WO2011080944A1 - 水稲作付け状況把握システム、水稲作付け状況把握方法、及び水稲作付け状況把握プログラム - Google Patents

水稲作付け状況把握システム、水稲作付け状況把握方法、及び水稲作付け状況把握プログラム Download PDF

Info

Publication number
WO2011080944A1
WO2011080944A1 PCT/JP2010/063723 JP2010063723W WO2011080944A1 WO 2011080944 A1 WO2011080944 A1 WO 2011080944A1 JP 2010063723 W JP2010063723 W JP 2010063723W WO 2011080944 A1 WO2011080944 A1 WO 2011080944A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
rice
paddy
planting
period
Prior art date
Application number
PCT/JP2010/063723
Other languages
English (en)
French (fr)
Inventor
秀樹 島村
篤史 木村
陽一 杉本
Original Assignee
株式会社パスコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パスコ filed Critical 株式会社パスコ
Publication of WO2011080944A1 publication Critical patent/WO2011080944A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/20Cereals
    • A01G22/22Rice
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9027Pattern recognition for feature extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/024Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using polarisation effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity
    • G01S7/412Identification of targets based on measurements of radar reflectivity based on a comparison between measured values and known or stored values

Definitions

  • the present invention relates to a paddy rice planting state grasping system, a paddy rice planting state grasping method, and a paddy rice planting state grasping program that use remote sensing technology to grasp a field where paddy rice has been planted.
  • the objectivity of the sample acquisition method for determining the threshold value for determining the flooded field and the threshold value determination method remains as a problem.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a rice planting situation grasping system, a rice planting situation grasping method, and a rice planting situation grasping program that do not depend on the threshold method.
  • the paddy rice planting state grasping system is provided in an observation target region based on a radar image which is photographed by a synthetic aperture radar using an X-band microwave and has a pixel value corresponding to the intensity of a backscattered wave.
  • a paddy rice planting state grasping system for grasping a paddy rice field planted with paddy rice, and a field planting period from entering the paddy field to planting seedlings and preparing the field before entering the paddy rice field
  • the radar image of the observation area taken at a plurality of periods including at least one of the growing season and at least one of the long-term paddy rice growth in which the rice in the paddy field is in a state where leaves are expanded more than the seedling at the time of planting
  • a sample having a plurality of sample points set in the observation target region and having coordinates defined by the set of pixel values at the sample points of each analysis target image.
  • Cluster analysis means for classifying pulls into a plurality of classes by cluster analysis, and whether the number of samples corresponding to the sample points in the field of interest satisfies a predetermined discriminant regarding the magnitude relationship between the classes And a field determination means for determining whether or not the field of interest is the paddy rice field.
  • the paddy rice planting status grasping system further includes a discriminant determining unit that obtains the discriminant based on the number of the samples for each class with respect to a reference field that is determined to be the paddy rice field in the observation target region. It can have.
  • a preferred aspect of the present invention is a paddy rice planting state grasping system in which the cluster analysis is an ISODATA method in which the number of initial classes is set to 5 or more.
  • the paddy rice planting state grasping method according to the present invention is observed using a computing device based on a radar image having a pixel value corresponding to the intensity of a backscattered wave, which is photographed by a synthetic aperture radar using an X-band microwave.
  • a radar image is set as an analysis target image, a plurality of sample points are set in the observation target region, and coordinates defined by the set of pixel values at the sample points of each analysis target image are set.
  • the paddy rice planting situation grasping program is based on a radar image captured by a synthetic aperture radar using X-band microwaves and having a pixel value corresponding to the intensity of a backscattered wave.
  • a paddy rice planting status grasping program for functioning as a system for grasping paddy rice fields in which paddy rice is planted among the fields provided in the paddy field, the rice planting period from entering the paddy rice field until planting seedlings And a plurality of periods including a field preparation period before entering the paddy rice field and at least one of the paddy rice growing period in which the paddy rice in the paddy field is expanded from the seedling at the time of planting.
  • the radar image of the observed region to be analyzed is set as an analysis target image, and a plurality of sample points are set in the observation target region.
  • a field determination function for determining whether or not the field of interest is the paddy rice field is realized based on whether or not the number of each class satisfies a predetermined discriminant regarding the magnitude relationship between the classes.
  • the present invention it is possible to more objectively grasp the rice planting situation without depending on the threshold method.
  • it is possible to observe the ground without being affected by clouds it is possible to grasp the cropping situation even in the rainy season from rice planting to the long-term in Japan.
  • appropriate cultivation management and production management can be determined.
  • FIG. 1 is a block diagram showing a schematic configuration of a paddy rice planting state grasping system 2 according to an embodiment.
  • This system classifies whether or not a field provided in the observation target region is a paddy rice field planted with rice based on a radar image (SAR image) of the observation target region captured by the SAR.
  • the system includes an arithmetic processing device 4, a storage device 6, an input device 8, and an output device 10.
  • the arithmetic processing unit 4 it is possible to make dedicated hardware for performing the processing of this system.
  • the arithmetic processing unit 4 is constructed using a computer and a program executed on the computer. Is done.
  • the arithmetic processing unit 4 is composed of a CPU (Central / Processing / Unit) of a computer, and functions as, for example, the cluster analysis unit 12, the field determination unit 14, and the discriminant determination unit 16, and further functions of various functions to be described later with reference to FIG. Realize the part.
  • CPU Central / Processing / Unit
  • the storage device 6 stores a program for causing the arithmetic processing unit 4 to function as the above means 12 to 16 and the like, other programs, and various data necessary for processing of this system.
  • the storage device 6 is used to hold a SAR image to be analyzed and a cluster image obtained by analysis.
  • the input device 8 is a keyboard, a mouse, etc., and is used by the user to operate the system.
  • the output device 10 is a display, a printer, or the like, and is used to display the analysis result of the rice planting situation obtained by this system to the user by screen display, printing, or the like.
  • data may be output to a device other than the present system.
  • the SAR image used in the present system is obtained by irradiating the ground with X-band microwaves and observing the backscattered wave, and has a pixel value corresponding to the intensity of the backscattered wave.
  • a backscattering coefficient ⁇ 0 expressed by the following equation can be used as a pixel value.
  • ⁇ 0 [dB] 10 log 10 (k ⁇
  • ⁇ 0 is expressed in decibel values
  • k is a coefficient for calibration and processor scaling
  • DN is an amplitude of backscattering
  • ⁇ loc is an incident angle.
  • an SAR image based on imaging data in the X band (wavelength: 3.1 cm) by TerraSAR-X which is a SAR satellite.
  • the imaging data used was acquired in the HH mode in which both transmission and reception are performed with horizontal polarization, and acquired in the VV mode in which both transmission and reception are performed with vertical polarization.
  • the TerraSAR-X shooting mode is a high resolution spotlight, data obtained by shooting a 10 km ⁇ 5 km area with a resolution of 2.2 m is acquired.
  • TerraSAR-X can shoot the same area at an interval of 11 days.
  • FIG. 2 is a graph showing the measurement results of the backscattering coefficient in a rice field, soybean field, and reservoir in a certain year in the HH mode.
  • FIG. 3 is a graph which shows the measurement result by the VV mode of the backscattering coefficient in a paddy rice field, a soybean field, and a reservoir. 2 and 3, the vertical axis represents the backscattering coefficient, the horizontal axis represents the photographing date, and the change over time before and after the rice planting period is represented.
  • the paddy rice field three cases (practice, early planting, late planting) in which the dry rice transplanting times are different are shown, and change curves 30 (denoted by ⁇ ), 32 (denoted by ⁇ ), 34 in FIG.
  • Each of these three paddy rice fields has a backscattering coefficient similar to that of the soybean field before entering the water, and the backscattering coefficient decreases corresponding to the time of transplantation from the time of entering water and approaches the level of the backscattering coefficient of the reservoir. After that, the backscattering coefficient increased with time and again reached the same level as in the soybean field. The characteristics of this change were common to the HH mode and VV mode.
  • paddy rice fields it is considered that the unevenness of the ground surface affects the backscattering and the backscattering coefficient becomes large during the rice paddying stage before water entry. In addition, the ground surface is covered with water during the period from water entry to transplantation.
  • Fig. 4 is a functional block diagram of this system.
  • the interface (I / F) unit 50 has a function of taking a captured SAR image into the present system.
  • the user sets the shooting time of the SAR image based on the paddy rice cultivation and the shooting cycle of the satellite, and the SAR image of the observation target area at the set shooting times is captured by the satellite.
  • the present system captures the SAR image thus taken.
  • the captured time-series SAR image is stored in the SAR image holding unit 52.
  • the storage device 6 is used as a SAR image holding unit.
  • the alignment processing unit 54 is based on map data 56 such as topographic maps and reference points (road intersections, buildings, etc.) with clear latitude and longitude so that SAR images of a plurality of periods can be superimposed on the map.
  • a geometric (position) correction process is performed on the SAR image.
  • the SAR image noise processing unit 58 processes noise of the SAR image.
  • the SAR image noise processing unit 58 performs a filter process on the SAR image after the alignment process, and removes noise such as speckle noise from the SAR image.
  • a median filter, a Frost filter, a Lee filter, or the like is used as the filter processing, and these are selected according to the noise characteristics of the SAR image. Note that the processing order of the alignment processing unit 54 and the SAR image noise processing unit 58 may be reversed.
  • the SAR image that has been subjected to noise removal processing is subjected to cluster analysis by the cluster analysis unit 60.
  • the SAR image that is the subject of cluster analysis is taken at one or both of those taken during the rice planting period, the field preparation period that is the period before the rice planting period, and the rice growing period that is the period after the rice planting period.
  • images in the rice planting period, the field preparation period, and the paddy rice growth period may be added to the two images of the two periods or the three images of the three periods, and these may be used as analysis target images.
  • the rice planting period corresponds to the period from entering the paddy rice field until planting rice seedlings.
  • the field preparation period is a period before entering the paddy rice field, such as a rice paddying period.
  • the long-term paddy rice growth is more than the seedling state at the time of planting, and the transplanted rice is rooted and the number of leaves (leaf age) is increased from the time of transplanting.
  • the long-term paddy rice growth can be made a period after about one week has passed since rice planting. More preferably, an SAR image at a time when the growth situation of rice is greatly changed from immediately after rice planting is used as an image of the paddy rice growth period.
  • two or three periods after the TerraSAR-X imaging period are selected as the imaging period of the paddy rice growth period from the time of imaging at the rice planting period.
  • the SAR image of April 20 is used as the image in the field preparation period
  • the SAR image on May 23 is used as the image in the rice planting period
  • the SAR image on June 25 is used as the image in the paddy rice growth period.
  • the cluster analysis unit 60 performs cluster analysis on samples defined at a plurality of sample points set in the observation target region.
  • a sample is defined by a set of pixel values of each analysis target image at a corresponding sample point.
  • the analysis target images are two images I 1 and I 2 obtained in two periods (one of the rice planting period and the field preparation period or the rice growing period)
  • the sample S at the sample point P is ,
  • And is defined by a set (d 1 , d 2 ) of pixel values d 1 , d 2 at the sample points P of the images I 1 , I 2 .
  • the sample S includes images I 1 , It is defined by a set (d 1 , d 2 , d 3 ) of pixel values d 1 , d 2 , d 3 at each sample point P of I 2 , I 3 .
  • the alignment processing unit 54 associates the sample points P defined in the observation target region with the pixels of the images I 1 , I 2 , and I 3 .
  • each pixel of the SAR image is associated with a sample point.
  • the cluster analysis unit 60 uses the ISODATA method as a cluster analysis method.
  • the k-means method which is a non-hierarchical method and an unsupervised classification method is also suitable.
  • a supervised classification method may be used.
  • a non-hierarchical method is suitable for cluster analysis in an image where the number of samples can be enormous, from the viewpoint of reducing the amount of calculation.
  • a hierarchical method can be used. is there.
  • the initial class number is set to 5 or more.
  • Various backscattering components contribute to the backscattering intensity represented by each pixel value of the SAR image.
  • a specular scattering component due to the water surface a scattering component due to the surface roughness of rice or soil, a corner reflection component of two surfaces due to buildings, and the like.
  • samples are classified into multiple classes by cluster analysis.
  • the observation area includes not only paddy rice fields but also various types of fields such as soybean and other crop fields, reservoirs, etc., and the cluster analysis classification results also include the contribution of backscattering from them. The influence of ingredients appears.
  • class identification numbers k are assigned in ascending order from the smallest average value of the distance from the center of the class to the sample belonging to the class. For example, the class having the smallest average distance is “class 1”.
  • the cluster image having pixel values corresponding to the class at each sample point is stored in the cluster image holding unit 62, and is output to a display device or the like when, for example, the analysis result of the rice planting situation is displayed.
  • the farm field frame determination unit 64 has a function of determining the position of the farm field as a planting unit in the observation target area, and obtains a farm field frame representing the range of each farm field. For example, the field frame determination unit 64 determines the field frame based on an aerial photograph or a numerical map issued by the Geographical Survey Institute. Note that the field frame data may not be extracted by the present system, but the field frame data extracted in advance may be input from the outside using GIS (Geographic Information System) or the like.
  • GIS Geographic Information System
  • the field feature amount calculation unit 66 superimposes the field frame on the cluster image, and extracts the cluster image in the field frame for each field. And the ratio of the number of samples of each class in the extracted cluster image of a field is calculated
  • FIG. 5 is a graph showing the characteristic quantities of the rice field, soybean field, and reservoir when the number of classes is set to 5 and the measurement results in the HH mode are analyzed.
  • FIG. 6 is a graph showing the characteristic amounts of the rice field, soybean field, and reservoir when the number of classes is set to 5 and the measurement result in the VV mode is analyzed.
  • 5 (a) and 6 (a) are the conventional paddy rice fields
  • FIG. 5 (b) and FIG. 6 (b) are the soybean fields
  • FIG. 5 (c) and FIG. 6 (c) are the features of the reservoir.
  • the feature quantity ⁇ (k) is expressed as a percentage on the vertical axis, and classes are arranged on the horizontal axis. As shown in FIGS.
  • ⁇ (1) and ⁇ (3) are relatively large and ⁇ (2) is small.
  • ⁇ (2) is larger than other feature values.
  • ⁇ (1) is larger than other feature values.
  • the discriminant-determining unit 68 determines a discriminant for determining whether or not the field of interest is a paddy rice field with respect to the magnitude relationship between the classes of these feature values. Specifically, in this system, a reference field that is known in advance to be a paddy rice field is designated by a user, a feature amount of a cluster image of the designated field is calculated, and a discriminant formula is calculated based on the feature amount. Ask for. The discriminant is not determined by the present system, and a discriminant determined in advance by a similar method may be set from the outside.
  • the discriminant equation indicating the paddy rice field is the following equation. ⁇ (1)> ⁇ (2) ⁇ (2) ⁇ (3) (1) ⁇ (3)> ⁇ (4)
  • the farm field determination unit 70 checks whether each farm field in the observation target region satisfies the discriminant, and determines whether the farm field is a paddy rice field. The determined results are collected by the output unit 72 into a classification diagram of the paddy rice field, or output to a list of planted items in each field. Further, a classification chart of paddy rice fields, a list of planted items, and the like can be presented to the user by the output device 10.
  • the field determination unit 70 determines that a field that satisfies the above-described discriminant (equation (1)) is a paddy field, and determines that a field that does not satisfy is not a paddy field.
  • this system it is possible to grasp the planting situation at the same time as the rice planting period by the analysis based on the two images of the field preparation period and the rice planting period. In addition, it is possible to grasp the planting situation at a certain time with the images of the two periods, and the cost of the field survey can be reduced. Further, since the number of images is small, it is possible to reduce cost cost and time cost. Furthermore, since the planting status is grasped by a certain work, objectivity can be maintained and human errors can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Theoretical Computer Science (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

 SARにより撮影された画像に基づいて水稲作付け状況を把握する際に、湛水された圃場を決定する閾値の客観性の確保が難しい。 クラスター分析部60は、圃場に入水し苗を移植する田植え期と、入水前である圃場準備期及び移植した水稲が苗より生長した状態となる水稲生長期の少なくとも一方とを含む2時期又は3時期についての観測対象領域のSAR画像を取得し、観測対象領域の各点での画素値の組をサンプルとしてクラスター分析を行い5クラス以上に分類する。圃場判定部70は、観測対象領域に存在する注目圃場内のサンプルのクラス毎の個数がクラス間での大小関係に関する所定の判別式を満たすか否かに基づいて、当該注目圃場が水稲圃場であるか否かを判定する。

Description

水稲作付け状況把握システム、水稲作付け状況把握方法、及び水稲作付け状況把握プログラム
 本発明は、リモートセンシング技術を用いて、水稲を作付けされた圃場を把握する水稲作付け状況把握システム、水稲作付け状況把握方法、及び水稲作付け状況把握プログラムに関する。
 従来、米生産の推定・予測は、圃場への水稲の作付けを現地調査することにより行われてきた。しかし、全国レベル、都道府県レベル等の広範囲の水稲作況調査を地上からの実測により行うことは多大な労力を要する。
 世界的に見れば、一部の地 域において、人工衛星や航空機から取得した光学リモートセンシングデータをもとに水稲の作付け状況を把握する手法が開発され利用されている。しかし、光学リモートセンシングは雲が存在すると観測できない。そのため、稲作において大切な時期である田植えが雨季にかかる日本においては、光学リモートセンシングでは安定した観測が難しいという問題があった。
 この点、合成開口レーダ(Synthetic Aperture Radar:SAR)を用いたリモートセンシングは雲を透過して地表を観測できる。それ故、近年、SAR画像を利用して水稲の作付け状況を把握する技術の研究がなされている。例えば、下記非特許文献1は、湛水した時期とそうでない時期との2時期でのSARの後方散乱強度の違いを利用して水田を検出する技術を示している。しかし、SARは従来の光学センサと比べると特有の現象が多く、扱いが複雑であるため、SAR画像を用いた水田観測はまだ知見が十分とは言えない。
石塚直樹、「マイクロ波衛星画像と地理情報システムを利用して水稲作付け地を高い精度で推定する」、独立行政法人農業環境技術研究所 平成18年度革新的農業技術習得研修テキスト、[online][平成21年11月18日検索]インターネット〈URL:http://www.niaes.affrc.go.jp/techdoc/inovlec2006/4_ishitsuka.pdf〉
 従来技術では、湛水された圃場を決定する閾値を決定するサンプルの取得方法、閾値の決定手法の客観性が課題として残されていた。
 本発明は上記問題点を解決するためになされたものであり、閾値法に依らない水稲作付け状況把握システム、水稲作付け状況把握方法、及び水稲作付け状況把握プログラムを提供することを目的とする。
 本発明に係る水稲作付け状況把握システムは、Xバンドのマイクロ波を用いた合成開口レーダにより撮影され、後方散乱波の強度に応じた画素値を有するレーダ画像に基づいて、観測対象領域内に設けられる圃場のうち水稲を作付けされた水稲圃場を把握する水稲作付け状況把握システムであって、前記水稲圃場への入水から苗の植え付けまでの田植え期と、前記水稲圃場への入水前である圃場準備期及び前記水稲圃場内の水稲が植え付け時の前記苗よりも葉を展開させた状態となる水稲生長期の少なくとも一方とを含む複数時期に撮影された前記観測対象領域の前記レーダ画像を分析対象画像とし、前記観測対象領域に複数のサンプル点を設定して、前記各分析対象画像の前記サンプル点での前記画素値の組で定義される座標を有するサンプルをクラスター分析により複数のクラスに分類するクラスター分析手段と、注目圃場内の前記サンプル点に対応する前記サンプルの前記クラス毎の個数が前記クラス間での大小関係に関する所定の判別式を満たすか否かに基づいて、当該注目圃場が前記水稲圃場であるか否かを判定する圃場判定手段と、を有する。
 上記水稲作付け状況把握システムは、さらに、前記観測対象領域にて前記水稲圃場であることが定まっている基準圃場についての前記クラス毎の前記サンプルの個数に基づいて前記判別式を求める判別式決定手段を有するものとすることができる。
 本発明の好適な態様は、前記クラスター分析が、初期クラス数を5以上に設定したISODATA法である水稲作付け状況把握システムである。
 本発明に係る水稲作付け状況把握方法は、Xバンドのマイクロ波を用いた合成開口レーダにより撮影され、後方散乱波の強度に応じた画素値を有するレーダ画像に基づき、演算装置を用いて、観測対象領域内に設けられる圃場のうち水稲を作付けされた水稲圃場を把握する水稲作付け状況把握方法であって、前記水稲圃場への入水から苗の植え付けまでの田植え期と、前記水稲圃場への入水前である圃場準備期及び前記水稲圃場内の水稲が植え付け時の前記苗よりも葉を展開させた状態となる水稲生長期の少なくとも一方とを含む複数時期に撮影された前記観測対象領域の前記レーダ画像を分析対象画像とし、前記観測対象領域に複数のサンプル点を設定して、前記各分析対象画像の前記サンプル点での前記画素値の組で定義される座標を有するサンプルをクラスター分析により複数のクラスに分類するクラスター分析ステップと、注目圃場内の前記サンプル点に対応する前記サンプルの前記クラス毎の個数が前記クラス間での大小関係に関する所定の判別式を満たすか否かに基づいて、当該注目圃場が前記水稲圃場であるか否かを判定する圃場判定ステップと、を有する。
 本発明に係る水稲作付け状況把握プログラムは、コンピュータを、Xバンドのマイクロ波を用いた合成開口レーダにより撮影され、後方散乱波の強度に応じた画素値を有するレーダ画像に基づいて、観測対象領域内に設けられる圃場のうち水稲を作付けされた水稲圃場を把握するシステムとして機能させるための水稲作付け状況把握プログラムであって、当該コンピュータに、前記水稲圃場への入水から苗の植え付けまでの田植え期と、前記水稲圃場への入水前である圃場準備期及び前記水稲圃場内の水稲が植え付け時の前記苗よりも葉を展開させた状態となる水稲生長期の少なくとも一方とを含む複数時期に撮影された前記観測対象領域の前記レーダ画像を分析対象画像とし、前記観測対象領域に複数のサンプル点を設定して、前記各分析対象画像の前記サンプル点での前記画素値の組で定義される座標を有するサンプルをクラスター分析により複数のクラスに分類するクラスター分析機能と、注目圃場内の前記サンプル点に対応する前記サンプルの前記クラス毎の個数が前記クラス間での大小関係に関する所定の判別式を満たすか否かに基づいて、当該注目圃場が前記水稲圃場であるか否かを判定する圃場判定機能と、を実現させる。
 本発明によれば、閾値法に依らないより客観的な水稲作付け状況の把握が可能となる。また、雲の影響を受けずに地上の観測を行うことができるので、日本において田植えから生長期の間の雨季でも作付状況を把握することが可能となり、このリアルタイムな作付状況の把握により、適時かつ適切な栽培管理、生産管理の決定が可能となる。また、広範囲の圃場を少ない労力で一括して把握することが可能となる。
本発明の実施形態である水稲作付け状況把握システムの概略の構成を示すブロック図である。 水稲圃場、大豆圃場及び貯水池におけるHHモードによる後方散乱係数の測定結果を示すグラフである。 水稲圃場、大豆圃場及び貯水池におけるVVモードによる後方散乱係数の測定結果を示すグラフである。 本発明の実施形態である水稲作付け状況把握システムの機能ブロック図である。 クラス数を5に設定してHHモードによる測定結果を分析した場合の水稲圃場、大豆圃場、貯水池それぞれの特徴量を表すグラフである。 クラス数を5に設定してVVモードによる測定結果を分析した場合の水稲圃場、大豆圃場、貯水池それぞれの特徴量を表すグラフである。
 以下、本発明の実施の形態(以下実施形態という)について、図面に基づいて説明する。
 図1は、実施形態である水稲作付け状況把握システム2の概略の構成を示すブロック図である。本システムは、SARにより撮影された観測対象領域のレーダ画像(SAR画像)に基づいて、観測対象領域内に設けられる圃場を、水稲が作付けされた水稲圃場であるか否か分類する。本システムは、演算処理装置4、記憶装置6、入力装置8及び出力装置10を含んで構成される。演算処理装置4として、本システムの処理を行う専用のハードウェアを作ることも可能であるが、本実施形態では演算処理装置4は、コンピュータ及び、当該コンピュータ上で実行されるプログラムを用いて構築される。
 演算処理装置4は、コンピュータのCPU(Central Processing Unit)からなり、例えば、クラスター分析手段12、圃場判定手段14、判別式決定手段16として機能し、さらに図4を用いて後述する各種機能の主要部分を実現する。
 記憶装置6は、演算処理装置4を上記各手段12~16などとして機能させるためのプログラム及びその他のプログラムや、本システムの処理に必要な各種データを記憶する。例えば、記憶装置6は、分析対象とするSAR画像や、分析により得られるクラスター画像を保持するために利用される。
 入力装置8は、キーボード、マウスなどであり、ユーザが本システムへの操作を行うために用いる。
 出力装置10は、ディスプレイ、プリンタなどであり、本システムにより得られる水稲作付け状況の解析結果を画面表示、印刷等によりユーザに示す等に用いられる。また、本システム以外の装置等にデータ出力してもよい。
 本システムで用いるSAR画像は、Xバンドのマイクロ波を地上に照射し、その後方散乱波を観測することにより得られるものであり、後方散乱波の強度に応じた画素値を有する。例えば、次式で表される後方散乱係数σを画素値とすることができる。
σ[dB]=10log10(k・|DN|・sinθloc
 ここで、σはデシベル値で表されており、kはキャリブレーション及びプロセッサスケーリングの係数であり、DNは後方散乱の振幅であり、θlocは入射角である。
 本実施形態ではSAR衛星であるTerraSAR-XによるXバンド(波長3.1cm)での撮影データに基づくSAR画像を用いる。撮影データは送信及び受信を共に水平偏波で行うHHモードにより取得したものと、送信及び受信を共に垂直偏波で行うVVモードにより取得したものとを用いた。TerraSAR-Xの撮影モードを高分解能スポットライトとした場合には、10km×5kmの領域を分解能2.2mで撮影したデータが取得される。TerraSAR-Xは同一領域を11日周期で撮影可能である。
 図2は、ある年における水稲圃場、大豆圃場、貯水池における後方散乱係数のHHモードによる測定結果を示すグラフである。また、図3は、水稲圃場、大豆圃場、貯水池における後方散乱係数のVVモードによる測定結果を示すグラフである。図2、図3において縦軸が後方散乱係数、横軸が撮影日であり、田植え期の前後にわたる経時変化が表されている。水稲圃場については、乾田の移植時期が互いに異なる3つの場合(慣行、早植え、遅植え)が示されており、図2の変化曲線30(△で表記),32(□で表記),34(○で表記)がそれぞれ慣行、早植え、遅植えの場合の後方散乱係数の変化を表し、また、図3の変化曲線31(△で表記),33(□で表記),35(○で表記)がそれぞれ慣行、早植え、遅植えの場合の後方散乱係数の変化を表している。また、図2の変化曲線36及び図3の変化曲線37(共に×で表記)は大豆圃場、図2の変化曲線38及び図3の変化曲線39(共に+で表記)は貯水池の後方散乱係数の変化を表している。
 図2に示すHHモード、図3に示すVVモードそれぞれの7回の撮影にて、大豆圃場の後方散乱係数は-10~-15dBの範囲内で推移し、貯水池の後方散乱係数は-20前後を推移している。測定した早植えの水稲圃場では4月下旬に入水、5月上旬に移植され、慣行の水稲圃場では5月上旬に入水、中旬に移植され、遅植えの水稲圃場では5月下旬に入水、移植が行われた。これら3つの水稲圃場は、それぞれ入水前には大豆圃場と同程度の後方散乱係数を有し、入水から移植の時期に対応して後方散乱係数が低下して貯水池の後方散乱係数のレベルに近づき、その後、時間の経過と共に後方散乱係数は増加して再び大豆圃場と同程度のレベルとなった。この変化の特徴はHHモード、VVモードに共通であった。水稲圃場では、入水前の田起こし期には地表面の凹凸が後方散乱に影響を与え、後方散乱係数が大きくなると考えられる。また、入水から移植の時期は水で地表面が覆われている。この湛水の状態により鏡面反射が生じ、後方散乱係数が小さくなると考えられる。移植直後は稲は葉の数が少ない苗の状態であり、またそれらの間に水面が比較的よく現れているが、稲が生長し葉の数が増えるにつれ、稲が後方散乱係数に影響を与え、後方散乱係数が大きくなると考えられる。
 図4は、本システムの機能ブロック図である。インターフェース(I/F)部50は、撮影されたSAR画像を本システムに取り込む機能を有する。ユーザは水稲の栽培ごよみや衛星の撮影周期をもとにSAR画像の撮影時期を設定し、設定された複数の撮影時期における観測対象領域のSAR画像が衛星により撮影される。本システムはこのようにして撮影されたSAR画像を取り込む。
 取り込まれた時系列のSAR画像は、SAR画像保持部52に保存される。例えば、記憶装置6がSAR画像保持部として用いられる。位置合わせ処理部54は、複数時期のSAR画像をそれぞれ地図に重ね合わせることができるように、地形図や緯度経度が明確な基準地点(道路交差点、建物等)などの地図データ56をもとにSAR画像に幾何(位置)的な補正処理を行う。
 SAR画像ノイズ処理部58は、SAR画像のノイズを処理する。例えば、SAR画像ノイズ処理部58は、位置合わせ処理後のSAR画像に対してフィルタ処理を行い、SAR画像からスペックルノイズ等のノイズを除去する。例えば、フィルタ処理として、メディアンフィルタ、FrostフィルタやLeeフィルタ等が用いられ、これらはSAR画像のノイズの性状に応じて選択される。なお、位置合わせ処理部54とSAR画像ノイズ処理部58での処理順序は逆でも構わない。
 ノイズの除去処理がされたSAR画像は、クラスター分析部60によりクラスター分析される。クラスター分析の対象とされるSAR画像は、田植え期に撮影されたものと、田植え期前の期間である圃場準備期及び田植え期後の期間である水稲生長期のいずれか一方又は両方に撮影されたものとからなる複数の画像である。時間的、費用的コスト削減の観点からは利用するデータを少なくすることが好適であり、この観点から分析対象画像は田植え期の1画像と、圃場準備期及び水稲生長期のいずれか一方に撮影された1画像との合計2画像、又は田植え期の1画像と、圃場準備期及び水稲生長期にて撮影された2画像との合計3画像とすることができる。しかし、これら2時期の2画像又は3時期の3画像にさらに田植え期、圃場準備期、水稲生長期における画像を追加して、それらを分析対象画像としてもよい。
 ここで、田植え期は、水稲圃場への入水から稲の苗の植え付けまでの期間に相当する。圃場準備期は、田起こしの時期など、水稲圃場への入水前の時期である。水稲生長期は、水稲圃場内の水稲が植え付け時の状態である苗の状態よりも葉を展開させた状態、すなわち移植された稲が根を張り葉の数(葉齢)を移植時より増加させた時期を指す。葉は1週間程度で1枚増えるので、水稲生長期は田植えから1週間程度経った後の期間とすることができる。より好適には、稲の生育状況が田植え直後とは大きく変化している時期のSAR画像を水稲生長期の画像として用いる。この観点から、本実施形態では、田植え期の撮影をした時点よりもTerraSAR-Xの撮影周期で2又は3周期後を水稲生長期の撮影時期として選択している。具体的には、圃場準備期の画像として4月20日のSAR画像を用い、田植え期の画像として5月23日のSAR画像を用い、水稲成長期の画像として6月25日のSAR画像を用いた。
 クラスター分析部60は、観測対象領域内に設定される複数のサンプル点において定義されるサンプルをクラスター分析する。サンプルは、対応するサンプル点での各分析対象画像の画素値の組で定義される。例えば、分析対象画像が2時期(田植え期及び、圃場準備期又は水稲生長期のいずれか一方)にて得られた2画像I,Iである場合には、サンプル点PにおけるサンプルSは、画像I,Iそれぞれのサンプル点Pでの画素値d,dの組(d,d)で定義される。また、分析対象画像が3時期(田植え期、圃場準備期、及び水稲生長期)にて得られた3画像I,I,Iである場合には、サンプルSは、画像I,I,Iそれぞれのサンプル点Pでの画素値d,d,dの組(d,d,d)で定義される。なお、観測対象領域にて定義されるサンプル点Pと、各画像I,I,Iの画素との対応付けは、位置合わせ処理部54においてなされている。本実施形態では、SAR画像の各画素がサンプル点に対応付けられる。
 クラスター分析部60は、クラスター分析の方法としてISODATA法を用いる。ISODATA法と同じく非階層的手法かつ教師なし分類手法であるk-means法も好適である。また、教師あり分類手法を用いてもよい。サンプル数が膨大となり得る画像におけるクラスター分析には、計算量を少なくできる観点から非階層的手法が好適であるが、演算処理装置4の処理能力が高ければ、階層的手法を用いることも可能である。
 ISODATA法を用いる場合、初期クラス数は5以上に設定する。初期クラスの中心は従来の手法に基づいて設定される。例えば、分析対象画像が3画像の場合、各分析対象画像I(j=1,2,3)の画素値の平均μ及び標準偏差σを求め、初期クラスの中心または重心(α,α,α)の各座標値αをμ-σ~μ+σの範囲に等間隔に配置する。
 SAR画像の各画素値が表す後方散乱強度には、種々の後方散乱成分が寄与している。例えば、水面による鏡面散乱成分、水稲や土壌の表面粗さによる散乱成分、建物等による2面のコーナー反射成分等である。このような成分の強弱に応じて、サンプルはクラスター分析により複数のクラスに分類される。観測対象領域は水稲圃場だけでなく、大豆やその他の作物の圃場、貯水池等、いろいろな種類の領域を含み、クラスター分析の分類結果にはそれらからの後方散乱の寄与も含まれ、各種の散乱成分の影響が現れる。
 ここでは、クラスの中心から当該クラスに属するサンプルまでの距離の平均値が小さい方から順にクラスの識別番号kを昇順に付与する。例えば、当該距離の平均値が最も小さいクラスが「クラス1」となる。
 各サンプル点でのクラスに応じた画素値を有するクラスター画像はクラスター画像保持部62に保存され、例えば、水稲作付け状況の解析結果を表示する際に、表示装置等に出力される。
 圃場枠決定部64は、観測対象領域における作付けの単位となる圃場の位置を決定する機能を有し、各圃場の範囲を表す圃場枠を求める。例えば、圃場枠決定部64は、航空写真や国土地理院発行の数値地図等に基づいて圃場枠を定める。なお、圃場枠は本システムで抽出せずに、GIS(Geographic Information System;地理情報システム)等を用いて、予め抽出された圃場枠のデータを外部から入力してもよい。
 圃場特徴量算出部66は、圃場枠をクラスター画像に重ね合わせて、圃場ごとに当該圃場枠内のクラスター画像を抽出する。そして、抽出した圃場のクラスター画像における各クラスのサンプル数の割合を特徴量として求める。具体的には、画素がサンプルに対応する本実施形態では、抽出した圃場のクラスター画像を構成する全画素数Nに対するクラスkの画素数Cの割合(C/N)を特徴量χ(k)として算出する。
 水稲圃場とそれ以外の圃場とは、同じ撮影時期のSAR画像における散乱成分の違いに加え、複数の撮影時期間での散乱成分の変化に違いがある。特に、水稲圃場は、上述したように、田植え期には湛水面からの反射の影響が大きいSAR画像が得られ、圃場準備期や水稲生長期では湛水面の影響がないか小さいSAR画像が得られる点で、複数の撮影時期間での散乱成分の変化において、他の圃場と相違を有する。このような理由から、水稲圃場とそれ以外の圃場とは、特徴量のクラス間での大小関係に相違が生じ得る。
 図5は、クラス数を5に設定してHHモードの測定結果を分析した場合の水稲圃場、大豆圃場、貯水池それぞれの特徴量を表すグラフである。また、図6は、クラス数を5に設定してVVモードの測定結果を分析した場合の水稲圃場、大豆圃場、貯水池それぞれの特徴量を表すグラフである。図5(a)、図6(a)は慣行水稲圃場、図5(b)、図6(b)は大豆圃場、図5(c)、図6(c)は貯水池の特徴量を表しており、特徴量χ(k)は縦軸に百分率で表しており、横軸にクラスを並べている。図5(a)、図6(a)が示すように、水稲圃場ではχ(1)及びχ(3)が比較的大きく、χ(2)は小さくなる。図5(b)、図6(b)が示すように、大豆圃場ではχ(2)が他の特徴量に比べて大きくなる。図5(c)、図6(c)が示すように、貯水池ではχ(1)が他の特徴量に比べて大きくなる。
 判別式決定部68は、これらの特徴量のクラス間での大小関係に関し、注目圃場が水稲圃場であるか否かを判定する判別式を決定する。具体的には、本システムは、水稲圃場であることが予めわかっている基準圃場をユーザから指定され、その指定された圃場のクラスター画像の特徴量を算出し、当該特徴量に基づいて判別式を求める。なお、判別式は本システムで決定せずに、同様の方法で予め決定された判別式を外部から設定してもよい。
 例えば、図5、図6に示す特徴量に関して、水稲圃場を示す判別式は、次式となる。
χ(1)>χ(2)
χ(2)<χ(3) ・・・(1)
χ(3)>χ(4)
 特徴量についての同様の関係式は、大豆圃場では、
χ(1)<χ(2)
χ(2)>χ(3) ・・・(2)
χ(3)>χ(4)
となり、貯水池では、
χ(1)>χ(2)
χ(2)>χ(3) ・・・(3)
χ(3)>χ(4)
となり、これら(2),(3)式は(1)式とは相違する。
 圃場判定部70は、観測対象領域内の各圃場が判別式を満たすか否かを調べ、当該圃場が水稲圃場であるか否かを判定する。判定された結果は、出力部72により、水稲圃場の分類図にまとめられ、もしくは各圃場の作付け品目の一覧表などへ出力される。また、水稲圃場の分類図や作付け品目の一覧表などは出力装置10によりユーザに提示することができる。
 例えば、圃場判定部70は上述の判別式((1)式)を満たす圃場を水稲圃場であると判定し、満たさない圃場は水稲圃場ではないと判定する。
 本システムによれば、圃場準備期と田植え期との2時期の画像に基づく解析により田植え期と同時期に作付状況の把握が可能になる。また、2時期の画像で確実に決まった時期に作付け状況の把握が可能となり、現地調査のコストが削減ができる。また、画像枚数が少ないので、費用コスト、時間コストの削減が可能になる。さらに、一定の作業で、作付け状況を把握するので、客観性を保ち、人的ミスを軽減することができる。

Claims (5)

  1.  Xバンドのマイクロ波を用いた合成開口レーダにより撮影され、後方散乱波の強度に応じた画素値を有するレーダ画像に基づいて、観測対象領域内に設けられる圃場のうち水稲を作付けされた水稲圃場を把握する水稲作付け状況把握システムであって、
     前記水稲圃場への入水から苗の植え付けまでの田植え期と、前記水稲圃場への入水前である圃場準備期及び前記水稲圃場内の水稲が植え付け時の前記苗よりも葉を展開させた状態となる水稲生長期の少なくとも一方とを含む複数時期に撮影された前記観測対象領域の前記レーダ画像を分析対象画像とし、前記観測対象領域に複数のサンプル点を設定して、前記各分析対象画像の前記サンプル点での前記画素値の組で定義される座標を有するサンプルをクラスター分析により複数のクラスに分類するクラスター分析手段と、
     注目圃場内の前記サンプル点に対応する前記サンプルの前記クラス毎の個数が前記クラス間での大小関係に関する所定の判別式を満たすか否かに基づいて、当該注目圃場が前記水稲圃場であるか否かを判定する圃場判定手段と、
     を有することを特徴とする水稲作付け状況把握システム。
  2.  請求項1に記載の水稲作付け状況把握システムにおいて、
     前記観測対象領域にて前記水稲圃場であることが定まっている基準圃場についての前記クラス毎の前記サンプルの個数に基づいて前記判別式を求める判別式決定手段を有すること、を特徴とする水稲作付け状況把握システム。
  3.  請求項1又は請求項2に記載の水稲作付け状況把握システムにおいて、
     前記クラスター分析は、初期クラス数を5以上に設定したISODATA法であること、を特徴とする水稲作付け状況把握システム。
  4.  Xバンドのマイクロ波を用いた合成開口レーダにより撮影され、後方散乱波の強度に応じた画素値を有するレーダ画像に基づき、演算装置を用いて、観測対象領域内に設けられる圃場のうち水稲を作付けされた水稲圃場を把握する水稲作付け状況把握方法であって、
     前記水稲圃場への入水から苗の植え付けまでの田植え期と、前記水稲圃場への入水前である圃場準備期及び前記水稲圃場内の水稲が植え付け時の前記苗よりも葉を展開させた状態となる水稲生長期の少なくとも一方とを含む複数時期に撮影された前記観測対象領域の前記レーダ画像を分析対象画像とし、前記観測対象領域に複数のサンプル点を設定して、前記各分析対象画像の前記サンプル点での前記画素値の組で定義される座標を有するサンプルをクラスター分析により複数のクラスに分類するクラスター分析ステップと、
     注目圃場内の前記サンプル点に対応する前記サンプルの前記クラス毎の個数が前記クラス間での大小関係に関する所定の判別式を満たすか否かに基づいて、当該注目圃場が前記水稲圃場であるか否かを判定する圃場判定ステップと、
     を有することを特徴とする水稲作付け状況把握方法。
  5.  コンピュータを、Xバンドのマイクロ波を用いた合成開口レーダにより撮影され、後方散乱波の強度に応じた画素値を有するレーダ画像に基づいて、観測対象領域内に設けられる圃場のうち水稲を作付けされた水稲圃場を把握するシステムとして機能させるための水稲作付け状況把握プログラムであって、
     当該コンピュータに、
     前記水稲圃場への入水から苗の植え付けまでの田植え期と、前記水稲圃場への入水前である圃場準備期及び前記水稲圃場内の水稲が植え付け時の前記苗よりも葉を展開させた状態となる水稲生長期の少なくとも一方とを含む複数時期に撮影された前記観測対象領域の前記レーダ画像を分析対象画像とし、前記観測対象領域に複数のサンプル点を設定して、前記各分析対象画像の前記サンプル点での前記画素値の組で定義される座標を有するサンプルをクラスター分析により複数のクラスに分類するクラスター分析機能と、
     注目圃場内の前記サンプル点に対応する前記サンプルの前記クラス毎の個数が前記クラス間での大小関係に関する所定の判別式を満たすか否かに基づいて、当該注目圃場が前記水稲圃場であるか否かを判定する圃場判定機能と、
     を実現させることを特徴とする水稲作付け状況把握プログラム。
PCT/JP2010/063723 2009-12-28 2010-08-12 水稲作付け状況把握システム、水稲作付け状況把握方法、及び水稲作付け状況把握プログラム WO2011080944A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-298470 2009-12-28
JP2009298470A JP4810604B2 (ja) 2009-12-28 2009-12-28 水稲作付け状況把握システム、水稲作付け状況把握方法、及び水稲作付け状況把握プログラム

Publications (1)

Publication Number Publication Date
WO2011080944A1 true WO2011080944A1 (ja) 2011-07-07

Family

ID=44226365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063723 WO2011080944A1 (ja) 2009-12-28 2010-08-12 水稲作付け状況把握システム、水稲作付け状況把握方法、及び水稲作付け状況把握プログラム

Country Status (2)

Country Link
JP (1) JP4810604B2 (ja)
WO (1) WO2011080944A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109471106A (zh) * 2018-11-22 2019-03-15 上海海事大学 结合聚类分析和边界跟踪法的sar海洋内波条纹识别方法
US20190179009A1 (en) * 2017-12-08 2019-06-13 International Business Machines Corporation Crop classification and growth tracking with synthetic aperture radar
CN112800845A (zh) * 2020-12-31 2021-05-14 广州极飞科技股份有限公司 叶龄识别方法、装置、电子设备及可读存储介质
CN117690024A (zh) * 2023-12-18 2024-03-12 宁波大学 一种针对多种植模式水稻田的一体化遥感识别方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6070094B2 (ja) * 2012-11-13 2017-02-01 富士通株式会社 耕作地判定装置、方法及びプログラム
WO2023210733A1 (ja) * 2022-04-28 2023-11-02 株式会社クボタ 水田メタン削減支援装置、水田メタン削減支援システム、水田メタン削減支援方法、情報処理装置、農業支援システム、農業支援方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003085532A (ja) * 2001-09-07 2003-03-20 Communication Research Laboratory Sar画像を利用した土地利用分類処理方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003085532A (ja) * 2001-09-07 2003-03-20 Communication Research Laboratory Sar画像を利用した土地利用分類処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAOKI ISHIZUKA ET AL.: "Eisei Tosai Radar de Kumo no Eikyo o Ukezu Seido Yoku Suito Sakuzukechi o Kenshutsu suru Gijutsu", NOKANKEN NEWS, no. 68, October 2005 (2005-10-01), pages 3 - 4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190179009A1 (en) * 2017-12-08 2019-06-13 International Business Machines Corporation Crop classification and growth tracking with synthetic aperture radar
US10705204B2 (en) * 2017-12-08 2020-07-07 International Business Machines Corporation Crop classification and growth tracking with synthetic aperture radar
CN109471106A (zh) * 2018-11-22 2019-03-15 上海海事大学 结合聚类分析和边界跟踪法的sar海洋内波条纹识别方法
CN112800845A (zh) * 2020-12-31 2021-05-14 广州极飞科技股份有限公司 叶龄识别方法、装置、电子设备及可读存储介质
CN117690024A (zh) * 2023-12-18 2024-03-12 宁波大学 一种针对多种植模式水稻田的一体化遥感识别方法

Also Published As

Publication number Publication date
JP2011138356A (ja) 2011-07-14
JP4810604B2 (ja) 2011-11-09

Similar Documents

Publication Publication Date Title
Canisius et al. Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data
WO2011102520A1 (ja) 水稲収量予測モデル生成方法、及び水稲収量予測方法
CN102215666B (zh) 植被生长状况分析方法、记录有程序的记录介质和植被生长状况分析器
Guo et al. Integrating spectral and textural information for identifying the tasseling date of summer maize using UAV based RGB images
Leng et al. A practical algorithm for estimating surface soil moisture using combined optical and thermal infrared data
Liu et al. Estimation of potato above-ground biomass based on unmanned aerial vehicle red-green-blue images with different texture features and crop height
CN108303044B (zh) 一种叶面积指数获取方法及系统
JP4810604B2 (ja) 水稲作付け状況把握システム、水稲作付け状況把握方法、及び水稲作付け状況把握プログラム
Baig et al. Above ground biomass estimation of Dalbergia sissoo forest plantation from dual-polarized ALOS-2 PALSAR data
Jeong et al. Development of Variable Threshold Models for detection of irrigated paddy rice fields and irrigation timing in heterogeneous land cover
Yi et al. Evaluation of MODIS surface reflectance products for wheat leaf area index (LAI) retrieval
Liu et al. Estimating potato above-ground biomass by using integrated unmanned aerial system-based optical, structural, and textural canopy measurements
Zhao et al. Forecasting the wheat powdery mildew (Blumeria graminis f. Sp. tritici) using a remote sensing-based decision-tree classification at a provincial scale
Jiang et al. Mapping interannual variability of maize cover in a large irrigation district using a vegetation index–phenological index classifier
Bai et al. A fast and robust method for plant count in sunflower and maize at different seedling stages using high-resolution UAV RGB imagery
CN114065643A (zh) 基于sar和极化分解的种植物土壤含水量估算方法及系统
Kaushik et al. Crop health assessment using Sentinel-1 SAR time series data in a part of central India
Goswami et al. Estimation of nitrogen status and yield of rice crop using unmanned aerial vehicle equipped with multispectral camera
Jiang et al. Desertification in the south Junggar Basin, 2000–2009: Part I. Spatial analysis and indicator retrieval
CN111751286B (zh) 基于变化检测算法的土壤水分提取方法
Yu et al. Hyperspectral database prediction of ecological characteristics for grass species of alpine grasslands
Nasirzadehdizaji et al. Application of sentinel-1 multi-temporal data for crop monitoring and mapping
Dobbs et al. Using structure-from-motion to estimate cover crop biomass and characterize canopy structure
Nolè et al. Using spatial autocorrelation techniques and multi-temporal satellite data for analyzing urban sprawl
Kamal et al. Estimation of mangrove leaf area index from ALOS AVNIR-2 data (A comparison of tropical and sub-tropical mangroves)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840803

Country of ref document: EP

Kind code of ref document: A1