JP7152131B2 - 画像処理装置、画像処理方法及びプログラム - Google Patents

画像処理装置、画像処理方法及びプログラム Download PDF

Info

Publication number
JP7152131B2
JP7152131B2 JP2016184200A JP2016184200A JP7152131B2 JP 7152131 B2 JP7152131 B2 JP 7152131B2 JP 2016184200 A JP2016184200 A JP 2016184200A JP 2016184200 A JP2016184200 A JP 2016184200A JP 7152131 B2 JP7152131 B2 JP 7152131B2
Authority
JP
Japan
Prior art keywords
image
pixel
feature amount
spatial feature
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016184200A
Other languages
English (en)
Other versions
JP2018048898A (ja
Inventor
貴裕 戸泉
裕三 仙田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2016184200A priority Critical patent/JP7152131B2/ja
Publication of JP2018048898A publication Critical patent/JP2018048898A/ja
Application granted granted Critical
Publication of JP7152131B2 publication Critical patent/JP7152131B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Image Analysis (AREA)

Description

本開示は、画像を処理する記述に関する。
地表にマイクロ波パルスを照射し、反射波を測定するレーダ装置がある。レーダ装置の一例として、複数回測定した反射波を合成することで、高解像度を得ることができる合成開口レーダ(SAR:Synthetic Aperture Radar)装置がある。合成開口レーダによる測定結果に基づいて、地表の位置に応じた反射波の強さを表す画像を得ることができる。合成開口レーダは、マイクロ波の特性を利用して、昼夜や天候に関係なく地表の画像を得ることができる。SARによって反射波を測定し、SARによる測定の結果を表す画像を得ることを、例えば、SARによって撮影する、及び、SARは撮影する、などと表記する。SARは人工衛星や航空機などの飛翔体に搭載されて地表を撮影する。
しかし、SARに使用するマイクロ波は、例えば散乱メカニズム等の物理特性において、光学機器による撮影において観測される光と異なる。そのため、SARによって撮影された合成開口レーダ画像(SAR画像)では、例えばスペックルノイズなどの、光学機器による撮影によって得られる光学画像には存在しない物理現象が撮影される。そのため、一般的に、SAR画像の判読は難しい。
判読の容易さを実現するため、例えば、複数の偏波SAR画像によるカラー化が行われる。偏波SAR画像のカラー化は、例えば、マイクロ波の送信及び受信における偏波情報や、パウリ分解の値などの偏波情報から計算された値を補正し、補正された値をカラー画像に変換することによって行われる。しかし、これらの方法によって得られるカラー画像の色は自然な色にはならない。
特許文献1には、色情報が割り当てられた低解像度の多変波レーダ画像と、高解像度の単変波レーダ画像とを合成することによって、高解像度のカラーレーダ画像を得る画像生成方法が記載されている。
特開2013-096807号公報
偏波SARの送信時及び受信時における偏波情報や、パウリ分解の値などの偏波情報から計算された値を補正し、カラー画像に変換することによって、通常、色が光学画像は全く異なる、カラーのSAR画像が得られる。言い換えると、偏波SAR画像を単にカラー画像の変換することによって得られる画像の色は自然な色にはならない。そのため、SAR画像の判読は、必ずしも容易にはならない。
特許文献1の技術により、低解像度の多変波レーダ画像に単に色を割り当てても、自然な色のカラー画像は得られない。そのため、SAR画像の判読は必ずしも容易にはならない。
本開示の目的の1つは、レーダ装置による測定の結果を表す画像の判読の容易性を向上させる技術を提供することにある。
本開示の一態様に係る画像処理装置は、レーダ装置による、偏波信号である第1信号の測定の結果に基づく第1データ値の2次元の分布と、前記第1信号とは異なる第2信号の測定の結果に基づく第2データ値の2次元の分布と、における、互いに関連する前記第1データ値と前記第2データ値との組み合わせを生成し、当該組み合わせに基づいて、前記第1データ値と前記第2データ値との関係を表す関係性モデルを生成する生成手段を備える。
本開示の一態様に係る画像処理方法は、レーダ装置による、偏波信号である第1信号の測定の結果に基づく第1データ値の2次元の分布と、前記第1信号とは異なる第2信号の測定の結果に基づく第2データ値の2次元の分布と、における、互いに関連する前記第1データ値と前記第2データ値との組み合わせを生成し、当該組み合わせに基づいて、前記第1データ値と前記第2データ値との関係を表す関係性モデルを生成する。
本開示の一態様に係るプログラムは、コンピュータに、レーダ装置による、偏波信号である第1信号の測定の結果に基づく第1データ値の2次元の分布と、前記第1信号とは異なる第2信号の測定の結果に基づく第2データ値の2次元の分布と、における、互いに関連する前記第1データ値と前記第2データ値との組み合わせを生成し、当該組み合わせに基づいて、前記第1データ値と前記第2データ値との関係を表す関係性モデルを生成する生成処理を実行させる。本開示の一態様は、上述のプログラムを記憶するコンピュータ読み取り可能な記憶媒体によっても実現される。
本開示には、レーダ装置による測定の結果を表す画像の判読の容易性を向上させることができるという効果がある。
図1は、本開示の第1の実施形態に係る画像処理システムの構成の例を表すブロック図である。 図2は、本開示の第1の実施形態に係る関係性モデル生成部の構成の例を表すブロック図である。 図3は、本開示の第1の実施形態に係る画像推定部の構成の例を表すブロック図である。 図4は、本開示の第1の実施形態に係る画像処理システムの構成の他の例を表すブロック図である。 図5は、本開示の第1の実施形態に係る画像処理システムの構成のさらに他の例を表すブロック図である。 図6は、本開示の第1の実施形態の画像処理装置の、関係性モデルの生成の動作を表すフローチャートである。 図7は、本開示の第1の実施形態の画像処理装置の、関係性モデル生成処理の動作の例を表すフローチャートである。 図8は、本開示の第1の実施形態に係る画像処理装置の、推定用偏波SAR画像から、関係性モデルを用いて対象画像を推定する動作の例を表すフローチャートである。 図9は、本開示の第1の実施形態に係る、関係性モデルを用いた推定画像の推定までの処理において使用されるデータを模式的に表す図である。 図10は、本開示の第2の実施形態に係る画像処理装置の構成の例を表すブロック図である。 図11は、本開示の第2の実施形態の画像処理装置の動作の例を表すフローチャートである。 図12は、本開示の実施形態に係る画像処理装置を実現することができる、コンピュータのハードウェア構成の一例を表す図である。
次に、本開示の実施形態について図面を参照して詳細に説明する。
[第1の実施の形態]
[構成の説明]
図1は、本実施形態に係る画像処理システム1の構成の例を表すブロック図である。
図1に示すように、本実施形態の画像処理システム1は、画像処理装置10を含む。画像処理装置10は、ピクセル特徴量抽出部100と、位置合わせ処理部101と、関係性モデル生成部102と、ピクセル特徴量抽出部200と、画像推定部201、高解像度化処理部213とを含む。画像処理装置10は、さらに、第1受信部103と、第2受信部104と、学習用偏波SAR記憶部105と、対象画像記憶部106と、関係性モデル記憶部107とを含んでいてもよい。画像処理装置10は、さらに、第3受信部202と、推定用偏波SAR記憶部203と、推定画像記憶部204と、第2出力部205とを含んでいてもよい。
第1受信部103は、学習用偏波SAR画像を記憶するサーバなどから、学習用偏波SAR画像を受信する。第1受信部103は、受信した学習用偏波SAR画像を、学習用偏波SAR記憶部105に格納する。
学習用偏波SAR記憶部105は、学習用偏波SAR画像を記憶する。
学習用偏波SAR画像及び後述される推定用偏波SAR画像を含む偏波SAR画像は、人工衛星や飛行機などの飛翔体に搭載されたレーダ装置によって測定された、マイクロ波などの偏波信号の測定値の2次元の分布を表す。以下、レーダ装置が測定に使用する電磁波はマイクロ波であるとして説明を行うが、レーダ装置が測定に使用する電磁波はマイクロ波に限定されない。偏波SAR画像は、例えば、送信偏波と受信偏波の組み合わせ毎の、測定値の2次元の分布を表すレイヤを含んでいてもよい。レイヤの数は1でもよい。
以下で説明する、送信偏波と受信偏波の組み合わせにおいて、H(Horisontal)は水平偏波を表し、V(Vertical)は垂直偏波を表す。例えば、HHは、送信偏波及び受信偏波が共に水平偏波であることを表す。すなわち、水平偏波のマイクロ波を発信し、水平偏波の反射波を受信する(すなわち、測定する)ことを表す。HVは、送信偏波が水平偏波であり、受信偏波が垂直偏波であることを表す。VVは、送信偏波と受信偏波が共に垂直偏波であることを表す。VHは、送信偏波が垂直偏波であり、受信偏波が水平偏波であることを表す。
送信偏波と受信偏波の組み合わせは、例えば、HH、HV、及び、VVであってもよい。この場合、偏波SAR画像は、HH、HV、及び、VVの3つのレイヤを含む。送信偏波と受信偏波の組み合わせは、さらに、VHを含んでいてもよい。この場合、偏波SAR画像は、HH、HV、VV、及び、VHの4つのレイヤを含む。偏波SAR画像は、レイヤ毎に、偏波信号が測定された測定点毎の測定値を1つの画素の画素値として含む。測定値は、例えば、位相と振幅とを複素数によって表されていてもよい。その場合、画素値は、実数部の値と虚数部の値とによって表されていてもよい。この場合、偏波SAR画像は、1つの画素あたり、レイヤの数と同じ数の複素数の組を、画素値として含むとみなせる。
第2受信部104は、例えば対象画像を記憶するサーバなどから、対象画像を受信する。第2受信部104は、受信した対象画像を、対象画像記憶部106に格納する。
対象画像記憶部106は、対象画像を記憶する。
対象画像は、例えば、人工衛星や飛行機などの飛翔体に搭載された光学撮影装置によって撮影された光学画像である。光学撮影装置は、例えば、デジタルカメラであってもよい。その場合、光学画像は、画素毎に、R(Red)、G(Green)、及び、B(Blue)の3つの成分の値を含む画素値によって表されるカラー画像であってもよい。光学撮影装置は、例えば、可視光領域以外の領域(例えば赤外等)を含む、複数の波長域において撮影を行えるカメラであってもよい。この場合の対象画像は、例えば、画素毎に、複数の波長域における測定値を成分として含む画素値によって表されていてもよい。対象画像は、学習用偏波SAR画像を得たマイクロ波の波長と異なる波長のマイクロ波による測定によって得られた、SAR画像であってもよい。
ピクセル特徴量抽出部100は、学習用偏波SAR画像からピクセル特徴量を抽出する。ピクセル特徴量抽出部100は、画素の画素値がその画素におけるピクセル特徴量である、ピクセル特徴量画像を生成する。言い換えると、ピクセル特徴量抽出部100は、学習用偏波SAR画像から、ピクセル特徴量画像を生成する。ピクセル特徴量画像は、複数のレイヤを含む。ピクセル特徴量抽出部100は、学習用偏波SAR画像のレイヤから、ピクセル特徴量画像の複数のレイヤを生成してもよい。ピクセル特徴量抽出部100は、学習用偏波SAR画像の各レイヤから、独立に、ピクセル特徴量画像のレイヤを生成してもよい。ピクセル特徴量抽出部100は、他の方法で、学習用偏波SAR画像のレイヤから、ピクセル特徴量画像のレイヤを生成してもよい。ピクセル特徴量については、後で詳細に説明する。
位置合わせ処理部101は、ピクセル特徴量画像と対象画像との間の位置合わせを行う。
位置合わせは、例えば、ピクセル特徴量画像の画素について、ピクセル特徴量画像のその画素の画素値が得られた場所において、画素値が得られた対象画像の画素を特定することを表す。「画素値が得られた場所」は、その場所において得られた測定値に基づいて、その画素値が導出されたことを表す。以下の説明では、一方の画像の画素(以下、第1画素と表記)の画素値と、他方の画像の画素(以下、第2画素と表記)の画素値とが、同じ場所において異なる測定方法によって得られた測定値に基づいて導出される場合、第1画素と第2画素が対応すると表記する。「第1画素と第2画素が対応する」という表記は、「第1画素は第2画素に対応する」、及び、「第2画素が第1画素に対応する」とも表記される。この場合、加えて、第2画素に対応する第1画素の場所など(例えば位置)は、第2の画素の場所など(例えば位置)に対応する、等とも表記する。例えば、第1画素の位置に対応する第2画像における位置は、第2画像に含まれ、第1画素に対応する第2画素の位置を表す。
言い換えると、位置合わせ処理部101は、例えば、ピクセル特徴量画像の画素の位置に対応する、対象画像における位置を特定する。ピクセル特徴量画像の画素の位置に対応する、対象画像における位置を特定することによって、位置合わせ処理部101は、ピクセル特徴量画像の画素の画素値と、その画素に対応する、対象画像における画素の画素値との組み合わせを生成する。ピクセル特徴量画像の画素の画素値と、対象画像の、ピクセル特徴量画像のその画素に対応する画素の画素値は、同じ場所を異なる方法で測定した測定結果に基づいて得られた値を表す。
測定の結果に基づく値がピクセル特徴量画像の画素値として得られている領域(以下、第1領域と表記)と、測定の結果に基づく他の値が対象画像の画素値として得られている領域(以下、第2領域と表記)は、必ずしも一致しない。位置合わせ処理部101は、第1領域と第2領域の共通の領域において、複数の画素について、ピクセル特徴量画像の画素の位置に対応する、対象画像における位置を特定すればよい。そして、位置合わせ処理部101は、その共通の領域において、ピクセル特徴量画像の画素の画素値と、その画素に対応する、対象画像における画素の画素値との、複数の組み合わせを生成すればよい。
位置合わせ処理部101は、ピクセル特徴量画像の複数の画素の位置と、それらの画素に対応する対象画像の画素の位置とが一致するように、ピクセル特徴量画像及び対象画像の少なくとも一方の変形を行ってもよい。変形は、例えば、回転、拡大、縮小及び他の線形変換、又は、非線形変換などである。位置合わせ処理部101は、例えば地形図などを使用して、ピクセル特徴量画像及び対象画像の少なくとも一方の変形を行ってもよい。そして、位置合わせ処理部101は、特定した位置における対象画像の画素の画素値を特定してもよい。
一般に、画像の画素の位置は、例えば、規則的に並んだ格子点上に設定されうる。すなわち、変形前の画像の画素は格子点上に配置され、変形後の画像の画素は、変形前の画像の格子点とは必ずしも同一でない格子点上に配置されうる。変形前の画像の格子点上に設定された画素は、変形によって、変形後の画像の画素が配置される格子点とは異なる場所に移動することがある。変形前の画像の画素の変形による移動先の位置と、変形後の画像の画素の位置とが異なる場合、位置合わせ処理部101は、変形後の画像の画素の画素値を、補間によって算出してもよい。位置合わせ処理部101は、例えば、変形後の画像の画素の位置と、変形前の画像の画素の画素値と、変形前の画像の画素の変形による移動先の位置とに基づく補間によって、変形後の画像の画素の画素値を算出してもよい。補間の方法として、既存のさまざまな方法が適用可能である。位置合わせ処理部101は、変形後の画素の画素値を、その画素の位置に変形後の移動先が最も近い、変形前の画像の画素の画素値に設定してもよい。位置合わせ処理部101による位置合わせでは、ピクセル特徴量画像の画素と対象画像の画素との厳密な対応付けは必要ない。
学習用偏波SAR画像と対象画像との間の位置合わせが完了している場合、すなわち、学習用偏波SAR画像の画素と対象画像の画素との対応が既知である場合、位置合わせ処理部101は、ピクセル特徴量画像と対象画像との間の位置合わせを行わなくてもよい。学習用偏波SAR画像の画素とピクセル特徴量画像の画素との関係は、ピクセル特徴量抽出部100がピクセル特徴量画像からピクセル特徴量画像を生成する際に得られる。
以上で説明した位置合わせによって、ピクセル特徴量画像における画素値と、その画素値を持つ画素に対応する、学習用偏波SAR画像の画素の画素値が測定された場所における、対象画像の画素値との関係を特定できる。
関係性モデル生成部102は、位置合わせによって得られた、学習用偏波SAR画像の画素と、対象画像の画素との関係に基づいて、同じ場所におけるピクセル特徴量と対象画像の画素値との関連を表す関係性モデルを生成する。関係性モデルについては、後で詳細に説明する。
図2は、本実施形態に係る関係性モデル生成部102の構成の例を表すブロック図である。図2を参照すると、関係性モデル生成部102は、空間特徴量抽出部111と、関係性学習部112とを含む。
空間特徴量抽出部111は、ピクセル特徴量画像から、例えばピクセル特徴量画像にフィルタ処理を行うことによって、画素毎に空間特徴量を抽出する。そして、空間特徴量抽出部111は、各画素の画素値が空間特徴量である空間特徴量画像を生成する。言い換えると、空間特徴量抽出部111は、ピクセル特徴量画像から空間特徴量画像を生成する。空間特徴量画像も複数のレイヤを含んでよい。空間特徴量抽出部111は、ピクセル特徴量画像の各レイヤから、空間特徴量画像のレイヤを生成する。空間特徴量抽出部111は、ピクセル特徴量画像の各レイヤから、空間特徴量画像の複数のレイヤを生成してもよい。空間特徴量については、後で詳細に説明する。
関係性学習部112は、位置合わせによって対応が特定された、空間特徴量画像の画素及び対象画像の画素の、画素値の組み合わせに基づいて、空間特徴量画像の画素値(すなわち空間特徴量)と対象画像の画素値との関係を表す関係性モデルを生成する。関係性学習部112は、生成した関係性モデルを、関係性モデル記憶部107に格納する。関係性モデルについては後で詳細に説明する。
第3受信部202は、例えば推定用偏波SAR画像を記憶するサーバ又はユーザが使用する端末装置等から、推定用偏波SAR画像を受信する。第3受信部202は、受信した推定用偏波SAR画像を、推定用偏波SAR記憶部203に格納する。
上述のように、推定用偏波SAR画像は、人工衛星や飛行機などの飛翔体に搭載されたレーダ装置によって測定された、マイクロ波などの偏波信号の測定値の2次元の分布を表す。推定用偏波SAR画像を得るのに使用したマイクロ波は、例えば、学習用偏波SAR画像を得るのに使用したマイクロ波と同じ波長のマイクロ波である。学習用偏波SAR画像及び推定用偏波SAR画像は、同じ種類のレーダ装置によって得られた偏波SAR画像であってもよい。学習用偏波SAR画像と推定用偏波SAR画像は、同じタイミングの測定によって得られた画像であってもよい。学習用偏波SAR画像と推定用偏波SAR画像は、異なるタイミングの測定によって得られた画像であってもよい。推定用偏波SAR画像は、レーダ装置による測定結果から学習用偏波SAR画像を生成する方法と同じ方法によって生成された偏波SAR画像であればよい。
推定用偏波SAR記憶部203は、推定用偏波SAR画像を記憶する。
ピクセル特徴量抽出部200は、ピクセル特徴量抽出部100が学習用偏波SAR画像からピクセル特徴量を抽出する方法と同じ方法によって、推定用偏波SAR画像からピクセル特徴量を抽出する。ピクセル特徴量抽出部200は、画素の画素値がその画素におけるピクセル特徴量である、ピクセル特徴量画像を生成する。言い換えると、ピクセル特徴量抽出部200は、推定用偏波SAR画像から、ピクセル特徴量画像を生成する。ピクセル特徴量画像も複数のレイヤを含んでよい。ピクセル特徴量抽出部200は、推定用偏波SAR画像の各レイヤから、独立に、ピクセル特徴量画像のレイヤを生成する。ピクセル特徴量については、後で詳細に説明する。
画像推定部201は、関係性モデルに基づいて、ピクセル特徴量画像から推定画像を推定する。推定画像の形式は、例えば、対象画像の形式と同じであればよい。
図3は、本実施形態に係る画像推定部201の構成の例を表すブロック図である。図3を参照すると、画像推定部201は、空間特徴量抽出部211と、画像情報推定部212とを含む。
空間特徴量抽出部211は、上述の空間特徴量抽出部111と同様に動作する。すなわち、空間特徴量抽出部211は、ピクセル特徴量画像から、例えばピクセル特徴量画像にフィルタ処理を行うことによって、画素毎に空間特徴量を抽出する。そして、空間特徴量抽出部211は、各画素の画素値が空間特徴量である空間特徴量画像を生成する。言い換えると、空間特徴量抽出部211は、ピクセル特徴量画像から空間特徴量画像を生成する。上述のように、空間特徴量画像も複数のレイヤを含む。空間特徴量抽出部211は、ピクセル特徴量画像の各レイヤから、独立に、空間特徴量画像のレイヤを生成する。空間特徴量については、後で詳細に説明する。
画像情報推定部212は、関係性モデルに基づいて、空間特徴量画像から推定画像を推定する。画像情報推定部212による推定画像を推定する方法については、後で詳細に説明する。
高解像度化処理部213は、推定画像の高解像度化を行う。高解像度化については、後で詳細に説明する。高解像度化処理部213は、高解像度化が行われた推定画像(以下、「高解像度化推定画像」と表記)を、推定画像記憶部204に格納する。
推定画像記憶部204は、高解像度化推定画像を記憶する。
第2出力部205は、高解像度化推定画像を、例えばユーザの端末などの他の装置に出力する。
上述のピクセル特徴量抽出部100は、ピクセル特徴量抽出部200として動作してもよい。
図4は、本実施形態に係る画像処理システム1Aの構成の例を表すブロック図である。画像処理システム1Aは、画像処理装置10Aを含む。画像処理装置10Aは、画像処理装置10の要素のうち、ピクセル特徴量抽出部200を含まない。そして、ピクセル特徴量抽出部100が、ピクセル特徴量抽出部200として動作する。
画像処理システム1は、1つの装置(例えば、図1に示す画像処理装置10及び図2に示す画像処理装置10A)として実装されていてもよい。画像処理システム1は、互いに通信可能に接続された、複数の装置として実装されていてもよい。
図5は、本実施形態に係る画像処理システム1Bの構成の例を表すブロック図である。図5に示す例では、画像処理システム1Bは、互いに通信可能に接続されている2つの装置として実装されている。具体的には、画像処理システム1Bは、第1画像処理装置11と、第2画像処理装置12とを含む。第1画像処理装置11は、ピクセル特徴量抽出部100と、位置合わせ処理部101と、関係性モデル生成部102と、第1受信部103と、第2受信部104と、学習用偏波SAR記憶部105と、対象画像記憶部106と、関係性モデル記憶部107とを含む。第1画像処理装置11は、さらに、第1出力部108を含む。第2画像処理装置12は、ピクセル特徴量抽出部200と、画像推定部201、高解像度化処理部213とを含む。第2画像処理装置12は、さらに、第3受信部202と、推定用偏波SAR記憶部203と、推定画像記憶部204と、第2出力部205と、第4受信部206と、関係性モデル記憶部207とを含む。
[動作の説明]
次に、本実施形態の画像処理装置10の動作について、図面を参照して詳細に説明する。
図6は、本実施形態の画像処理装置10の、関係性モデルの生成の動作を表すフローチャートである。
ステップS101:
ピクセル特徴量抽出部100は、学習用偏波SAR画像からピクセル特徴量画像を生成する。
上述のように、ピクセル特徴量抽出部100に入力される学習用偏波SAR画像は、送信偏波と受信偏波の組み合わせが、HH、HV、及び、VVの3種類の偏波SAR画像をレイヤとして含んでいてもよい。学習用偏波SAR画像は、HH、HV、及び、VVの3種類にVHを加えた4種類の偏波SAR画像をレイヤとして含んでいてもよい。偏波SAR画像の各ピクセル値(すなわち上述の画素値)は複素数の値によって表される。ピクセル特徴量抽出部100は、学習用偏波SAR画像の各レイヤのピクセル値からピクセル特徴量を抽出する。ピクセル特徴量抽出部100、抽出したピクセル特徴量を、画素値が抽出したピクセル特徴量である複数のレイヤを含むピクセル特徴量画像として出力する。ピクセル特徴量抽出部100は、たとえば、各レイヤの偏波SAR画像に対してパウリ分解、三成分分解、又は、四成分分解を行うことによって得られる複数の成分をそれぞれ表す、複数の出力成分画像を生成してもよい。ピクセル特徴量抽出部100は、その出力成分画像の各ピクセル値を対数変換することによって得られる画像を、ピクセル特徴量画像のレイヤの1つとしてもよい。ピクセル特徴量抽出部100は、より単純に、HH、HV、及び、VVのそれぞれの偏波SAR画像の各ピクセル値(複素数)の絶対値を対数変換した値を画素値として含む画像を、ピクセル特徴量画像のレイヤとしてもよい。この場合、レイヤ数は3となる。ピクセル特徴量抽出部100は、対数変換の代わりに、べき関数など、又は、その折れ線近似などを用いてもよい。
ステップS102:
位置合わせ処理部101は、ピクセル特徴量画像と対象画像の位置合わせを行う。ピクセル特徴量画像と学習用偏波SAR画像の位置は同じである。例えば、ピクセル特徴量画像と学習用偏波SAR画像の同じ位置の画素の画素値は、同じ場所の測定値に由来する。従って、ピクセル特徴量画像と対象画像の位置合わせは、学習用偏波SAR画像と対象画像との位置合わせと等価である。位置合わせ処理部101は、位置合わせにおいて、ピクセル特徴量画像を基準にして対象画像を変形してもよいし、対象画像を基準にしてピクセル特徴量画像を変形してもよい。位置合わせ処理部101は、地形図などの別情報を基準にしてピクセル特徴量画像と対象画像の両方を変形してもよい。上述のように、学習用偏波SAR画像と対象画像との間の位置合わせが済んでいれば、ステップS102における位置合わせは不要となりうる。また、ステップS102における、ピクセル特徴量画像と対象画像の位置合わせは、厳密な一致を必要としない。ピクセル特徴量画像の画素の位置に対応する、対象画像における位置を特定することによって、位置合わせ処理部101は、ピクセル特徴量画像の画素の画素値と、その画素に対応する、対象画像における画素の画素値との組み合わせを生成する。
ステップS103
関係性モデル生成部102は、上記位置合わせ処理部101で位置合わせされたピクセル特徴量画像と対象画像から関係性モデルを生成する関係性モデル生成処理を行う。
図7は、本実施形態の画像処理装置10の、関係性モデル生成処理の動作の例を表すフローチャートである。
ステップS111:
空間特徴量抽出部111は、ピクセル特徴量画像から空間特徴量画像を生成する。具体的には、空間特徴量抽出部111は、ピクセル特徴量画像のそれぞれのレイヤにフィルタ処理を行うことによって空間特徴量を抽出する。そして、空間特徴量抽出部111は、画素値が抽出された空間特徴量である、複数のレイヤを含む空間特徴量画像を生成する。
空間特徴量抽出部111よるフィルタ処理について説明する。空間特徴量抽出部111は、ピクセル特徴量画像のピクセルを対象ピクセルとして選択し、ピクセル特徴量画像の対象ピクセルに対して周辺ピクセルによる一様平均化フィルタをかけることによって、対象ピクセルにおける空間特徴量を抽出する。空間特徴量抽出部111は、対象ピクセルと同じ位置のピクセルのピクセル値が、抽出した空間特徴量である画像を生成することによって、スペックルノイズが除去された特徴量画像を生成する。空間特徴量抽出部111は、平均化フィルタの周辺ピクセル数が奇数の値である平均化フィルタを使用すればよい。空間特徴量抽出部111は、例えば、サイズが9×9である一様平均化フィルタをピクセル特徴量画像にかけることによって得られる、フィルタされたピクセル値を、空間特徴量として抽出する。なお、空間特徴量抽出部111が使用する平均化フィルタは、一様分布の平均化フィルタでなくてもよい。空間特徴量抽出部111は、ガウシアンフィルタやメディアンフィルタなどを利用して、空間特徴量を抽出してもよい。空間特徴量抽出部111は、スペックルノイズを除去できる他のフィルタを使って空間特徴量を抽出してもよい。
空間特徴量抽出部111は、で抽出する空間特徴量は、フィルタ平均値ではなく、対象ピクセルについて周辺ピクセルの画素値を用いて計算した、例えば標準偏差、テクスチャ、エントロピー、又は、エネルギーなどを、空間特徴量として抽出してもよい。空間特徴量抽出部111は、ピクセル特徴量画像にガボールフィルタなどを適用することによって得られる出力を、空間特徴量として抽出してもよい。空間特徴量抽出部111が抽出する空間特徴量の種類の数に制限はない。空間特徴量抽出部111は、複数の種類の空間特徴量を抽出してもよい。
空間特徴量抽出部111は、ピクセル特徴量画像の各レイヤに対して空間特徴量の抽出を行う。言い換えると、空間特徴量抽出部111は、ピクセル特徴量画像の各レイヤから、空間特徴量画像を生成する。複数の種類の空間特徴量を抽出する場合、空間特徴量抽出部111は、ピクセル特徴量画像の各レイヤから、複数の空間特徴量画像を生成する。
ステップS112:
次に、関係性学習部112は、空間特徴量画像の複数のレイヤの同じ位置のピクセルにおける空間特徴量を要素として含む空間特徴量ベクトルVsarを生成する。以下の説明では、空間特徴量ベクトルを、「特徴ベクトル」及び「SAR特徴ベクトル」とも表記する。SAR特徴ベクトルVsarは、例えば、空間特徴量画像の複数のレイヤの同じ位置のピクセルにおける空間特徴量が、例えばレイヤの番号の順番に要素として並んだベクトルであってもよい。空間特徴量画像の複数のレイヤには、例えば、空間特徴量抽出部111によって、レイヤ毎に異なる番号が設定されていればよい。
関係性学習部112は、さらに、対象画像の各ピクセルについて、画素値の成分(例えば、R、G、及び、B)を要素として含む画素値ベクトルVoptを生成する。以下の説明では、画素値ベクトルを、「対象ベクトル」とも表記する。画素値ベクトルVoptは、例えば、画素値の成分が予め定められた順番(例えば、R、G、Bの順番)に要素として並んだベクトルであってもよい。
関係性学習部112は、空間特徴量画像における画素の特徴ベクトルの各要素と、対象画像における、空間特徴量画像のその画素に対応する画素における対象ベクトルの各要素とを要素として含む、関係性ベクトルを生成する。関係性学習部112は、例えば、特徴ベクトルと光学ベクトルとを連結することによって、関係性ベクトルを生成してもよい。対象画像の画素値は、RGB空間において表されていなくてもよい。対象画像の画素値は、Lab空間やYCrCb空間などの他の色空間表現によって表された値であってもよい。また、関係性学習部112は、ピクセルの座標(例えば、空間特徴量画像におけるピクセルの座標と、そのピクセルに対応する、対象画像のピクセルの座標)を要素としてさらに含む、関係性ベクトルを生成してもよい。
ステップS113:
そして、関係性学習部112は、生成した関係性ベクトルを複数のクラスに分類するクラス分類(言い換えると、複数のクラスタに分類するクラスタリング)を行い、クラス分類の結果に基づいて関係性モデルを生成する。クラス分類には教師なしの手法としてk-meansクラスタリングや混合ガウスモデル(GMM:Gaussian Mixture Model)、深層ニューラルネットワーク(DNN:Deep Neural Network)などを用いることができる。k-meansクラスタリングやGMM、DNNにおけるクラスタ数はどのような値であってもよい。
ステップS114:
関係性学習部112は、関係性ベクトルの集合にクラス分類を行った結果として得られる、各クラスの中心ベクトルμを算出する。ここで、ベクトルμは、SAR特徴ベクトルVsarに関連する要素と、対象ベクトルVoptに関連する要素とを含む。例えば、関係性ベクトルがSAR特徴ベクトルVsarと対象ベクトルVoptとが連結されたベクトルである場合、ベクトルμは、SAR特徴ベクトルVsarに関連するベクトルμsarと、対象ベクトルVoptに関連するベクトルμoptとが連結されたベクトルである。以下の説明では、ベクトルμsarを、中心特徴ベクトルとも表記する。また、ベクトルμoptを、中心対象ベクトルとも表記する。
ステップS115:
また、関係性学習部112は、各クラス内で、SAR特徴ベクトルVsarから対象ベクトルVoptを推定する、以下の推定式(すなわち、SAR特徴ベクトルVsarを対象ベクトルVoptに変換する変換規則)を導出する。
Vopt = F(Vsar)
推定式として、具体的には以下の式を用いることができる。
Vopt = μopt + A × (Vsar - μsar) (1)
ここでAは対象ベクトルVoptの長さの行数とSAR特徴ベクトルVsarの長さの列数を持つ行列である。関係性学習部112は、推定式のパラメータとして、例えば、推定誤差を最小化する係数を算出すればよい。さらに外れ値に対応するためには、関係性学習部112は、RANSAC(Random Sample Consensus)などによって外れ値を除去した上で、線形回帰式を求めればよい。線形回帰式は、例えば、例えば上述の推定式(1)によって表される。及び中心特徴ベクトルμsar及び中心対象ベクトルμoptは、中心ベクトルμに含まれる。関係性学習部112は、具体的には、上述の推定式の行列Aを求めればよい。求めた行列Aを含む式(1)によって表される変換規則を、以下では、回帰モデルとも表記する。
また、推定式として以下の式も用いることもできる。
Vopt = Σc ac × μopt × (Vsar - μsar)^bc (2)
ここで、cはクラス番号を表し、「Σc」はcについての和を表し、「^」はべき乗の演算子であり、acとbcは、クラスcにおける、クラス毎に付与される定数である。例えば、ac = a(定数) = Σ(Vsar - μsar)^-2、bc = -2とすれば、上記式(2)は、距離の逆2乗を重みとした加重平均となる。この場合の式(2)を回帰モデルとしてもよい。
ステップS116:
関係性学習部112は、クラス毎に、例えば、中心ベクトルμと、行列Aによって表される変換規則(例えば回帰モデル)とを含む、関係性モデルを生成する。
SAR特徴ベクトルVsarの要素間相関がある場合、事前に白色化しておくことで、より良い関係性モデルを生成できる。具体的には、関係性学習部112は、白色化主成分分析により平均ベクトルEと直交変換Wを求める。そして、以下の式
Vsar'= W × (Vsar - E)
により、白色化したSAR特徴ベクトルVsar’を求める。関係性学習部112は、白色化したSAR特徴ベクトルVsar’をSAR特徴ベクトルVsarの代わりに用いればよい。関係性学習部112は、平均ベクトルEと直交変換Wは関係性モデルの一部に含める。言い換えると、関係性学習部112は、平均ベクトルEと直交変換Wとを含む関係性モデルを生成する。
そして、画像処理装置10は、図7に示す動作を終了し、次に、図6のステップS104に示す動作を行う。
ステップS104:
関係性モデル生成部102は、例えば関係性モデル記憶部107に、生成した関係性モデルを出力する。関係性モデル生成部102は、先制した関係性モデルを、画像推定部201に出力してもよい。
次に、本実施形態の画像処理装置10の、推定用偏波SAR画像から、関係性モデルを用いて対象画像を推定する動作について説明する。
図8は、本実施形態の画像処理装置10の、推定用偏波SAR画像から、関係性モデルを用いて対象画像を推定する動作の例を表すフローチャートである。
ステップS121:
ピクセル特徴量抽出部200は、ピクセル特徴量抽出部100によるピクセル特徴量画像を生成する方法と同じ方法によって、推定用偏波SAR画像から複数のレイヤのピクセル特徴量画像を生成する。
ステップS122:
空間特徴量抽出部211は、空間特徴量抽出部111による、ピクセル特徴量画像から空間特徴量画像を生成する方法と同じ方法によって、生成されたピクセル特徴量画像から空間特徴量画像を生成する。生成された空間特徴画像は、上述のように、複数のレイヤを含む。
次に、画像情報推定部212は、空間特徴画像の各画素について、ステップS123及びステップS124の動作を繰り返す。それにより、画像情報推定部212は、関係性モデルを用いた、推定画像の輝度と配色の推定を行う。以下では、ステップS123及びステップS124における処理の対象であるピクセルを、対象ピクセルと表記する。
ステップS123:
画像情報推定部212は、関係性モデルに基づいて、特徴ベクトル(すなわち、空間特徴量ベクトル)のクラスを推定する。
具体的には、まず、画像情報推定部212は、生成された空間特徴量画像の、複数のレイヤの対象ピクセルにおける空間特徴量を要素として含むSAR特徴ベクトルVsarを生成する。ステップS123において生成されるSAR特徴ベクトルVsarの要素として含まれる空間特徴量の順序は、上述のSAR特徴ベクトルVsarの要素として含まれる空間特徴量の順序と同じである。関係性モデルには、生成された各クラスの中心ベクトルμが含まれている。中心ベクトルμは、中心特徴ベクトルμsarを含んでいる。画像情報推定部212は、各クラスの中心特徴ベクトルμsarの中で、SAR特徴ベクトルVsarに最も近い中心特徴ベクトルμsarのクラスcを求める。
関係性モデル生成時にSAR特徴ベクトルVsarが白色化されている場合、画像情報推定部212は、同様に関係性モデルのEとWから、白色化されたSAR特徴ベクトルVsar’を求める。画像情報推定部212は、求めた白色化されたSAR特徴ベクトルVsar’をSAR特徴ベクトルVsarの代わりに用いる。
関係性モデルは、クラス毎に、特徴ベクトルから光学対象ベクトルを推定する推定式Fを含んでいる。以下では、クラスcにおける推定画像の画素を推定する推定式を「Fc」と表記する。
画像情報推定部212は、SAR特徴ベクトルVsarに最も近い中心特徴ベクトルμsarのクラスとして求めたクラスcにおける、以下の推定式に従って、対象ピクセルの推定対象ベクトルVopt(以下、画素値ベクトルVoptとも表記する)を算出する。推定対象ベクトルVoptは、対象ピクセルにおける画素値の成分を要素として含むベクトルである。画像情報推定部212は、対象ピクセルにおける画素値が、算出した推定対象ベクトルVoptによって表されるが装置である推定画像を生成し、生成した推定画像を出力する。
Vopt = Fc(Vsar)
ステップS125:
画像情報推定部212は、それぞれの画素において、推定対象ベクトルVoptを画素値に変換する。画像情報推定部212は、それぞれの画素の画素値が、推定対象ベクトルVoptを変換することによって得られた画素値である、推定画像を生成する。
図9は、関係性モデルを用いた推定画像の推定までの処理において使用されるデータを模式的に表す図である。
まず、画像情報推定部212は、複数レイヤを持つ推定用偏波SARの空間特徴量画像から、画素毎の偏波SARのSAR特徴ベクトルVsarを抽出する。SAR特徴ベクトルVsarの要素は、空間特徴量画像の複数のレイヤの、同じ位置のピクセルにおけるピクセル値(すなわち、空間特徴量)である。偏波SARのSAR特徴ベクトルVsarの次元数Msarは、空間特徴量画像のレイヤ数に一致する。次に、画像情報推定部212は、SAR特徴ベクトルVsarと、関係性モデルに含まれる偏波SARの中心特徴ベクトルの集合(すなわち、複数のクラスにおける中心特徴ベクトルμsarの集合)に含まれる各ベクトルと比較する。画像情報推定部212は、SAR特徴ベクトルVsarの最近傍となる中心特徴ベクトルμsarを抽出する。抽出した中心特徴ベクトルμsarによって、その中心特徴ベクトルμsarのクラスcが定まる。クラスの数をNとすると、この場合の関係性モデルは、例えば、N個の関係性ベクトルを含む。そして、関係性ベクトルは、例えば、Msar次元の偏波SARの空特徴ベクトルと、2次元の特徴ベクトルの座標情報と、Mopt次元の対象ベクトルとに分けられる、(Msar + Mopt+2)次元のベクトルである。画像情報推定部212は、SAR特徴ベクトルVsarと、関係性ベクトルのうち、Msar次元の偏波SARの特徴ベクトルとを比較する。そして、画像情報推定部212は、最近傍の偏波SARの特徴ベクトルを抽出する。画像情報推定部212は、抽出した最近傍の特徴ベクトルのクラスの偏波SARの、中心特徴ベクトル、中心対象ベクトル、及び、回帰モデルを用いて、推定対象ベクトルを算出する。画像情報推定部212は、画素値が推定対象ベクトルによって表される推定対象画像を生成する。
ステップS126:
次に、高解像度化処理部213は、推定用偏波SAR画像を用いて、推定画像を高解像度化する。高解像度化処理部213は、推定画像を高解像度化することによって得られた画像である、高解像度推定画像を出力する。具体的には、高解像度化処理部213は、推定用偏波SAR画像から輝度情報Dを抽出する。高解像度化処理部213は、輝度情報を抽出する方法として、ピクセル特徴量抽出部100と同一の成分分解や対数変換を用いてもよい。その場合、ピクセル特徴量抽出部100の出力をそのまま使うことができる。
高解像度化処理部213は、推定画像を、必要に応じてYCrCb空間に変換してもよい。高解像度化処理部213は、YCrCb空間における、Y成分の値に輝度情報Dを反映し、輝度情報Dが反映された、YCrCb空間において表された推定画像を、再度元の色空間に戻すことによって、推定画像を高解像度化してもよい。Y成分の値に輝度情報D反映するとは、例えば、輝度を調整する関数Gによって輝度情報Dを調整した値を、Yに代入することであってもよく、輝度を調整する関数Gによって輝度情報Dを調整した値の空間高周波成分のみを、Yの値に加算することであってもよい。
たとえば、推定用偏波SAR画像の画素値として、HH、HV、VVのレイヤにおける測定値の絶対値の対数変換を用いている場合、それらの絶対値に対数変換を行うことによって得られた値の最大値に、所定の係数αをかける関数が関数Gであってもよい。その場合には関数Gは以下のように表せる。
G(D) = α × max(D)
この例では、輝度情報Dは、推定用偏波SAR画像のHH、HV、VVのレイヤにおける測定値の絶対値に対数変換を行うことによって得られた値を要素として含むベクトルであり、max(D)は輝度情報Dを表すベクトルの要素の中の最大値を返す関数である。
[効果]
以上で説明した本実施形態には、レーダ装置による測定の結果を表す画像(例えば偏波SAR画像)の判読の容易性を向上させることができるという効果がある。
その理由は、関係性モデル生成部102が、空間特徴量画像の画素の画素値である空間特徴量と、その画素に関連する、対象画像の画素の画素値との組み合わせを生成し、生成した組み合わせに基づいて関係性モデルを生成するからである。組み合わせは、上述の関係性ベクトルである。関係性モデルは、空間特徴量とその空間特徴量が得られた場所の観測によって得られた画素の画素値との関係を表す。より具体的には、関係性モデルは、空間特徴量から画素値への変換規則を表す。関係性モデルによって、レーダ装置によって得られた測定の結果に基づく空間特徴量から、その測定が行われた場所の撮影によって得られる画素値が得られる。言い換えると、レーダ装置による測定によって得られた測定値を、その測定値が得られた場所における空間特徴量に基づいて、例えば光学的に撮影され、自然に見える、対象画像の画素値に結びつけることができる。さらに言い換えると、レーダ装置による測定の結果を表すSAR画像を、その対象画像に近い輝度と配色の画像に変換できる。従って、例えばSAR画像等の、レーダ装置による測定の結果を表す画像の判読が容易になる。
[第2の実施の形態]
[構成の説明]
図10は、本開示の第2の実施形態に係る画像処理装置10Cの構成の例を表すブロック図である。図10を参照すると、画像処理装置10Cは、第1データ値の2次元の分布と第2データ値の2次元の分布とにおける、互いに関連する第1データ値と第2データ値との組み合わせを生成する関係性モデル生成部102(生成部102とも表記)を含む。
第1データ値は、レーダ装置による、偏波信号である第1信号の測定の結果に基づくデータ値である。第1データ値の2次元の分布は、例えば、上述の学習用偏波SAR画像から生成された、空間特徴量画像である。
第2データ値は、第1信号とは異なる第2信号の測定の結果に基づくデータ値である。第2データ値の2次元の分布は、例えば、上述の対象画像である。対象画像は、例えば、カメラなどの光学撮影装置によって撮影された光学画像である。対象画像は、光学画像に限られない。
第1データ値の2次元の分布と、第2データ値の2次元の分布との間において、位置合わせが完了していればよい。すなわち、同じ場所の観測の結果に基づく第1データ値と第2データ値とが、互いに関連付けられていればよい。第1データ値と第2データ値との組み合わせは、例えば、上述の関係性ベクトルである。関係性モデル生成部102は、複数の組み合わせを生成すればよい。
関係性モデル生成部102は、生成した組み合わせに基づいて、第1データ値と第2データ値との関係を表す関係性モデルを生成する。関係性モデルは、例えば、上述のように、第1データ値を第2データ値に変換する変換規則である。関係性モデル生成部102は、例えば、生成した組み合わせを複数のクラスに分類してもよい。関係性モデル生成部102は、さらに、クラス毎に変換規則を生成してもよい。そして、関係性モデル生成部102は、関係性モデルとして、生成したクラスごとの変換規則を生成してもよい。
[動作の説明]
次に、本実施形態の画像処理装置10Cの動作について、図面を参照して詳細に説明する。
図11は、本実施形態の画像処理装置10Cの動作の例を表すフローチャートである。
ステップS201:
関係性モデル生成部102は、まず、第1データ値と第2データ値との組み合わせを生成する。
ステップS202:
次に、関係性モデル生成部102は、生成した組み合わせに基づいて、第1データ値と
第2データ値との関係を表す関係性モデルを生成する。
[効果]
以上で説明した本実施形態には、第1の実施形態と同じ効果がある。その理由は、第1の実施形態の効果が生じる理由と同じである。
[他の実施の形態]
本開示の実施形態に係る画像処理装置は、記憶媒体から読み出されたプログラムがロードされたメモリと、そのプログラムを実行するプロセッサとを含むコンピュータによって実現することができる。本開示の実施形態に係る画像処理装置は、専用のハードウェアによって実現することもできる。本開示の実施形態に係る画像処理装置は、前述のコンピュータと専用のハードウェアとの組み合わせによって実現することもできる。なお、図5に示す第1画像処理装置11及び第2画像処理装置12も、本開示の実施形態に係る画像処理装置に含まれる。
言い換えると、上述の実施形態に係る画像処理装置は、回路構成(circuitry)などのハードウェアによって実現することができる。回路構成は、例えば、コンピュータに含まれるプロセッサとメモリであってもよい。その場合、プログラムが、メモリにロードされていればよい。そのプログラムは、プロセッサが実行することが可能であり、コンピュータを上述の画像処理装置として動作させればよい。回路構成は、例えば、通信可能に接続された複数のコンピュータであってもよい。回路構成は、例えば、回路(circuit)であってもよい。回路構成は、例えば、通信可能に接続された複数の回路であってもよい。回路構成は、通信可能に接続された、1台以上のコンピュータと、1個以上の回路との組み合わせであってもよい。
図12は、本開示の実施形態に係る画像処理装置を実現することができる、コンピュータ1000のハードウェア構成の一例を表す図である。図12を参照すると、コンピュータ1000は、プロセッサ1001と、メモリ1002と、記憶装置1003と、I/O(Input/Output)インタフェース1004とを含む。また、コンピュータ1000は、記憶媒体1005にアクセスすることができる。メモリ1002と記憶装置1003は、例えば、RAM(Random Access Memory)、ハードディスクなどの記憶装置である。記憶媒体1005は、例えば、RAM、ハードディスクなどの記憶装置、ROM(Read Only Memory)、可搬記憶媒体である。記憶装置1003が記憶媒体1005であってもよい。プロセッサ1001は、メモリ1002と、記憶装置1003に対して、データやプログラムの読み出しと書き込みを行うことができる。プロセッサ1001は、I/Oインタフェース1004を介して、例えば、偏波SAR画像を供給するサーバなどにアクセスすることができる。プロセッサ1001は、記憶媒体1005にアクセスすることができる。記憶媒体1005には、コンピュータ1000を、上述の実施形態のいずれか1つに係る画像処理装置として動作させるプログラムが格納されている。
プロセッサ1001は、記憶媒体1005に格納されている、コンピュータ1000を、上述の実施形態のいずれか1つに係る画像処理装置として動作させるプログラムを、メモリ1002にロードする。そして、プロセッサ1001が、メモリ1002にロードされたプログラムを実行することにより、コンピュータ1000は、画像処理装置として動作する。
以下の第1のグループに含まれる各部は、例えば、プログラムを記憶する記憶媒体1005から各部の機能を実現することができる専用のプログラムが読み込まれたメモリ1002と、そのプログラムを実行するプロセッサ1001により実現することができる。第1のグループは、ピクセル特徴量抽出部100、位置合わせ処理部101、関係性モデル生成部102、第1受信部103、第2受信部104、第1出力部108、空間特徴量抽出部111、及び、関係性学習部112を含む。第1のグループは、さらに、ピクセル特徴量抽出部200、画像推定部201、第3受信部202、第2出力部205、第4受信部206、空間特徴量抽出部211、画像情報推定部212、及び、高解像度化処理部213を含む。
また、以下の第2のグループに含まれる各部は、コンピュータ1000が含むメモリ1002やハードディスク装置等の記憶装置1003により実現することができる。第2のグループは、学習用偏波SAR記憶部105、対象画像記憶部106、関係性モデル記憶部107、推定用偏波SAR記憶部203、推定画像記憶部204、及び、関係性モデル記憶部207を含む。
あるいは、第1又は第2のグループに含まれる部の一部又は全部を、各部の機能を実現する専用の回路によって実現することもできる。
また、上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
レーダ装置による、偏波信号である第1信号の測定の結果に基づく第1データ値の2次元の分布と、前記第1信号とは異なる第2信号の測定の結果に基づく第2データ値の2次元の分布と、における、互いに関連する前記第1データ値と前記第2データ値との組み合わせを生成し、当該組み合わせに基づいて、前記第1データ値と前記第2データ値との関係を表す関係性モデルを生成する生成手段
を備える画像処理装置。
(付記2)
前記生成手段は、前記組み合わせに基づいて、前記第1データ値から前記第2データ値への変換を算出し、当該変換を含む前記関係性モデルを生成する
付記1に記載の画像処理装置。
(付記3)
前記生成手段は、前記組み合わせを、類似性に基づく複数のクラスに分類し、前記複数のクラスの各々についての前記変換を算出する
付記2に記載の画像処理装置。
(付記4)
前記変換は、前記複数のクラスに分類された前記組み合わせの前記複数のクラスの各々における平均値に基づく変換である
付記3に記載の画像処理装置。
(付記5)
前記変換は、回帰モデルに基づく変換である
付記2から4のいずれか1項に記載の画像処理装置。
(付記6)
前記第1信号の前記第1データ値の2次元の第2分布から、前記関係性モデルに基づいて、前記第2信号の推定データ値の2次元の分布を推定する推定手段
をさらに備える付記1から5のいずれか1項に記載の画像処理装置。
(付記7)
前記第2分布から輝度情報を抽出し、当該輝度情報を推定された前記推定データ値に反映する高解像度化手段
をさらに備える付記6に記載の画像処理装置。
(付記8)
レーダ装置による、偏波信号である第1信号の測定の結果に基づく第1データ値の2次元の分布と、前記第1信号とは異なる第2信号の測定の結果に基づく第2データ値の2次元の分布と、における、互いに関連する前記第1データ値と前記第2データ値との組み合わせを生成し、当該組み合わせに基づいて、前記第1データ値と前記第2データ値との関係を表す関係性モデルを生成する
画像処理方法。
(付記9)
前記組み合わせに基づいて、前記第1データ値から前記第2データ値への変換を算出し、当該変換を含む前記関係性モデルを生成する
付記8に記載の画像処理方法。
(付記10)
前記組み合わせを、類似性に基づく複数のクラスに分類し、前記複数のクラスの各々についての前記変換を算出する
付記9に記載の画像処理方法。
(付記11)
前記変換は、前記複数のクラスに分類された前記組み合わせの前記複数のクラスの各々における平均値に基づく変換である
付記10に記載の画像処理方法。
(付記12)
前記変換は、回帰モデルに基づく変換である
付記7から11のいずれか1項に記載の画像処理方法。
(付記13)
前記第1信号の前記第1データ値の2次元の第2分布から、前記関係性モデルに基づいて、前記第2信号の推定データ値の2次元の分布を推定する
付記8から12のいずれか1項に記載の画像処理方法。
(付記14)
前記第2分布から輝度情報を抽出し、当該輝度情報を推定された前記推定データ値に反映する
付記13に記載の画像処理方法。
(付記15)
コンピュータに、
レーダ装置による、偏波信号である第1信号の測定の結果に基づく第1データ値の2次元の分布と、前記第1信号とは異なる第2信号の測定の結果に基づく第2データ値の2次元の分布と、における、互いに関連する前記第1データ値と前記第2データ値との組み合わせを生成し、当該組み合わせに基づいて、前記第1データ値と前記第2データ値との関係を表す関係性モデルを生成する生成処理
を実行させるプログラム。
(付記16)
前記生成処理は、前記組み合わせに基づいて、前記第1データ値から前記第2データ値への変換を算出し、当該変換を含む前記関係性モデルを生成する
付記15に記載のプログラム。
(付記17)
前記生成処理は、前記組み合わせを、類似性に基づく複数のクラスに分類し、前記複数のクラスの各々についての前記変換を算出する
付記16に記載のプログラム。
(付記18)
前記変換は、前記複数のクラスに分類された前記組み合わせの前記複数のクラスの各々における平均値に基づく変換である
付記17に記載のプログラム。
(付記19)
前記変換は、回帰モデルに基づく変換である
付記16から18のいずれか1項に記載のプログラム。
(付記20)
コンピュータに、
前記第1信号の前記第1データ値の2次元の第2分布から、前記関係性モデルに基づいて、前記第2信号の推定データ値の2次元の分布を推定する推定処理
をさらに実行させる付記15から19のいずれか1項に記載のプログラム。
(付記21)
コンピュータに、
前記第2分布から輝度情報を抽出し、当該輝度情報を推定された前記推定データ値に反映する高解像度化処理
をさらに実行させる付記21に記載のプログラム。
以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
1 画像処理システム
1A 画像処理システム
1B 画像処理システム
10 画像処理装置
10C 画像処理装置
11 第1画像処理装置
12 第2画像処理装置
100 ピクセル特徴量抽出部
101 位置合わせ処理部
102 関係性モデル生成部
103 第1受信部
104 第2受信部
105 学習用偏波SAR記憶部
106 対象画像記憶部
107 関係性モデル記憶部
108 第1出力部
111 空間特徴量抽出部
112 関係性学習部
200 ピクセル特徴量抽出部
201 画像推定部
202 第3受信部
203 推定用偏波SAR記憶部
204 推定画像記憶部
205 第2出力部
206 第4受信部
207 関係性モデル記憶部
211 空間特徴量抽出部
212 画像情報推定部
213 高解像度化処理部
1000 コンピュータ
1001 プロセッサ
1002 メモリ
1003 記憶装置
1004 I/Oインタフェース
1005 記憶媒体

Claims (9)

  1. レーダ装置による、偏波信号である第1信号の第1の測定の結果である学習用偏波SAR(Synthetic Aperture Radar)画像から生成された第1のピクセル特徴量画像から第1データ値の二次元の第1分布である第1の空間特徴量画像を生成する第1特徴抽出手段と、
    前記第1の空間特徴量画像と、前記第1信号とは異なる第2信号の測定の結果に基づく第2データ値の二次元の第2分布である対象画像と、における、同じ対象の測定の結果である前記第1の空間特徴量画像の画素値と前記対象画像の画素値との組み合わせを生成し、当該組み合わせに基づいて、前記第1の空間特徴量画像の画素値と前記対象画像の画素値との関係を表す回帰モデルを生成する生成手段と、
    前記第1信号の第2の測定の結果である推定用偏波SAR画像から生成された第2のピクセル特徴量画像から前記第1データ値の二次元の第3分布である第2の空間特徴量画像を生成する第2特徴抽出手段と、
    前記第2の空間特徴量画像から、前記回帰モデルに基づいて、前記第2信号の推定データ値の二次元の第4分布である推定画像を推定する推定手段と、
    を備え、
    前記第2信号は光であり、
    前記対象画像は光学画像である
    画像処理装置。
  2. 前記生成手段は、前記組み合わせに基づいて、前記第1の空間特徴量画像の画素値から前記対象画像の画素値への変換を算出し、当該変換を含む前記回帰モデルを生成する
    請求項1に記載の画像処理装置。
  3. 前記生成手段は、前記組み合わせを、類似性に基づく複数のクラスに分類し、前記複数のクラスの各々についての前記変換を算出する
    請求項2に記載の画像処理装置。
  4. 前記変換は、前記複数のクラスに分類された前記組み合わせの前記複数のクラスの各々における平均値に基づく変換である
    請求項3に記載の画像処理装置。
  5. 前記第3分布から輝度情報を抽出し、当該輝度情報を推定された前記推定データ値に反映する高解像度化手段
    をさらに備える請求項1乃至4のいずれか1項に記載の画像処理装置。
  6. 前記第1特徴抽出手段は、前記第1の測定の結果から、第3データ値の二次元の第5分布である前記第1のピクセル特徴量画像を生成し、当該第5分布から前記第1の空間特徴量画像を生成し、
    前記第2特徴抽出手段は、前記第2の測定の結果から、第3データ値の二次元の第6分布である前記第2のピクセル特徴量画像を生成し、当該第6分布から前記第2の空間特徴量画像を生成する
    請求項1乃至5のいずれか1項に記載の画像処理装置。
  7. レーダ装置による、偏波信号である第1信号の第1の測定の結果である学習用偏波SAR画像から生成された第1のピクセル特徴量画像から第1データ値の二次元の第1分布である第1の空間特徴量画像を生成し、
    前記第1の空間特徴量画像と、前記第1信号とは異なる第2信号の測定の結果に基づく第2データ値の二次元の第2分布である対象画像と、における、同じ対象の測定の結果である前記第1の空間特徴量画像の画素値と前記対象画像の画素値との組み合わせを生成し、当該組み合わせに基づいて、前記第1の空間特徴量画像の画素値と前記対象画像の画素値との関係を表す回帰モデルを生成し、
    前記第1信号の第2の測定の結果である推定用偏波SAR画像から生成された第2のピクセル特徴量画像から前記第1データ値の二次元の第3分布である第2の空間特徴量画像を生成し、
    前記第2の空間特徴量画像から、前記回帰モデルに基づいて、前記第2信号の推定データ値の二次元の第4分布である推定画像を推定し、
    前記第2信号は光であり、
    前記対象画像は光学画像である
    画像処理方法。
  8. 前記組み合わせに基づいて、前記第1の空間特徴量画像の画素値から前記対象画像の画素値への変換を算出し、当該変換を含む前記回帰モデルを生成する
    請求項7に記載の画像処理方法。
  9. コンピュータに、
    レーダ装置による、偏波信号である第1信号の第1測定の結果である学習用偏波SAR画像から生成された第1のピクセル特徴量画像から第1データ値の二次元の第1分布である第1の空間特徴量画像を生成する第1特徴量抽出処理と、
    前記第1の空間特徴量画像と、前記第1信号とは異なる第2信号の測定の結果に基づく第2データ値の二次元の第2分布である対象画像と、における、同じ対象の測定の結果である前記第1の空間特徴量画像の画素値と前記対象画像の画素値との組み合わせを生成し、当該組み合わせに基づいて、前記第1の空間特徴量画像の画素値と前記対象画像の画素値との関係を表す回帰モデルを生成する生成処理と、
    前記第1信号の第2の測定の結果である推定用偏波SAR画像から生成された第2のピクセル特徴量画像から前記第1データ値の二次元の第3分布である第2の空間特徴量画像を生成する第2特徴抽出処理と、
    前記第2の空間特徴量画像から、前記回帰モデルに基づいて、前記第2信号の推定データ値の二次元の第4分布である推定画像を推定する推定処理と、
    を実行させ、
    前記第2信号は光であり、
    前記対象画像は光学画像である
    プログラム。
JP2016184200A 2016-09-21 2016-09-21 画像処理装置、画像処理方法及びプログラム Active JP7152131B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016184200A JP7152131B2 (ja) 2016-09-21 2016-09-21 画像処理装置、画像処理方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016184200A JP7152131B2 (ja) 2016-09-21 2016-09-21 画像処理装置、画像処理方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2018048898A JP2018048898A (ja) 2018-03-29
JP7152131B2 true JP7152131B2 (ja) 2022-10-12

Family

ID=61766281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016184200A Active JP7152131B2 (ja) 2016-09-21 2016-09-21 画像処理装置、画像処理方法及びプログラム

Country Status (1)

Country Link
JP (1) JP7152131B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019215819A1 (ja) * 2018-05-08 2019-11-14 日本電気株式会社 合成開口レーダ画像解析システム、合成開口レーダ画像解析方法および合成開口レーダ画像解析プログラム
JP7354268B2 (ja) * 2019-02-20 2023-10-02 サウジ アラビアン オイル カンパニー 人工知能を使った地震属性の高速算出のための方法
US20230042178A1 (en) * 2020-03-31 2023-02-09 Nec Corporation Analysis device, analysis method, and storage medium
JP7262679B2 (ja) * 2020-08-13 2023-04-21 三菱電機株式会社 学習装置、画像処理装置、及び位置合わせシステム
CN112164017B (zh) * 2020-09-27 2023-11-17 中国兵器工业集团第二一四研究所苏州研发中心 一种基于深度学习的偏振彩色化方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184184A (ja) 2002-12-02 2004-07-02 Mitsubishi Electric Corp レーダ画像処理装置
US6795590B1 (en) 2000-09-22 2004-09-21 Hrl Laboratories, Llc SAR and FLIR image registration method
JP2010236970A (ja) 2009-03-31 2010-10-21 Mitsubishi Space Software Kk SAR(SyntheticApertureRadar)重畳データ生成装置、SAR重畳データ再生装置、SAR重畳データ生成プログラム、SAR重畳データ再生プログラム、SAR重畳データ生成方法およびSAR重畳データ再生方法
WO2011102520A1 (ja) 2010-02-22 2011-08-25 株式会社パスコ 水稲収量予測モデル生成方法、及び水稲収量予測方法
JP2015114147A (ja) 2013-12-10 2015-06-22 三菱電機株式会社 画像合成装置及び画像合成方法
JP2015125498A (ja) 2013-12-25 2015-07-06 一般財団法人 リモート・センシング技術センター 擬似カラー化画像処理システム
WO2017179171A1 (ja) 2016-04-14 2017-10-19 三菱電機株式会社 画像処理装置及び画像処理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6795590B1 (en) 2000-09-22 2004-09-21 Hrl Laboratories, Llc SAR and FLIR image registration method
JP2004184184A (ja) 2002-12-02 2004-07-02 Mitsubishi Electric Corp レーダ画像処理装置
JP2010236970A (ja) 2009-03-31 2010-10-21 Mitsubishi Space Software Kk SAR(SyntheticApertureRadar)重畳データ生成装置、SAR重畳データ再生装置、SAR重畳データ生成プログラム、SAR重畳データ再生プログラム、SAR重畳データ生成方法およびSAR重畳データ再生方法
WO2011102520A1 (ja) 2010-02-22 2011-08-25 株式会社パスコ 水稲収量予測モデル生成方法、及び水稲収量予測方法
JP2015114147A (ja) 2013-12-10 2015-06-22 三菱電機株式会社 画像合成装置及び画像合成方法
JP2015125498A (ja) 2013-12-25 2015-07-06 一般財団法人 リモート・センシング技術センター 擬似カラー化画像処理システム
WO2017179171A1 (ja) 2016-04-14 2017-10-19 三菱電機株式会社 画像処理装置及び画像処理方法

Also Published As

Publication number Publication date
JP2018048898A (ja) 2018-03-29

Similar Documents

Publication Publication Date Title
JP7152131B2 (ja) 画像処理装置、画像処理方法及びプログラム
Shao et al. Remote sensing image fusion with deep convolutional neural network
Wang et al. Generating high quality visible images from SAR images using CNNs
Simoes et al. A convex formulation for hyperspectral image superresolution via subspace-based regularization
Mitianoudis et al. Pixel-based and region-based image fusion schemes using ICA bases
Krig Computer vision metrics
Vivone et al. Pansharpening based on deconvolution for multiband filter estimation
Li et al. A new pan-sharpening method using a compressed sensing technique
Fotiadou et al. Spectral super resolution of hyperspectral images via coupled dictionary learning
CN114746895A (zh) 用于图像去噪的噪声重构
WO2019215819A1 (ja) 合成開口レーダ画像解析システム、合成開口レーダ画像解析方法および合成開口レーダ画像解析プログラム
Paris et al. A novel sharpening approach for superresolving multiresolution optical images
Liu et al. Underwater image colour constancy based on DSNMF
Zhou et al. Infrared small target detection via incorporating spatial structural prior into intrinsic tensor sparsity regularization
CN116935214A (zh) 一种卫星多源遥感数据的时空谱融合方法
Park et al. Active-passive data fusion algorithms for seafloor imaging and classification from CZMIL data
Kekre et al. Image fusion using Kekre's hybrid wavelet transform
CN113446998B (zh) 一种基于高光谱目标探测数据的动态解混方法
Abas et al. Multi-focus image fusion with multi-scale transform optimized by metaheuristic algorithms
Kaur et al. Image fusion on digital images using Laplacian pyramid with DWT
CN103198456A (zh) 基于方向波域隐马尔可夫树模型的遥感图像融合方法
Vibhute et al. Hyperspectral image unmixing for land cover classification
CN102156872B (zh) 一种基于多光谱数据的物体识别方法和装置
CN111126508A (zh) 一种基于hopc改进的异源图像匹配方法
CN107038706B (zh) 基于自适应网格的红外图像置信度评估装置及方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210914

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210914

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210929

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211005

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20211021

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20211022

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20211025

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20211026

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220201

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220412

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220629

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220705

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220726

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220809

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220906

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220929

R151 Written notification of patent or utility model registration

Ref document number: 7152131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151