JP7163983B2 - 有機硫黄材料、電極およびリチウムイオン二次電池並びに製造方法 - Google Patents
有機硫黄材料、電極およびリチウムイオン二次電池並びに製造方法 Download PDFInfo
- Publication number
- JP7163983B2 JP7163983B2 JP2021022756A JP2021022756A JP7163983B2 JP 7163983 B2 JP7163983 B2 JP 7163983B2 JP 2021022756 A JP2021022756 A JP 2021022756A JP 2021022756 A JP2021022756 A JP 2021022756A JP 7163983 B2 JP7163983 B2 JP 7163983B2
- Authority
- JP
- Japan
- Prior art keywords
- acrylic resin
- organic sulfur
- intensity
- sulfur material
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
[1]アクリル樹脂を硫黄で変性した有機硫黄材料であり、
前記アクリル樹脂が、FT-IRスペクトルにおいて、756cm-1付近、1066cm-1付近、1150cm-1付近、1245cm-1付近、1270cm-1付近、1453cm-1付近および1732cm-1付近にピークを有する、有機硫黄材料、
[2]前記1150cm-1付近のピークと前記1732cm-1付近のピークが、前記残りのピークよりも大きいものである、上記[1]記載の有機硫黄材料、
[3]前記FT-IRスペクトルが、さらに、846cm-1付近、992cm-1付近、1196cm-1付近、2955cm-1付近および2996cm-1付近にピークを有する、上記[1]または上記[2]記載の有機硫黄材料、
[4]前記アクリル樹脂の総量中に占める炭素、水素、窒素および硫黄の質量比が、それぞれ、60.0~70.0%、7.5~9.5%、0.0%および0.0~1.0%、好ましくは60.0~69.0%、7.6~9.4%、0.0%および0.0~0.9%、より好ましくは60.0~68.0%、7.7~9.3%、0.0%および0.0~0.8%、さらに好ましくは60.0~67.0%、7.7~9.2%、0.0%および0.0~0.7%、さらに好ましくは60.0~67.0%、7.7~9.2%、0.0%および0.0~0.6%、さらに好ましくは60.5~66.5%、7.7~9.2%、0.0%および0.0~0.5%である、上記[1]~[3]のいずれかに記載の有機硫黄材料、
[5]前記変性が非酸化性雰囲気下での焼成により実施される、上記[1]~[4]のいずれかに記載の有機硫黄材料、
[6]前記アクリル樹脂の粒子径が、0.1~300.0μm、好ましくは1.0~270.0μm、より好ましくは1.0~200.0μm、さらに好ましくは1.0~100.0μm、さらに好ましくは1.0~50.0μm、さらに好ましくは1.0~20.0μm、さらに好ましくは1.0~15.0μmである、上記[1]~[5]のいずれかに記載の有機硫黄材料、
[7]前記アクリル樹脂が多孔質構造を有する、上記[1]~[6]のいずれかに記載の有機硫黄材料、
[8]ラマン分光法によって検出されたラマンスペクトルにおいて、1450cm-1付近に主ピークが存在し、かつ、200~1800cm-1の範囲で他に485cm-1付近、1250cm-1付近、1540cm-1付近にピークが存在する、上記[1]~[7]のいずれかに記載の有機硫黄材料、
[9]前記ラマンスペクトルにおいて、1000cm-1の強度と1800cm-1の強度とを結ぶ直線をベースラインとして、1450cm-1付近のピーク強度と対応するベースライン強度との差(I1450)および1540cm-1付近のピーク強度と対応するベースライン強度との差(I1540)を算出するとき、I1450/I1540の値が1~4の範囲である、上記[8]記載の有機硫黄材料、
[10]有機硫黄材料中の硫黄量が50.0質量%以上、より好ましくは53.0質量%以上、さらに好ましくは55.0質量%以上、さらに好ましくは56.0質量%以上である上記[1]~[9]のいずれかに記載の有機硫黄材料、
[11]上記[1]~[10]のいずれかに記載の有機硫黄材料を含んでなる電極、
[12]上記[11]の電極を含んでなるリチウムイオン二次電池、
[13]有機硫黄材料の製造方法であって、
(1)アクリル樹脂を準備する工程、
(2)前記アクリル樹脂を硫黄で変性する工程
を含んでなるものであり、
前記アクリル樹脂が、FT-IRスペクトルにおいて、756cm-1付近、1066cm-1付近、1150cm-1付近、1245cm-1付近、1270cm-1付近、1453cm-1付近および1732cm-1付近にピークを有するものである、製造方法、
[14]前記変性が非酸化性雰囲気下での焼成により実施される、上記[13]記載の製造方法、
[15]前記アクリル樹脂に対する前記硫黄の量が、アクリル樹脂100質量部に対して硫黄50~1000質量部、好ましくは100質量部~750質量部、より好ましくは150質量部~500質量部、さらに好ましくは200質量部~500質量部、さらに好ましくは250質量部~500質量部である、上記[13]または上記[14]記載の製造方法、
[16]前記焼成の温度が250~550℃、好ましくは300℃~500℃、より好ましくは300℃~450℃以下である上記[13]~[15]のいずれかに記載の製造方法、
[17]前記アクリル樹脂の粒子径が、0.1~300.0μm、好ましくは1.0~270.0μm、より好ましくは1.0~200.0μm、さらに好ましくは1.0~100.0μm、さらに好ましくは1.0~50.0μm、さらに好ましくは1.0~20.0μm、さらに好ましくは1.0~15.0μmである、上記[13]~[16]のいずれかに記載の製造方法、
[18]前記アクリル樹脂が多孔質構造を有する、上記[13]~[17]のいずれかに記載の製造方法、
[19]電極の製造方法であって、
上記[13]~[18]のいずれかに記載の製造方法により、有機硫黄材料を製造した後、さらに、
(3)該有機硫黄材料を用いて、常法により、電極を作製する工程
を含んでなる、製造方法、
[20]リチウムイオン二次電池の製造方法であって、
上記[19]の製造方法により電極を製造した後、さらに、
(4)該電極を用いて、常法により、リチウムイオン二次電池を作製する工程
を含んでなる製造方法、
に関する。
(1)アクリル樹脂を準備する工程、
(2)前記アクリル樹脂を硫黄で変性する工程
を含んでなるものであり、前記アクリル樹脂が、FT-IRスペクトルにおいて、756cm-1付近、1066cm-1付近、1150cm-1付近、1245cm-1付近、1270cm-1付近、1453cm-1付近および1732cm-1付近にピークを有するものである、製造方法である。
(3)該有機硫黄材料を用いて、常法により、電極を作製する工程
を含んでなる製造方法である。
(4)該電極を用いて、常法により、リチウムイオン二次電池を作製する工程
を含んでなる製造方法である。
本開示において、アクリル樹脂は、FT-IRスペクトルにおいて、756cm-1付近、1066cm-1付近、1150cm-1付近、1245cm-1付近、1270cm-1付近、1453cm-1付近および1732cm-1付近にピークを有するものである。
本開示において、アクリル樹脂は、微粒子の形態のものが好ましい。ここで、微粒子とは、粒子径が300.0μm以下の粒子をいう。該粒子径は270.0μm以下が好ましく、200.0μm以下がより好ましく、100.0μm以下がさらに好ましく、50.0μm以下がさらに好ましく、20.0μm以下がさらに好ましく、15.0μm以下がさらに好ましく、13.0μm以下がさらに好ましく、10.0μm以下がさらに好ましく、6.0μm以下がさらに好ましい。一方、該粒子径の下限は特に限定されないが、通常、例えば、0.1μm以上であり、好ましくは1.0μm以上である。該粒子径は、ベックマン・コールター(株)製の精密粒度分布測定装置Multisizer3により測定される値である。
アクリル樹脂は、上記構造を有する限り、Mwは特に限定されない。但し、アクリル樹脂のMwは、通常、2000~1500000の範囲内である。Mwは、ゲル浸透クロマトグラフィー(GPC)により測定される値(ポリスチレンにより較正)である。
アクリル樹脂は、商業的に入手可能であるか、あるいは、当業者の知識の範囲内である、常法により、製造することができる。商業的に入手可能なアクリル樹脂としては、例えば、積水化成品工業(株)製、積水化学(株)製のものが挙げられる。
硫黄としては粉末硫黄、不溶性硫黄、沈降硫黄、コロイド硫黄等の種々の形態のものをいずれも使用できるが、このうち、沈降硫黄、コロイド硫黄が好ましい。硫黄の配合量は、アクリル樹脂100質量部に対して、50質量部以上が好ましく、100質量部以上がより好ましく、さらに好ましくは150質量部以上であり、さらに好ましくは200質量部以上であり、さらに好ましくは250質量部以上である。100質量部以上であることで充放電容量やサイクル特性を向上できる傾向がある。一方、硫黄の配合量について、上限は特にないが、通常は、1000質量部以下、好ましくは750質量部以下であり、より好ましくは500質量部以下であり、さらに好ましくは400質量部以下であり、さらに好ましくは350質量部以下である。1000質量部以下であることで、コスト的に有利な傾向がある。
アクリル樹脂を硫黄により変性する場合、アクリル樹脂に予め導電性を有する炭素材料を添加しておいてもよい。有機硫黄材料の導電性を向上させることができるからである。このような導電性炭素材料としては、グラファイト構造を有する炭素材料が好ましい。炭素材料としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛、カーボンナノチューブ(CNT)、カーボンファイバー(CF)、グラフェン、フラーレンなどの縮合芳香環構造を有するものが使用できる。導電性炭素材料としては1種または2種以上を使用することができる。
アクリル樹脂を硫黄により変性する場合、アクリル樹脂に予めこの分野で通常使用されるその他の材料を、所望により、添加しておいてもよい。
本開示において、有機硫黄材料は、所定のアクリル樹脂を硫黄により変性することにより製造することができる。
変性にあたり、アクリル樹脂と硫黄は、予め十分に混合しておくことが望ましい。アクリル樹脂に予め導電性炭素材料等を添加しておく場合には、これら添加剤も一緒に混合される。該混合は、常法により実施することができ、例えば、高速ブレンダー等を用いて実施することができる。一方、アクリル樹脂と硫黄と、所望により、添加剤とは、ペレット状に成形した状態とすることもできる。
変性は非酸化性雰囲気下で実施することが好ましい。非酸化性雰囲気とは、酸素を実質的に含まない雰囲気をいい、構成成分の酸化劣化や過剰な熱分解を抑制するために採用されるものである。具体的には、窒素やアルゴンなどの不活性ガス雰囲気、硫黄ガス雰囲気等をいう。したがって、変性は、例えば、不活性ガス雰囲気下の石英管中で実施される。
アクリル樹脂の硫黄による変性は常法により行うことができ、例えば、アクリル樹脂と硫黄を焼成することにより実施することができる。焼成は常法により行うことができる。例えば、焼成は、焼成原料(アクリル樹脂と硫黄と、所望により、添加剤とを含む)を、所定の温度に到達するまで所定の昇温速度で加熱し、当該所定の温度で所定の時間維持し、その後自然に冷却することにより行うことができる。
該昇温速度は、例えば、50~500℃/hの範囲内であることが好ましい。該昇温速度は、100℃/h以上であることがより好ましい。一方、該昇温速度は、400℃/h以下であることがより好ましく、300℃/h以下であることがさらに好ましく、200℃/h以下であることがさらに好ましい。昇温速度がこのような範囲内にあることで、充放電容量やサイクル特性を向上させるという目的を達成し易い傾向がある。
焼成温度とは、焼成原料の昇温完了後の温度であって、焼成原料の焼成のために一定時間維持される温度をいう。該温度は、250~550℃の範囲であることが好ましい。250℃以上であることで、硫化反応が不十分となることを避け、目的物の充放電容量の低下を防止できる傾向がある。一方、550℃以下とすることで、焼成原料の分解を防ぎ、収率の低下や、充放電容量の低下を防止できる傾向がある。該温度は、300℃以上がより好ましく、350℃以上がさらに好ましく、一方、500℃以下がより好ましく、450℃以下がより好ましい。焼成温度で維持する時間は、焼成原料の種類、焼成温度等に応じて適宜設定すればよいが、例えば、1~6時間であることが好ましい。1時間以上であることで、焼成を十分に進行させることができる傾向があり、6時間以下であることで、構成成分の過剰な熱分解を防止できる傾向がある。
焼成は、図1に示す装置によって実施できる他、例えば、二軸押出機等の連続式の装置を用いて実施することもできる。連続式の装置を用いる場合、該装置内で、焼成原料を混練して粉砕・混合しながら、焼成も施すなど、有機硫黄材料を一連の操作により連続して製造できるというメリットがある。
焼成後に得られる処理物中には、焼成時に昇華した硫黄が冷えて析出した未反応硫黄などが残留している。これら残留物はサイクル特性を低下させる要因となるため、できるだけ除去することが望ましい。残留物の除去は、例えば、減圧加熱乾燥、温風乾燥、溶媒洗浄などの常法に従い、実施することができる。
得られた有機硫黄材料は、所定の粒度となるように粉砕し、分級して、電極の製造に適したサイズの粒子とすることができる。粒子の好ましい粒度分布としては、メジアン径で5~40μm程度である。なお、先に説明した二軸押出機を用いた焼成方法では、混練時のせん断によって、有機硫黄材料の製造と同時に、製造した有機硫黄材料の粉砕も行うことができる。
こうして得られる有機硫黄材料は、炭素と硫黄を主たる成分とするものであり、硫黄量が多い方が充放電容量やサイクル特性が向上する傾向にある。そのため、硫黄の含有量は多い程好ましい。一般に、硫黄量の好ましい範囲としては、有機硫黄材料中、50.0質量%以上であり、より好ましくは53.0質量%以上、さらに好ましくは55.0質量%以上、さらに好ましくは56.0質量%以上である。ただし、導電性炭素材料を配合する場合には、当該導電性炭素材料を構成する炭素の影響で、硫黄の含有量が多少下回っても、充放電容量やサイクル特性の向上効果を期待できる場合がある。そのような場合の硫黄の含有量は、上述の硫黄量を約5.0質量%下回るものであってもよい。有機硫黄材料中の炭素量と硫黄量との合計は、好ましくは90質量%以上、より好ましくは92質量%以上、さらに好ましくは94質量%以上である。
本開示の有機硫黄材料は、リチウムイオン二次電池の電極活物質として、すなわち、正極活物質または負極活物質として、使用することができる。すなわち、該有機硫黄材料を用いること以外は一般的なリチウムイオン二次電池用電極を作製する場合と同様にして、リチウム二次電池用電極を作製することができ、さらに該リチウムイオン二次電池用電極を用いること以外は一般的なリチウムイオン二次電池を作製する場合と同様にして、リチウムイオン二次電池を作製することができる。こうして作製したリチウムイオン二次電池は、充放電容量が大きくサイクル特性に優れる。
本開示のリチウムイオン二次電池は、上記有機硫黄材料(正極活物質)を含む正極に、負極および電解質、さらには、所望により、セパレータ等の部材を使用して、常法に従い、作製することができる。
リチウムイオン二次電池用正極は、正極活物質として上記有機硫黄材料を用いること以外は、一般的なリチウムイオン二次電池用正極と同様にして、作製することができる。例えば、該正極は、粒子状にした有機硫黄材料を、導電助剤、バインダ、および溶媒と混合してペースト状の正極材料を調製し、当該正極材料を集電体に塗布した後、乾燥させることによって作製することができる。また、その他の方法として、該正極は、例えば、有機硫黄材料を、導電助剤、バインダ、および少量の溶媒とともに、乳鉢などを用いて混練し、かつフィルム状にしたのち、プレス機等を用いて集電体に圧着して、作製することもできる。
導電助剤としては、例えば、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、炭素粉末、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック(KB)、黒鉛、あるいは、アルミニウムやチタンなどの正極電位において安定な金属の微粉末等が例示される。これらの導電助剤は、1種または2種以上を使用することができる。
バインダとしては、ポリフッ化ビニリデン(PolyVinylidene DiFluoride:PVDF)、ポリ四フッ化エチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリイミド(PI)、ポリアミドイミド(PAI)、カルボキシメチルセルロース(CMC)、ポリ塩化ビニル(PVC)、アクリル樹脂、メタクリル樹脂(PMA)、ポリアクリロニトリル(PAN)、変性ポリフェニレンオキシド(PPO)、ポリエチレンオキシド(PEO)、ポリエチレン(PE)、ポリプロピレン(PP)等が例示される。これらのバインダは、1種または2種以上を使用することができる。
溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアルデヒド、アルコール、ヘキサン、水等が例示される。これら溶媒は、1種または2種以上を使用することができる。
これら正極を構成する材料の配合量は、特に問わないが、例えば、有機硫黄材料100質量部に対して、導電助剤2~100質量部、バインダ2~50質量部、および適量の溶媒を配合するのが好ましい。
集電体としては、リチウムイオン二次電池用正極に一般に用いられるものを使用すればよい。例えば、集電体としては、アルミニウム箔、アルミニウムメッシュ、パンチングアルミニウムシート、アルミニウムエキスパンドシート、ステンレススチール箔、ステンレススチールメッシュ、パンチングステンレススチールシート、ステンレススチールエキスパンドシート、発泡ニッケル、ニッケル不織布、銅箔、銅メッシュ、パンチング銅シート、銅エキスパンドシート、チタン箔、チタンメッシュ、カーボン不織布、カーボン織布等からなるものが例示される。このうち、黒鉛化度の高いカーボンで構成されたカーボン不織布やカーボン織布からなる集電体は、水素を含まず、硫黄との反応性が低いために、本開示の有機硫黄材料を正極活物質とする場合の集電体として好適である。黒鉛化度の高い炭素繊維の原料としては、カーボン繊維の材料となる各種のピッチ(すなわち、石油、石炭、コールタールなどの副生成物)やポリアクリロニトリル繊維(PAN)等を用いることができる。集電体は1種を用いる他、2種以上を併用してもよい。
負極材料としては、公知の金属リチウム、黒鉛などの炭素系材料、シリコン薄膜などのシリコン系材料、銅-錫やコバルト-錫などの合金系材料を使用できる。負極材料として、リチウムを含まない材料、例えば、上記した負極材料の内で、炭素系材料、シリコン系材料、合金系材料等を用いる場合には、デンドライトの発生による正負極間の短絡を生じ難い点で有利である。ただし、これらのリチウムを含まない負極材料を本開示の正極と組み合わせて用いる場合には、正極および負極が何れもリチウムを含まない。このため、負極および正極の何れか一方、または両方にあらかじめリチウムを挿入するリチウムプリドープ処理が必要となる。リチウムのプリドープ法としては公知の方法に従えばよい。例えば、負極にリチウムをドープする場合には、対極に金属リチウムを用いて半電池を組み、電気化学的にリチウムをドープする電解ドープ法によってリチウムを挿入する方法や、金属リチウム箔を電極に貼り付けたあと電解液の中に放置し電極へのリチウムの拡散を利用してドープする貼り付けプリドープ法によりリチウムを挿入する方法が挙げられる。また、正極にリチウムをプリドープする場合にも、上記した電解ドープ法を利用することができる。リチウムを含まない負極材料としては、特に、高容量の負極材料であるシリコン系材料が好ましく、その中でも電極厚さが薄くて体積当りの容量で有利となる薄膜シリコンがより好ましい。
リチウムイオン二次電池に用いる電解質としては、有機溶媒に電解質であるアルカリ金属塩を溶解させたものを用いることができる。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジメチルエーテル、γ-ブチロラクトン、アセトニトリル等の非水系溶媒から選ばれる少なくとも一種を用いるのが好ましい。電解質としては、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiI、LiClO4等を用いることができる。電解質の濃度は、0.5mol/L~1.7mol/L程度であればよい。なお、電解質は液状に限定されない。例えば、リチウムイオン二次電池がリチウムポリマー二次電池である場合、電解質は固体状(例えば、高分子ゲル状)をなす。
リチウムイオン二次電池は、上述した負極、正極、電解質以外にも、セパレータ等の部材を備えてもよい。セパレータは、正極と負極との間に介在し、正極と負極との間のイオンの移動を許容するとともに、正極と負極との内部短絡を防止する。リチウムイオン二次電池が密閉型であれば、セパレータには電解液を保持する機能も求められる。セパレータとしては、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、アラミド、ポリイミド、セルロース、ガラス等を材料とする薄肉かつ微多孔性または不織布状の膜を用いるのが好ましい。
リチウムイオン二次電池の形状は特に限定されず、円筒型、積層型、コイン型、ボタン型等の種々の形状にできる。
本開示のリチウムイオン二次電池は、上記有機硫黄材料(負極活物質)を含む負極に、正極および電解質、さらには、所望により、セパレータ等の部材を使用して、常法に従い、作製することができる。
リチウムイオン二次電池用負極は、負極活物質として上記有機硫黄材料を用いること以外は、一般的なリチウムイオン二次電池用負極と同様にして、作製することができる。例えば、該負極は、粒子状にした有機硫黄材料を、導電助剤、バインダ、および溶媒と混合してペースト状の負極材料を調製し、当該負極材料を集電体に塗布した後、乾燥させることによって作製することができる。また、その他の方法として、該負極は、例えば、有機硫黄材料を、導電助剤、バインダ、および少量の溶媒とともに、乳鉢などを用いて混練し、かつフィルム状にしたのち、プレス機等を用いて集電体に圧着して、作製することもできる。
正極材料としては、例えば、リチウムを含む遷移金属酸化物もしくは固溶体酸化物、または電気化学的にリチウムイオンを吸蔵および放出することができる物質であれば特に制限されない。リチウムを含む遷移金属酸化物としては、例えば、LiCoO2等のLi・Co系複合酸化物、LiNixCoyMnzO2等のLi・Ni・Co・Mn系複合酸化物、LiNiO2等のLi・Ni系複合酸化物、またはLiMn2O4等のLi・Mn系複合酸化物等を例示することができる。固溶体酸化物としては、例えば、LiaMnxCoyNizO2(1.150≦a≦1.430、0.450≦x≦0.600、0.100≦y≦0.150、0.200≦z≦0.280)、LiMnxCoyNizO2(0.300≦x≦0.850、0.100≦y≦0.300、0.100≦z≦0.300)、LiMn1.5Ni0.5O4等を例示することができる。これらの化合物を単独または複数種、混合して用いてもよい。
アクリル樹脂1:球状アクリル樹脂(積水化学(株)製のアドバンセルHB-2051、粒子径:20μm)
アクリル樹脂2:ポリメタクリル酸メチルから成る球状アクリル樹脂(積水化成品工業(株)製のテクポリマーMB-8(メチルメタクリレートのホモポリマーから成る球状アクリル樹脂)、粒子径:8μm)
アクリル樹脂3:架橋ポリメタクリル酸メチルから成る球状アクリル樹脂(積水化成品工業(株)製のテクポリマーMB30X-5(メチルメタクリレートとエチレングリコールジメタクリレートコポリマーから成る球状アクリル樹脂)、粒子径:5μm)
アクリル樹脂4:架橋ポリメタクリル酸ブチルから成る球状アクリル樹脂(積水化成品工業(株)製のテクポリマーBM30X-8(ブチルメタクリレートとエチレングリコールジメタクリレートコポリマーから成る球状アクリル樹脂)、粒子径:8μm)
アクリル樹脂5:架橋ポリメタクリル酸メチルから成る球状アクリル樹脂(積水化成品工業(株)製のテクポリマーMB30X-8(メチルメタクリレートとエチレングリコールジメタクリレートコポリマーから成る球状アクリル樹脂)、粒子径:8μm)
アクリル樹脂6:架橋ポリメタクリル酸メチルから成る球状アクリル樹脂(積水化成品工業(株)製のテクポリマーMB30X-20(メチルメタクリレートとエチレングリコールジメタクリレートコポリマーから成る球状アクリル樹脂)、粒子径:20μm)
アクリル樹脂7:架橋ポリメタクリル酸メチルから成る多孔質状アクリル樹脂(積水化成品工業(株)製のテクポリマーMBP-8(メチルメタクリレートとエチレングリコールジメタクリレートコポリマーから成る多孔質状アクリル樹脂)、粒子径:8μm)
アクリル樹脂8:ポリメタクリル酸メチルから成る球状アクリル樹脂((株)クラレ製のパラペットGF-P(メチルメタクリルレートのホモポリマーから成る球状アクリル樹脂)、粒子径:270μm)
アクリル樹脂9:架橋ポリメタクリル酸ブチルから成る球状アクリル樹脂(積水化成品工業(株)製のテクポリマーBM30X-5(ブチルメタクリレートとエチレングリコールジメタクリレートコポリマーから成る球状アクリル樹脂)、粒子径:5μm)
アクリル樹脂10:架橋ポリメタクリル酸ブチルから成る球状アクリル樹脂(積水化成品工業(株)製のテクポリマーBM30X-12(ブチルメタクリレートとエチレングリコールジメタクリレートコポリマーから成る球状アクリル樹脂)、粒子径:12μm)
アクリル樹脂11:架橋ポリメタクリル酸ブチルから成る球状アクリル樹脂(アイカ工業(株)製のガンツパールGB-15S(ブチルメタクリレートとエチレングリコールジメタクリレートコポリマーから成る球状アクリル樹脂)、粒子径:15μm)
ハイシスBR:ハイシスブタジエンゴム(宇部興産(株)製のBR150L、シス1,4結合含量=98質量%)
PAN:ポリアクリロニトリル(シグマアルドリッチ社製、粒子径:8μm)
硫黄:鶴見化学工業(株)製の沈降硫黄
<原料の作製>
表3の配合に従い、材料をブレンダーで混合し、焼成のための原料(焼成原料)を得た。
焼成原料の焼成には、図1に示す反応装置1を用いた。反応装置1は、原料2を収容して焼成するための、有底筒状をなす石英ガラス製の、外径60mm、内径50mm、高さ300mmの反応容器3、当該反応容器3の上部開口を閉じるシリコーン製の蓋4、当該蓋4を貫通する1本のアルミナ保護管5((株)ニッカトー製の「アルミナSSA-S」、外径4mm、内径2mm、長さ250mm)と、2本のガス導入管6とガス排出管7(いずれも、(株)ニッカトー製の「アルミナSSA-S」、外径6mm、内径4mm、長さ150mm)、および反応容器3を底部側から加熱する電気炉8(ルツボ炉、開口幅φ80mm、加熱高さ100mm)を備えている。
まず原料2を反応容器3の底に収容した状態で、ガスの供給系から、80ml/分の流量でArガスを継続的に供給しながら、供給開始30分後に、電気炉8による加熱を開始した。昇温速度は150℃/hで実施した。そして原料の温度が表3の焼成温度(400℃)に達した時点で、該焼成温度を維持しながら2時間焼成をした。次いでArガスの流量を調整しながら、Arガス雰囲気下、反応生成物の温度を25℃まで自然冷却させたのち、生成物を反応容器3から取り出した。
焼成工程後の生成物に残存する未反応硫黄(遊離した状態の単体硫黄)を除去するために、以下の工程をおこなった。すなわち、該生成物を乳鉢で粉砕し、粉砕物2gをガラスチューブオーブンに収容して、真空吸引しながら250℃で3時間加熱して、未反応硫黄が除去された(または、微量の未反応硫黄しか含まない)有機硫黄材料を得た。昇温速度は10℃/分とした。
焼成物の粗大粒子を除去するために、32μmメッシュのステンレスふるいを用いて分級して有機硫黄材料1を得た。
以下のとおり、リチウムイオン二次電池を作製した。
活物質として有機硫黄材料1、導電助剤としてアセチレンブラック、バインダとしてアクリル樹脂を用いた。これらを、割合が、活物質:導電助剤:バインダ=90:5:5(質量%)になるよう秤量し、容器にいれ、分散剤にmilliQ水を使用して自転公転ミキサー((株)シンキー製のARE-250)を用いて攪拌、混合を行い、均一なスラリーを作製した。作製したスラリーを20μmのアルミ箔上に、スリット幅60μmのアプリケーターを使用して塗工し、ロールプレスを用いて圧縮した電極を120℃で3時間、乾燥機で加熱し、乾燥後、φ11に打ち抜くことで電極(正極)を得た。その後、電極の重量を測定し、上述の比率から電極中の活物質量を算出した。
負極としては、金属リチウム箔(直径14mm、厚さ500μmの円盤状、本城金属(株)製)を用いた
電解液としては、エチレンカーボネートとジエチルカーボネートとの混合溶媒に、LiPF6を溶解した非水電解質を用いた。エチレンカーボネートとジエチルカーボネートとは体積比1:1で混合した。電解液中のLiPF6の濃度は、1.0mol/lであった。
上記正極および負極を用いて、コイン電池を製作した。詳しくは、ドライルーム内で、セパレータ(Celgard社製のCelgard2400、厚さ25μmのポリプロピレン微孔質膜)と、ガラス不織布フィルタ(厚さ440μm、ADVANTEC社製のGA100)と、を正極と負極との間に挟装して、電極体電池とした。この電極体電池を、ステンレス容器からなる電池ケース(CR2032型コイン電池用部材、宝泉(株)製)に収容した。電池ケースには上記電解液を注入した。電池ケースをカシメ機で密閉して、実施例1のリチウムイオン二次電池を得た。
表3および表4の配合・条件に従って適宜変更を加えた以外は、実施例1と同様に処理して、それぞれの焼成原料、有機硫黄材料、および、リチウムイオン二次電池を作製した。
各実施例、比較例で作製したコイン型のリチウムイオン二次電池について、試験温度30℃の条件下で、正極活物質1gあたり、1回から9回目までは50mAに相当する電流値で充放電させた。10回から30回目までは250mAに相当する電流値で充放電させた。放電終止電圧は1.0V、充電終止電圧は3.0Vとした。また充放電を繰り返し、10、30回の電池放電容量(mAh)を観察した。
容量維持率(%)=(DC30/DC10)×100 (a)
により、容量維持率(%)を求めた。先に説明したように容量維持率が高いほど、リチウムイオン二次電池はサイクル特性に優れていると言える。
(方法)
炭素、水素、硫黄および窒素について、エレメンタール社(Elementar)製の全自動元素分析装置 vario MICRO cubeを用いて質量を測定し、それぞれの質量比(%)を算出する。
実施例で使用したアクリル樹脂について元素分析をした。結果は、下表のとおりである。C(炭素)、H(水素)、N(窒素)およびS(硫黄)の質量比は実測値である。これら実測値を、総量(100%)から引いた残りが、ほぼ、O(酸素)の質量比であると推定される。
実施例、比較例で製造した有機硫黄材料について、元素分析をした。結果を表3および表4に示す。
IRスペクトルは、上記の方法により測定した。アクリル樹脂1(実施例1)、アクリル樹脂2(実施例2)、アクリル樹脂3(実施例3)およびアクリル樹脂4(実施例4)についての結果を図2に示す。
ラマンスペクトルは、上記の方法により測定した。実施例1および比較例1、2の有機硫黄材料についての結果を図3に示す。
2 原料
3 反応容器
4 シリコーン製の蓋
5 アルミナ保護管
6 ガス導入管
7 ガス排出管
8 電気炉
9 熱電対
10 温度コントローラ
11 水酸化ナトリウム水溶液
12 トラップ槽
A 1450cm-1付近のピーク強度と対応するベースライン強度との差
B 1540cm-1付近のピーク強度と対応するベースライン強度との差
Claims (21)
- アクリル樹脂を硫黄で変性した有機硫黄材料であり、
前記アクリル樹脂が、FT-IRスペクトルにおいて、756cm-1付近、1066cm-1付近、1150cm-1付近、1245cm-1付近、1270cm-1付近、1453cm-1付近および1732cm-1付近にピークを有し、
前記アクリル樹脂の粒子径が、0.1~300.0μmであり、
前記有機硫黄材料のラマン分光法によって検出されたラマンスペクトルにおいて、1000cm -1 の強度と1800cm -1 の強度とを結ぶ直線をベースラインとして、1450cm -1 付近のピーク強度と対応するベースライン強度との差(I 1450 )および1540cm -1 付近のピーク強度と対応するベースライン強度との差(I 1540 )を算出するとき、I 1450 /I 1540 の値が1~4の範囲である、有機硫黄材料。 - アクリル樹脂を硫黄で変性した有機硫黄材料であり、
前記アクリル樹脂が、FT-IRスペクトルにおいて、756cm-1付近、1066cm-1付近、1150cm-1付近、1245cm-1付近、1270cm-1付近、1453cm-1付近および1732cm-1付近にピークを有し、
前記アクリル樹脂が多孔質構造を有し、
前記有機硫黄材料のラマン分光法によって検出されたラマンスペクトルにおいて、1000cm -1 の強度と1800cm -1 の強度とを結ぶ直線をベースラインとして、1450cm -1 付近のピーク強度と対応するベースライン強度との差(I 1450 )および1540cm -1 付近のピーク強度と対応するベースライン強度との差(I 1540 )を算出するとき、I 1450 /I 1540 の値が1~4の範囲である、有機硫黄材料。 - 前記多孔質構造を有するアクリル樹脂の吸油量が100ml/100g以上である、請求項2記載の有機硫黄材料。
- アクリル樹脂を硫黄で変性した有機硫黄材料であり、
前記アクリル樹脂が、FT-IRスペクトルにおいて、756cm-1付近、1066cm-1付近、1150cm-1付近、1245cm-1付近、1270cm-1付近、1453cm-1付近および1732cm-1付近にピークを有し、
前記有機硫黄材料のラマン分光法によって検出されたラマンスペクトルにおいて、1000cm-1の強度と1800cm-1の強度とを結ぶ直線をベースラインとして、1450cm-1付近のピーク強度と対応するベースライン強度との差(I1450)および1540cm-1付近のピーク強度と対応するベースライン強度との差(I1540)を算出するとき、I1450/I1540の値が1~4の範囲である、有機硫黄材料。 - 前記1150cm-1付近のピークと前記1732cm-1付近のピークが、前記残りのピークよりも大きいものである、請求項1~4のいずれか1項に記載の有機硫黄材料。
- 前記FT-IRスペクトルが、さらに、846cm-1付近、992cm-1付近、1196cm-1付近、2955cm-1付近および2996cm-1付近にピークを有する、請求項1~5のいずれか1項に記載の有機硫黄材料。
- 前記アクリル樹脂の総量中に占める炭素、水素、窒素および硫黄の質量比が、それぞれ、60.0~70.0%、7.5~9.5%、0.0%および0.0~1.0%である、請求項1~6のいずれか1項に記載の有機硫黄材料。
- 前記変性が非酸化性雰囲気下での焼成により実施される、請求項1~7のいずれか1項に記載の有機硫黄材料。
- ラマン分光法によって検出されたラマンスペクトルにおいて、1450cm-1付近に主ピークが存在し、かつ、200~1800cm-1の範囲で他に485cm-1付近、1250cm-1付近、1540cm-1付近にピークが存在する、請求項1~8のいずれか1項に記載の有機硫黄材料。
- 有機硫黄材料中の硫黄量が50.0質量%以上である請求項1~9のいずれか1項に記載の有機硫黄材料。
- 有機硫黄材料中の水素含有量が1.8質量%以下である、請求項1~10のいずれか1項に記載の有機硫黄材料。
- 有機硫黄材料のメジアン径が5~40μmである、請求項1~11のいずれか1項に記載の有機硫黄材料。
- 請求項1~12のいずれか1項に記載の有機硫黄材料を含んでなる電極。
- 請求項13の電極を含んでなるリチウムイオン二次電池。
- 有機硫黄材料の製造方法であって、
(1)アクリル樹脂を準備する工程、
(2)前記アクリル樹脂を硫黄で変性する工程
を含んでなるものであり、
前記アクリル樹脂が、FT-IRスペクトルにおいて、756cm-1付近、1066cm-1付近、1150cm-1付近、1245cm-1付近、1270cm-1付近、1453cm-1付近および1732cm-1付近にピークを有するものであり、
前記アクリル樹脂の粒子径が、0.1~300.0μmであり、
前記有機硫黄材料のラマン分光法によって検出されたラマンスペクトルにおいて、1000cm -1 の強度と1800cm -1 の強度とを結ぶ直線をベースラインとして、1450cm -1 付近のピーク強度と対応するベースライン強度との差(I 1450 )および1540cm -1 付近のピーク強度と対応するベースライン強度との差(I 1540 )を算出するとき、I 1450 /I 1540 の値が1~4の範囲である、製造方法。 - 有機硫黄材料の製造方法であって、
(1)アクリル樹脂を準備する工程、
(2)前記アクリル樹脂を硫黄で変性する工程
を含んでなるものであり、
前記アクリル樹脂が、FT-IRスペクトルにおいて、756cm-1付近、1066cm-1付近、1150cm-1付近、1245cm-1付近、1270cm-1付近、1453cm-1付近および1732cm-1付近にピークを有するものであり、
前記アクリル樹脂が多孔質構造を有し、
前記有機硫黄材料のラマン分光法によって検出されたラマンスペクトルにおいて、1000cm -1 の強度と1800cm -1 の強度とを結ぶ直線をベースラインとして、1450cm -1 付近のピーク強度と対応するベースライン強度との差(I 1450 )および1540cm -1 付近のピーク強度と対応するベースライン強度との差(I 1540 )を算出するとき、I 1450 /I 1540 の値が1~4の範囲である、製造方法。 - 前記変性が非酸化性雰囲気下での焼成により実施される、請求項15または16記載の製造方法。
- 前記アクリル樹脂に対する前記硫黄の量が、アクリル樹脂100質量部に対して硫黄50~1000質量部である、請求項15~17のいずれか1項に記載の製造方法。
- 前記焼成の温度が250~550℃である請求項15~18のいずれか1項に記載の製造方法。
- 電極の製造方法であって、
請求項15~19のいずれか1項に記載の製造方法により、有機硫黄材料を製造した後、さらに、
(3)該有機硫黄材料を用いて電極を作製する工程
を含んでなる、製造方法。 - リチウムイオン二次電池の製造方法であって、
請求項20の製造方法により電極を製造した後、さらに、
(4)該電極を用いてリチウムイオン二次電池を作製する工程
を含んでなる製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210046313A KR20210130100A (ko) | 2020-04-20 | 2021-04-09 | 유기 황 재료, 전극 및 리튬 이온 이차 전지, 및 제조 방법 |
CN202110390781.XA CN113540451A (zh) | 2020-04-20 | 2021-04-12 | 有机硫材料、电极以及锂离子二次电池和制造方法 |
US17/234,358 US20210324115A1 (en) | 2020-04-20 | 2021-04-19 | Organic sulfur material, electrode, and lithium-ion secondary batteries, and producing method |
EP21169235.5A EP3902045A3 (en) | 2020-04-20 | 2021-04-19 | Organic sulfur material, electrode, and litium-ion secondary batteries, and producing method |
JP2022155306A JP7559813B2 (ja) | 2020-04-20 | 2022-09-28 | 有機硫黄材料、電極およびリチウムイオン二次電池並びに製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020074882 | 2020-04-20 | ||
JP2020074882 | 2020-04-20 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022155306A Division JP7559813B2 (ja) | 2020-04-20 | 2022-09-28 | 有機硫黄材料、電極およびリチウムイオン二次電池並びに製造方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2021174764A JP2021174764A (ja) | 2021-11-01 |
JP2021174764A5 JP2021174764A5 (ja) | 2022-03-08 |
JP7163983B2 true JP7163983B2 (ja) | 2022-11-01 |
Family
ID=78279906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021022756A Active JP7163983B2 (ja) | 2020-04-20 | 2021-02-16 | 有機硫黄材料、電極およびリチウムイオン二次電池並びに製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7163983B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022188154A (ja) * | 2020-04-20 | 2022-12-20 | 住友ゴム工業株式会社 | 有機硫黄材料、電極およびリチウムイオン二次電池並びに製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023151612A (ja) * | 2022-03-31 | 2023-10-16 | 住友ゴム工業株式会社 | 硫黄系活物質、電極およびリチウムイオン二次電池 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011129103A1 (ja) | 2010-04-16 | 2011-10-20 | 株式会社豊田自動織機 | リチウムイオン二次電池用正極及びその正極を有するリチウムイオン二次電池 |
WO2012114651A1 (ja) | 2011-02-25 | 2012-08-30 | 株式会社豊田自動織機 | 硫黄変性ポリアクリロニトリルおよびその評価方法ならびに硫黄変性ポリアクリロニトリルを用いた正極、非水電解質二次電池、および車両 |
-
2021
- 2021-02-16 JP JP2021022756A patent/JP7163983B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011129103A1 (ja) | 2010-04-16 | 2011-10-20 | 株式会社豊田自動織機 | リチウムイオン二次電池用正極及びその正極を有するリチウムイオン二次電池 |
WO2012114651A1 (ja) | 2011-02-25 | 2012-08-30 | 株式会社豊田自動織機 | 硫黄変性ポリアクリロニトリルおよびその評価方法ならびに硫黄変性ポリアクリロニトリルを用いた正極、非水電解質二次電池、および車両 |
Non-Patent Citations (1)
Title |
---|
HU, Hao et al.,Nano Energy,2019年,57,635-643 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022188154A (ja) * | 2020-04-20 | 2022-12-20 | 住友ゴム工業株式会社 | 有機硫黄材料、電極およびリチウムイオン二次電池並びに製造方法 |
JP7559813B2 (ja) | 2020-04-20 | 2024-10-02 | 住友ゴム工業株式会社 | 有機硫黄材料、電極およびリチウムイオン二次電池並びに製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2021174764A (ja) | 2021-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20110109879A (ko) | 양극 활물질 및 이를 채용한 양극과 리튬 전지 | |
JP6477691B2 (ja) | 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極、および、二次電池 | |
JP7404852B2 (ja) | 硫黄系活物質 | |
JP7163983B2 (ja) | 有機硫黄材料、電極およびリチウムイオン二次電池並びに製造方法 | |
JP7136244B2 (ja) | 有機硫黄材料、電極およびリチウムイオン二次電池並びに製造方法 | |
WO2024116432A1 (ja) | 電極およびリチウムイオン二次電池 | |
US11069893B2 (en) | Sulfur-based active material | |
JP7559813B2 (ja) | 有機硫黄材料、電極およびリチウムイオン二次電池並びに製造方法 | |
US11876228B2 (en) | Organic sulfur material, electrode, and lithium-ion secondary batteries, and producing method | |
WO2022254962A1 (ja) | 硫黄系活物質、電極およびリチウムイオン二次電池並びに製造方法 | |
WO2023189852A1 (ja) | 硫黄系活物質の製造方法 | |
WO2023189851A1 (ja) | 硫黄系活物質、電極およびリチウムイオン二次電池 | |
WO2023189850A1 (ja) | 硫黄系活物質、電極およびリチウムイオン二次電池並びに製造方法 | |
JP7264306B1 (ja) | 電極およびリチウムイオン二次電池 | |
JP2023068392A (ja) | 電極活物質、電極およびリチウムイオン二次電池 | |
JP2023041370A (ja) | 硫黄系活物質、電極およびリチウムイオン二次電池の製造方法、並びに、変性ポリマー、硫黄系活物質、電極およびリチウムイオン二次電池 | |
KR20200115051A (ko) | 황계 활물질 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220225 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20220225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220621 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220817 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220920 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221003 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7163983 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |