WO2017179171A1 - 画像処理装置及び画像処理方法 - Google Patents
画像処理装置及び画像処理方法 Download PDFInfo
- Publication number
- WO2017179171A1 WO2017179171A1 PCT/JP2016/062008 JP2016062008W WO2017179171A1 WO 2017179171 A1 WO2017179171 A1 WO 2017179171A1 JP 2016062008 W JP2016062008 W JP 2016062008W WO 2017179171 A1 WO2017179171 A1 WO 2017179171A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pixel
- color
- unit
- radar image
- probability
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
Definitions
- the present invention relates to an image processing apparatus and an image processing method for coloring each pixel constituting a radar image.
- a radar image having complex signal information is an image showing an intensity distribution of a signal reflected by an observation target, and is generally a black and white image. Since a radar image which is a black and white image has poor visibility, an image processing apparatus which improves visibility by coloring each pixel constituting the radar image is disclosed in Patent Document 1 below.
- the feature amount at the position of each pixel constituting the radar image is extracted from the luminance distribution of the radar image. That is, in this image processing apparatus, for each pixel constituting the radar image, the luminance value of the pixel and the luminance value of the pixel existing around the pixel are used to determine the position of the pixel. Contrast, entropy, energy, etc. are extracted as feature quantities. In this image processing apparatus, a color is assigned to each feature amount in advance. For example, red is assigned to the contrast, which is the feature value, green is assigned to the entropy, and blue is assigned to the energy. In this image processing apparatus, for each pixel constituting the radar image, the color assigned to each feature amount is determined according to the contrast, entropy, and energy magnitude as the feature amount at the position of the pixel. By combining, the radar image is colored.
- the radar image can be colored.
- the observation target is, for example, a mountain, grassland, sea, etc.
- colors assigned to contrast, entropy, and energy, which are feature quantities, are synthesized, colors of mountains, sea, grassland, etc. are reproduced.
- a color image such as an optical photograph cannot be obtained.
- the present invention has been made to solve the above-described problems, and an object thereof is to obtain an image processing apparatus and an image processing method capable of reproducing the color to be observed.
- An image processing apparatus includes a feature amount extraction unit that extracts a feature amount at a position of each pixel constituting a radar image from a luminance distribution of the radar image, and each observation target reflected in the radar image.
- the radar image is constructed using the label data indicating the pixel in the radar image corresponding to the point within the range where the observation target exists and the feature amount extracted by the feature amount extraction unit.
- a probability calculating unit that calculates the probability that the pixel is a pixel representing each observation target, and the pixel coloring unit calculates the probability calculated by the probability calculation unit and the color that each observation target has The color of each pixel constituting the radar image is determined from the components, and each pixel is colored with the determined color.
- the label data indicating the pixel in the radar image corresponding to the point in the range where the observation object exists and the feature amount extraction unit extract the label data.
- the probability calculation unit that calculates the probability that each pixel constituting the radar image is a pixel representing each observation target is provided using the obtained feature amount, and the pixel coloring unit is calculated by the probability calculation unit Since the color of each pixel constituting the radar image is determined from the probability and the color component of each observation target, and each pixel is colored with the determined color, There is an effect that the color of the observation object can be reproduced.
- FIG. 1 is a configuration diagram illustrating an image processing apparatus according to Embodiment 1 of the present invention; It is a hardware block diagram of the image processing apparatus by Embodiment 1 of this invention.
- FIG. 2 is a hardware configuration diagram of a computer when the image processing apparatus is realized by software, firmware, or the like. It is a flowchart which shows the image processing method which is a process sequence in case an image processing apparatus is implement
- FIG. FIG. 1 is a block diagram showing an image processing apparatus according to Embodiment 1 of the present invention
- FIG. 2 is a hardware block diagram of the image processing apparatus according to Embodiment 1 of the present invention.
- the radar image acquisition unit 1 is realized by, for example, the image acquisition processing circuit 31 in FIG. 2, and acquires, for example, a radar image in which observation targets such as mountains, grasslands, and seas are shown. Perform the process.
- the radar image is a black and white image, and corresponds to, for example, a single polarization image, a two polarization image, a four polarization image, or the like.
- the radar image is obtained, for example, when a radio wave radiated from a radar device or the like is reflected by an observation target and the reflected wave of the radio wave is received by the radar device or the like. It is an image which shows intensity distribution of a wave. In the first embodiment, description will be made assuming that the intensity distribution of the reflected wave is a luminance distribution.
- each of one or more observation objects reflected in a radar image acquired by the radar image acquisition unit 1 is a classification item.
- the label data receiving unit 2 is realized by, for example, the label data receiving circuit 32 of FIG. 2, and for each classification item to be observed, in the radar image corresponding to a point within the range where the classification item exists.
- the process of receiving the setting of the label data indicating this pixel and outputting the label data to the probability calculation unit 5 is performed.
- the classification items are mountains, grassland, and sea. There may be two or less classification items or four or more classification items.
- the color component receiving unit 3 is realized by, for example, the color component receiving circuit 33 in FIG. 2.
- the color component receiving unit 3 receives the setting of the color component possessed by the observation target that is each classification item, and indicates the color component. A process of outputting data to the pixel coloring unit 6 is performed.
- the RGB color model using the three primary colors of red (Red), green (Green), and blue (Blue) is used as a color image color expression method
- RGB color model or the CMYK color model is used as the color expression method of the color image
- the color expression method is not limited to this, and for example, hue (Hue), saturation (Saturation).
- An HSV model using three components of lightness (Value) may be used.
- the feature amount extraction unit 4 is realized by, for example, the feature amount extraction processing circuit 34 of FIG. 2, and each pixel constituting the radar image from the luminance distribution of the radar image acquired by the radar image acquisition unit 1.
- the process of extracting the feature value at the position of is performed. That is, for each pixel constituting the radar image, the feature amount extraction unit 4 calculates the average, variance, skewness, and the like of the luminance value of the pixel and the luminance values of the pixels existing around the pixel. It is calculated as a feature amount at the position of the pixel.
- the type of feature quantity extracted by the feature quantity extraction unit 4 and the number of types are arbitrary.
- the probability calculation unit 5 is realized by, for example, the probability calculation processing circuit 35 of FIG. 2, and uses the label data output from the label data receiving unit 2 and the feature amount extracted by the feature amount extraction unit 4. Then, a process of calculating the probability that each pixel constituting the radar image is a pixel representing each classification item is performed.
- the pixel coloring unit 6 is realized by, for example, the pixel coloring processing circuit 36 of FIG. 2, and a radar image is obtained from the probability calculated by the probability calculating unit 5 and the color data output from the color component receiving unit 3. The color of each pixel that is configured is determined, and a process of coloring each pixel with the determined color is performed.
- the image acquisition processing circuit 31, the label data reception circuit 32, the color component reception circuit 33, the feature amount extraction processing circuit 34, the probability calculation processing circuit 35, and the pixel coloring processing circuit 36 are, for example, a single circuit, a composite circuit, A programmed processor, a processor programmed in parallel, an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a combination thereof is applicable.
- the label data reception circuit 32 and the color component reception circuit 33 may be realized by a man-machine interface device including a mouse, a keyboard, and the like.
- the image processing apparatus is not limited to a component that is realized by dedicated hardware, and the image processing apparatus may be realized by software, firmware, or a combination of software and firmware.
- Software and firmware are stored as programs in the memory of the computer.
- the computer means hardware that executes a program, and includes, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, a DSP (Digital Signal Processor), and the like.
- the memory of the computer is, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Memory).
- RAM Random Access Memory
- ROM Read Only Memory
- flash memory EPROM (Erasable Programmable Read Only Memory)
- EEPROM Electrical Erasable Programmable Memory
- FIG. 3 is a hardware configuration diagram of a computer when the image processing apparatus is realized by software, firmware, or the like.
- processing procedures of the radar image acquisition unit 1, the label data reception unit 2, the color component reception unit 3, the feature amount extraction unit 4, the probability calculation unit 5, and the pixel coloring unit 6 May be stored in the memory 41, and the processor 42 of the computer may execute the program stored in the memory 41.
- FIG. 4 is a flowchart showing an image processing method as a processing procedure when the image processing apparatus is realized by software, firmware, or the like.
- FIG. 2 shows an example in which each component of the image processing apparatus is realized by dedicated hardware
- FIG. 3 shows an example in which the image processing apparatus is realized by software, firmware, etc.
- Some components in the processing device may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
- the label data reception unit 2 and the color component reception unit 3 are realized by dedicated hardware
- the radar image acquisition unit 1, the feature amount extraction unit 4, the probability calculation unit 5, and the pixel coloring unit 6 are realized by software or firmware. Is possible.
- the combination of dedicated hardware and software is arbitrary.
- FIG. 5 is a block diagram showing the probability calculation unit 5 of the image processing apparatus according to Embodiment 1 of the present invention.
- the learning data extraction unit 11 outputs, from the feature amount at the position of each pixel extracted by the feature amount extraction unit 4, the label data reception unit 2 that outputs the classification item for each observation item.
- a process of extracting the feature quantity at the pixel position indicated by the label data in the classification item as learning data of the classification item is performed.
- the probability calculation processing unit 12 is similar to the feature amount at the position of the pixel in the learning data for each classification item extracted by the learning data extraction unit 11 for each pixel constituting the radar image.
- the number of learning data is specified, and the process of calculating the probability that the pixel is a pixel representing each classification item is performed from the number of learning data in each specified classification item.
- the pixel is a pixel representing a probability p 1 that is a pixel representing a mountain that is a classification item, a probability p 2 that is a pixel representing a grassland that is a classification item, and a sea that is a classification item. to calculate the probability p 3.
- FIG. 6 is a block diagram showing the pixel coloring section 6 of the image processing apparatus according to Embodiment 1 of the present invention.
- the color arrangement determining unit 21 performs a process of generating a color component color arrangement matrix according to the color components of the observation target that is each classification item indicated by the color data output from the color component receiving unit 3. carry out.
- the color component color arrangement matrix is an M ⁇ N row example, where M is the number of elements of the color component and N is the number of types of classification items.
- N 3 because an example in which the classification items are mountain, grassland, and sea is shown.
- M 3.
- a 3 ⁇ 3 color arrangement matrix as shown in the following formula (1) is generated.
- a 11 , a 21 , and a 31 are color components that the mountain that is the classification item has, and a 12 , a 22 , and a 32 are color components that the grassland that is the classification item has, a 13 , a 23 , and a 33 are color components possessed by the sea as a classification item.
- a 4 ⁇ 3 color arrangement matrix as shown in the following equation (2) is generated.
- a 11 , a 21 , a 31 , and a 41 are color components included in a mountain that is a classification item
- a 12 , a 22 , a 32 , and a 42 include grassland that is a classification item.
- the color components a 13 , a 23 , a 33 , and a 43 are color components possessed by the sea as a classification item.
- the color composition unit 22 has a probability that each pixel calculated by the probability calculation unit 5 is a pixel representing each classification item, that is, a probability p 1 that each pixel is a pixel representing a mountain that is a classification item, An N ⁇ 1 matrix indicating a probability p 2 that is a pixel representing a grass field that is a classification item, a probability p 3 that is a pixel that represents a sea that is a classification item, and a color scheme matrix generated by the color scheme determination unit 21
- the color of each pixel constituting the radar image is determined, and a process of coloring each pixel with the determined color is performed.
- the RGB color model is used as a color image color expression method
- the R component c 1 , G component c 2 , and B component c of the pixels constituting the radar image are expressed as in the following equation (3). 3 is determined.
- the C component c 1 , M component c 2 , and Y component c of the pixels constituting the radar image are expressed by the following equation (4). 3, to determine the K component c 4.
- the color adjustment receiving unit 23 performs a process of receiving adjustment of the color component indicated by the color data output from the color component receiving unit 3. That is, the color adjustment acceptance unit 23 adjusts the color component that the mountain in the color arrangement matrix generated by the color arrangement determination unit 21 has, the color component that the grassland has, or the color component that the sea has. The process of receiving and outputting the adjusted color component to the color composition unit 22 is performed.
- the radar image acquisition unit 1 acquires a radar image showing an observation target, and outputs the radar image to the feature amount extraction unit 4 and the probability calculation unit 5 (step ST1 in FIG. 4).
- FIG. 7 is an explanatory diagram illustrating an example of a radar image acquired by the radar image acquisition unit 1.
- the radar image is a black and white image, and corresponds to, for example, a single polarization image, a two polarization image, a four polarization image, or the like.
- the label data reception unit 2 assumes that each of the one or more observation objects shown in the radar image acquired by the radar image acquisition unit 1 is a classification item, and the classification item exists for each classification item.
- the setting of the label data indicating the pixel in the radar image corresponding to the point in the range is received, and the label data is output to the probability calculation unit 5 (step ST2 in FIG. 4).
- the label data receiving unit 2 receives the setting of label data indicating pixels in a corresponding radar image within the range where the “mountain” that is the classification item exists.
- the label data receiving unit 2 receives the setting of the label data indicating the pixel in the radar image corresponding to a certain point in the range where the classification item “grassland” exists. Further, the label data receiving unit 2 receives the setting of label data indicating pixels in the radar image corresponding to a certain point in the range where the classification item “sea” exists.
- FIG. 8 is an explanatory diagram illustrating an example of the pixel indicated by the label data whose setting is received by the label data receiving unit 2.
- ⁇ indicates pixels corresponding to a plurality of points within a range where “mountain” as a classification item exists. Further, ⁇ indicates pixels corresponding to a plurality of points in the range where “grassland” exists, and ⁇ indicates pixels corresponding to a plurality of points in the range where “sea” exists.
- label data indicating pixels corresponding to all points within the range where the classification item exists may be set
- the probability calculation processing unit 12 of the probability calculation unit 5 described later is, for example, the k nearest neighbor
- label data indicating pixels corresponding to k or more points may be set for each classification item, and label data indicating pixels corresponding to all points is set. There is no need.
- label data is set for 12 points within the range where “mountains” exist
- label data is set for 14 points within the range where “grassland” exists
- Label data is set for 13 points within the range where the “sea” exists.
- the color component receiving unit 3 receives the setting of the color component possessed by the observation target that is each classification item, and outputs the color data indicating the color component to the pixel coloring unit 6 (step ST3 in FIG. 4).
- the setting of (C, M, Y, K) (a 13 , a 23 , a 33 , a 43 ) is accepted as the color component of the item sea.
- a conspicuous color component may be designated regardless of the actual color of the certain area. Specifically, for example, if the color of an urban area is specified by a conspicuous color component such as red and the area other than the urban area is specified by a dark color component, a color image that can draw attention to the urban area can be obtained. It will be obtained.
- the feature amount extraction unit 4 When receiving the radar image from the radar image acquisition unit 1, the feature amount extraction unit 4 extracts a feature amount at the position of each pixel constituting the radar image from the luminance distribution of the radar image, and The feature quantity at the position is output to the probability calculation unit 5 (step ST4 in FIG. 4). That is, the feature amount extraction unit 4 acquires the luminance value of the pixel and the luminance values of pixels existing around the pixel for each pixel constituting the radar image. For example, a window having a size of 5 ⁇ 5 is specified around the pixel, and the luminance values of a plurality of pixels existing in the window are acquired.
- the feature value extraction unit 4 When the feature value extraction unit 4 acquires the brightness values of the plurality of pixels existing in the window, the feature value extraction unit 4 calculates the average, variance, skewness, and the like of the brightness values of the plurality of pixels as the feature values at the positions of the pixels.
- the type of feature quantity extracted by the feature quantity extraction unit 4 and the number of types are arbitrary.
- FIG. 9 is a flowchart showing the processing contents in the probability calculation unit 5 of the image processing apparatus according to Embodiment 1 of the present invention. Hereinafter, the processing content of the probability calculation unit 5 will be specifically described with reference to FIG.
- the learning data extraction unit 11 of the probability calculation unit 5 acquires the feature amount at the position of each pixel output from the feature amount extraction unit 4 and the label data output from the label data reception unit 2 (FIG. 9). Step ST11).
- the learning data extraction unit 11 indicates the label data in the classification item output from the label data reception unit 2 for each classification item from the feature values at the position of each pixel output from the feature amount extraction unit 4.
- a feature amount at the pixel position is extracted as learning data of the classification item (step ST12).
- the learning data extracting unit 11 refers to the label data output from the label data receiving unit 2 to confirm the pixel ⁇ corresponding to the point in the range where the mountain that is the classification item exists, and the pixel ⁇
- the feature quantity at the position of is extracted as learning data of mountains that are classification items.
- the learning data extraction unit 11 refers to the label data, confirms the pixel ⁇ corresponding to the point in the range where the grassland as the classification item exists, and classifies the feature amount at the position of the pixel ⁇ . It is extracted as learning data for the grassland that is the item.
- the learning data extraction unit 11 refers to the label data, confirms the pixel ⁇ corresponding to the point in the range where the sea that is the classification item exists, and classifies the feature quantity at the position of the pixel ⁇ . It is extracted as the learning data of the sea that is an item.
- the probability calculation processing unit 12 of the probability calculation unit 5 acquires the radar image output from the radar image acquisition unit 1 (step ST13 in FIG. 9).
- the probability calculation processing unit 12 is similar to the feature amount at the position of the pixel in the learning data in each classification item extracted by the learning data extraction unit 11 for each pixel constituting the radar image.
- the number of learning data items is identified, and the probability that the pixel is a pixel representing each classification item is calculated from the number of learning data items in each identified classification item (step ST14). That is, the probability calculation processing unit 12 has a probability p 1 that is a pixel representing a mountain that is a classification item, a probability p 2 that is a pixel that represents a grass field that is a classification item, and a sea that is a classification item. It calculates the probability p 3 is in which pixels represent.
- the probability calculation processing unit 12 repeatedly performs the process of step ST14 until calculating the probability of being a pixel representing each classification item for all pixels constituting the radar image (step ST15). In other words, the probability calculation processing unit 12 returns to the processing of step ST14 when pixels for which the probability has not yet been calculated remain in the pixels constituting the radar image (step ST15: NO).
- the probability that the pixels that have not yet been calculated are the pixels that represent the respective classification items, and the pixels that represent the respective classification items for all the pixels constituting the radar image.
- the probability calculation process ends.
- a method for calculating the probability that the pixel is a pixel representing each classification item for example, a k nearest neighbor method can be used. However, the method for calculating the probability is not limited to the k nearest neighbor method, and it goes without saying that another method may be used.
- FIG. 10 is an explanatory diagram showing a processing concept of the probability calculation processing unit 12 when the k nearest neighbor method is used.
- FIG. 10 shows an example in which there are two types of feature quantities extracted by the feature quantity extraction unit 4 for the sake of simplicity of explanation.
- the horizontal axis represents, for example, the feature quantity (1) indicating an average
- the vertical axis represents, for example, The feature amount (2) indicating dispersion is used.
- the distribution of the learning data which is each feature quantity about a classification item, a mountain, a grassland, and the sea is represented by the two-dimensional feature-value space.
- the distribution of learning data is represented in an L-dimensional feature quantity space.
- ⁇ is learning data for mountains as classification items
- ⁇ is learning data for grasslands as classification items
- ⁇ is learning data for seas as classification items.
- ⁇ indicates a feature amount at a position of a target pixel (hereinafter referred to as “calculation target pixel”) whose probability is a pixel representing each classification item.
- the probability calculation processing unit 12 uses k as learning data similar to the feature value ⁇ at the position of the pixel to be calculated from the distribution of learning data ⁇ , ⁇ , ⁇ for the classification items of mountains, grasslands, and seas. Select learning data.
- the learning data that is similar to the feature value ⁇ at the position of the pixel to be calculated is learning data that has a shorter distance from the feature value ⁇ , and the learning data that has a shorter distance from the feature value ⁇ is more similar to the feature value ⁇ .
- the probability calculation processing unit 12 selects k pieces of learning data similar to the feature amount ⁇ at the position of the calculation target pixel, the number of pieces of learning data ⁇ about the mountains included in the k pieces of learning data, From the number of learning data ⁇ about grassland and the number of learning data ⁇ about sea, the probability p 1 that the pixel to be calculated is a pixel representing a mountain, the probability p 2 that is a pixel representing a grassland, It calculates the probability p 3 is a pixel that represents.
- the number of learning data ⁇ for the mountain is 5
- the number of learning data ⁇ for the grassland is 3
- the number of learning data ⁇ for the sea is 2, so the mountain is represented.
- the probability p 1 that is a pixel, the probability p 2 that is a pixel that represents grassland, and the probability p 3 that is a pixel that represents the sea are expressed by the following equation (5).
- FIG. 11 is a flowchart showing the processing contents in the pixel coloring section 6 of the image processing apparatus according to Embodiment 1 of the present invention.
- the processing content of the pixel coloring unit 6 will be specifically described with reference to FIG.
- the color arrangement determining unit 21 of the pixel coloring unit 6 acquires the color data output from the color component receiving unit 3 (step ST21 in FIG. 11).
- the color arrangement determining unit 21 sets the color components a 11 , a 21 , and a 31 that the mountain that is the classification item has in the first column of the color arrangement matrix, and the grass that is the classification item has Color components a 12 , a 22 , and a 32 are set in the second column of the color arrangement matrix, and the color components a 13 , a 23 , and a 33 possessed by the sea as the classification item are set in the third column of the color arrangement matrix.
- the color arrangement determining unit 21 sets the color components a 11 , a 21 , and a 31 that the mountain that is the classification item has in the first column of the color arrangement matrix, and the grass that is the classification item has Color components a 12 , a 22 , and a 32 are set in the second column of the color arrangement matrix, and the color components a 13 , a 23 , and a 33 possessed by the sea as the classification item are set in the third column of the color arrangement matrix.
- the color arrangement determination unit 21 when the CMYK color model is used as the color image color expression method, the color arrangement determination unit 21 generates a 4 ⁇ 3 color arrangement matrix as shown in the above equation (2). Specifically, coloring determining section 21, the color components mountain has a 11, a 21, a 31 , a 41 a category set in the first column of the color matrix, grasslands a classification item Color components a 12 , a 22 , a 32 , and a 42 are set in the second column of the color arrangement matrix, and the color components a 13 , a 23 , a 33 , and the ocean that are classification items are a 43 is set in the third column of the color arrangement matrix.
- the color composition unit 22 of the pixel coloring unit 6 has a probability p 1 that each pixel constituting the radar image from the probability calculation unit 5 is a pixel representing a mountain, and a probability p 2 that is a pixel representing a grassland. obtains the probability p 3 is a pixel representing the sea (step ST23 in FIG. 11).
- the color composition unit 22 (p 1 , p 2 ) for each pixel constituting the radar image as shown in the above equation (3).
- P 3 ) and the 3 ⁇ 3 matrix of the formula (1) generated by the color scheme determining unit 21 are multiplied by the color (c 1 , c) of the pixel.
- Color combining unit 22 as an expression method of color image color, when using the CMYK color model, each pixel constituting the radar image, as shown in the above equation (4), (p 1, p 2 , P 3 ) and the 4 ⁇ 3 color scheme matrix of the formula (2) generated by the color scheme determination unit 21 are multiplied by the color (c 1 , c 2 , c 3 , c 4 ), and the pixel is colored with the determined color (step ST24 in FIG. 11).
- the color synthesizing unit 22 repeatedly performs the process of step ST24 until all the pixels constituting the radar image are colored (step ST25). That is, when there are still uncolored pixels in the pixels constituting the radar image (step ST25: NO), the color composition unit 22 returns to the process of step ST24 and is still colored. When the pixels that have not been colored are colored and all the pixels that constitute the radar image are colored (in the case of YES at step ST25), the pixel coloring process is terminated.
- the color adjustment accepting unit 23 of the pixel coloring unit 6 colors all the pixels constituting the radar image by the color synthesizing unit 22 so that the radar image is colored. For example, the color radar image is displayed on the display. To display. Thereby, the user can check the colorized radar image. If the user determines that the color component of each classification item in the radar image is inappropriate, the user adjusts the color component of each classification item by operating the color adjustment receiving unit 23 (in the case of YES at step ST26). be able to. If the user does not operate the color adjustment accepting unit 23 (step ST26: NO), a series of processing of the image processing apparatus ends.
- the color adjustment reception unit 23 receives the adjustment of the color component in each classification item according to the operation (step ST27). That is, when the RGB color model is used as the color expression method of the color image, the color adjustment acceptance unit 23 has a 3 ⁇ 3 color arrangement matrix shown in Expression (1) generated by the color arrangement determination unit 21 according to the user's operation. color component a 11 mountain has in, a 21, a 31, a color component a 12 to grassland has, a 22, a 32, or color component ocean has a 13, a 23 , A 33 is received.
- the color adjustment accepting unit 23 is a 4 ⁇ 3 equation represented by the above formula (2) generated by the color arrangement determining unit 21 according to the user's operation.
- the color components a 11 , a 21 , a 31 , a 41 that the mountains in the color arrangement matrix have, the color components a 12 , a 22 , a 32 , a 42 that the grassland has, or the sea Adjustment of the color components a 13 , a 23 , a 33 , and a 43 to be received is accepted.
- the color adjustment receiving unit 23 When receiving the adjustment of the color component, the color adjustment receiving unit 23 outputs the adjusted color component to the color synthesis unit 22.
- the color composition unit 22 receives the adjusted color component from the color adjustment reception unit 23, the color composition unit 22 generates a color arrangement matrix of the color component using the adjusted color component.
- the process of the color composition unit 22 determining the color of the pixel and coloring the pixel with the determined color is the same as described above, and thus the description thereof is omitted.
- a label indicating a pixel in the radar image corresponding to a point within the range where the observation target exists.
- a probability calculation unit 5 that calculates the probability that each pixel constituting the radar image is a pixel representing each observation target.
- the pixel coloring unit 6 determines the color of each pixel constituting the radar image from the probability calculated by the probability calculating unit 5 and the color component of each observation target, and the determination Since each pixel is colored with the selected color, there is an effect that the color to be observed can be reproduced. Further, according to the first embodiment, since the number of classification items is not limited, even when a large number of observation targets are included in the radar image, there is an effect that the color of the observation target can be reproduced. .
- Embodiment 2 the image processing apparatus including the color component receiving unit 3 that receives the setting of the color component of the observation target corresponding to each classification item has been described. A description will be given of the setting of the color components possessed by the observation target, which is each classification item, from the optical image including the imaging range of the radar image.
- FIG. 12 is a block diagram showing an image processing apparatus according to Embodiment 2 of the present invention
- FIG. 13 is a hardware block diagram of the image processing apparatus according to Embodiment 2 of the present invention. 12 and FIG. 13, the same reference numerals as those in FIG. 1 and FIG.
- the color component setting unit 7 is realized by the color component setting circuit 37 of FIG. 13.
- the color of the observation target that is each classification item from the color image captured by an optical sensor such as a camera.
- Components are set, and color data indicating the set color components is output to the pixel coloring unit 6.
- a color image captured by an optical sensor such as a camera is a color image including the imaging range of a radar image acquired by the radar image acquisition unit 1.
- each of the radar image acquisition unit 1, the label data reception unit 2, the color component setting unit 7, the feature amount extraction unit 4, the probability calculation unit 5, and the pixel coloring unit 6, which are components of the image processing apparatus, is illustrated. 13, that is, realized by an image acquisition processing circuit 31, a label data receiving circuit 32, a color component setting circuit 37, a feature amount extraction processing circuit 34, a probability calculation processing circuit 35, and a pixel coloring processing circuit 36. Assumes what will be done.
- the image processing apparatus is not limited to a component that is realized by dedicated hardware, and the image processing apparatus may be realized by software, firmware, or a combination of software and firmware. Good.
- processing procedures of the radar image acquisition unit 1, the label data reception unit 2, the color component setting unit 7, the feature amount extraction unit 4, the probability calculation unit 5, and the pixel coloring unit 6 May be stored in the memory 41 shown in FIG. 3 and the processor 42 of the computer may execute the program stored in the memory 41.
- the color component setting unit 7 acquires a color image captured by an optical sensor such as a camera. For example, when the observation target is a mountain, a grassland, or the sea, the color component setting unit 7 has a mountain, a grassland, or a sea because the classification item is a mountain, a grassland, or the sea. Accept specification. That is, the color component setting unit 7 displays a color image photographed by the optical sensor on the display, and then accepts a user operation for designating the positions of mountains, grasslands, and seas appearing in the color image.
- the color component setting unit 7 has the color component of the pixel in the color image corresponding to the designated peak position as a classification item.
- (R, G, B) (a 11 , a 21 , a 31 ) is set as the color component.
- the color component setting unit 7 has the color component of the pixel in the color image corresponding to the designated peak position as a classification item.
- (C, M, Y, K) (a 11 , a 21 , a 31 , a 41 ) is set as the color component.
- the color component of the observation target that is each classification item is set from the color image including the imaging range of the radar image, and the set color Since the color component setting unit 7 for outputting the color data indicating the component to the pixel coloring unit 6 is provided, the user can set the classification item without setting the color component of the observation target that is the classification item. There is an effect that color data indicating the color component of the observation target can be given to the pixel coloring unit 6.
- the present invention is suitable for an image processing apparatus and an image processing method for colorizing a radar image which is a black and white image.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Image Processing (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
レーダ画像に映っている観測対象毎に、当該観測対象が存在している範囲内の地点に対応するレーダ画像内の画素を示すラベルデータと、特徴量抽出部(4)により抽出された特徴量とを用いて、レーダ画像を構成している各画素が、各々の観測対象を表している画素である確率を算出する確率算出部(5)を設け、画素着色部(6)が、確率算出部(5)により算出された確率と、各々の観測対象が有している色成分とから、レーダ画像を構成している各画素の色を決定し、その決定した色で各画素を着色する。
Description
この発明は、レーダ画像を構成している各画素を着色する画像処理装置及び画像処理方法に関するものである。
複素信号の情報を有するレーダ画像は、観測対象に反射された信号の強度分布を示す画像であり、一般的には白黒画像である。
白黒画像であるレーダ画像は、視認性が悪いため、レーダ画像を構成している各画素を着色することで、視認性を高めている画像処理装置が以下の特許文献1に開示されている。
白黒画像であるレーダ画像は、視認性が悪いため、レーダ画像を構成している各画素を着色することで、視認性を高めている画像処理装置が以下の特許文献1に開示されている。
この画像処理装置では、レーダ画像の輝度分布から、レーダ画像を構成している各画素の位置での特徴量を抽出するようにしている。
即ち、この画像処理装置では、レーダ画像を構成している画素毎に、当該画素の輝度値と、当該画素の周辺に存在している画素の輝度値とを用いて、当該画素の位置での特徴量として、コントラスト、エントロピーやエネルギーなどを抽出するようにしている。
この画像処理装置では、事前に各特徴量に色を割り当てている。例えば、特徴量であるコントラストには赤色、エントロピーには緑色、エネルギーには青色などを割り当てている。
そして、この画像処理装置では、レーダ画像を構成している画素毎に、当該画素の位置での特徴量であるコントラスト、エントロピー及びエネルギーの大きさに応じて、各特徴量に割り当てている色を合成することで、レーダ画像をカラー化している。
即ち、この画像処理装置では、レーダ画像を構成している画素毎に、当該画素の輝度値と、当該画素の周辺に存在している画素の輝度値とを用いて、当該画素の位置での特徴量として、コントラスト、エントロピーやエネルギーなどを抽出するようにしている。
この画像処理装置では、事前に各特徴量に色を割り当てている。例えば、特徴量であるコントラストには赤色、エントロピーには緑色、エネルギーには青色などを割り当てている。
そして、この画像処理装置では、レーダ画像を構成している画素毎に、当該画素の位置での特徴量であるコントラスト、エントロピー及びエネルギーの大きさに応じて、各特徴量に割り当てている色を合成することで、レーダ画像をカラー化している。
従来の画像処理装置は以上のように構成されているので、レーダ画像をカラー化することができる。しかし、観測対象が、例えば、山、草地、海などであるとき、特徴量であるコントラスト、エントロピー及びエネルギーに割り当てられている色を合成しても、山、海、草地などの色を再現することが難しく、例えば、光学写真のようなカラー画像を得ることができないという課題があった。
この発明は上記のような課題を解決するためになされたもので、観測対象の色を再現することができる画像処理装置及び画像処理方法を得ることを目的とする。
この発明に係る画像処理装置は、レーダ画像の輝度分布から、レーダ画像を構成している各画素の位置での特徴量を抽出する特徴量抽出部と、レーダ画像に映っている観測対象毎に、当該観測対象が存在している範囲内の地点に対応するレーダ画像内の画素を示すラベルデータと、特徴量抽出部により抽出された特徴量とを用いて、レーダ画像を構成している各画素が、各々の観測対象を表している画素である確率を算出する確率算出部とを設け、画素着色部が、確率算出部により算出された確率と、各々の観測対象が有している色成分とから、レーダ画像を構成している各画素の色を決定し、その決定した色で各画素を着色するようにしたものである。
この発明によれば、レーダ画像に映っている観測対象毎に、当該観測対象が存在している範囲内の地点に対応するレーダ画像内の画素を示すラベルデータと、特徴量抽出部により抽出された特徴量とを用いて、レーダ画像を構成している各画素が、各々の観測対象を表している画素である確率を算出する確率算出部を設け、画素着色部が、確率算出部により算出された確率と、各々の観測対象が有している色成分とから、レーダ画像を構成している各画素の色を決定し、その決定した色で各画素を着色するように構成したので、観測対象の色を再現することができる効果がある。
以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面にしたがって説明する。
実施の形態1.
図1はこの発明の実施の形態1による画像処理装置を示す構成図であり、図2はこの発明の実施の形態1による画像処理装置のハードウェア構成図である。
図1及び図2において、レーダ画像取得部1は例えば図2の画像取得処理回路31で実現されるものであり、例えば、山、草地、海などの観測対象が映っているレーダ画像を取得する処理を実施する。
この実施の形態1では、レーダ画像は白黒画像であり、例えば、単偏波画像、二偏波画像、四偏波画像などが該当する。
なお、レーダ画像は、例えば、レーダ装置等から放射された電波が観測対象に反射され、その電波の反射波がレーダ装置等で受信されることで得られるものであり、レーダ画像は、その反射波の強度分布を示す画像である。この実施の形態1では、反射波の強度分布が輝度分布であるものとして説明する。
図1はこの発明の実施の形態1による画像処理装置を示す構成図であり、図2はこの発明の実施の形態1による画像処理装置のハードウェア構成図である。
図1及び図2において、レーダ画像取得部1は例えば図2の画像取得処理回路31で実現されるものであり、例えば、山、草地、海などの観測対象が映っているレーダ画像を取得する処理を実施する。
この実施の形態1では、レーダ画像は白黒画像であり、例えば、単偏波画像、二偏波画像、四偏波画像などが該当する。
なお、レーダ画像は、例えば、レーダ装置等から放射された電波が観測対象に反射され、その電波の反射波がレーダ装置等で受信されることで得られるものであり、レーダ画像は、その反射波の強度分布を示す画像である。この実施の形態1では、反射波の強度分布が輝度分布であるものとして説明する。
この実施の形態1では、レーダ画像取得部1により取得されるレーダ画像に映っている1つ以上の観測対象のそれぞれが分類項目であるものとする。
ラベルデータ受付部2は例えば図2のラベルデータ受付回路32で実現されるものであり、観測対象である分類項目毎に、当該分類項目が存在している範囲内の地点に対応するレーダ画像内の画素を示すラベルデータの設定を受け付けて、そのラベルデータを確率算出部5に出力する処理を実施する。
この実施の形態1では、説明の便宜上、観測対象である分類項目が山、草地、海の3つである例を説明するが、これは一例に過ぎず、分類項目が、山、草地、海以外であってもよいし、2つ以下の分類項目又は4つの以上の分類項目があってもよい。
ラベルデータ受付部2は例えば図2のラベルデータ受付回路32で実現されるものであり、観測対象である分類項目毎に、当該分類項目が存在している範囲内の地点に対応するレーダ画像内の画素を示すラベルデータの設定を受け付けて、そのラベルデータを確率算出部5に出力する処理を実施する。
この実施の形態1では、説明の便宜上、観測対象である分類項目が山、草地、海の3つである例を説明するが、これは一例に過ぎず、分類項目が、山、草地、海以外であってもよいし、2つ以下の分類項目又は4つの以上の分類項目があってもよい。
色成分受付部3は例えば図2の色成分受付回路33で実現されるものであり、各々の分類項目である観測対象が有している色成分の設定を受け付けて、その色成分を示すカラーデータを画素着色部6に出力する処理を実施する。
例えば、カラー画像の色の表現法として、赤色(Red)、緑色(Green)及び青色(Blue)の三原色を用いるRGBカラーモデルを使用する場合には、分類項目である山が有している色成分として(R,G,B)=(a11,a21,a31)、分類項目である草地が有している色成分として(R,G,B)=(a12,a22,a32)、分類項目である海が有している色成分として(R,G,B)=(a13,a23,a33)の設定を受け付ける。
例えば、カラー画像の色の表現法として、赤色(Red)、緑色(Green)及び青色(Blue)の三原色を用いるRGBカラーモデルを使用する場合には、分類項目である山が有している色成分として(R,G,B)=(a11,a21,a31)、分類項目である草地が有している色成分として(R,G,B)=(a12,a22,a32)、分類項目である海が有している色成分として(R,G,B)=(a13,a23,a33)の設定を受け付ける。
例えば、カラー画像の色の表現法として、水色(Cyan)、赤紫色(Magenta)、黄色(Yellow)、黒色(Black)の4成分を用いるCMYKカラーモデルを使用する場合には、分類項目である山が有している色成分として(C,M,Y,K)=(a11,a21,a31,a41)、分類項目である草地が有している色成分として(C,M,Y,K)=(a12,a22,a32,a42)、分類項目である海が有している色成分として(C,M,Y,K)=(a13,a23,a33,a43)の設定を受け付ける。
ここでは、カラー画像の色の表現法として、RGBカラーモデル又はCMYKカラーモデルを用いる例を示したが、色の表現法はこれに限るものではなく、例えば、色相(Hue)、彩度(Saturation)、明度 (Value)の3成分を用いるHSVモデルなどを使用するものであってもよい。
ここでは、カラー画像の色の表現法として、RGBカラーモデル又はCMYKカラーモデルを用いる例を示したが、色の表現法はこれに限るものではなく、例えば、色相(Hue)、彩度(Saturation)、明度 (Value)の3成分を用いるHSVモデルなどを使用するものであってもよい。
特徴量抽出部4は例えば図2の特徴量抽出処理回路34で実現されるものであり、レーダ画像取得部1により取得されたレーダ画像の輝度分布から、そのレーダ画像を構成している各画素の位置での特徴量を抽出する処理を実施する。
即ち、特徴量抽出部4はレーダ画像を構成している画素毎に、当該画素の輝度値と、当該画素の周辺に存在している画素の輝度値との平均、分散、歪度などを、当該画素の位置での特徴量として算出する。
特徴量抽出部4により抽出される特徴量の種類や、種類の数は任意である。
即ち、特徴量抽出部4はレーダ画像を構成している画素毎に、当該画素の輝度値と、当該画素の周辺に存在している画素の輝度値との平均、分散、歪度などを、当該画素の位置での特徴量として算出する。
特徴量抽出部4により抽出される特徴量の種類や、種類の数は任意である。
確率算出部5は例えば図2の確率算出処理回路35で実現されるものであり、ラベルデータ受付部2から出力されたラベルデータと、特徴量抽出部4により抽出された特徴量とを用いて、レーダ画像を構成している各画素が、各々の分類項目を表している画素である確率を算出する処理を実施する。
画素着色部6は例えば図2の画素着色処理回路36で実現されるものであり、確率算出部5により算出された確率と、色成分受付部3から出力されたカラーデータとから、レーダ画像を構成している各画素の色を決定し、その決定した色で各画素を着色する処理を実施する。
画素着色部6は例えば図2の画素着色処理回路36で実現されるものであり、確率算出部5により算出された確率と、色成分受付部3から出力されたカラーデータとから、レーダ画像を構成している各画素の色を決定し、その決定した色で各画素を着色する処理を実施する。
図1では、画像処理装置の構成要素であるレーダ画像取得部1、ラベルデータ受付部2、色成分受付部3、特徴量抽出部4、確率算出部5及び画素着色部6のそれぞれが、図2に示すような専用のハードウェア、即ち、画像取得処理回路31、ラベルデータ受付回路32、色成分受付回路33、特徴量抽出処理回路34、確率算出処理回路35及び画素着色処理回路36で実現されるものを想定している。
ここで、画像取得処理回路31、ラベルデータ受付回路32、色成分受付回路33、特徴量抽出処理回路34、確率算出処理回路35及び画素着色処理回路36は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、または、これらを組み合わせたものが該当する。
ラベルデータ受付回路32及び色成分受付回路33については、マウスやキーボードなどを備えるマンマシンインタフェース機器で実現されるものであってもよい。
ここで、画像取得処理回路31、ラベルデータ受付回路32、色成分受付回路33、特徴量抽出処理回路34、確率算出処理回路35及び画素着色処理回路36は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、または、これらを組み合わせたものが該当する。
ラベルデータ受付回路32及び色成分受付回路33については、マウスやキーボードなどを備えるマンマシンインタフェース機器で実現されるものであってもよい。
ただし、画像処理装置は、構成要素が専用のハードウェアで実現されるものに限るものではなく、画像処理装置がソフトウェア、ファームウェア、または、ソフトウェアとファームウェアとの組み合わせで実現されるものであってもよい。
ソフトウェアやファームウェアはプログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)などが該当する。
コンピュータのメモリは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)などの不揮発性又は揮発性の半導体メモリや、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)などが該当する。
ソフトウェアやファームウェアはプログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)などが該当する。
コンピュータのメモリは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)などの不揮発性又は揮発性の半導体メモリや、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)などが該当する。
図3は画像処理装置がソフトウェアやファームウェアなどで実現される場合のコンピュータのハードウェア構成図である。
画像処理装置がソフトウェアやファームウェアなどで実現される場合、レーダ画像取得部1、ラベルデータ受付部2、色成分受付部3、特徴量抽出部4、確率算出部5及び画素着色部6の処理手順をコンピュータに実行させるためのプログラムをメモリ41に格納し、コンピュータのプロセッサ42がメモリ41に格納されているプログラムを実行するようにすればよい。
図4は画像処理装置がソフトウェアやファームウェアなどで実現される場合の処理手順である画像処理方法を示すフローチャートである。
画像処理装置がソフトウェアやファームウェアなどで実現される場合、レーダ画像取得部1、ラベルデータ受付部2、色成分受付部3、特徴量抽出部4、確率算出部5及び画素着色部6の処理手順をコンピュータに実行させるためのプログラムをメモリ41に格納し、コンピュータのプロセッサ42がメモリ41に格納されているプログラムを実行するようにすればよい。
図4は画像処理装置がソフトウェアやファームウェアなどで実現される場合の処理手順である画像処理方法を示すフローチャートである。
また、図2では画像処理装置の構成要素のそれぞれが専用のハードウェアで実現される例を示し、図3では、画像処理装置がソフトウェアやファームウェアなどで実現される例を示しているが、画像処理装置における一部の構成要素が専用のハードウェアで実現され、残りの構成要素がソフトウェアやファームウェアなどで実現されるものであってもよい。
例えば、ラベルデータ受付部2及び色成分受付部3を専用のハードウェアで実現し、レーダ画像取得部1、特徴量抽出部4、確率算出部5及び画素着色部6をソフトウェアやファームウェアなどで実現することが可能である。ただし、専用のハードウェアとソフトウェア等の組み合わせは任意である。
例えば、ラベルデータ受付部2及び色成分受付部3を専用のハードウェアで実現し、レーダ画像取得部1、特徴量抽出部4、確率算出部5及び画素着色部6をソフトウェアやファームウェアなどで実現することが可能である。ただし、専用のハードウェアとソフトウェア等の組み合わせは任意である。
図5はこの発明の実施の形態1による画像処理装置の確率算出部5を示す構成図である。
図5において、学習データ抽出部11は特徴量抽出部4により抽出された各画素の位置での特徴量の中から、観測対象である分類項目毎に、ラベルデータ受付部2から出力された当該分類項目におけるラベルデータが示す画素の位置での特徴量を当該分類項目の学習データとして抽出する処理を実施する。
確率算出処理部12はレーダ画像を構成している画素毎に、学習データ抽出部11により抽出された各々の分類項目における学習データの中で、当該画素の位置での特徴量と類似している学習データの個数をそれぞれ特定し、その特定した各々の分類項目における学習データの個数から、当該画素が、各々の分類項目を表している画素である確率を算出する処理を実施する。例えば、当該画素が、分類項目である山を表している画素である確率p1、分類項目である草地を表している画素である確率p2、分類項目である海を表している画素である確率p3を算出する。
図5において、学習データ抽出部11は特徴量抽出部4により抽出された各画素の位置での特徴量の中から、観測対象である分類項目毎に、ラベルデータ受付部2から出力された当該分類項目におけるラベルデータが示す画素の位置での特徴量を当該分類項目の学習データとして抽出する処理を実施する。
確率算出処理部12はレーダ画像を構成している画素毎に、学習データ抽出部11により抽出された各々の分類項目における学習データの中で、当該画素の位置での特徴量と類似している学習データの個数をそれぞれ特定し、その特定した各々の分類項目における学習データの個数から、当該画素が、各々の分類項目を表している画素である確率を算出する処理を実施する。例えば、当該画素が、分類項目である山を表している画素である確率p1、分類項目である草地を表している画素である確率p2、分類項目である海を表している画素である確率p3を算出する。
図6はこの発明の実施の形態1による画像処理装置の画素着色部6を示す構成図である。
図6において、配色決定部21は色成分受付部3から出力されたカラーデータが示す各々の分類項目である観測対象が有している色成分にしたがって、色成分の配色行列を生成する処理を実施する。
色成分の配色行列は、M×Nの行例であり、Mは色成分の要素数、Nは分類項目の種類数である。
この実施の形態1では、分類項目が山、草地、海である例を示すため、N=3である。
例えば、カラー画像の色の表現法として、RGBカラーモデルを用いる場合、M=3である。
したがって、この場合、下記の式(1)に示すような3×3の配色行列を生成する。
式(1)において、a11,a21,a31は分類項目である山が有している色成分、a12,a22,a32は分類項目である草地が有している色成分、a13,a23,a33は分類項目である海が有している色成分である。
図6において、配色決定部21は色成分受付部3から出力されたカラーデータが示す各々の分類項目である観測対象が有している色成分にしたがって、色成分の配色行列を生成する処理を実施する。
色成分の配色行列は、M×Nの行例であり、Mは色成分の要素数、Nは分類項目の種類数である。
この実施の形態1では、分類項目が山、草地、海である例を示すため、N=3である。
例えば、カラー画像の色の表現法として、RGBカラーモデルを用いる場合、M=3である。
したがって、この場合、下記の式(1)に示すような3×3の配色行列を生成する。
式(1)において、a11,a21,a31は分類項目である山が有している色成分、a12,a22,a32は分類項目である草地が有している色成分、a13,a23,a33は分類項目である海が有している色成分である。
例えば、カラー画像の色の表現法として、CMYKカラーモデルを用いる場合、M=4である。
したがって、この場合、下記の式(2)に示すような4×3の配色行列を生成する。
式(2)において、a11,a21,a31,a41は分類項目である山が有している色成分、a12,a22,a32,a42は分類項目である草地が有している色成分、a13,a23,a33,a43は分類項目である海が有している色成分である。
したがって、この場合、下記の式(2)に示すような4×3の配色行列を生成する。
式(2)において、a11,a21,a31,a41は分類項目である山が有している色成分、a12,a22,a32,a42は分類項目である草地が有している色成分、a13,a23,a33,a43は分類項目である海が有している色成分である。
色合成部22は確率算出部5により算出された各画素が各々の分類項目を表している画素である確率、即ち、各画素が分類項目である山を表している画素である確率p1、分類項目である草地を表している画素である確率p2、分類項目である海を表している画素である確率p3を示すN×1の行列と、配色決定部21により生成された配色行列とを乗算することで、レーダ画像を構成している各画素の色を決定し、その決定した色で各画素を着色する処理を実施する。
例えば、カラー画像の色の表現法として、RGBカラーモデルを用いる場合、下記の式(3)のように、レーダ画像を構成している画素のR成分c1、G成分c2、B成分c3を決定する。
例えば、カラー画像の色の表現法として、RGBカラーモデルを用いる場合、下記の式(3)のように、レーダ画像を構成している画素のR成分c1、G成分c2、B成分c3を決定する。
色調整受付部23は色成分受付部3から出力されたカラーデータが示す色成分の調整を受け付ける処理を実施する。
即ち、色調整受付部23は配色決定部21により生成された配色行列における山が有している色成分、草地が有している色成分、または、海が有している色成分の調整を受け付けて、調整後の色成分を色合成部22に出力する処理を実施する。
即ち、色調整受付部23は配色決定部21により生成された配色行列における山が有している色成分、草地が有している色成分、または、海が有している色成分の調整を受け付けて、調整後の色成分を色合成部22に出力する処理を実施する。
次に動作について説明する。
レーダ画像取得部1は、観測対象が映っているレーダ画像を取得し、そのレーダ画像を特徴量抽出部4及び確率算出部5に出力する(図4のステップST1)。
図7はレーダ画像取得部1により取得されるレーダ画像の一例を示す説明図である。
この実施の形態1では、レーダ画像は白黒画像であり、例えば、単偏波画像、二偏波画像、四偏波画像などが該当する。
レーダ画像取得部1は、観測対象が映っているレーダ画像を取得し、そのレーダ画像を特徴量抽出部4及び確率算出部5に出力する(図4のステップST1)。
図7はレーダ画像取得部1により取得されるレーダ画像の一例を示す説明図である。
この実施の形態1では、レーダ画像は白黒画像であり、例えば、単偏波画像、二偏波画像、四偏波画像などが該当する。
ラベルデータ受付部2は、レーダ画像取得部1により取得されるレーダ画像に映っている1つ以上の観測対象のそれぞれが分類項目であるとして、分類項目毎に、当該分類項目が存在している範囲内の地点に対応するレーダ画像内の画素を示すラベルデータの設定を受け付けて、そのラベルデータを確率算出部5に出力する(図4のステップST2)。
この実施の形態1では、観測対象として、山、草地、海が映っているレーダ画像が取得されることを想定しており、観測対象である分類項目が、山、草地、海の3つであるため、ラベルデータ受付部2は、分類項目である「山」が存在している範囲内の或る対応するレーダ画像内の画素を示すラベルデータの設定を受け付ける。
また、ラベルデータ受付部2は、分類項目である「草地」が存在している範囲内の或る地点に対応するレーダ画像内の画素を示すラベルデータの設定を受け付ける。
また、ラベルデータ受付部2は、分類項目である「海」が存在している範囲内の或る地点に対応するレーダ画像内の画素を示すラベルデータの設定を受け付ける。
この実施の形態1では、観測対象として、山、草地、海が映っているレーダ画像が取得されることを想定しており、観測対象である分類項目が、山、草地、海の3つであるため、ラベルデータ受付部2は、分類項目である「山」が存在している範囲内の或る対応するレーダ画像内の画素を示すラベルデータの設定を受け付ける。
また、ラベルデータ受付部2は、分類項目である「草地」が存在している範囲内の或る地点に対応するレーダ画像内の画素を示すラベルデータの設定を受け付ける。
また、ラベルデータ受付部2は、分類項目である「海」が存在している範囲内の或る地点に対応するレーダ画像内の画素を示すラベルデータの設定を受け付ける。
図8はラベルデータ受付部2により設定が受け付けられたラベルデータが示す画素の一例を示す説明図である。
図8において、△は分類項目である「山」が存在している範囲内の複数の地点に対応する画素を示している。
また、○は「草地」が存在している範囲内の複数の地点に対応する画素を示し、□は「海」が存在している範囲内の複数の地点に対応する画素を示している。
分類項目が存在している範囲内の全ての地点に対応する画素を示すラベルデータを設定するようにしてもよいが、後述する確率算出部5の確率算出処理部12が、例えば、k最近傍法を用いて、確率を算出する場合、各々の分類項目について、k個以上の地点に対応する画素を示すラベルデータを設定すればよく、全ての地点に対応する画素を示すラベルデータを設定する必要はない。
図8の例では、「山」が存在している範囲内の12個の地点についてラベルデータを設定し、「草地」が存在している範囲内の14個の地点についてラベルデータを設定し、「海」が存在している範囲内の13個の地点についてラベルデータを設定している。
図8において、△は分類項目である「山」が存在している範囲内の複数の地点に対応する画素を示している。
また、○は「草地」が存在している範囲内の複数の地点に対応する画素を示し、□は「海」が存在している範囲内の複数の地点に対応する画素を示している。
分類項目が存在している範囲内の全ての地点に対応する画素を示すラベルデータを設定するようにしてもよいが、後述する確率算出部5の確率算出処理部12が、例えば、k最近傍法を用いて、確率を算出する場合、各々の分類項目について、k個以上の地点に対応する画素を示すラベルデータを設定すればよく、全ての地点に対応する画素を示すラベルデータを設定する必要はない。
図8の例では、「山」が存在している範囲内の12個の地点についてラベルデータを設定し、「草地」が存在している範囲内の14個の地点についてラベルデータを設定し、「海」が存在している範囲内の13個の地点についてラベルデータを設定している。
色成分受付部3は、各々の分類項目である観測対象が有している色成分の設定を受け付けて、その色成分を示すカラーデータを画素着色部6に出力する(図4のステップST3)。
例えば、カラー画像の色の表現法として、RGBカラーモデルを用いる場合、色成分受付部3は、分類項目である山が有している色成分として(R,G,B)=(a11,a21,a31)、分類項目である草地が有している色成分として(R,G,B)=(a12,a22,a32)、分類項目である海が有している色成分として(R,G,B)=(a13,a23,a33)の設定を受け付ける。
例えば、カラー画像の色の表現法として、CMYKカラーモデルを用いる場合、色成分受付部3は、分類項目である山が有している色成分として(C,M,Y,K)=(a11,a21,a31,a41)、分類項目である草地が有している色成分として(C,M,Y,K)=(a12,a22,a32,a42)、分類項目である海が有している色成分として(C,M,Y,K)=(a13,a23,a33,a43)の設定を受け付ける。
例えば、カラー画像の色の表現法として、RGBカラーモデルを用いる場合、色成分受付部3は、分類項目である山が有している色成分として(R,G,B)=(a11,a21,a31)、分類項目である草地が有している色成分として(R,G,B)=(a12,a22,a32)、分類項目である海が有している色成分として(R,G,B)=(a13,a23,a33)の設定を受け付ける。
例えば、カラー画像の色の表現法として、CMYKカラーモデルを用いる場合、色成分受付部3は、分類項目である山が有している色成分として(C,M,Y,K)=(a11,a21,a31,a41)、分類項目である草地が有している色成分として(C,M,Y,K)=(a12,a22,a32,a42)、分類項目である海が有している色成分として(C,M,Y,K)=(a13,a23,a33,a43)の設定を受け付ける。
この実施の形態1では、ユーザが色成分受付部3を操作することで、山、草地、海が有している実際の色成分に近い色成分を指定することを想定しているが、例えば、レーダ画像における或る領域を注目させたいような場合、或る領域の実際の色とは関係なく、目立つ色の成分を指定するようにしてもよい。
具体的には、例えば、市街地の領域の色を赤色などの目立つ色の成分で指定し、市街地以外の領域を暗い色などの成分で指定すれば、市街地を注目させることが可能なカラー画像が得られるようになる。
具体的には、例えば、市街地の領域の色を赤色などの目立つ色の成分で指定し、市街地以外の領域を暗い色などの成分で指定すれば、市街地を注目させることが可能なカラー画像が得られるようになる。
特徴量抽出部4は、レーダ画像取得部1からレーダ画像を受けると、そのレーダ画像の輝度分布から、そのレーダ画像を構成している各画素の位置での特徴量を抽出し、各画素の位置での特徴量を確率算出部5に出力する(図4のステップST4)。
即ち、特徴量抽出部4は、レーダ画像を構成している画素毎に、当該画素の輝度値と、当該画素の周辺に存在している画素の輝度値とを取得する。例えば、当該画素を中心に5×5の大きさの窓を指定して、窓内に存在する複数の画素の輝度値を取得する。
特徴量抽出部4は、窓内に存在する複数の画素の輝度値を取得すると、複数の画素の輝度値の平均、分散、歪度などを、当該画素の位置での特徴量として算出する。
特徴量抽出部4により抽出される特徴量の種類や、種類の数は任意である。
即ち、特徴量抽出部4は、レーダ画像を構成している画素毎に、当該画素の輝度値と、当該画素の周辺に存在している画素の輝度値とを取得する。例えば、当該画素を中心に5×5の大きさの窓を指定して、窓内に存在する複数の画素の輝度値を取得する。
特徴量抽出部4は、窓内に存在する複数の画素の輝度値を取得すると、複数の画素の輝度値の平均、分散、歪度などを、当該画素の位置での特徴量として算出する。
特徴量抽出部4により抽出される特徴量の種類や、種類の数は任意である。
確率算出部5は、特徴量抽出部4からレーダ画像を構成している各画素の位置での特徴量を受けると、その特徴量とラベルデータ受付部2から出力されたラベルデータとを用いて、レーダ画像を構成している各画素が、各々の分類項目を表している画素である確率を算出する(図4のステップST5)。
図9はこの発明の実施の形態1による画像処理装置の確率算出部5における処理内容を示すフローチャートである。
以下、図9を参照しながら、確率算出部5の処理内容を具体的に説明する。
図9はこの発明の実施の形態1による画像処理装置の確率算出部5における処理内容を示すフローチャートである。
以下、図9を参照しながら、確率算出部5の処理内容を具体的に説明する。
確率算出部5の学習データ抽出部11は、特徴量抽出部4から出力された各画素の位置での特徴量と、ラベルデータ受付部2から出力されたラベルデータとを取得する(図9のステップST11)。
学習データ抽出部11は、特徴量抽出部4から出力された各画素の位置での特徴量の中から、分類項目毎に、ラベルデータ受付部2から出力された当該分類項目におけるラベルデータが示す画素の位置での特徴量を当該分類項目の学習データとして抽出する(ステップST12)。
即ち、学習データ抽出部11は、ラベルデータ受付部2から出力されたラベルデータを参照して、分類項目である山が存在している範囲内の地点に対応する画素△を確認し、画素△の位置での特徴量を分類項目である山の学習データとして抽出する。
また、学習データ抽出部11は、そのラベルデータを参照して、分類項目である草地が存在している範囲内の地点に対応する画素○を確認し、画素○の位置での特徴量を分類項目である草地の学習データとして抽出する。
さらに、学習データ抽出部11は、そのラベルデータを参照して、分類項目である海が存在している範囲内の地点に対応する画素□を確認し、画素□の位置での特徴量を分類項目である海の学習データとして抽出する。
学習データ抽出部11は、特徴量抽出部4から出力された各画素の位置での特徴量の中から、分類項目毎に、ラベルデータ受付部2から出力された当該分類項目におけるラベルデータが示す画素の位置での特徴量を当該分類項目の学習データとして抽出する(ステップST12)。
即ち、学習データ抽出部11は、ラベルデータ受付部2から出力されたラベルデータを参照して、分類項目である山が存在している範囲内の地点に対応する画素△を確認し、画素△の位置での特徴量を分類項目である山の学習データとして抽出する。
また、学習データ抽出部11は、そのラベルデータを参照して、分類項目である草地が存在している範囲内の地点に対応する画素○を確認し、画素○の位置での特徴量を分類項目である草地の学習データとして抽出する。
さらに、学習データ抽出部11は、そのラベルデータを参照して、分類項目である海が存在している範囲内の地点に対応する画素□を確認し、画素□の位置での特徴量を分類項目である海の学習データとして抽出する。
図8の例では、「山」が存在している範囲内の12個の地点、「草地」が存在している範囲内の14個の地点、「海」が存在している範囲内の13個の地点についてラベルデータが設定されているので、山における12個の地点に対応する画素△の位置での特徴量、草地における14個の地点に対応する画素○の位置での特徴量、海における13個の地点に対応する画素□の位置での特徴量が学習データとして抽出される。
ただし、確率算出部5の確率算出処理部12が、例えば、k最近傍法を用いて、確率を算出する場合、分類項目毎に、k個以上の特徴量を学習データとして抽出すればよく、計算量の負荷を軽減するため、設定されている全てのラベルデータが示す画素の位置での特徴量を学習データとして抽出しなくてもよい。
ただし、確率算出部5の確率算出処理部12が、例えば、k最近傍法を用いて、確率を算出する場合、分類項目毎に、k個以上の特徴量を学習データとして抽出すればよく、計算量の負荷を軽減するため、設定されている全てのラベルデータが示す画素の位置での特徴量を学習データとして抽出しなくてもよい。
確率算出部5の確率算出処理部12は、レーダ画像取得部1から出力されたレーダ画像を取得する(図9のステップST13)。
確率算出処理部12は、レーダ画像を構成している画素毎に、学習データ抽出部11により抽出された各々の分類項目における学習データの中で、当該画素の位置での特徴量と類似している学習データの個数をそれぞれ特定し、その特定した各々の分類項目における学習データの個数から、当該画素が、各々の分類項目を表している画素である確率を算出する(ステップST14)。
即ち、確率算出処理部12は、当該画素が、分類項目である山を表している画素である確率p1、分類項目である草地を表している画素である確率p2、分類項目である海を表している画素である確率p3を算出する。
確率算出処理部12は、レーダ画像を構成している画素毎に、学習データ抽出部11により抽出された各々の分類項目における学習データの中で、当該画素の位置での特徴量と類似している学習データの個数をそれぞれ特定し、その特定した各々の分類項目における学習データの個数から、当該画素が、各々の分類項目を表している画素である確率を算出する(ステップST14)。
即ち、確率算出処理部12は、当該画素が、分類項目である山を表している画素である確率p1、分類項目である草地を表している画素である確率p2、分類項目である海を表している画素である確率p3を算出する。
確率算出処理部12は、レーダ画像を構成している全ての画素について、各々の分類項目を表している画素である確率を算出するまでのステップST14の処理を繰り返し実施する(ステップST15)。
即ち、確率算出処理部12は、レーダ画像を構成している画素の中に、未だ確率を算出していない画素が残っている場合(ステップST15:NOの場合)、ステップST14の処理に戻って、未だ確率を算出していない画素が、各々の分類項目を表している画素である確率を算出し、レーダ画像を構成している全ての画素について、各々の分類項目を表している画素である確率を算出すると(ステップST15:YESの場合)、確率の算出処理を終了する。
当該画素が、各々の分類項目を表している画素である確率を算出する手法として、例えば、k最近傍法を用いることができる。ただし、確率を算出する手法は、k最近傍法に限るものではなく、他の手法を用いてもよいことは言うまでもない。
即ち、確率算出処理部12は、レーダ画像を構成している画素の中に、未だ確率を算出していない画素が残っている場合(ステップST15:NOの場合)、ステップST14の処理に戻って、未だ確率を算出していない画素が、各々の分類項目を表している画素である確率を算出し、レーダ画像を構成している全ての画素について、各々の分類項目を表している画素である確率を算出すると(ステップST15:YESの場合)、確率の算出処理を終了する。
当該画素が、各々の分類項目を表している画素である確率を算出する手法として、例えば、k最近傍法を用いることができる。ただし、確率を算出する手法は、k最近傍法に限るものではなく、他の手法を用いてもよいことは言うまでもない。
以下、k最近傍法を用いて、各々の分類項目を表している画素である確率を算出する処理例を具体的に説明する。
図10はk最近傍法を用いる場合の確率算出処理部12の処理概念を示す説明図である。
図10では、説明の簡単化のため、特徴量抽出部4により抽出される特徴量の種類が2種類である例を示し、横軸を例えば平均を示す特徴量(1)、縦軸を例えば分散を示す特徴量(2)としている。そして、分類項目が山、草地、海についての各特徴量である学習データの分布を2次元の特徴量空間で表している。因みに、特徴量抽出部4により抽出される特徴量の種類数がL(Lは自然数)であれば、学習データの分布はL次元の特徴量空間で表される。
図10において、△は分類項目である山についての学習データ、○は分類項目である草地についての学習データ、□は分類項目である海についての学習データである。
☆は各々の分類項目を表している画素である確率を算出する対象の画素(以下、「算出対象画素」と称する)の位置での特徴量を示している。
図10はk最近傍法を用いる場合の確率算出処理部12の処理概念を示す説明図である。
図10では、説明の簡単化のため、特徴量抽出部4により抽出される特徴量の種類が2種類である例を示し、横軸を例えば平均を示す特徴量(1)、縦軸を例えば分散を示す特徴量(2)としている。そして、分類項目が山、草地、海についての各特徴量である学習データの分布を2次元の特徴量空間で表している。因みに、特徴量抽出部4により抽出される特徴量の種類数がL(Lは自然数)であれば、学習データの分布はL次元の特徴量空間で表される。
図10において、△は分類項目である山についての学習データ、○は分類項目である草地についての学習データ、□は分類項目である海についての学習データである。
☆は各々の分類項目を表している画素である確率を算出する対象の画素(以下、「算出対象画素」と称する)の位置での特徴量を示している。
確率算出処理部12は、分類項目が山、草地、海についての学習データ△,○,□の分布の中から、算出対象画素の位置での特徴量☆と類似している学習データとして、k個の学習データを選択する。算出対象画素の位置での特徴量☆と類似している学習データは、特徴量☆との距離が短い学習データであり、特徴量☆との距離が短い学習データほど、特徴量☆との類似度が高い。
図10では、k=10の例を示し、破線で囲んでいる学習データを選択している。ただし、kの値は任意である。
図10の例では、分類項目が山についての学習データ△を5個、草地についての学習データ○を3個、海についての学習データ□を2個選択している。
図10では、k=10の例を示し、破線で囲んでいる学習データを選択している。ただし、kの値は任意である。
図10の例では、分類項目が山についての学習データ△を5個、草地についての学習データ○を3個、海についての学習データ□を2個選択している。
確率算出処理部12は、算出対象画素の位置での特徴量☆に類似しているk個の学習データを選択すると、k個の学習データに含まれている山についての学習データ△の個数、草地についての学習データ○の個数、海についての学習データ□の個数から、算出対象画素が、山を表している画素である確率p1、草地を表している画素である確率p2、海を表している画素である確率p3を算出する。
図10の例では、山についての学習データ△の個数が5個、草地についての学習データ○の個数が3個、海についての学習データ□の個数が2個であるため、山を表している画素である確率p1、草地を表している画素である確率p2、海を表している画素である確率p3は、下記の式(5)で表される。
図10の例では、山についての学習データ△の個数が5個、草地についての学習データ○の個数が3個、海についての学習データ□の個数が2個であるため、山を表している画素である確率p1、草地を表している画素である確率p2、海を表している画素である確率p3は、下記の式(5)で表される。
画素着色部6は、確率算出部5が、レーダ画像を構成している各画素が各々の分類項目を表している画素である確率を算出すると、各画素が各々の分類項目を表している画素である確率と、色成分受付部3から出力されたカラーデータとから、レーダ画像を構成している各画素の色を決定し、その決定した色で各画素を着色する(図4のステップST6)。
図11はこの発明の実施の形態1による画像処理装置の画素着色部6における処理内容を示すフローチャートである。
以下、図11を参照しながら、画素着色部6の処理内容を具体的に説明する。
図11はこの発明の実施の形態1による画像処理装置の画素着色部6における処理内容を示すフローチャートである。
以下、図11を参照しながら、画素着色部6の処理内容を具体的に説明する。
画素着色部6の配色決定部21は、色成分受付部3から出力されたカラーデータを取得する(図11のステップST21)。
配色決定部21は、カラーデータを取得すると、そのカラーデータが示す各々の分類項目である観測対象が有している色成分にしたがって、色成分の配色行列を生成する(ステップST22)。
即ち、配色決定部21は、分類項目が山、草地、海であり、N=3であるため、例えば、カラー画像の色の表現法として、RGBカラーモデルを用いる場合、上記の式(1)に示すような3×3の配色行列を生成する。
具体的には、配色決定部21は、分類項目である山が有している色成分a11,a21,a31を配色行列の第1列に設定し、分類項目である草地が有している色成分a12,a22,a32を配色行列の第2列に設定し、分類項目である海が有している色成分a13,a23,a33を配色行列の第3列に設定する。
配色決定部21は、カラーデータを取得すると、そのカラーデータが示す各々の分類項目である観測対象が有している色成分にしたがって、色成分の配色行列を生成する(ステップST22)。
即ち、配色決定部21は、分類項目が山、草地、海であり、N=3であるため、例えば、カラー画像の色の表現法として、RGBカラーモデルを用いる場合、上記の式(1)に示すような3×3の配色行列を生成する。
具体的には、配色決定部21は、分類項目である山が有している色成分a11,a21,a31を配色行列の第1列に設定し、分類項目である草地が有している色成分a12,a22,a32を配色行列の第2列に設定し、分類項目である海が有している色成分a13,a23,a33を配色行列の第3列に設定する。
また、配色決定部21は、カラー画像の色の表現法として、CMYKカラーモデルを用いる場合、上記の式(2)に示すような4×3の配色行列を生成する。
具体的には、配色決定部21は、分類項目である山が有している色成分a11,a21,a31,a41を配色行列の第1列に設定し、分類項目である草地が有している色成分a12,a22,a32,a42を配色行列の第2列に設定し、分類項目である海が有している色成分a13,a23,a33,a43を配色行列の第3列に設定する。
具体的には、配色決定部21は、分類項目である山が有している色成分a11,a21,a31,a41を配色行列の第1列に設定し、分類項目である草地が有している色成分a12,a22,a32,a42を配色行列の第2列に設定し、分類項目である海が有している色成分a13,a23,a33,a43を配色行列の第3列に設定する。
画素着色部6の色合成部22は、確率算出部5からレーダ画像を構成している各画素が、山を表している画素である確率p1、草地を表している画素である確率p2、海を表している画素である確率p3を取得する(図11のステップST23)。
色合成部22は、カラー画像の色の表現法として、RGBカラーモデルを用いる場合、レーダ画像を構成している画素毎に、上記の式(3)に示すように、(p1,p2,p3)を要素とする3×1の行列と、配色決定部21により生成された式(1)の3×3の配色行列とを乗算することで、当該画素の色(c1,c2,c3)を決定し、その決定した色で当該画素を着色する(図11のステップST24)。
色合成部22は、カラー画像の色の表現法として、CMYKカラーモデルを用いる場合、レーダ画像を構成している画素毎に、上記の式(4)に示すように、(p1,p2,p3)を要素とする3×1の行列と、配色決定部21により生成された式(2)の4×3の配色行列とを乗算することで、当該画素の色(c1,c2,c3,c4)を決定し、その決定した色で当該画素を着色する(図11のステップST24)。
色合成部22は、カラー画像の色の表現法として、RGBカラーモデルを用いる場合、レーダ画像を構成している画素毎に、上記の式(3)に示すように、(p1,p2,p3)を要素とする3×1の行列と、配色決定部21により生成された式(1)の3×3の配色行列とを乗算することで、当該画素の色(c1,c2,c3)を決定し、その決定した色で当該画素を着色する(図11のステップST24)。
色合成部22は、カラー画像の色の表現法として、CMYKカラーモデルを用いる場合、レーダ画像を構成している画素毎に、上記の式(4)に示すように、(p1,p2,p3)を要素とする3×1の行列と、配色決定部21により生成された式(2)の4×3の配色行列とを乗算することで、当該画素の色(c1,c2,c3,c4)を決定し、その決定した色で当該画素を着色する(図11のステップST24)。
色合成部22は、レーダ画像を構成している全ての画素を着色するまでのステップST24の処理を繰り返し実施する(ステップST25)。
即ち、色合成部22は、レーダ画像を構成している画素の中に、未だ着色していない画素が残っている場合(ステップST25:NOの場合)、ステップST24の処理に戻って、未だ着色していない画素を着色し、レーダ画像を構成している全ての画素を着色すると(ステップST25:YESの場合)、画素の着色処理を終了する。
即ち、色合成部22は、レーダ画像を構成している画素の中に、未だ着色していない画素が残っている場合(ステップST25:NOの場合)、ステップST24の処理に戻って、未だ着色していない画素を着色し、レーダ画像を構成している全ての画素を着色すると(ステップST25:YESの場合)、画素の着色処理を終了する。
画素着色部6の色調整受付部23は、色合成部22がレーダ画像を構成している全ての画素を着色することで、そのレーダ画像をカラー化すると、カラー化されたレーダ画像を例えばディスプレイに表示する。これにより、ユーザは、カラー化されたレーダ画像を確認することができる。
ユーザは、レーダ画像における各分類項目の色成分が不適切であると判断すれば、色調整受付部23を操作することで(ステップST26:YESの場合)、各分類項目の色成分を調整することができる。
なお、ユーザが、色調整受付部23を操作しなければ(ステップST26:NOの場合)、画像処理装置の一連の処理が終了する。
ユーザは、レーダ画像における各分類項目の色成分が不適切であると判断すれば、色調整受付部23を操作することで(ステップST26:YESの場合)、各分類項目の色成分を調整することができる。
なお、ユーザが、色調整受付部23を操作しなければ(ステップST26:NOの場合)、画像処理装置の一連の処理が終了する。
色調整受付部23は、ユーザが操作を行うと(ステップST26:YESの場合)、その操作にしたがって各分類項目における色成分の調整を受け付ける(ステップST27)。
即ち、色調整受付部23は、カラー画像の色の表現法として、RGBカラーモデルを用いる場合、ユーザの操作にしたがって配色決定部21により生成された式(1)に示す3×3の配色行列における山が有している色成分a11,a21,a31、草地が有している色成分a12,a22,a32、または、海が有している色成分a13,a23,a33の調整を受け付ける。
また、色調整受付部23は、カラー画像の色の表現法として、CMYKカラーモデルを用いる場合、ユーザの操作にしたがって配色決定部21により生成された上記の式(2)に示す4×3の配色行列における山が有している色成分a11,a21,a31,a41、草地が有している色成分a12,a22,a32,a42、または、海が有している色成分a13,a23,a33,a43の調整を受け付ける。
即ち、色調整受付部23は、カラー画像の色の表現法として、RGBカラーモデルを用いる場合、ユーザの操作にしたがって配色決定部21により生成された式(1)に示す3×3の配色行列における山が有している色成分a11,a21,a31、草地が有している色成分a12,a22,a32、または、海が有している色成分a13,a23,a33の調整を受け付ける。
また、色調整受付部23は、カラー画像の色の表現法として、CMYKカラーモデルを用いる場合、ユーザの操作にしたがって配色決定部21により生成された上記の式(2)に示す4×3の配色行列における山が有している色成分a11,a21,a31,a41、草地が有している色成分a12,a22,a32,a42、または、海が有している色成分a13,a23,a33,a43の調整を受け付ける。
色調整受付部23は、色成分の調整を受け付けると、調整後の色成分を色合成部22に出力する。
色合成部22は、色調整受付部23から調整後の色成分を受けると、調整後の色成分を用いて、色成分の配色行列を生成する。色合成部22が、画素の色を決定し、その決定した色で画素を着色する処理自体は上記と同様であるため説明を省略する。
色合成部22は、色調整受付部23から調整後の色成分を受けると、調整後の色成分を用いて、色成分の配色行列を生成する。色合成部22が、画素の色を決定し、その決定した色で画素を着色する処理自体は上記と同様であるため説明を省略する。
以上で明らかなように、この実施の形態1によれば、レーダ画像に映っている観測対象毎に、当該観測対象が存在している範囲内の地点に対応するレーダ画像内の画素を示すラベルデータと、特徴量抽出部4により抽出された特徴量とを用いて、レーダ画像を構成している各画素が、各々の観測対象を表している画素である確率を算出する確率算出部5を設け、画素着色部6が、確率算出部5により算出された確率と、各々の観測対象が有している色成分とから、レーダ画像を構成している各画素の色を決定し、その決定した色で各画素を着色するように構成したので、観測対象の色を再現することができる効果を奏する。
また、この実施の形態1によれば、分類項目の数に制限がないため、レーダ画像内に数多くの観測対象が含まれている場合でも、観測対象の色を再現することができる効果を奏する。
また、この実施の形態1によれば、分類項目の数に制限がないため、レーダ画像内に数多くの観測対象が含まれている場合でも、観測対象の色を再現することができる効果を奏する。
実施の形態2.
上記実施の形態1では、各々の分類項目分である観測対象が有している色成分の設定を受け付ける色成分受付部3を備えている画像処理装置について示したが、この実施の形態2では、レーダ画像の撮像範囲を含む光学画像から、各々の分類項目である観測対象が有している色成分を設定するものについて説明する。
上記実施の形態1では、各々の分類項目分である観測対象が有している色成分の設定を受け付ける色成分受付部3を備えている画像処理装置について示したが、この実施の形態2では、レーダ画像の撮像範囲を含む光学画像から、各々の分類項目である観測対象が有している色成分を設定するものについて説明する。
図12はこの発明の実施の形態2による画像処理装置を示す構成図であり、図13はこの発明の実施の形態2による画像処理装置のハードウェア構成図である。
図12及び図13において、図1及び図2と同一符号は同一または相当部分を示すので説明を省略する。
色成分設定部7は図13の色成分設定回路37で実現されるものであり、例えばカメラなどの光学センサにより撮影されたカラー画像から、各々の分類項目である観測対象が有している色成分を設定し、その設定した色成分を示すカラーデータを画素着色部6に出力する処理を実施する。
例えば、カメラなどの光学センサにより撮影されたカラー画像は、レーダ画像取得部1により取得されるレーダ画像の撮像範囲を含むカラー画像である。
図12及び図13において、図1及び図2と同一符号は同一または相当部分を示すので説明を省略する。
色成分設定部7は図13の色成分設定回路37で実現されるものであり、例えばカメラなどの光学センサにより撮影されたカラー画像から、各々の分類項目である観測対象が有している色成分を設定し、その設定した色成分を示すカラーデータを画素着色部6に出力する処理を実施する。
例えば、カメラなどの光学センサにより撮影されたカラー画像は、レーダ画像取得部1により取得されるレーダ画像の撮像範囲を含むカラー画像である。
図12では、画像処理装置の構成要素であるレーダ画像取得部1、ラベルデータ受付部2、色成分設定部7、特徴量抽出部4、確率算出部5及び画素着色部6のそれぞれが、図13に示すような専用のハードウェア、即ち、画像取得処理回路31、ラベルデータ受付回路32、色成分設定回路37、特徴量抽出処理回路34、確率算出処理回路35及び画素着色処理回路36で実現されるものを想定している。
ただし、画像処理装置は、構成要素が専用のハードウェアで実現されるものに限るものではなく、画像処理装置がソフトウェア、ファームウェア、または、ソフトウェアとファームウェアとの組み合わせで実現されるものであってもよい。
画像処理装置がソフトウェアやファームウェアなどで実現される場合、レーダ画像取得部1、ラベルデータ受付部2、色成分設定部7、特徴量抽出部4、確率算出部5及び画素着色部6の処理手順をコンピュータに実行させるためのプログラムを図3に示すメモリ41に格納し、コンピュータのプロセッサ42がメモリ41に格納されているプログラムを実行するようにすればよい。
ただし、画像処理装置は、構成要素が専用のハードウェアで実現されるものに限るものではなく、画像処理装置がソフトウェア、ファームウェア、または、ソフトウェアとファームウェアとの組み合わせで実現されるものであってもよい。
画像処理装置がソフトウェアやファームウェアなどで実現される場合、レーダ画像取得部1、ラベルデータ受付部2、色成分設定部7、特徴量抽出部4、確率算出部5及び画素着色部6の処理手順をコンピュータに実行させるためのプログラムを図3に示すメモリ41に格納し、コンピュータのプロセッサ42がメモリ41に格納されているプログラムを実行するようにすればよい。
次に動作について説明する。
色成分設定部7以外は、上記実施の形態1と同様であるため、ここでは色成分設定部7の処理内容だけを説明する。
色成分設定部7以外は、上記実施の形態1と同様であるため、ここでは色成分設定部7の処理内容だけを説明する。
色成分設定部7は、例えばカメラなどの光学センサにより撮影されたカラー画像を取得する。
また、色成分設定部7は、例えば、観測対象が山、草地、海である場合、分類項目が山、草地、海となるため、そのカラー画像に映っている山、草地、海の位置の指定を受け付ける。
即ち、色成分設定部7は、光学センサにより撮影されたカラー画像をディスプレイに表示したのち、カラー画像に映っている山、草地、海の位置を指定するユーザの操作を受け付ける。
また、色成分設定部7は、例えば、観測対象が山、草地、海である場合、分類項目が山、草地、海となるため、そのカラー画像に映っている山、草地、海の位置の指定を受け付ける。
即ち、色成分設定部7は、光学センサにより撮影されたカラー画像をディスプレイに表示したのち、カラー画像に映っている山、草地、海の位置を指定するユーザの操作を受け付ける。
色成分設定部7は、カラー画像の色の表現法として、RGBカラーモデルを用いる場合、指定された山の位置に対応するカラー画像内の画素の色成分を、分類項目である山が有している色成分として(R,G,B)=(a11,a21,a31)を設定する。
また、色成分設定部7は、指定された草地の位置に対応するカラー画像内の画素の色成分を、分類項目である草地が有している色成分として(R,G,B)=(a12,a22,a32)を設定し、指定された海の位置に対応するカラー画像内の画素の色成分を、分類項目である海が有している色成分として(R,G,B)=(a13,a23,a33)を設定する。
また、色成分設定部7は、指定された草地の位置に対応するカラー画像内の画素の色成分を、分類項目である草地が有している色成分として(R,G,B)=(a12,a22,a32)を設定し、指定された海の位置に対応するカラー画像内の画素の色成分を、分類項目である海が有している色成分として(R,G,B)=(a13,a23,a33)を設定する。
色成分設定部7は、カラー画像の色の表現法として、CMYKカラーモデルを用いる場合、指定された山の位置に対応するカラー画像内の画素の色成分を、分類項目である山が有している色成分として(C,M,Y,K)=(a11,a21,a31,a41)を設定する。
また、色成分設定部7は、指定された草地の位置に対応するカラー画像内の画素の色成分を、分類項目である草地が有している色成分として(C,M,Y,K)=(a12,a22,a32,a42)を設定し、指定された海の位置に対応するカラー画像内の画素の色成分を、分類項目である海が有している色成分として(C,M,Y,K)=(a13,a23,a33,a43)を設定する。
色成分設定部7は、各々の分類項目である観測対象が有している色成分を設定すると、その設定した色成分を示すカラーデータを画素着色部6に出力する。
また、色成分設定部7は、指定された草地の位置に対応するカラー画像内の画素の色成分を、分類項目である草地が有している色成分として(C,M,Y,K)=(a12,a22,a32,a42)を設定し、指定された海の位置に対応するカラー画像内の画素の色成分を、分類項目である海が有している色成分として(C,M,Y,K)=(a13,a23,a33,a43)を設定する。
色成分設定部7は、各々の分類項目である観測対象が有している色成分を設定すると、その設定した色成分を示すカラーデータを画素着色部6に出力する。
以上で明らかなように、この実施の形態2によれば、レーダ画像の撮像範囲を含むカラー画像から、各々の分類項目である観測対象が有している色成分を設定し、その設定した色成分を示すカラーデータを画素着色部6に出力する色成分設定部7を備えるように構成したので、ユーザが、分類項目である観測対象が有している色成分を設定することなく、分類項目である観測対象が有している色成分を示すカラーデータを画素着色部6に与えることができる効果を奏する。
なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
この発明は、白黒画像であるレーダ画像をカラー化する画像処理装置及び画像処理方法に適している。
1 レーダ画像取得部、2 ラベルデータ受付部、3 色成分受付部、4 特徴量抽出部、5 確率算出部、6 画素着色部、7 色成分設定部、11 学習データ抽出部、12 確率算出処理部、21 配色決定部、22 色合成部、23 色調整受付部、31 画像取得処理回路、32 ラベルデータ受付回路、33 色成分受付回路、34 特徴量抽出処理回路、35 確率算出処理回路、36 画素着色処理回路、37 色成分設定回路、41 メモリ、42 プロセッサ。
Claims (6)
- レーダ画像の輝度分布から、前記レーダ画像を構成している各画素の位置での特徴量を抽出する特徴量抽出部と、
前記レーダ画像に映っている観測対象毎に、当該観測対象が存在している範囲内の地点に対応する前記レーダ画像内の画素を示すラベルデータと、前記特徴量抽出部により抽出された特徴量とを用いて、前記レーダ画像を構成している各画素が、各々の観測対象を表している画素である確率を算出する確率算出部と、
前記確率算出部により算出された確率と、各々の観測対象が有している色成分とから、前記レーダ画像を構成している各画素の色を決定し、前記決定した色で各画素を着色する画素着色部と
を備えた画像処理装置。 - 前記確率算出部は、
前記特徴量抽出部により抽出された各画素の位置での特徴量の中から、前記観測対象毎に、当該観測対象におけるラベルデータが示す画素の位置での特徴量を当該観測対象の学習データとして抽出する学習データ抽出部と、
前記レーダ画像を構成している画素毎に、前記学習データ抽出部により抽出された各々の観測対象における学習データの中で、当該画素の位置での特徴量と類似している学習データの個数をそれぞれ特定し、前記特定した各々の観測対象における学習データの個数から、当該画素が、各々の観測対象を表している画素である確率を算出する確率算出処理部とを備えていることを特徴とする請求項1記載の画像処理装置。 - 前記画素着色部は、各々の観測対象が有している色成分の調整を受け付ける色調整受付部を備え、前記確率算出部により算出された確率と、前記色調整受付部により調整が受け付けられた色成分とから、前記レーダ画像を構成している各画素の色を決定することを特徴とする請求項1記載の画像処理装置。
- 各々の観測対象が有している色成分の設定を受け付けて、前記色成分を前記画素着色部に出力する色成分受付部を備えることを特徴とする請求項1記載の画像処理装置。
- 前記レーダ画像の撮像範囲を含むカラー画像から、各々の観測対象が有している色成分を設定し、前記色成分を前記画素着色部に出力する色成分設定部を備えることを特徴とする請求項1記載の画像処理装置。
- 特徴量抽出部が、レーダ画像の輝度分布から、前記レーダ画像を構成している各画素の位置での特徴量を抽出し、
確率算出部が、前記レーダ画像に映っている観測対象毎に、当該観測対象が存在している範囲内の地点に対応する前記レーダ画像内の画素を示すラベルデータと、前記特徴量抽出部により抽出された特徴量とを用いて、前記レーダ画像を構成している各画素が、各々の観測対象を表している画素である確率を算出し、
画素着色部が、前記確率算出部により算出された確率と、各々の観測対象が有している色成分とから、前記レーダ画像を構成している各画素の色を決定し、前記決定した色で各画素を着色する
画像処理方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016561388A JPWO2017179171A1 (ja) | 2016-04-14 | 2016-04-14 | 画像処理装置及び画像処理方法 |
PCT/JP2016/062008 WO2017179171A1 (ja) | 2016-04-14 | 2016-04-14 | 画像処理装置及び画像処理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/062008 WO2017179171A1 (ja) | 2016-04-14 | 2016-04-14 | 画像処理装置及び画像処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017179171A1 true WO2017179171A1 (ja) | 2017-10-19 |
Family
ID=60041571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/062008 WO2017179171A1 (ja) | 2016-04-14 | 2016-04-14 | 画像処理装置及び画像処理方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2017179171A1 (ja) |
WO (1) | WO2017179171A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018048898A (ja) * | 2016-09-21 | 2018-03-29 | 日本電気株式会社 | 画像処理装置、画像処理方法及びプログラム |
JPWO2023079669A1 (ja) * | 2021-11-05 | 2023-05-11 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003085532A (ja) * | 2001-09-07 | 2003-03-20 | Communication Research Laboratory | Sar画像を利用した土地利用分類処理方法 |
JP2004280591A (ja) * | 2003-03-17 | 2004-10-07 | Ntt Data Corp | マルチスペクトル画像処理装置、マルチスペクトル画像処理方法、およびコンピュータが実行するためのプログラム |
JP2007303855A (ja) * | 2006-05-09 | 2007-11-22 | System Box Japan株式会社 | 地球情報分析システム |
JP2009047516A (ja) * | 2007-08-17 | 2009-03-05 | Pasuko:Kk | 地物情報判読用画像生成方法およびプログラム |
JP2010175381A (ja) * | 2009-01-29 | 2010-08-12 | Mitsubishi Electric Corp | 画像変化抽出装置 |
JP2015125498A (ja) * | 2013-12-25 | 2015-07-06 | 一般財団法人 リモート・センシング技術センター | 擬似カラー化画像処理システム |
-
2016
- 2016-04-14 JP JP2016561388A patent/JPWO2017179171A1/ja active Pending
- 2016-04-14 WO PCT/JP2016/062008 patent/WO2017179171A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003085532A (ja) * | 2001-09-07 | 2003-03-20 | Communication Research Laboratory | Sar画像を利用した土地利用分類処理方法 |
JP2004280591A (ja) * | 2003-03-17 | 2004-10-07 | Ntt Data Corp | マルチスペクトル画像処理装置、マルチスペクトル画像処理方法、およびコンピュータが実行するためのプログラム |
JP2007303855A (ja) * | 2006-05-09 | 2007-11-22 | System Box Japan株式会社 | 地球情報分析システム |
JP2009047516A (ja) * | 2007-08-17 | 2009-03-05 | Pasuko:Kk | 地物情報判読用画像生成方法およびプログラム |
JP2010175381A (ja) * | 2009-01-29 | 2010-08-12 | Mitsubishi Electric Corp | 画像変化抽出装置 |
JP2015125498A (ja) * | 2013-12-25 | 2015-07-06 | 一般財団法人 リモート・センシング技術センター | 擬似カラー化画像処理システム |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018048898A (ja) * | 2016-09-21 | 2018-03-29 | 日本電気株式会社 | 画像処理装置、画像処理方法及びプログラム |
JP7152131B2 (ja) | 2016-09-21 | 2022-10-12 | 日本電気株式会社 | 画像処理装置、画像処理方法及びプログラム |
JPWO2023079669A1 (ja) * | 2021-11-05 | 2023-05-11 | ||
WO2023079669A1 (ja) * | 2021-11-05 | 2023-05-11 | 三菱電機株式会社 | レーダ画像から関心領域を自動検出するための学習方法、及び自動検出装置 |
JP7391278B2 (ja) | 2021-11-05 | 2023-12-04 | 三菱電機株式会社 | レーダ画像から関心領域を自動検出するための学習方法、及び自動検出装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017179171A1 (ja) | 2018-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11070749B2 (en) | Image processing method and apparatus | |
JP4117284B2 (ja) | 色空間の変換方法、カラー映像の色調節装置、色調節方法およびプログラムを記録したコンピュータが読み取り可能な記録媒体 | |
JP5424712B2 (ja) | 画像処理装置及びその制御方法とプログラム | |
Al-Dwairi et al. | Optimized true-color image processing | |
US7957590B2 (en) | Image processing method, display image processing method, image processing device, image processing program, and integrated circuit device including that image processing device | |
US8319853B2 (en) | Image processing apparatus, image processing method, and computer program | |
US20040184673A1 (en) | Image processing method and image processing apparatus | |
JP7144678B2 (ja) | 画像処理装置、画像処理方法、および画像処理プログラム | |
CN113450266A (zh) | 图像处理装置、图像处理系统以及图像处理方法 | |
WO2017179171A1 (ja) | 画像処理装置及び画像処理方法 | |
US20100157042A1 (en) | Image data processing device, its storage medium, and its method | |
US7068856B2 (en) | Method and system for determining and correcting image orientation angle | |
Qian et al. | Fast color contrast enhancement method for color night vision | |
JP6957665B2 (ja) | 画像処理装置、画像処理方法及びプログラム | |
Chaki et al. | Introduction to image color feature | |
JP6094333B2 (ja) | 補正データ生成装置、補正データ生成プログラム及び色補正装置 | |
JP2000341499A (ja) | 色再現装置 | |
JP7309415B2 (ja) | 画像処理装置、画像処理方法及びプログラム | |
KR102087500B1 (ko) | 직교합성 열화상 처리 장치 및 방법 | |
JP2009217174A (ja) | 映像表示システムの調整装置、調整方法、幾何情報取得方法、及びプログラム | |
JPH02284274A (ja) | 画像処理方法 | |
JP6531522B2 (ja) | 色補正プログラム、色補正方法及び色補正装置 | |
IL262515A (en) | Systems and methods for enabling target tracking in a virtual arena | |
KR102639691B1 (ko) | 합성영상생성방법, 이를 수행하는 합성영상생성장치, 및 이를 실행하기 위하여 컴퓨터 판독 가능 매체에 저장된 컴퓨터 프로그램 | |
JP7329964B2 (ja) | 画像処理装置および画像処理方法およびプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016561388 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16898631 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16898631 Country of ref document: EP Kind code of ref document: A1 |