipolar read retry
US20230266909A1 (en) * 2022-02-24 2023-08-24 Micron Technology, Inc. Operating memory die based on temperature data

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033674A (ja) 2008-07-30 2010-02-12 Toshiba Corp 半導体記憶装置
JP2014506710A (ja) 2011-02-25 2014-03-17 マイクロン テクノロジー, インク. 抵抗メモリ検出方法および装置
WO2018123287A1 (ja) 2016-12-26 2018-07-05 ソニーセミコンダクタソリューションズ株式会社 記憶装置および制御方法
US20180315474A1 (en) 2017-04-28 2018-11-01 Micron Technology, Inc. Mixed cross point memory

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729119A (en) * 1984-05-21 1988-03-01 General Computer Corporation Apparatus and methods for processing data through a random access memory system
ITRM20010524A1 (it) * 2001-08-30 2003-02-28 Micron Technology Inc Struttura a schiera di memoria flash.
US7778062B2 (en) * 2003-03-18 2010-08-17 Kabushiki Kaisha Toshiba Resistance change memory device
US7123521B1 (en) * 2005-04-27 2006-10-17 Micron Technology, Inc. Random cache read
KR101360812B1 (ko) 2008-06-05 2014-02-11 삼성전자주식회사 반도체 장치 및 이를 포함하는 반도체 시스템
JP2013114644A (ja) * 2011-12-01 2013-06-10 Fujitsu Ltd メモリモジュールおよび半導体記憶装置
US9406362B2 (en) * 2013-06-17 2016-08-02 Micron Technology, Inc. Memory tile access and selection patterns
US9484089B2 (en) * 2014-10-20 2016-11-01 Sandisk Technologies Llc Dual polarity read operation
US9704572B2 (en) 2015-03-20 2017-07-11 Sandisk Technologies Llc Sense amplifier with integrating capacitor and methods of operation
US10134470B2 (en) * 2015-11-04 2018-11-20 Micron Technology, Inc. Apparatuses and methods including memory and operation of same
US10446226B2 (en) * 2016-08-08 2019-10-15 Micron Technology, Inc. Apparatuses including multi-level memory cells and methods of operation of same
US9799381B1 (en) * 2016-09-28 2017-10-24 Intel Corporation Double-polarity memory read
US10157670B2 (en) * 2016-10-28 2018-12-18 Micron Technology, Inc. Apparatuses including memory cells and methods of operation of same
US20180277208A1 (en) 2017-03-27 2018-09-27 Sandisk Technologies Llc Methods and apparatus for programming barrier modulated memory cells
US10269442B1 (en) * 2017-12-28 2019-04-23 Micron Technology, Inc. Drift mitigation with embedded refresh

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033674A (ja) 2008-07-30 2010-02-12 Toshiba Corp 半導体記憶装置
JP2014506710A (ja) 2011-02-25 2014-03-17 マイクロン テクノロジー, インク. 抵抗メモリ検出方法および装置
WO2018123287A1 (ja) 2016-12-26 2018-07-05 ソニーセミコンダクタソリューションズ株式会社 記憶装置および制御方法
US20180315474A1 (en) 2017-04-28 2018-11-01 Micron Technology, Inc. Mixed cross point memory

Also Published As

Publication number Publication date
CN113196398A (zh) 2021-07-30
EP3899947A1 (en) 2021-10-27
EP3899947A4 (en) 2022-08-24
JP2022512436A (ja) 2022-02-03
US11335402B2 (en) 2022-05-17
WO2020131613A1 (en) 2020-06-25
US20220336013A1 (en) 2022-10-20
US20240013833A1 (en) 2024-01-11
US11705194B2 (en) 2023-07-18
KR20210092838A (ko) 2021-07-26
US20200202928A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
US11217322B2 (en) Drift mitigation with embedded refresh
JP7164723B2 (ja) 複数のメモリセルに同時にアクセスするためのシステムおよび技法
TWI847196B (zh) 用於程式化多位階自選擇記憶體單元之技術
US10777266B2 (en) Mixed cross point memory
JP7271075B2 (ja) メモリセルをプログラムするための技術
US10748615B2 (en) Polarity-conditioned memory cell write operations
JP7123151B2 (ja) メモリ・デバイスのためのドーパント変調型エッチング
US11545625B2 (en) Tapered memory cell profiles
TWI775484B (zh) 用於支援存取多位階記憶體單元之方法及設備,以及非暫時性電腦可讀媒體
TW202203230A (zh) 讀取多位階記憶體單元
KR102436908B1 (ko) 비대칭 전극 인터페이스를 구비한 메모리 셀
JP2023504167A (ja) メモリシステムに対する書き込み動作技術
CN114651308A (zh) 恢复存储器单元阈值电压
KR20210022489A (ko) 전원 오프 시 더티 기록

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210813

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221020

R150 Certificate of patent or registration of utility model

Ref document number: 7164723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150