JP4810604B2 - 水稲作付け状況把握システム、水稲作付け状況把握方法、及び水稲作付け状況把握プログラム - Google Patents
水稲作付け状況把握システム、水稲作付け状況把握方法、及び水稲作付け状況把握プログラム Download PDFInfo
- Publication number
- JP4810604B2 JP4810604B2 JP2009298470A JP2009298470A JP4810604B2 JP 4810604 B2 JP4810604 B2 JP 4810604B2 JP 2009298470 A JP2009298470 A JP 2009298470A JP 2009298470 A JP2009298470 A JP 2009298470A JP 4810604 B2 JP4810604 B2 JP 4810604B2
- Authority
- JP
- Japan
- Prior art keywords
- field
- paddy rice
- rice
- planting
- paddy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241000209094 Oryza Species 0.000 title claims description 160
- 235000007164 Oryza sativa Nutrition 0.000 title claims description 160
- 235000009566 rice Nutrition 0.000 title claims description 160
- 238000000034 method Methods 0.000 title claims description 32
- 238000007621 cluster analysis Methods 0.000 claims description 27
- 238000004458 analytical method Methods 0.000 claims description 20
- 238000002360 preparation method Methods 0.000 claims description 15
- 238000012545 processing Methods 0.000 description 22
- 244000068988 Glycine max Species 0.000 description 15
- 235000010469 Glycine max Nutrition 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000005259 measurement Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000002054 transplantation Methods 0.000 description 2
- 241000406668 Loxodonta cyclotis Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G22/00—Cultivation of specific crops or plants not otherwise provided for
- A01G22/20—Cereals
- A01G22/22—Rice
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G7/00—Botany in general
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/9021—SAR image post-processing techniques
- G01S13/9027—Pattern recognition for feature extraction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/024—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using polarisation effects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/411—Identification of targets based on measurements of radar reflectivity
- G01S7/412—Identification of targets based on measurements of radar reflectivity based on a comparison between measured values and known or stored values
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Theoretical Computer Science (AREA)
- Botany (AREA)
- Environmental Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Forests & Forestry (AREA)
- Image Processing (AREA)
- Radar Systems Or Details Thereof (AREA)
- Image Analysis (AREA)
Description
σ0[dB]=10log10(k・|DN|2・sinθloc )
χ(1)>χ(2)
χ(2)<χ(3) ・・・(1)
χ(3)>χ(4)
χ(1)<χ(2)
χ(2)>χ(3) ・・・(2)
χ(3)>χ(4)
となり、貯水池では、
χ(1)>χ(2)
χ(2)>χ(3) ・・・(3)
χ(3)>χ(4)
となり、これら(2),(3)式は(1)式とは相違する。
Claims (5)
- Xバンドのマイクロ波を用いた合成開口レーダにより撮影され、後方散乱波の強度に応じた画素値を有するレーダ画像に基づいて、観測対象領域内に設けられる圃場のうち水稲を作付けされた水稲圃場を把握する水稲作付け状況把握システムであって、
前記水稲圃場への入水から苗の植え付けまでの田植え期と、前記水稲圃場への入水前である圃場準備期及び前記水稲圃場内の水稲が植え付け時の前記苗よりも葉を展開させた状態となる水稲生長期の少なくとも一方とを含む複数時期に撮影された前記観測対象領域の前記レーダ画像を分析対象画像とし、前記観測対象領域に複数のサンプル点を設定して、前記各分析対象画像の前記サンプル点での前記画素値の組で定義される座標を有するサンプルをクラスター分析により複数のクラスに分類するクラスター分析手段と、
注目圃場内の前記サンプル点に対応する前記サンプルの前記クラス毎の個数が前記クラス間での大小関係に関する所定の判別式を満たすか否かに基づいて、当該注目圃場が前記水稲圃場であるか否かを判定する圃場判定手段と、
を有することを特徴とする水稲作付け状況把握システム。 - 請求項1に記載の水稲作付け状況把握システムにおいて、
前記観測対象領域にて前記水稲圃場であることが定まっている基準圃場についての前記クラス毎の前記サンプルの個数に基づいて前記判別式を求める判別式決定手段を有すること、を特徴とする水稲作付け状況把握システム。 - 請求項1又は請求項2に記載の水稲作付け状況把握システムにおいて、
前記クラスター分析は、初期クラス数を5以上に設定したISODATA法であること、を特徴とする水稲作付け状況把握システム。 - Xバンドのマイクロ波を用いた合成開口レーダにより撮影され、後方散乱波の強度に応じた画素値を有するレーダ画像に基づき、演算装置を用いて、観測対象領域内に設けられる圃場のうち水稲を作付けされた水稲圃場を把握する水稲作付け状況把握方法であって、
前記水稲圃場への入水から苗の植え付けまでの田植え期と、前記水稲圃場への入水前である圃場準備期及び前記水稲圃場内の水稲が植え付け時の前記苗よりも葉を展開させた状態となる水稲生長期の少なくとも一方とを含む複数時期に撮影された前記観測対象領域の前記レーダ画像を分析対象画像とし、前記観測対象領域に複数のサンプル点を設定して、前記各分析対象画像の前記サンプル点での前記画素値の組で定義される座標を有するサンプルをクラスター分析により複数のクラスに分類するクラスター分析ステップと、
注目圃場内の前記サンプル点に対応する前記サンプルの前記クラス毎の個数が前記クラス間での大小関係に関する所定の判別式を満たすか否かに基づいて、当該注目圃場が前記水稲圃場であるか否かを判定する圃場判定ステップと、
を有することを特徴とする水稲作付け状況把握方法。 - コンピュータを、Xバンドのマイクロ波を用いた合成開口レーダにより撮影され、後方散乱波の強度に応じた画素値を有するレーダ画像に基づいて、観測対象領域内に設けられる圃場のうち水稲を作付けされた水稲圃場を把握するシステムとして機能させるための水稲作付け状況把握プログラムであって、
当該コンピュータに、
前記水稲圃場への入水から苗の植え付けまでの田植え期と、前記水稲圃場への入水前である圃場準備期及び前記水稲圃場内の水稲が植え付け時の前記苗よりも葉を展開させた状態となる水稲生長期の少なくとも一方とを含む複数時期に撮影された前記観測対象領域の前記レーダ画像を分析対象画像とし、前記観測対象領域に複数のサンプル点を設定して、前記各分析対象画像の前記サンプル点での前記画素値の組で定義される座標を有するサンプルをクラスター分析により複数のクラスに分類するクラスター分析機能と、
注目圃場内の前記サンプル点に対応する前記サンプルの前記クラス毎の個数が前記クラス間での大小関係に関する所定の判別式を満たすか否かに基づいて、当該注目圃場が前記水稲圃場であるか否かを判定する圃場判定機能と、
を実現させることを特徴とする水稲作付け状況把握プログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009298470A JP4810604B2 (ja) | 2009-12-28 | 2009-12-28 | 水稲作付け状況把握システム、水稲作付け状況把握方法、及び水稲作付け状況把握プログラム |
PCT/JP2010/063723 WO2011080944A1 (ja) | 2009-12-28 | 2010-08-12 | 水稲作付け状況把握システム、水稲作付け状況把握方法、及び水稲作付け状況把握プログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009298470A JP4810604B2 (ja) | 2009-12-28 | 2009-12-28 | 水稲作付け状況把握システム、水稲作付け状況把握方法、及び水稲作付け状況把握プログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011138356A JP2011138356A (ja) | 2011-07-14 |
JP4810604B2 true JP4810604B2 (ja) | 2011-11-09 |
Family
ID=44226365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009298470A Active JP4810604B2 (ja) | 2009-12-28 | 2009-12-28 | 水稲作付け状況把握システム、水稲作付け状況把握方法、及び水稲作付け状況把握プログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4810604B2 (ja) |
WO (1) | WO2011080944A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6070094B2 (ja) * | 2012-11-13 | 2017-02-01 | 富士通株式会社 | 耕作地判定装置、方法及びプログラム |
US10705204B2 (en) * | 2017-12-08 | 2020-07-07 | International Business Machines Corporation | Crop classification and growth tracking with synthetic aperture radar |
CN109471106B (zh) * | 2018-11-22 | 2021-04-13 | 上海海事大学 | 结合聚类分析和边界跟踪法的sar海洋内波条纹识别方法 |
CN112800845A (zh) * | 2020-12-31 | 2021-05-14 | 广州极飞科技股份有限公司 | 叶龄识别方法、装置、电子设备及可读存储介质 |
WO2023210733A1 (ja) * | 2022-04-28 | 2023-11-02 | 株式会社クボタ | 水田メタン削減支援装置、水田メタン削減支援システム、水田メタン削減支援方法、情報処理装置、農業支援システム、農業支援方法 |
CN117690024B (zh) * | 2023-12-18 | 2024-06-14 | 宁波大学 | 一种针对多种植模式水稻田的一体化遥感识别方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3564540B2 (ja) * | 2001-09-07 | 2004-09-15 | 独立行政法人情報通信研究機構 | Sar画像を利用した土地利用分類処理方法 |
-
2009
- 2009-12-28 JP JP2009298470A patent/JP4810604B2/ja active Active
-
2010
- 2010-08-12 WO PCT/JP2010/063723 patent/WO2011080944A1/ja active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2011138356A (ja) | 2011-07-14 |
WO2011080944A1 (ja) | 2011-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Canisius et al. | Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data | |
Guo et al. | Integrating spectral and textural information for identifying the tasseling date of summer maize using UAV based RGB images | |
WO2011102520A1 (ja) | 水稲収量予測モデル生成方法、及び水稲収量予測方法 | |
Mao et al. | An improved approach to estimate above-ground volume and biomass of desert shrub communities based on UAV RGB images | |
Huang et al. | Jointly assimilating MODIS LAI and ET products into the SWAP model for winter wheat yield estimation | |
Saberioon et al. | Assessment of rice leaf chlorophyll content using visible bands at different growth stages at both the leaf and canopy scale | |
Zheng et al. | Remote sensing of crop residue and tillage practices: Present capabilities and future prospects | |
Merzouki et al. | Mapping soil moisture using RADARSAT-2 data and local autocorrelation statistics | |
Jiao et al. | An anisotropic flat index (AFX) to derive BRDF archetypes from MODIS | |
Davidson et al. | The influence of vegetation index and spatial resolution on a two-date remote sensing-derived relation to C4 species coverage | |
Liu et al. | Estimating potato above-ground biomass by using integrated unmanned aerial system-based optical, structural, and textural canopy measurements | |
Leng et al. | A practical algorithm for estimating surface soil moisture using combined optical and thermal infrared data | |
JP4810604B2 (ja) | 水稲作付け状況把握システム、水稲作付け状況把握方法、及び水稲作付け状況把握プログラム | |
Xu et al. | An improved approach to estimate ratoon rice aboveground biomass by integrating UAV-based spectral, textural and structural features | |
Jeong et al. | Development of Variable Threshold Models for detection of irrigated paddy rice fields and irrigation timing in heterogeneous land cover | |
CN114065643B (zh) | 基于sar和极化分解的种植物土壤含水量估算方法及系统 | |
Baig et al. | Above ground biomass estimation of Dalbergia sissoo forest plantation from dual-polarized ALOS-2 PALSAR data | |
Yi et al. | Evaluation of MODIS surface reflectance products for wheat leaf area index (LAI) retrieval | |
Wu et al. | Wheat leaf area index prediction using data fusion based on high-resolution unmanned aerial vehicle imagery | |
Bai et al. | A fast and robust method for plant count in sunflower and maize at different seedling stages using high-resolution UAV RGB imagery | |
Zhao et al. | Forecasting the wheat powdery mildew (Blumeria graminis f. Sp. tritici) using a remote sensing-based decision-tree classification at a provincial scale | |
Afrasiabian et al. | Effects of spatial, temporal, and spectral resolutions on the estimation of wheat and barley leaf area index using multi-and hyper-spectral data (case study: Karaj, Iran) | |
Ma et al. | Estimating vegetation water content of corn and soybean using different polarization ratios based on L-and S-band radar data | |
Jiang et al. | Desertification in the south Junggar Basin, 2000–2009: Part I. Spatial analysis and indicator retrieval | |
Goswami et al. | Estimation of nitrogen status and yield of rice crop using unmanned aerial vehicle equipped with multispectral camera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110329 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110802 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110822 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140826 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4810604 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |