WO2011102520A1 - 水稲収量予測モデル生成方法、及び水稲収量予測方法 - Google Patents

水稲収量予測モデル生成方法、及び水稲収量予測方法 Download PDF

Info

Publication number
WO2011102520A1
WO2011102520A1 PCT/JP2011/053763 JP2011053763W WO2011102520A1 WO 2011102520 A1 WO2011102520 A1 WO 2011102520A1 JP 2011053763 W JP2011053763 W JP 2011053763W WO 2011102520 A1 WO2011102520 A1 WO 2011102520A1
Authority
WO
WIPO (PCT)
Prior art keywords
rice
field
paddy rice
growth
yield
Prior art date
Application number
PCT/JP2011/053763
Other languages
English (en)
French (fr)
Inventor
秀樹 島村
篤史 木村
陽一 杉本
Original Assignee
株式会社パスコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パスコ filed Critical 株式会社パスコ
Publication of WO2011102520A1 publication Critical patent/WO2011102520A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/20Cereals
    • A01G22/22Rice
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9027Pattern recognition for feature extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9076Polarimetric features in SAR

Definitions

  • the present invention relates to a technique for predicting the yield of paddy rice cultivated in a field by using observation results of a synthetic aperture radar (SAR) mounted on a flying object, and in particular, a prediction model used for the prediction. And a yield prediction method using the prediction model.
  • SAR synthetic aperture radar
  • yields are based on meteorological data obtained from the regional meteorological observation system of the Japan Meteorological Agency (commonly known as AMeDAS: Automated Meteorological Data Acquisition System) and optical remote sensing data obtained from satellites and aircraft. A method for performing prediction is used.
  • AMeDAS Automated Meteorological Data Acquisition System
  • optical remote sensing is easily affected by the weather, such as being unable to observe in the presence of clouds. Therefore, it is not always possible to acquire observation data at a timing suitable for yield prediction, and there is a problem that stable observation with high accuracy is difficult.
  • the present invention has been made to solve the above-described problems, and a method for generating a paddy rice yield prediction model that makes it possible to accurately predict the yield of paddy rice fields in a wide area in the first half of the growing season with less labor. And a method for predicting paddy rice yield.
  • the paddy rice yield prediction model generation method is a method for generating a prediction model used for predicting the yield of paddy rice cultivated in a field, and the backscattering intensity related to the sample field by the synthetic aperture radar mounted on the flying object
  • a sample scattering intensity measuring step for measuring the sample scattering intensity, and a sample for measuring a sample growth value representing a growth index of interest having a correlation with the number of spikes or pods of the rice at the same time as the measurement of the sample scattering intensity
  • the noted growth index is composed of the number of stems, plant height, plant height, or planting rate of the rice.
  • the sample scattering intensity measurement step and the sample growth value measurement step are performed at the highest tillering stage of the rice in the sample field.
  • the attention growth index is the number of stems of the rice.
  • the paddy rice yield prediction method is a method for predicting the yield of paddy rice in a field using the relational expression obtained by the paddy rice yield prediction model generation method according to the present invention, wherein the composition is related to the field.
  • the field observation step is performed at the highest tillering stage of the rice in the field.
  • the growth index value estimation step estimates the value of the attention growth index based on the relational expression from the backscattering intensity at each pixel of the image of the synthetic aperture radar, The index values are totaled in the field.
  • FIG. 1 is a block diagram showing a schematic configuration of a paddy rice yield prediction system 2 according to the embodiment.
  • This system uses a radar image (SAR image) of the observation area captured by the SAR to generate a rice rice yield prediction model, and based on the prediction model, calculates the rice yield in the field from the SAR image. Predict.
  • the system includes an arithmetic processing device 4, a storage device 6, an input device 8, and an output device 10.
  • the arithmetic processing unit 4 it is possible to make dedicated hardware for performing the processing of this system.
  • the arithmetic processing unit 4 is constructed using a computer and a program executed on the computer. Is done.
  • the arithmetic processing unit 4 is composed of a CPU (Central Processing Unit) of a computer, and functions as, for example, the yield prediction formula calculation means 12 and the yield calculation means 14, and further realizes main parts of various functions to be described later with reference to FIG. .
  • CPU Central Processing Unit
  • the storage device 6 stores a program for causing the arithmetic processing unit 4 to function as each of the means 12, 14 and the like, other programs, and various data necessary for processing of the present system.
  • the storage device 6 uses the SAR image and field survey data used for generating the yield prediction formula, the map data such as the field frame and topography for determining each stroke of the paddy rice field, the generated yield prediction formula, and the SAR as the yield calculation target. Used to hold images.
  • the input device 8 is a keyboard, a mouse, etc., and is used by the user to operate the system.
  • the output device 10 is a display, a printer, or the like, and is used to display the predicted rice yield obtained by the present system to the user by screen display, printing, or the like.
  • data may be output to a device other than the present system.
  • a SAR image based on imaging data in the X band (wavelength: 3.1 cm) by TerraSAR-X which is a SAR satellite
  • the imaging data used was acquired in the HH mode in which both transmission and reception are performed with horizontal polarization, and acquired in the VV mode in which both transmission and reception are performed with vertical polarization.
  • the TerraSAR-X shooting mode is a high resolution spotlight, data obtained by shooting an area of 10 km ⁇ 5 km with a maximum ground resolution of 1 m is acquired.
  • TerraSAR-X can shoot the same area with an 11-day cycle under the same shooting conditions.
  • the SAR image by TerraSAR-X is obtained by irradiating the ground with X-band microwaves and observing the backscattered wave, and has a pixel value corresponding to the intensity of the backscattered wave.
  • ⁇ 0 is a backscattering coefficient considering the incident angle
  • k is a coefficient for calibration and processor scaling
  • DN is a pixel value of an amplitude image.
  • is an incident angle for each pixel in each region.
  • Fig. 2 is a functional block diagram of this system.
  • the interface (I / F) unit 20 has a function of taking a captured SAR image into the system.
  • the user sets the shooting time of the SAR image based on the paddy rice cultivation and the shooting cycle of the satellite, and the SAR image of the observation target area at the set shooting time is shot by the satellite. A plurality of shooting times may be set.
  • the present system captures the SAR image thus taken.
  • the fetched one-time or time-series SAR images are stored in the SAR image holding unit 22.
  • the storage device 6 is used as a SAR image holding unit.
  • the alignment processing unit 24 geometrically maps the SAR image based on map data 26 such as a topographic map and a reference point (road intersection, building, etc.) with a clear latitude and longitude so that the SAR image can be superimposed on the map. (Position) correction processing is performed. As a result, it is possible to take correspondence between the pixels on the SAR image and the field area partitioned by the field frame described later.
  • the SAR image noise processing unit 28 processes SAR image noise.
  • the SAR image noise processing unit 28 performs a filter process on the SAR image after the alignment process, and removes noise such as speckle noise from the SAR image.
  • a median filter, a Frost filter, a Lee filter, or the like is used as the filter processing, and these are selected according to the noise characteristics of the SAR image. Note that the processing order of the alignment processing unit 24 and the SAR image noise processing unit 28 may be reversed.
  • the yield prediction formula calculation unit 30 generates a yield prediction formula using the SAR image subjected to the noise removal process and the field survey data 32. Specifically, the yield prediction formula calculation unit 30 acquires the backscattering intensity (sample scattering intensity) of the sample field from the SAR image, and represents the growth state (attention growth index) of the paddy rice in the sample field from the field survey data 32. A sample growth value is obtained, and a relational expression (yield prediction formula) for calculating an estimated value of a growth index of interest from a measured value of backscattering intensity is obtained as a yield prediction model of rice based on the correlation between them. The generation process of the yield prediction formula will be further described later.
  • the yield calculation unit 34 receives the SAR image from which noise has been removed from the SAR image noise processing unit 28, and also receives field frame data from the field frame determination unit 36.
  • the yield calculation unit 34 superimposes the field frame on the SAR image, extracts the SAR image in the field frame for each field, and obtains the backscattering intensity in the field. Then, using the yield prediction formula, the predicted value of the rice yield in the field is calculated from the backscattering intensity in each field. This yield prediction process will be further described later.
  • the field frame determination unit 36 has a function of determining the position of a field that is a unit of cropping in the observation target region, and generates field frame data representing the range of each field. For example, the field frame determination unit 36 extracts a field frame based on an aerial photograph or a numerical map issued by the Geographical Survey Institute. The extraction process may be performed by the user operating the input device 8 such as a digitizer, or may be performed by an automatic process such as image recognition. Further, the field frame data may be input from the outside without extracting the field frame by the present system.
  • the yield determination unit 38 classifies the yield predicted for each field into a plurality of classes, or performs various analysis processes as necessary.
  • the predicted yield and analysis results are collected by the output unit 40 in the form of, for example, a paddy rice yield prediction distribution map or a list. Further, the distribution chart, the list, and the like can be presented to the user by the output device 10.
  • the yield prediction formula calculation unit 30 generates a yield prediction formula based on the backscattering intensity (sample scattering intensity) of the sample field and the sample growth value representing the growth state (attention growth index) of rice in the sample field.
  • the method according to the present invention for generating a predictive model of the yield of paddy rice cultivated in a field is the same as the step of measuring the sample scattering intensity by taking a SAR image (step of measuring the sample turbulence intensity) and the taking of the SAR image.
  • a step of measuring a sample growth value at a time (sample growth value measurement step) and a step of obtaining a yield prediction formula as a prediction model (yield prediction formula calculation step) based on the correlation between the sample scattering intensity and the sample growth value .
  • the growth index of the first half of the growing season (growth characteristics of rice)
  • the estimated value of the growth index of interest Therefore, it is possible to predict the yield of paddy rice in the first half of the growing season through the number of spikes and the number of straws.
  • the growth characteristics that correlate with the number of rice spikes and the number of pods have a correlation with the backscattering intensity.
  • the number of rice stalks, plant height, plant height, or vegetation coverage had a positive correlation with the number of rice panicles or the number of pods, and also positive correlation with the backscattering intensity. It was found to have
  • the plant height is the height from the ground of the paddy rice, and the plant height is the length from the root of the paddy rice to the stem and tip branches and leaves.
  • the vegetation coverage is the ratio of the plant covering the ground surface in the area of a predetermined area. For example, a rice field is photographed from the upper part of the paddy rice community (about 1.5 m or more) to the lower part with a digital camera or the like. Is obtained from the ratio of the area of the area where the rice is reflected, that is, the area where the paddy rice hides the ground.
  • the specific contents of the analysis based on the actual measurement data, which is the basis for the above knowledge, will be described below.
  • the measurement was performed a plurality of times in a period including a heading period in August after transplanting in May, using a plurality of fields with various cultivars planted as samples.
  • the measurement period is divided into the first period (DOY (Day of Year) 150 to 172), the first period (DOY 172 to 194), the middle period (DOY 194 to 238), and the latter period (DOY 238 to).
  • the first period (DOY 150 to 172) and the first period (DOY 172 to 194) correspond to the tillering period
  • the middle period (DOY 194 to 238) corresponds to the young panicle development period
  • the latter period (DOY 238 to) corresponds to the ripening period.
  • the first period (DOY 172 to 194) includes the highest tillering period, and the influence of the grown paddy rice appears favorably in the backscattering intensity of the SAR image during this period.
  • the later stage (DOY 238 ⁇ ) paddy rice heads, and further growth can cause lodging.
  • the SAR images were taken for HH polarization and VV polarization in two cases, when the incident angle was 49.8 degrees and 21.8 degrees.
  • FIG. 3 to FIG. 6 are graphs showing the correlation of the growth values obtained by field investigation of the seven fields transplanted on May 11, and plotting the measurement data in the previous period (DOY 172 to 194), and further by regression analysis on them A straight line (regression line) representing the obtained regression equation is shown.
  • Each vertical axis in FIG. 3 to FIG. 6 is the number of powers in units of (grain / m 2 ).
  • FIG. 3 shows the relationship between the number of spikes and the number of pods.
  • the coefficient of determination R 2 of the regression formula is 0.7188.
  • the correlation coefficient R is 0.8 or more, and a strong positive correlation exists between the number of spikes and the number of pods.
  • FIG. 4 shows the relationship between the number of stems and the number of pods, and the horizontal axis is the number of stems in units of (lines / m 2 ).
  • the coefficient of determination R 2 of the regression formula is 0.9155, the correlation coefficient R is 0.9 or more, there is a very strong positive correlation between the number of stems and spikelets number.
  • FIG. 5 shows the relationship between the plant height and the number of ridges, and the horizontal axis is the plant height in units of cm.
  • the coefficient of determination R 2 in this case is low. This shows a case where various varieties are mixed as measurement data as described above, and the difference between the varieties affects the plant height and the number of pods. In this respect, was analyzed for the same variety, the determination coefficient R 2 of the regression equation 0.6412, and the correlation coefficient R is 0.80, a strong correlation was also observed between the plant height and spikelets number It was. In addition, this means that there is a strong positive correlation between the plant height and the number of pods from the above-described correlation between the plant height and the plant height.
  • FIG. 6 shows the relationship between the vegetation coverage ratio and the number of eaves, and the horizontal axis represents the vegetation coverage in units of%.
  • the coefficient of determination R 2 of the regression formula is 0.7128.
  • the correlation coefficient R is 0.8 or more, and there is a strong correlation between the vegetation coverage rate and the number of pods.
  • Tables 1 and 2 are lists of correlation coefficients R obtained by regression analysis of backscattering intensity and growth value. Tables 1 and 2 show the backscattering intensity and stem of HH polarization and VV polarization for the first period (DOY 172 to 194), the middle period (DOY 194 to 238), and the latter period (DOY 238 to), respectively. The correlation coefficient R between number, plant height and planting rate is shown. Table 1 shows the results for an incident angle of 49.8 degrees, and Table 2 shows the results for an incident angle of 21.8 degrees.
  • the analysis results show that the correlation coefficient R between the backscattering intensity and each growth value is 0.8 or more in the first period (DOY 172 to 194) corresponding to the highest tilling period at any incident angle, and a strong positive correlation. It shows that there is. It also shows that there can be a correlation in the whole of the first half, the middle, and the second half. For example, regarding the plant height and vegetation coverage at an incident angle of 49.8 degrees, the correlation coefficient R for HH polarization and VV polarization is 0.7 or more, and the correlation coefficient between the number of stems and HH polarization is 0.5. As described above, all show a slightly strong positive correlation.
  • the results show that the number of stems in the previous period (DOY 172 to 194) shows a stronger correlation when the incident angle is 49.8 degrees than when the incident angle is 21.8 degrees. It was.
  • This qualitatively means that the effect of the number of stems on the backscattering intensity appears more when irradiated from the horizontal direction than when irradiating microwaves from directly above the paddy rice. It can be understood that it is easier to grasp the number of stems when viewed from the side than when the rice is viewed.
  • FIG. 7 and FIG. 8 are graphs showing the correlation between the backscattering intensity and the growth value under the condition where a particularly high correlation coefficient R is obtained in Table 1 for the incident angle of 49.8 degrees
  • FIG. 8 shows the relationship between the backscattering intensity (horizontal axis) and the number of stems (vertical axis) in the HH polarization in the previous period (DOY172 to 194)
  • FIG. 8 shows the backscattering in the VV polarization in the previous period (DOY172 to 194).
  • the relationship between strength (horizontal axis) and plant height (vertical axis) is shown.
  • FIGS. 9 and 10 are graphs showing the correlation between the backscattering intensity and the growth value under the conditions corresponding to FIGS. 7 and 8 when the incident angle is 21.8 degrees, and FIG. 9 shows the previous period (DOY 172 to 194).
  • FIG. 9 Shows the relationship between the backscattering intensity (horizontal axis) in the HH polarization and the number of stems (vertical axis), and
  • FIG. 10 shows the backscattering intensity (horizontal axis) in the VV polarization of the previous period (DOY 172 to 194).
  • the plant height vertical axis).
  • FIG. 11 is an explanatory diagram summarizing the correlation between the various variables described above.
  • FIG. 11 shows the backscattering intensity of each polarization direction (HH polarization, VV polarization) acquired by the SAR and the number of stems, the vegetation coverage, the plant height (or the height) among the growth characteristics measurable in the first half of the growing season. It shows the relationship between plant height) and yield components such as the number of pods and ears that are directly related to the yield but cannot be measured unless the latter half of the growing season.
  • the line between items indicates the presence or absence of positive correlation, and the thickness of the solid line is changed in three stages according to the correlation coefficient R.
  • R ⁇ 0.9 from the thicker 0.9>
  • R ⁇ 0.8 represents the case of 0.8> R ⁇ 0.7.
  • the dotted line between the plant height, the number of spikes, and the number of pods indicates that there is a correlation for each variety.
  • the backscattering intensity in each polarization direction has a positive correlation with the number of stems, the vegetation coverage, and the plant height (or plant height).
  • the correlation does not depend on the rice variety.
  • the number of stems and vegetation coverage have a positive correlation with the number of pods and the number of spikes, and the correlation does not depend on the rice varieties. That is, the yield prediction formula for estimating the number of stalks or planting coverage from the backscattering intensity can be used to predict the yield without requiring information on what kind of variety is planted in each field.
  • the number and the vegetation coverage ratio are suitable as variables of a yield prediction formula for performing a wide range of yield prediction for a plurality of fields using a SAR image.
  • the yield can be predicted by a yield prediction formula for estimating the plant height or plant height from the backscattering intensity.
  • the number of stalks has a correlation coefficient with the number of pods, as described in the explanation of FIG. Greater than the relationship number.
  • the number of stems has a very strong correlation with the backscattering intensity in any of the two types of incident angles measured this time and in any of the two types of polarization modes.
  • the number of stems is particularly suitable as a growing feature for generating a yield prediction formula and obtaining an estimated value from the backscattering intensity.
  • SAR images of HH polarization and VV polarization in the observation target region where the sample field exists are photographed at a plurality of times within the maximum tillering period.
  • the field of the sample is surveyed, the number of stems is measured, and the average value of the number of stems for each sample field is obtained.
  • the SAR image and the field survey data of the number of stems are input to the paddy rice yield prediction system 2.
  • the yield prediction formula calculation unit 30 of the paddy rice yield prediction system 2 calculates, for example, the backscattering intensity ⁇ HH of the HH polarization and the backscattering intensity ⁇ VV of the VV polarization for each pixel corresponding to each sample field in the SAR image.
  • the yield prediction formula is determined, and ⁇ , ⁇ , and ⁇ are stored in the storage device 6 and used for the yield prediction process in the yield calculation unit 34. Since the yield prediction formula captures the growth characteristics of paddy rice, if there is no significant difference in the growth characteristics of paddy rice, basically, for example, every year, SAR images are taken and field surveys are conducted on sample fields. It is not necessary to carry out the production
  • SAR images of HH polarization and VV polarization in the yield prediction target area are taken and input to the rice yield prediction system 2.
  • the correlation between the number of stems and the backscattering intensity is high in the first period (DOY 172 to 194), for example, it is preferable to take a SAR image around the maximum tillering period.
  • the yield calculation unit 34 extracts the backscattering intensity ⁇ HH and ⁇ VV of HH polarization and VV polarization for each pixel corresponding to the field from the SAR image based on the field frame data, and these independent variables and the storage device 6. (2) is calculated from ⁇ , ⁇ , and ⁇ stored in, and an estimated value ⁇ of the number of stems in the region corresponding to the pixel is obtained.
  • the number of stems has a positive correlation with the number of straw that is a yield component of paddy rice, so the relative number of yields can be determined based on the estimated number of stems ⁇ .
  • the estimated number ⁇ of stems is converted to these values.
  • the conversion formula from the number of stems to the number of pods and the weight is obtained in advance from the correlation existing between them and stored in the storage device 6, and the yield calculation unit 34 performs conversion using this.
  • the estimated value ⁇ of the number of stems is a total value of values obtained for each field.
  • the estimated value ⁇ of the number of stems is an average value of values obtained in units of fields, and is compiled into a rice yield prediction distribution map for each unit of fields, thereby reflecting the needs of users who provide farm management guidance.
  • the yield prediction formula is exemplified to estimate the number of stems, but the above-described formulas for estimating the vegetation coverage ratio, the plant height, and the plant height can also be generated. Further, instead of the multiple regression analysis as independent variables and the backscattering intensity sigma VV backscatter intensity sigma HH and VV polarization of HH polarization, by simple linear regression analysis using either the sigma HH and sigma VV Yield prediction formulas can also be generated and used.
  • the paddy rice yield prediction model generation method and paddy rice yield prediction method of the present invention described above it is possible to predict a wide range of paddy rice yields in the early growing season using SAR images. Since the SAR image is an all-weather type, it is possible to observe the rice field and grasp the situation without being affected by rain or clouds. In addition to being able to observe without being affected by the weather in this way, it is possible to observe a wide area in a very short time, so it is possible to grasp the situation of the rice field in real time, and at an early point in the early growing season Since the yield prediction result can be used, timely and appropriate cultivation management and production management can be instructed. In addition, it is possible to grasp a wide range of fields at once. In addition, it is possible to conduct rice field surveys by field surveys conducted by the Ministry of Agriculture, Forestry and Fisheries using remote measurement.
  • the present invention can also be implemented using an SAR mounted on another flying object such as an aircraft SAR.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 圃場にて栽培される水稲の収量予測を現地調査により行うと労力を要し、全国に設置された観測点での気象データによる予測は精度確保が難しく、また、光学リモートセンシングによると天候の影響を受ける。 収量予測式算出部30は、SARを用いて広範囲で得られる生育期前半における標本圃場での後方散乱強度と、現地調査により得られる茎数等の水稲の生育的特徴との相関に基づき収量予測式を生成する。収量算出部34は、収量予測式を用い、生育期前半の対象水稲圃場を撮影したSAR画像により得られる後方散乱強度から水稲の生育的特徴の推定値を求める。水稲の収量構成要素である籾数との間で相関を有する水稲の生育的特徴の推定値から、籾数を予測する。

Description

水稲収量予測モデル生成方法、及び水稲収量予測方法
 本発明は、圃場にて栽培される水稲の収量を、飛翔体に搭載した合成開口レーダ(Synthetic Aperture Radar:SAR)の観測結果を利用して予測する技術に関し、特に、当該予測に用いる予測モデルの生成方法、及び当該予測モデルを用いた収量予測方法に関する。
 従来、水稲の収量の推定・予測は、標本圃場への水稲の作付けを現地調査することにより行われてきた。しかし、例えば、日本では標本圃場は約4万ヶ所に上り、全国レベル、都道府県レベル等の広範囲の水稲作況調査を地上から人手による実測で行うことは労力や時間を要する。
 そこで、一部の地域では、気象庁の地域気象観測システム(通称、アメダス(AMeDAS:Automated Meteorological Data Acquisition System))により取得した気象データや人工衛星・航空機から取得した光学リモートセンシングデータをもとに収量予測を行う手法が用いられるようになっている。
桑田賢太郎他、「衛星で推定した光合成有効放射量の水稲収量予測への有用性」、第18回生研フォーラム「広域の環境・災害リスク情報の収集と利用フォーラム」、[online][平成22年2月1日検索]インターネット〈URL:http://www.chikatsu-lab.g.dendai.ac.jp/s_forum/pdf/2009/20090117.pdf) 「衛星データとアメダスデータを入力に用いる水稲の収量予測モデル」、[online][平成22年2月1日検索]インターネット〈URL:http://www.naro.affrc.go.jp/top/seika/2003/common/com03011.html)
 アメダスの観測点は全国約1300ヶ所に存在するが、その数や配置は、任意の圃場の近くに観測点が存在することを保証するものではなく、圃場での気象状況を正確に把握するのに十分とは言えない。そのため気象データに基づく収量予測は精度を十分に確保できない可能性があるという問題があった。
 一方、光学リモートセンシングは雲が存在すると観測ができない等、天候の影響を受け易い。そのため、必ずしも収量予測に好適なタイミングで観測データを取得できるとは限らず、精度の高い安定した観測が難しいという問題があった。
 本発明は上記問題点を解決するためになされたものであり、広範囲の地域における水稲圃場の収量予測を生育期前半に少ない労力で高精度に行うことを可能とする水稲収量予測モデルの生成方法、及び水稲収量の予測方法を提供することを目的とする。
 本発明に係る水稲収量予測モデル生成方法は、圃場にて栽培される水稲の収量の予測に用いる予測モデルを生成する方法であって、飛翔体に搭載した合成開口レーダにより標本圃場に関する後方散乱強度である標本散乱強度を測定する標本散乱強度測定ステップと、前記標本散乱強度の測定と同時期に、前記水稲の穂数又は籾数と相関を有する注目生育指標を表す標本生育値を測定する標本生育値測定ステップと、前記標本散乱強度と前記標本生育値との相関に基づき、前記予測モデルとして、前記後方散乱強度の測定値から前記注目生育指標の推定値を算出する関係式を求めるステップと、を有し、前記注目生育指標が、前記水稲の茎数、草丈、草高又は植被率で構成される。
 本発明の好適な態様においては、前記標本散乱強度測定ステップ及び前記標本生育値測定ステップは、前記標本圃場の前記水稲の最高分げつ期に行われる。また、本発明の他の好適な態様における前記注目生育指標は前記水稲の茎数である。
 本発明に係る水稲収量予測方法は、上記本発明に係る水稲収量予測モデル生成方法により得られた前記関係式を用いて、圃場における水稲の収量を予測する方法であって、前記圃場に関し前記合成開口レーダにより前記後方散乱強度を測定する圃場観測ステップと、前記圃場観測ステップにて測定された前記後方散乱強度から前記関係式に基づいて前記注目生育指標の値を推定する生育指標値推定ステップと、を有する。
 本発明の好適な態様においては、前記圃場観測ステップは、前記圃場の前記水稲の最高分げつ期に行われる。本発明の他の好適な態様においては、前記生育指標値推定ステップは、前記合成開口レーダの画像の各画素における前記後方散乱強度から前記関係式に基づいて前記注目生育指標の値を推定し、当該指標値を前記圃場内において集計する。
 本発明によれば、広範囲の地域における水稲圃場の収量予測を生育期前半に少ない労力で高精度に行うことが可能となる。
本発明の実施形態である水稲収量予測システムの概略の構成を示すブロック図である。 本発明の実施形態である水稲収量予測システムの機能ブロック図である。 現地調査データにおける穂数と籾数との相関関係を示すグラフである。 現地調査データにおける茎数と籾数との相関関係を示すグラフである。 現地調査データにおける草丈と籾数との相関関係を示すグラフである。 現地調査データにおける植被率と籾数との相関関係を示すグラフである。 入射角49.8度、HH偏波の場合における後方散乱強度と茎数との相関関係を示すグラフである。 入射角49.8度、VV偏波の場合における後方散乱強度と草丈との相関関係を示すグラフである。 入射角21.8度、HH偏波の場合における後方散乱強度と茎数との相関関係を示すグラフである。 入射角21.8度、VV偏波の場合における後方散乱強度と草丈との相関関係を示すグラフである。 各種変数間の相関関係をまとめた説明図である。
 以下、本発明の実施の形態(以下実施形態という)について、図面に基づいて説明する。
 図1は、実施形態である水稲収量予測システム2の概略の構成を示すブロック図である。本システムは、SARにより撮影された観測対象領域のレーダ画像(SAR画像)を利用して、水稲の収量の予測モデルを生成し、また当該予測モデルに基づき、SAR画像から圃場における水稲の収量を予測する。本システムは、演算処理装置4、記憶装置6、入力装置8及び出力装置10を含んで構成される。演算処理装置4として、本システムの処理を行う専用のハードウェアを作ることも可能であるが、本実施形態では演算処理装置4は、コンピュータ及び、当該コンピュータ上で実行されるプログラムを用いて構築される。
 演算処理装置4は、コンピュータのCPU(Central Processing Unit)からなり、例えば、収量予測式算出手段12、収量算出手段14として機能し、さらに図2を用いて後述する各種機能の主要部分を実現する。
 記憶装置6は、演算処理装置4を上記各手段12,14などとして機能させるためのプログラム及びその他のプログラムや、本システムの処理に必要な各種データを記憶する。例えば、記憶装置6は、収量予測式の生成に用いるSAR画像や現地調査データ、水稲圃場の各一筆を決定する圃場枠や地形などの地図データ、生成した収量予測式、収量算出対象とするSAR画像などを保持するために利用される。
 入力装置8は、キーボード、マウスなどであり、ユーザが本システムへの操作を行うために用いる。
 出力装置10は、ディスプレイ、プリンタなどであり、本システムにより得られる水稲収量の予測結果を画面表示、印刷等によりユーザに示す等に用いられる。また、本システム以外の装置等にデータ出力してもよい。
 本実施形態では、一例としてSAR衛星であるTerraSAR-XによるXバンド(波長3.1cm)での撮影データに基づくSAR画像を用いる。撮影データは送信及び受信を共に水平偏波で行うHHモードにより取得したものと、送信及び受信を共に垂直偏波で行うVVモードにより取得したものとを用いた。TerraSAR-Xの撮影モードを高分解能スポットライトとした場合には、10km×5kmの領域を最高で1mの地上分解能で撮影したデータが取得される。TerraSAR-Xは同一の撮影条件で同一領域を11日周期で撮影可能である。
 TerraSAR-XによるSAR画像は、Xバンドのマイクロ波を地上に照射し、その後方散乱波を観測することにより得られるものであり、後方散乱波の強度に応じた画素値を有する。例えば、次式で表される後方散乱係数σが各画素について算出される。
σ[dB]=10log10(k・|DN|・sinθ) ・・・(1)
 ここで、σは入射角を考慮した後方散乱係数で、kはキャリブレーション及びプロセッサスケーリングの係数であり、DNは振幅画像の画素値である。θは各画素における地域ごとの入射角である。
 図2は本システムの機能ブロック図である。インターフェース(I/F)部20は、撮影されたSAR画像を本システムに取り込む機能を有する。ユーザは水稲の栽培ごよみや衛星の撮影周期をもとにSAR画像の撮影時期を設定し、設定された撮影時期における観測対象領域のSAR画像が衛星により撮影される。撮影時期は複数設定される場合もある。本システムはこのように撮影されたSAR画像を取り込む。
 取り込まれた一時期又は時系列のSAR画像はSAR画像保持部22に保存される。例えば、記憶装置6がSAR画像保持部として用いられる。位置合わせ処理部24は、SAR画像を地図に重ね合わせることができるように、地形図や緯度経度が明確な基準地点(道路交差点、建物等)などの地図データ26をもとにSAR画像に幾何(位置)的な補正処理を行う。この結果、SAR画像上の画素と、後述する圃場枠で区画された圃場領域との対応を取ることができる。
 SAR画像ノイズ処理部28はSAR画像のノイズを処理する。例えば、SAR画像ノイズ処理部28は、位置合わせ処理後のSAR画像に対してフィルタ処理を行い、SAR画像からスペックルノイズ等のノイズを除去する。例えば、フィルタ処理として、メディアンフィルタ、FrostフィルタやLeeフィルタ等が用いられ、これらはSAR画像のノイズの性状に応じて選択される。なお、位置合わせ処理部24及びSAR画像ノイズ処理部28の処理順序は逆でも構わない。
 収量予測式算出部30はノイズの除去処理がされたSAR画像と、現地調査データ32とを用いて収量予測式を生成する。具体的には、収量予測式算出部30は、SAR画像から標本圃場の後方散乱強度(標本散乱強度)を取得し、現地調査データ32から標本圃場における水稲の生長状態(注目生育指標)を表す標本生育値を取得し、それらの相関に基づき、水稲の収量の予測モデルとして、後方散乱強度の測定値から注目生育指標の推定値を算出する関係式(収量予測式)を求める。この収量予測式の生成処理についてはさらに後述する。
 収量算出部34はノイズ除去されたSAR画像をSAR画像ノイズ処理部28から入力され、また、圃場枠決定部36から圃場枠のデータを入力される。収量算出部34は、圃場枠をSAR画像に重ね合わせて、圃場ごとに当該圃場枠内のSAR画像を抽出し、当該圃場での後方散乱強度を求める。そして、収量予測式を利用して、各圃場における後方散乱強度から当該圃場における水稲の収量の予測値を算出する。この収量予測処理についてはさらに後述する。
 圃場枠決定部36は、観測対象領域における作付けの単位となる圃場の位置を決定する機能を有し、各圃場の範囲を表す圃場枠のデータを生成する。例えば、圃場枠決定部36は、航空写真や国土地理院発行の数値地図等に基づいて圃場枠を抽出する。当該抽出処理は、ユーザによるデジタイザ等の入力装置8の操作により行うようにしてもよいし、画像認識等の自動的な処理で行うようにしてもよい。また、圃場枠は本システムで抽出せずに、予め抽出された圃場枠のデータを外部から入力してもよい。
 収量判定部38は、例えば、圃場ごとに予測された収量を複数の階級に分類したり、各種の解析処理等を必要に応じて行う。
 予測された収量や解析結果は出力部40により、例えば、水稲収量予測分布図や一覧表などの形式にまとめられる。また、当該分布図や一覧表などは出力装置10によりユーザに提示することができる。
 次に収量予測式の生成処理についてさらに詳しく説明する。収量予測式算出部30が、標本圃場の後方散乱強度(標本散乱強度)と、標本圃場における水稲の生長状態(注目生育指標)を表す標本生育値とに基づいて収量予測式を生成することは既に述べた。圃場にて栽培される水稲の収量の予測モデルを生成する本発明に係る方法は、SAR画像の撮影により標本散乱強度を測定するステップ(標本乱強度測定ステップ)と、当該SAR画像の撮影と同時期に標本生育値を測定するステップ(標本生育値測定ステップ)と、標本散乱強度と標本生育値との相関に基づき、予測モデルとして収量予測式を求めるステップ(収量予測式算出ステップ)とを有する。
 ここで注目生育指標として、生育期前半の生長状態(水稲の生育的特徴)のうち水稲の収量構成要素である穂数又は籾数と相関を有するものを選択すれば、注目生育指標の推定値から水稲の穂数や籾数を介して水稲の収量を生育期前半の段階で予想することが可能となる。さて、水稲の穂数や籾数と相関を有する生育的特徴の全てが後方散乱強度と相関を有するわけではない。この点について実測データに基づいて解析を行ったところ、水稲の茎数、草丈、草高又は植被率が水稲の穂数又は籾数と正の相関を有し、かつ後方散乱強度とも正の相関を有することが分かった。
 また、水稲の茎数、草丈、草高又は植被率と後方散乱強度との相関は水稲の成長過程のうち分げつ期において高く、特に最高分げつ期において高くなることが分かった。さらに、SAR画像撮影におけるマイクロ波の入射角に対する依存性もあることがわかった。
 なお、草高は水稲の地面からの高さ、草丈は水稲の根元から茎及び先端枝葉までの長さであり、水稲では茎は必ずしも真上に伸びないため両者は一致しないものの、容易に想像できるように両者の間には強い正の相関がある。植被率は所定面積の領域において植物が地表を覆う比率であり、例えば、デジタルカメラ等で水稲群落上方(1.5m程度以上)から鉛直下方にむけて水田面を撮影し、その画像にて水稲が映る領域、すなわち水稲が地表を隠す領域の面積の割合から求められる。
 上述の知見の拠り所となる、実測データに基づく解析の具体的な内容について以下説明する。測定は、植え付けられた品種が様々である複数の圃場を標本として、5月の移植後から8月の出穂期を含む期間にて複数回にわたって行った。測定期間をここでは前期(DOY(Day of Year)150~172)、前期(DOY172~194)、中期(DOY194~238)、後期(DOY238~)に区分する。ここで、前期(DOY150~172)及び前期(DOY172~194)は分げつ期に、中期(DOY194~238)が幼穂発育期に、後期(DOY238~)が登熟期に相当する。前期(DOY150~172)にはまだ湛水面が大きく現れ、後方散乱強度は水面の影響を大きく受ける。前期(DOY172~194)は最高分げつ期を含み、この期間のSAR画像の後方散乱強度には生長した水稲の影響が好適に現れる。後期(DOY238~)になると、水稲は出穂し、さらに生長すると倒伏が起こりうる。SAR画像は、入射角が49.8度の場合と21.8度の場合との2通りで、HH偏波、VV偏波について撮影した。
 図3から図6は、5月11日に移植した7つの圃場を現地調査した生育値の相関を示すグラフであり、前期(DOY172~194)における測定データをプロットし、さらにそれらに対する回帰分析により求めた回帰式を表す直線(回帰直線)を図示している。図3から図6それぞれの縦軸は(粒/m)を単位とする籾数である。
 図3は穂数と籾数との関係を示しており、横軸が(本/株)を単位とする穂数である。回帰式の決定係数Rは0.7188である。相関係数Rは0.8以上となり、穂数と籾数との間には強い正の相関が存在する。
 図4は茎数と籾数との関係を示しており、横軸が(本/m)を単位とする茎数である。回帰式の決定係数Rは0.9155であり、相関係数Rは0.9以上であり、茎数と籾数との間には極めて強い正の相関が存在する。
 図5は草丈と籾数との関係を示しており、横軸がcmを単位とする草丈である。この場合の決定係数Rは低い。これは、ここでは測定データとして上述のように様々な品種が混在した場合を示しており、その品種間での相違が草丈、籾数に影響しているためと考えられる。この点、同一の品種についての分析を行ったところ、回帰式の決定係数Rは0.6412、相関係数Rは0.80と、草丈と籾数との間にも強い相関が認められた。また、このことは、上述の草丈と草高との相関から、草高と籾数との間にも強い正の相関が存在することを意味する。
 図6は植被率と籾数との関係を示しており、横軸が%を単位とする植被率である。回帰式の決定係数Rは0.7128である。相関係数Rは0.8以上であり植被率と籾数との間には強い相関が存在する。
 表1、表2は、後方散乱強度と生育値との回帰分析で求めた相関係数Rの一覧である。表1、表2には、前期(DOY172~194)、中期(DOY194~238)、後期(DOY238~)それぞれと、それら全体の期間とについて、HH偏波、VV偏波の後方散乱強度と茎数、草丈及び植被率との間での相関係数Rが示されている。表1は入射角49.8度の場合の結果を示しており、表2は入射角21.8度の場合の結果を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 この分析結果は、いずれの入射角でも最高分げつ期に対応する前期(DOY172~194)にて後方散乱強度と各生育値との相関係数Rは0.8以上となり、強い正の相関があることを示している。また、前期・中期・後期の全体でも相関が存在し得ることを示している。例えば、入射角49.8度の場合の草丈及び植被率についてはHH偏波及びVV偏波に対する相関係数Rは0.7以上、茎数とHH偏波との相関係数は0.5以上となり、いずれもやや強い正の相関を示している。
 次に入射角への依存性に着目すると、前期(DOY172~194)の茎数について、入射角49.8度の場合の方が21.8度の場合よりも強い相関を示すという結果が得られた。これは、定性的には水稲の真上からマイクロ波を照射するよりも横方向から照射する方が後方散乱強度に茎数の影響が大きく現れるということであり、感覚的には、真上から水稲を見た場合よりも横方向から見た場合の方が茎数を把握し易いのと同様であると解することができる。
 図7、図8は入射角49.8度についての表1にて特に高い相関係数Rが得られた条件での後方散乱強度と生育値との相関を示すグラフであり、図7は、前期(DOY172~194)のHH偏波での後方散乱強度(横軸)と茎数(縦軸)との関係を示し、図8は、前期(DOY172~194)のVV偏波での後方散乱強度(横軸)と草丈(縦軸)との関係を示している。
 図9、図10は入射角21.8度の場合において図7、図8に対応する条件での後方散乱強度と生育値との相関を示すグラフであり、図9は、前期(DOY172~194)のHH偏波での後方散乱強度(横軸)と茎数(縦軸)との関係を示し、図10は、前期(DOY172~194)のVV偏波での後方散乱強度(横軸)と草丈(縦軸)との関係を示している。
 図11は、上述の各種変数間の相関関係をまとめた説明図である。図11には、SARにより取得される各偏波方向(HH偏波、VV偏波)の後方散乱強度と、生育期前半に実測可能な生育的特徴のうち茎数、植被率、草丈(又は草高)と、収量と直接的に関係するものの生育期後半にならなければ実測できない籾数や穂数といった収量構成要素との間の関係が示されている。図11において項目間の線は正の相関の有無を示し、実線の太さは相関係数Rに応じて3段階に変えており、太い方からR≧0.9の場合、0.9>R≧0.8の場合、0.8>R≧0.7の場合を表している。なお、草丈と穂数、籾数との間の点線は品種ごとであれば相関が認められることを表している。
 例えば、前期(DOY172~194)にて、各偏波方向(HH偏波、VV偏波)の後方散乱強度は、茎数、植被率、草丈(又は草高)と正の相関を有し、当該相関は水稲の品種に依存しない。また、茎数及び植被率は籾数や穂数と正の相関を有し、当該相関も水稲の品種に依存しない。すなわち、後方散乱強度から茎数又は植被率を推定する収量予測式は、各圃場にどのような品種が植え付けされているかの情報を要さずに収量を予測するのに利用可能であり、茎数及び植被率はこの点で、SAR画像を用いて複数の圃場を対象とした広範囲な収量予測を行う収量予測式の変数として好適である。なお、各圃場に植え付けられた品種の情報を利用すれば、後方散乱強度から草丈又は草高を推定する収量予測式によっても収量を予測可能である。
 生育期前半に実測可能な生育的特徴のうち茎数は、図4の説明で述べたように、籾数との相関係数が、植被率等の他の生育的特徴と籾数との相関係数より大きい。また、茎数は今回測定した2種類の入射角のいずれでも、また2種類の偏波モードのいずれでも後方散乱強度と非常に強い相関を有する。これらの点で、収量予測式を生成して後方散乱強度から推定値を求める生育的特徴として、茎数は特に好適である。
 後方散乱強度の測定値から茎数の推定値を算出する収量予測式を生成する例を具体的に説明する。例えば、最高分げつ期内の複数の時期にて、標本圃場が存在する観測対象領域のHH偏波及びVV偏波のSAR画像を撮影する。また、その撮影と同時期(撮影と同日又は近い日)に標本圃場を現地調査して茎数を測定し標本圃場ごとの茎数の平均値を求める。SAR画像及び茎数の現地調査データは、水稲収量予測システム2に入力される。水稲収量予測システム2の収量予測式算出部30は、例えば、SAR画像における各標本圃場に対応する画素ごとに、HH偏波の後方散乱強度σHHとVV偏波の後方散乱強度σVVを求め、これらの平均値を独立変数とし、茎数ξを従属変数として重回帰分析を行い、次式で表される収量予測式におけるσHHの比例係数α、σVVの比例係数β、及び切片γを決定する。
ξ=α・σHH+β・σVV+γ   ・・・(2)
 このようにして収量予測式が決定され、α、β、γは記憶装置6に格納され、収量算出部34での収量予測処理に用いられる。なお、収量予測式は水稲の生育的特徴を捉えた式なので、水稲の生育的特徴に大幅な違いがなければ、基本的には例えば、毎年、標本圃場を対象としてSAR画像撮影や現地調査を行って生成する必要はなく、一度生成した収量予測式は異なる年の収量予測に繰り返して使用することが可能である。また、収量予測式は広範囲の標本圃場のSAR画像や現地調査データに基づいて生成されるので、基本的には場所依存性は小さく、その生成の際に用いた観測対象領域以外の領域での収量予測に適用しても良好な精度を期待できる。
 次に、上述のように生成された収量予測式を用いた収量予測処理について説明する。収量の予測対象領域のHH偏波及びVV偏波のSAR画像を撮影し、水稲収量予測システム2に入力する。上述のように茎数と後方散乱強度との相関は前期(DOY172~194)において高くなるので、例えば、SAR画像の撮影は最高分げつ期の辺りで行うことが好適である。
 収量算出部34は、圃場枠データに基づいてSAR画像から圃場内に対応する画素ごとにHH偏波及びVV偏波の後方散乱強度σHH,σVVを抽出し、これら独立変数と記憶装置6に格納されているα,β,γとから(2)式を計算し、当該画素に対応する領域内の茎数の推定値ξを求める。
 上述のように茎数は水稲の収量構成要素である籾数と正の相関を有するので、収量の相対的な多寡の判定は茎数の推定値ξに基づいて行うことが可能であるが、籾数や重量で表された収量を求める場合には、茎数の推定値ξをこれらの値に換算する。茎数から籾数や重量への換算式は、それらの間に存在する相関関係から予め求めて記憶装置6に格納しておき、収量算出部34はこれを利用して換算を行う。なお、茎数の推定値ξは、圃場単位で求めた値の集計値とする。例えば、茎数の推定値ξを圃場単位で求めた値の平均値とし、圃場単位の水稲収量予測分布図等にまとめることにより、営農指導を行うユーザのニーズを反映することができる。
 上述の説明では、収量予測式は茎数を推定するものを例示したが、上述した植被率、草丈、草高を推定する式を生成することもできる。また、HH偏波の後方散乱強度σHHとVV偏波の後方散乱強度σVVとを独立変数とした重回帰分析ではなく、σHHとσVVとのいずれか一方を用いた単回帰分析による収量予測式を生成し、利用することもできる。
 以上説明した本発明の水稲収量予測モデル生成方法、水稲収量予測方法によれば、SAR画像を用い生育期前期にて広範囲の水稲の収量の予測が可能となる。SAR画像は、全天候型であるために、雨や雲に左右されず、水稲圃場を観測し、状況を把握することが可能である。このように天候の影響を受けずに観測が可能であることに加え、広範囲を極めて短時間で観測可能であることから、リアルタイムに水稲圃場の状況を把握でき、さらに生育期前期という早い時点で収量の予測結果を活用可能になるので、適時かつ適切な栽培管理、生産管理の指導が可能となる。また、広範囲の圃場を一括して把握することが可能となる。さらに、農林水産省が実施している現地調査による水稲作況調査が隔測手段で可能となる。
 本実施形態では衛星SARを用いる例を説明したが、航空機SARなど他の飛翔体搭載のSARを用いて本発明を実施することもできる。

 

Claims (6)

  1.  圃場にて栽培される水稲の収量の予測に用いる予測モデルを生成する方法であって、
     飛翔体に搭載した合成開口レーダにより標本圃場に関する後方散乱強度である標本散乱強度を測定する標本散乱強度測定ステップと、
     前記標本散乱強度の測定と同時期に、前記水稲の穂数又は籾数と相関を有する注目生育指標を表す標本生育値を測定する標本生育値測定ステップと、
     前記標本散乱強度と前記標本生育値との相関に基づき、前記予測モデルとして、前記後方散乱強度の測定値から前記注目生育指標の推定値を算出する関係式を求めるステップと、
     を有し、
     前記注目生育指標は、前記水稲の茎数、草丈、草高又は植被率で構成されること、
     を特徴とする水稲収量予測モデル生成方法。
  2.  請求項1に記載の水稲収量予測モデル生成方法において、
     前記標本散乱強度測定ステップ及び前記標本生育値測定ステップは、前記標本圃場の前記水稲の最高分げつ期に行われること、を特徴とする水稲収量予測モデル生成方法。
  3.  請求項1に記載の水稲収量予測モデル生成方法において、
     前記注目生育指標は前記水稲の茎数であること、を特徴とする水稲収量予測モデル生成方法。
  4.  請求項1から請求項3のいずれか1つに記載の水稲収量予測モデル生成方法により得られた前記関係式を用いて、圃場における水稲の収量を予測する水稲収量予測方法であって、
     前記圃場に関し前記合成開口レーダにより前記後方散乱強度を測定する圃場観測ステップと、
     前記圃場観測ステップにて測定された前記後方散乱強度から前記関係式に基づいて前記注目生育指標の値を推定する生育指標値推定ステップと、
     を有することを特徴とする水稲収量予測方法。
  5.  請求項4に記載の水稲収量予測方法において、
     前記圃場観測ステップは、前記圃場の前記水稲の最高分げつ期に行われること、を特徴とする水稲収量予測方法。
  6.  請求項4に記載の水稲収量予測方法において、
     前記生育指標値推定ステップは、前記合成開口レーダの画像の各画素における前記後方散乱強度から前記関係式に基づいて前記注目生育指標の値を推定し、当該指標値を前記圃場内において集計すること、を特徴とする水稲収量予測方法。
PCT/JP2011/053763 2010-02-22 2011-02-22 水稲収量予測モデル生成方法、及び水稲収量予測方法 WO2011102520A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010036366A JP2011167163A (ja) 2010-02-22 2010-02-22 水稲収量予測モデル生成方法、及び水稲収量予測方法
JP2010-036366 2010-02-22

Publications (1)

Publication Number Publication Date
WO2011102520A1 true WO2011102520A1 (ja) 2011-08-25

Family

ID=44483103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053763 WO2011102520A1 (ja) 2010-02-22 2011-02-22 水稲収量予測モデル生成方法、及び水稲収量予測方法

Country Status (2)

Country Link
JP (1) JP2011167163A (ja)
WO (1) WO2011102520A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048898A (ja) * 2016-09-21 2018-03-29 日本電気株式会社 画像処理装置、画像処理方法及びプログラム
CN107944377A (zh) * 2017-11-20 2018-04-20 中交信息技术国家工程实验室有限公司 一种交通基础设施安全监控方法和系统
CN108982369A (zh) * 2018-04-28 2018-12-11 中国农业大学 融合gf-1wfv和modis数据的地块尺度作物长势监测方法
CN109212528A (zh) * 2018-10-30 2019-01-15 中国科学院遥感与数字地球研究所 一种多维层析sar古迹遗址形变监测方法
CN109299427A (zh) * 2018-09-03 2019-02-01 武汉轻工大学 大米出米率计算方法、系统、服务器及存储介质
CN109615150A (zh) * 2018-12-29 2019-04-12 航天信息股份有限公司 一种确定水稻气象产量的方法和系统
CN109863530A (zh) * 2016-10-19 2019-06-07 巴斯夫农化商标有限公司 确定谷穗的谷粒重量
US20190179009A1 (en) * 2017-12-08 2019-06-13 International Business Machines Corporation Crop classification and growth tracking with synthetic aperture radar
US10474770B2 (en) 2014-08-27 2019-11-12 Nec Corporation Simulation device, simulation method, and memory medium
CN110716198A (zh) * 2019-09-09 2020-01-21 中科卫星应用德清研究院 一种vv极化单时相高频微波水稻估产的方法
EP3647816A1 (en) * 2018-10-30 2020-05-06 Christian-Albrechts-Universität zu Kiel Grassland monitoring by earth observation technologies
CN112819846A (zh) * 2021-01-27 2021-05-18 成都四象纵横遥感科技有限公司 一种面向多云雨地区的基于多载荷遥感图像的水稻估产方法
CN113449984A (zh) * 2021-06-25 2021-09-28 中国水利水电科学研究院 一种芦苇资源量评估方法
CN113670249A (zh) * 2017-03-08 2021-11-19 贵州大学 一种测定水稻叶面积率的方法
CN113988376A (zh) * 2021-09-29 2022-01-28 南京物链云农业科技有限公司 一种水稻生育期预测方法、系统及装置
CN114545410A (zh) * 2022-02-21 2022-05-27 中国农业大学 基于合成孔径雷达双极化数据相干性的作物倒伏监测方法
CN117556956A (zh) * 2023-11-24 2024-02-13 中国科学院空天信息创新研究院 一种水稻单位面积产量估计方法及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5632513B2 (ja) * 2013-07-24 2014-11-26 三菱スペース・ソフトウエア株式会社 観測装置
JP7169022B2 (ja) * 2019-03-18 2022-11-10 株式会社ナイルワークス 収穫量予測システム、収穫量予測方法、および収穫量予測プログラム、ならびに収穫時期予測システム
JP7211888B2 (ja) * 2019-04-25 2023-01-24 株式会社パスコ 農業支援装置及び農業支援プログラム
JP2023134978A (ja) * 2022-03-15 2023-09-28 株式会社Nttドコモ 穂数予測装置
CN115205691B (zh) * 2022-09-15 2023-01-13 江西农业大学 一种水稻种植区域识别方法、装置、存储介质及设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NAOKI ISHIZUKA: "Mizuine Sakutsuke Menseki Keisoku eno Gosei Kaiko Rader (SAR) no Riyo", NATIONAL INSTITUTE FOR AGRO-ENVIRONMENTAL SCIENCES HOKOKU, no. 24, 2006, pages 95 - 151 *
TOMOHISA KONISHI: "Remote Sensing Data o Mochiita Mizuine Sakutsuke Ryoiki no Chushutsu to Seiiku Jokyo no Kanshi ni Kansuru Kenkyu", OSAKA PREFECTURE UNIVERSITY HAKASE RONBUN, January 2008 (2008-01-01), pages 69 - 104 *
TOSHIMICHI WATANABE ET AL.: "Nogyoyo Remote Sensing Kaiseki Sochi (ARSAS) Oyobi Landsat MSS Data o Mochiita Kyushu Chiho ni Okeru Mizuine Shuryo Suitei no Kokoromi", NATIONAL INSTITUTE FOR AGRO- ENVIRONMENTAL SCIENCES HOKOKU, no. 4, 1988, pages 1 - 19 *
YASUNORI NAKAJIMA ET AL.: ""Mizuine 'Koshihikari' no Shuryo, Seiiku Yosoku no Tameno Yuko na Shihyo"", AICHI AGRICULTURAL RESEARCH CENTER KENKYU HOKOKU, no. 22, October 1990 (1990-10-01), pages 13 - 20 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10474770B2 (en) 2014-08-27 2019-11-12 Nec Corporation Simulation device, simulation method, and memory medium
JP7152131B2 (ja) 2016-09-21 2022-10-12 日本電気株式会社 画像処理装置、画像処理方法及びプログラム
JP2018048898A (ja) * 2016-09-21 2018-03-29 日本電気株式会社 画像処理装置、画像処理方法及びプログラム
CN109863530B (zh) * 2016-10-19 2022-11-15 巴斯夫农化商标有限公司 用于确定谷穗的谷粒重量的方法、系统和计算机可读存储介质
CN109863530A (zh) * 2016-10-19 2019-06-07 巴斯夫农化商标有限公司 确定谷穗的谷粒重量
CN113670249A (zh) * 2017-03-08 2021-11-19 贵州大学 一种测定水稻叶面积率的方法
CN107944377A (zh) * 2017-11-20 2018-04-20 中交信息技术国家工程实验室有限公司 一种交通基础设施安全监控方法和系统
CN107944377B (zh) * 2017-11-20 2020-05-15 中交信息技术国家工程实验室有限公司 一种交通基础设施安全监控方法和系统
US20190179009A1 (en) * 2017-12-08 2019-06-13 International Business Machines Corporation Crop classification and growth tracking with synthetic aperture radar
US10705204B2 (en) * 2017-12-08 2020-07-07 International Business Machines Corporation Crop classification and growth tracking with synthetic aperture radar
CN108982369A (zh) * 2018-04-28 2018-12-11 中国农业大学 融合gf-1wfv和modis数据的地块尺度作物长势监测方法
CN108982369B (zh) * 2018-04-28 2020-09-01 中国农业大学 融合gf-1wfv和modis数据的地块尺度作物长势监测方法
CN109299427B (zh) * 2018-09-03 2023-08-01 武汉轻工大学 大米出米率计算方法、系统、服务器及存储介质
CN109299427A (zh) * 2018-09-03 2019-02-01 武汉轻工大学 大米出米率计算方法、系统、服务器及存储介质
EP3647816A1 (en) * 2018-10-30 2020-05-06 Christian-Albrechts-Universität zu Kiel Grassland monitoring by earth observation technologies
CN109212528A (zh) * 2018-10-30 2019-01-15 中国科学院遥感与数字地球研究所 一种多维层析sar古迹遗址形变监测方法
CN109212528B (zh) * 2018-10-30 2020-08-04 中国科学院遥感与数字地球研究所 一种多维层析sar古迹遗址形变监测方法
CN109615150B (zh) * 2018-12-29 2023-04-18 航天信息股份有限公司 一种确定水稻气象产量的方法和系统
CN109615150A (zh) * 2018-12-29 2019-04-12 航天信息股份有限公司 一种确定水稻气象产量的方法和系统
CN110716198B (zh) * 2019-09-09 2023-04-07 中科卫星应用德清研究院 一种vv极化单时相高频微波水稻估产的方法
CN110716198A (zh) * 2019-09-09 2020-01-21 中科卫星应用德清研究院 一种vv极化单时相高频微波水稻估产的方法
CN112819846A (zh) * 2021-01-27 2021-05-18 成都四象纵横遥感科技有限公司 一种面向多云雨地区的基于多载荷遥感图像的水稻估产方法
CN113449984A (zh) * 2021-06-25 2021-09-28 中国水利水电科学研究院 一种芦苇资源量评估方法
CN113449984B (zh) * 2021-06-25 2023-12-29 中国水利水电科学研究院 一种芦苇资源量评估方法
CN113988376A (zh) * 2021-09-29 2022-01-28 南京物链云农业科技有限公司 一种水稻生育期预测方法、系统及装置
CN113988376B (zh) * 2021-09-29 2023-08-29 南京物链云农业科技有限公司 一种水稻生育期预测方法、系统及装置
CN114545410A (zh) * 2022-02-21 2022-05-27 中国农业大学 基于合成孔径雷达双极化数据相干性的作物倒伏监测方法
CN114545410B (zh) * 2022-02-21 2024-04-19 中国农业大学 基于合成孔径雷达双极化数据相干性的作物倒伏监测方法
CN117556956A (zh) * 2023-11-24 2024-02-13 中国科学院空天信息创新研究院 一种水稻单位面积产量估计方法及装置
CN117556956B (zh) * 2023-11-24 2024-06-11 中国科学院空天信息创新研究院 一种水稻单位面积产量估计方法及装置

Also Published As

Publication number Publication date
JP2011167163A (ja) 2011-09-01

Similar Documents

Publication Publication Date Title
WO2011102520A1 (ja) 水稲収量予測モデル生成方法、及び水稲収量予測方法
Gao et al. Mapping crop phenology in near real-time using satellite remote sensing: Challenges and opportunities
Shang et al. Mapping spatial variability of crop growth conditions using RapidEye data in Northern Ontario, Canada
Dente et al. Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield
Duan et al. Remote estimation of grain yield based on UAV data in different rice cultivars under contrasting climatic zone
McNairn et al. Monitoring soil moisture to support risk reduction for the agriculture sector using RADARSAT-2
Huang et al. BESS-Rice: A remote sensing derived and biophysical process-based rice productivity simulation model
Vuolo et al. Retrieval of biophysical vegetation products from RapidEye imagery
Agam et al. Spatial distribution of water status in irrigated olive orchards by thermal imaging
Warren et al. Agricultural applications of high-resolution digital multispectral imagery
Zhao et al. Forecasting the wheat powdery mildew (Blumeria graminis f. Sp. tritici) using a remote sensing-based decision-tree classification at a provincial scale
JP4810604B2 (ja) 水稲作付け状況把握システム、水稲作付け状況把握方法、及び水稲作付け状況把握プログラム
CN114782834A (zh) 基于比值法的农田土壤水分反演方法及系统
Parihar et al. FASAL: An integrated approach for crop assessment and production forecasting
Afrasiabian et al. Effects of spatial, temporal, and spectral resolutions on the estimation of wheat and barley leaf area index using multi-and hyper-spectral data (case study: Karaj, Iran)
Ouaadi et al. C-band radar data and in situ measurements for the monitoring of wheat crops in a semi-arid area (center of Morocco)
Karjalainen et al. Agricultural monitoring using Envisat alternating polarization SAR images
Zhou et al. Improved yield prediction of ratoon rice using unmanned aerial vehicle-based multi-temporal feature method
Berd et al. The use of NDVI algorithm in predicting the productivity of rice fields of Talang District of Solok Regency
Sukojo et al. Landsat 8 satellite imagery analysis for rice production estimates (Case study: Bojonegoro regencys)
Bach et al. Integrative use of multitemporal rapideye and TerraSAR-X data for agricultural monitoring
Gurdak et al. Feasibility study of vegetation indices derived from Sentinel-2 and PlanetScope satellite images for validating the LAI biophysical parameter to monitoring development stages of winter wheat
Kumari et al. C-Band RISAT-1 data for crop growth assessment of rice
Bharteey et al. Remote sensing application in precision agriculture: A review
Wakamori et al. Estimation and monitoring of rice growth stages in northern part of Japan using constellation satellite and GIS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744806

Country of ref document: EP

Kind code of ref document: A1