JP7151741B2 - 電圧検出装置 - Google Patents

電圧検出装置 Download PDF

Info

Publication number
JP7151741B2
JP7151741B2 JP2020061375A JP2020061375A JP7151741B2 JP 7151741 B2 JP7151741 B2 JP 7151741B2 JP 2020061375 A JP2020061375 A JP 2020061375A JP 2020061375 A JP2020061375 A JP 2020061375A JP 7151741 B2 JP7151741 B2 JP 7151741B2
Authority
JP
Japan
Prior art keywords
voltage
input
divided
dividing circuit
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020061375A
Other languages
English (en)
Other versions
JP2021164194A (ja
Inventor
朝道 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2020061375A priority Critical patent/JP7151741B2/ja
Priority to PCT/JP2021/010037 priority patent/WO2021200033A1/ja
Publication of JP2021164194A publication Critical patent/JP2021164194A/ja
Application granted granted Critical
Publication of JP7151741B2 publication Critical patent/JP7151741B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、電池の電圧検出を行う電圧検出装置に関するものである。
近年、電動車両では、機能群を複数の系統(システム)に分け、車載組電池の総電圧(端子間電圧)をシステムリレーにて、システムごとに選択的に印加するような電源システムが構成されている。このような電源システムでは、選択先のシステムにおいて適切に電圧が印加されているか否か等を検知するため、選択先のシステムに印加された総電圧(以下、印加電圧と示す)をそれぞれ検出する必要がある。その際、コスト面から共通回路にて検出可能にすることが望ましく、また、車載組電池の総電圧は、数100Vという高電圧となることが一般的であるので、印加電圧を分圧して検出することが望ましい。
そこで、特許文献1に示すような、分圧回路に印加電圧を分圧して検出する方法や、特許文献2に示すような、差動増幅回路を介して分圧電圧を測定する方法を採用することが想定されていた。
しかしながら、特許文献1の方法では、選択先の回路ごとに印加電圧の検出基準となるバスバーに流れる電流量が異なり、各バスバーにおける電位が異なる。そして、共通回路で分圧電圧を検出する場合、いずれかのバスバーを基準とすることとなるため、検出精度が悪化するという問題が生じた。また、特許文献2の方法では、各バスバーにおける電位が異なるという問題は解消されるが、分圧回路の抵抗誤差に加え、差動増幅回路のゲイン誤差が重複し、検出精度が悪いという問題が生じた。このため、特許文献1,2に示す方法をそのまま採用することはできなかった。
ところで、特許文献3に示すような、組電池を構成する電池セルの各電圧を検出する監視ICは、差動増幅回路とAD変換機器を監視IC内で一体化し、トータル誤差を校正や補正により抑制しているため、検出精度が良いことが知られている。そこで、次に、この監視ICを流用して、各印加電圧を検出することが考えられていた。
特開2013-162639号公報 特開2009-236711号公報 特許第5783197号公報
ところが、この監視ICは、直列接続された各電池セルの電圧を測定することに特化して開発されている。具体的には、監視ICの各入力チャネルには、電位の大小が順番となって電圧が印加されることを想定しており、同電位の電圧が入力されることを想定していない。このため、監視ICに、同電位となる複数の印加電圧を検出させると、監視ICの内外に設けられた保護ダイオードを介して電流が回り込み、値が変動し、検出精度が悪化するという問題が生じた。
本発明は、上記事情に鑑みてなされたものであり、その主たる目的は、複数の印加電圧を精度よく検出することができる電圧検出装置を提供することにある。
上記課題を解決するための手段は、蓄電池と、前記蓄電池に対して並列に接続され、前記蓄電池の端子間電圧がそれぞれ印加される複数のシステムと、を備えた電源システムに対して適用され、前記各システムに印加された印加電圧をそれぞれ検出する電圧検出装置において、前記各システムの前記印加電圧をそれぞれ2つの異なる分圧比で分圧する第1分圧回路と、前記各システムごとに入力チャネルが設定されており、前記第1分圧回路から前記入力チャネルを介して入力された2つの分圧電圧の差分に基づいて、前記各システムの前記印加電圧をそれぞれ検出する検出回路と、を備え、前記入力チャネルは、それぞれ1対の入力端子を有しており、前記第1分圧回路は、前記入力端子ごとに、段階的に異なる分圧比で前記印加電圧を分圧して、出力する。
これにより、各システムの印加電圧がほぼ同じであっても第1分圧回路によって、検出回路の各入力端子に入力される分圧電圧を段階的に高くすることが可能となる。このため、回り込み電流の発生を防止し、精度よく電圧を検出することができる。
電源システムの概略を示す回路図。 監視ICの概略を示す回路図。 従来の監視ICの概略を示す回路図。 回り込み電流を示す回路図。 電流の流れを示す回路図。 電流の流れを示す回路図。 電流の流れを示す回路図。 電流の流れを示す回路図。 電流の流れを示す回路図。 分圧電圧を示す図。 分圧電圧を示す図。 第2実施形態における監視ICの概略を示す回路図。 第3実施形態における監視ICの概略を示す回路図。 別例における監視ICの概略を示す回路図。
以下、本発明にかかる「電圧検出装置」を具体化した各実施形態について、図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。また、各実施形態及び変形例の説明において、明示している構成の組み合わせだけでなく、特に組み合わせに支障が生じなければ、各実施形態及び変形例を組み合わせることも可能である。
(第1実施形態)
図1に示すように、電気自動車等の車両に適用される電源システムは、蓄電池としての組電池10と、機能群をまとめて構成された複数のシステム21,22と、組電池10と各システム21,22との間における電源経路23,24の通電及び通電遮断をそれぞれ切り替えるシステムスイッチ部としてのリレースイッチSN1,SP1,SN2,SP2と、各システム21,22への印加電圧を検出する電圧検出装置30と、を備える。
組電池10は、複数の電池セルの直列接続体であり、組電池10の正極側端子10aと負極側端子10bとの間における端子間電圧が例えば100V以上の高電圧となる。組電池10は、回転機(モータジェネレータ)などの電気負荷の電源となったり、モータジェネレータの回生制御によって生成される電力を貯蔵したりする。なお、本実施形態では、電池セルとして、リチウムイオン2次電池を用いている。
各システム21,22は、組電池10に対して並列に接続され、組電池10の端子間電圧がそれぞれ印加される。各システム21,22としては、例えば、インバータやモータからなる駆動系のシステムや、発電装置などからなる充電系のシステムなどがある。
電源経路23,24は、各システム21,22ごとに設けられている。電源経路23,24には、組電池10の正極側端子10aに接続される正極側電源経路23a,24aと、組電池10の負極側端子10bに接続される負極側電源経路23b,24bと、が含まれる。
また、組電池10の正極側端子10aには、正極側電源経路11aが接続されており、組電池10の負極側端子10bには、負極側電源経路11bが接続されている。各電源経路11,23,24は、例えば、バスバーなどにより構成される。
リレースイッチSN1,SP1,SN2,SP2は、各システム21,22ごとに設けられている。リレースイッチSN1,SP1,SN2,SP2には、正極側電源経路23a,24aの通電及び通電遮断を切り替える正極側のリレースイッチSP1,SP2と、負極側電源経路23b,24bの通電及び通電遮断を切り替える負極側のリレースイッチSN1,SN2と、が含まれる。
リレースイッチSN1,SP1がオフ状態となることにより、システム21と組電池10との間が通電遮断状態となり、リレースイッチSN1,SP1がオン状態となることにより、システム21と組電池10との間が通電状態となる。同様に、リレースイッチSN2,SP2がオフ状態となることにより、システム22と組電池10との間が通電遮断状態となり、リレースイッチSN2,SP2がオン状態となることにより、システム22と組電池10との間が通電状態となる。
また、負極側のリレースイッチSN1,SN2には、それぞれ数MΩ程度の抵抗R61,R62が並列接続されている。これらの抵抗R61,R62が接続回路70に相当する。
電圧検出装置30は、各システム21,22の印加電圧をそれぞれ2つの異なる分圧比で分圧する第1分圧回路40と、第1分圧回路40から入力チャネルCH1,CH3,CH5を介して入力された2つの分圧電圧の差分に基づいて、印加電圧をそれぞれ検出する検出回路としての監視IC50と、組電池10の端子間電圧を分圧する第2分圧回路60と、を備える。
第1分圧回路40は、スイッチSW0と抵抗R10,R20,R30から構成される第1直列接続体と、スイッチSW1と抵抗R11,R21,R31から構成される第2直列接続体と、スイッチSW2と抵抗R12,R22,R32から構成される第3直列接続体と、を有する。
第1直列接続体は、正極側電源経路11aと負極側電源経路11bとの間に設けられており、正極側電源経路11aから、スイッチSW0、抵抗R10、抵抗R20、抵抗R30の順番で直列に接続されている。そして、抵抗R20と抵抗R30との間の接続点P11は、監視IC50の低電位側入力端子S1と接続され、抵抗R10と抵抗R20との間の接続点P12は、監視IC50の高電位側入力端子V1と接続されている。
これにより、スイッチSW0がオンされた場合、端子間電圧が第1の分圧比(R30/(R10+R20+R30))で分圧されて、入力端子S1に入力される。また、スイッチSW0がオンされた場合、端子間電圧が第2の分圧比((R30+R20)/(R10+R20+R30))で分圧されて、入力端子V1に入力される。なお、端子間電圧が第1の分圧比により分圧された分圧電圧を、分圧電圧DS1と示し、端子間電圧が第2の分圧比により分圧された分圧電圧を、分圧電圧DV1と示す場合がある。
また、接続点P11と低電位側入力端子S1との間の電気経路と、接続点P12と高電位側入力端子V1との間の電気経路との間には、図2等に示すように、保護素子やフィルタが設けられている。例えば、低電位側入力端子S1の側から高電位側入力端子V1の側への電流の流れを許可するダイオードD11が設けられている。
第2直列接続体は、システム21の正極側電源経路23aと負極側電源経路23bとの間に設けられており、正極側電源経路23aから、スイッチSW1、抵抗R11、抵抗R21、抵抗R31の順番で直列に接続されている。そして、抵抗R21と抵抗R31との間の接続点P13は、監視IC50の低電位側入力端子S3と接続され、抵抗R11と抵抗R21との間の接続点P14は、監視IC50の高電位側入力端子V3と接続されている。
これにより、リレースイッチSN1,SP1及びスイッチSW1がオンされた場合、システム21への印加電圧が第3の分圧比(R31/(R11+R21+R31))で分圧されて、入力端子S3に入力される。また、リレースイッチSN1,SP1及びスイッチSW1がオンされた場合、システム21への印加電圧が第4の分圧比((R31+R21)/(R11+R21+R31))で分圧されて、入力端子V3に入力される。
なお、システム21への印加電圧とは、組電池10の端子間電圧が印加されることにより、正極側電源経路23aと負極側電源経路23bとの間において実際に生じている電位差(電圧)のことである。また、システム21への印加電圧が第3の分圧比により分圧された分圧電圧を、分圧電圧DS3と示し、システム21への印加電圧が第4の分圧比により分圧された分圧電圧を、分圧電圧DV3と示す場合がある。
また、接続点P13と低電位側入力端子S3との間の電気経路と、接続点P14と高電位側入力端子V3との間の電気経路との間には、図2等に示すように、保護素子やフィルタが設けられている。例えば、低電位側入力端子S3の側から高電位側入力端子V3の側への電流の流れを許可するダイオードD13が設けられている。
第3直列接続体は、システム22の正極側電源経路24aと負極側電源経路24bとの間に設けられており、正極側電源経路24aから、スイッチSW2、抵抗R12、抵抗R22、抵抗R32の順番で直列に接続されている。そして、抵抗R22と抵抗R32との間の接続点P15は、監視IC50の低電位側入力端子S5と接続され、抵抗R12と抵抗R22との間の接続点P16は、監視IC50の高電位側入力端子V5と接続されている。
これにより、リレースイッチSN2,SP2及びスイッチSW2がオンされた場合、システム22への印加電圧が第5の分圧比(R32/(R12+R22+R32))で分圧されて、入力端子S5に入力される。また、リレースイッチSN2,SP2及びスイッチSW2がオンされた場合、システム22への印加電圧が第6の分圧比((R32+R22)/(R12+R22+R32))で分圧されて、入力端子V5に入力される。
なお、システム22への印加電圧とは、組電池10の端子間電圧が印加されることにより、正極側電源経路24aと負極側電源経路24bとの間において実際に生じている電位差(電圧)のことである。また、システム22への印加電圧が第5の分圧比により分圧された分圧電圧を、分圧電圧DS5と示し、システム22への印加電圧が第6の分圧比により分圧された分圧電圧を、分圧電圧DV5と示す場合がある。
また、接続点P15と低電位側入力端子S5との間の電気経路と、接続点P16と高電位側入力端子V5との間の電気経路との間には、図2等に示すように、保護素子やフィルタが設けられている。例えば、低電位側入力端子S5の側から高電位側入力端子V5の側への電流の流れを許可するダイオードD15が設けられている。
監視IC50は、図2に示すように、少なくとも6つの入力チャネルCH1~CH6を備えるものを使用しているが、入力チャネルCH6を含んだそれ以上の入力チャネルCHは、入力チャネルCH6と同様に入力端子を短絡処理しており、今回の電圧検出には利用していないため、以下の説明では入力チャネルCH1~CH6の範囲で記載する。各入力チャネルCH1~CH6は、それぞれ1対の入力端子(ピン端子)S1~S6,V1~V6を有する。1対の入力端子S1~S6,V1~V6には、高電位側入力端子V1~V6と、低電位側入力端子S1~S6が存在する。入力チャネルCH1~CH6は、番号の小さいものから順番に、すなわち、CH1→CH2→・・・→CH6の順番で整列して配置されている。また、各入力チャネルCH1~CH6において、低電位側入力端子S1~S6→高電位側入力端子V1~V6の順番で配列されている。したがって、入力端子S1~S6,V1~V6は、S1→V1→S2→V2→・・・→S6→V6の順番で整列して配置されている。
そして、監視IC50は、マルチプレクサ51と、差動増幅回路52と、AD変換器53と、MOSFET等の半導体スイッチSW51~SW56と、を備えている。各入力端子S1~S6,V1~V6は、マルチプレクサ51を介して差動増幅回路52に接続されている。具体的には、各高電位側入力端子V1~V6は、マルチプレクサ51を介して差動増幅回路52の非反転入力端子側が接続され、各低電位側入力端子S1~S6は、マルチプレクサ51を介して差動増幅回路52の反転入力端子側が接続されている。
マルチプレクサ51は、各入力チャネルCH1~CH6の中から選択した入力チャネルCH1~CH6の入力端子S1~S6,V1~V6に入力されている電圧を、差動増幅回路52に出力する。
差動増幅回路52は、非反転入力端子と反転入力端子との間の電圧(電位差)を検出してアナログ信号としてAD変換器53に出力する。AD変換器53は、アナログ信号をデジタル信号に変換し、監視IC50が備える演算装置54に出力する。演算装置54は、入力した電位差(デジタル信号)に基づいて、組電池10の端子間電圧や、各システム21,22への印加電圧を算出する。
具体的には、演算装置54は、端子間電圧に対する第1分圧回路40の第1の分圧比(R30/(R10+R20+R30))、第2の分圧比((R30+R20)/(R10+R20+R30))、及び分圧電圧DS1と分圧電圧DV1との電位差に基づいて、端子間電圧を算出する。なお、本実施形態の監視IC50は、差動増幅回路52とAD変換器53を監視IC50内で一体化し、トータル誤差を校正や補正により抑制する。このため、端子間電圧を精度よく算出することができる。
同様に、演算装置54は、システム21への印加電圧に対する第1分圧回路40の第3の分圧比(R31/(R11+R21+R31))、第4の分圧比((R31+R21)/(R11+R21+R31))、及び分圧電圧DS3と分圧電圧DV3との電位差に基づいて、システム21への印加電圧を算出する。システム22への印加電圧の算出も同様である。なお、監視IC50に演算装置54を設ける必要はなく、外部装置に演算装置54を設けてもよい。
半導体スイッチSW51~SW56は、それぞれ隣り合う低電位側入力端子S1~S6との間で通電及び通電遮断を切り替える可能に設けられている。例えば、半導体スイッチSW51は、入力端子S1と入力端子S2との間に設けられ、それらの端子間を通電及び通電遮断を切り替え可能に構成されている。半導体スイッチSW52~SW56も同様である。
また、半導体スイッチSW51~SW56には、それぞれダイオードD51~D56が並列に接続されている。ダイオードD51~D56は、半導体スイッチSW51~SW56の寄生ダイオードであってもよい。各ダイオードD51は、番号が小さい低電位側入力端子S1から番号の大きい低電位側入力端子S2の側への電流の流れを許可するように配置されている。ダイオードD52~D56も同様である。
演算装置54は、上述した演算以外に、半導体スイッチSW51~SW56の切り替えや、マルチプレクサ51による入力チャネルCH1~CH6の選択を制御可能に構成されている。
第2分圧回路60は、正極側電源経路11aと負極側電源経路11bとの間で、スイッチSW3、抵抗R42及び抵抗R52が、この順番で直列接続されている。また、抵抗R41及び抵抗R51の直列接続体が、抵抗R42及び抵抗R52と平行となるように、その一端がスイッチSW3と抵抗R42との間に接続され、他端が負極側電源経路11bに接続されている。
抵抗R41と抵抗R51との間の接続点P21は、ダイオードD1を介して第1分圧回路40の抵抗R21と抵抗R31との間の接続点P13に接続されている。ダイオードD1は、第2分圧回路60の側から第1分圧回路40の側への電流の流れを許可するように接続されている。すなわち、スイッチSW3がオンされている場合、組電池10の端子間電圧が抵抗R41,R51に基づく第7の分圧比(R51/(R41+R51))により分圧され、ダイオードD1を介して接続点P13に印加可能に構成されている。なお、端子間電圧が第7の分圧比により分圧された分圧電圧を、分圧電圧DSmin3と示す場合がある。
抵抗R42と抵抗R52との間の接続点P22は、ダイオードD2を介して第1分圧回路40の抵抗R22と抵抗R32との間の接続点P15に接続されている。ダイオードD2は、第2分圧回路60の側から第1分圧回路40の側への電流の流れを許可するように接続されている。すなわち、スイッチSW3がオンされている場合、組電池10の端子間電圧が抵抗R42,R52に基づく第8の分圧比(R52/(R42+R52))により分圧され、ダイオードD2を介して接続点P15に印加可能に構成されている。なお、端子間電圧が第8の分圧比により分圧された分圧電圧を、分圧電圧DSmin5と示す場合がある。
ところで、監視IC50は、本来、図3に示すように、組電池を構成する各電池セルC11~C15の電圧を検出するために利用されるものである。なお、半導体スイッチSW51~SW55は、各電池セルC11~C15の均等化放電のために設けられているものである。つまり、監視IC50は、直列接続された電池セルC11~C15の電圧検出を前提に開発されている。このため、例えば、入力チャネルCH1~CH5ごとに電位が段階的に高くなることを前提に回路構成が設定されている。具体的には、入力端子S1→入力端子V1,S2→入力端子V2,S3→入力端子V3,S4→入力端子V4,S5→入力端子V5の順番で入力される電位が段階的に大きくなることを前提としている。
したがって、同電位の電圧を検出させようとする場合、図4に示すように、組電池10の端子間電圧及びシステム21,22の印加電圧を、分圧回路を介して、各入力チャネルCH11,CH13,CH15に入力した場合、次のような問題がある。すなわち、各入力チャネルCH11,CH13,CH15に入力される電圧がほぼ同じである場合、図4に示す破線の矢印に示すように、監視IC50の外部に設けられたダイオードD11,D13、D15、又は監視IC50の内部の半導体スイッチSW51~SW56のダイオードD51~D56を介して、回り込み電流が発生する可能性がある。
また、入力チャネルCH11への入力電圧が、入力チャネルCH13,CH15への入力電圧よりも大きい場合、回り込み電流が発生する可能性がある。また、リレースイッチSN1,SP1,SN2,SP2がオフされることにより、各システム21,22のいずれかの印加電圧がゼロとなった場合も、同様に回り込み電流が発生する可能性がある。これにより、電圧の検出誤差が生じるという問題がある。
そこで、第1分圧回路40及び第2分圧回路60を設け、各分圧比を次に説明するように設定している。以下、詳しく説明する。
図1、図2に示すように、組電池10、システム21、22に対して、それぞれ入力チャネルCH1,CH3,CH5が設定されている。そして、第1分圧回路40は、前記入力チャネルCH1,CH3,CH5の各入力端子S1,V1,S3,V3,S5,V5ごとに、段階的に異なる分圧比で電圧を分圧して、出力するようにしている。より詳しくは、入力端子S1→V1→S3→V3→S5→V5の順番で、入力される電位が段階的に高くなるように、第1分圧回路40の各分圧比が設定されている。
具体的に説明すると、第1分圧回路40において、入力チャネルCH1の高電位側入力端子V1に入力されうる分圧電圧DV1の第2の分圧比は、当該入力チャネルCH1の低電位側入力端子S1に入力されうる分圧電圧DS1の第1の分圧比よりも1段階大きく設定されている。入力チャネルCH3,CH5も同様に、第4の分圧比は、第3の分圧比よりも1段階大きく設定されており、第6の分圧比は、第5の分圧比よりも1段階大きく設定されている。
また、電圧検出に利用される入力チャネルCH1,CH3,CH5のうち、隣に設定されることとなる入力チャネルCH1と入力チャネルCH3との間、及び入力チャネルCH3と入力チャネルCH5との間で、入力される電位に予め決められた値以上の電位差が生じるように、段階的に分圧比が設定されている。すなわち、第1分圧回路40において、入力チャネルCH3の低電位側入力端子S3に入力されうる分圧電圧DS3の第3の分圧比は、入力チャネルCH1の高電位側入力端子V1に入力されうる分圧電圧DV1の第2の分圧比よりも1段階大きく設定されている。第5の分圧比も同様に、第4の分圧比よりも1段階大きく設定されている。
すなわち、第1の分圧比(R30/(R10+R20+R30))<第2の分圧比(R(30+R20)/(R10+R20+R30))<第3の分圧比(R31/(R11+R21+R31))<第4の分圧比((R31+R21)/(R11+R21+R31))<第5の分圧比(R32/(R12+R22+R32))<第6の分圧比((R32+R22)/(R12+R22+R32))となるように各分圧比が段階的に設定されている。そして、各分圧比が段階的に設定されるように、各抵抗R10,R20,R30,R11,R21,R31,R12,R22,R32の値が設定されている。
また、各負極側電源経路11b,23b,24bに流れる電流によっては、電圧降下が生じる。例えば、組電池10を充電する場合、充電電流により、電圧降下が生じる。そこで、第1分圧回路40における第1の分圧比、第3の分圧比及び第5の分圧比は、負極側電源経路11b,23b,24bの電流量及びインピーダンスに基づいて算出される電圧降下量を考慮して設定されている。
具体的には、負極側電源経路11b,23b,24bの電流量とのインピーダンスから、監視IC50の回路基準(N0)からの最大降下量N0max、N1max、N2maxをそれぞれ算出する。そして、最大降下量N0max<分圧電圧DS1、となるように第1の分圧比が設定されている。同様に、最大降下量N1max<分圧電圧DS3、となるように第3の分圧比が設定されている。同様に、最大降下量N2max<分圧電圧DS5、となるように第5の分圧比が設定されている。
また、第2分圧回路60は、各システム21,22ごとに、段階的に異なる分圧比で端子間電圧を分圧するように構成されている。詳しくは、分圧電圧DSmin3の第7の分圧比(R51/(R41+R51))は、分圧電圧DS3の第3の分圧比(R31/(R11+R21+R31))よりも小さく、かつ、第1分圧回路40において当該第3の分圧比よりも1段階小さい第2の分圧比((R30+R20)/(R10+R20+R30))に比較して大きく設定されている。
また、分圧電圧DSmin5の第8の分圧比(R52/(R42+R52))は、分圧電圧DS5の第5の分圧比(R32/(R12+R22+R32))よりも小さく、かつ、第1分圧回路40において当該第5の分圧比よりも1段階小さい第4の分圧比((R31+R21)/(R11+R21+R31))に比較して大きく設定されている。
そして、第2分圧回路60は、リレースイッチSN1,SP1,SN2,SP2により組電池10との通電が遮断されたシステム21,22が存在する場合、当該システム21,22に対して設定されている入力チャネルCH3,CH5の低電位側入力端子S3,S5に分圧電圧DSmin3,DSmin5を出力するように構成されている。
具体的には、抵抗R41と抵抗R51との間の接続点P21を、ダイオードD1を介して第1分圧回路40の抵抗R21と抵抗R31との間の接続点P13に接続している。このため、第2分圧回路60は、システム21の印加電圧がゼロとなった場合、分圧電圧DS3もゼロとなるため、ダイオードD1を介して、分圧電圧DSmin3を低電位側入力端子S3に出力することとなる。同様に、抵抗R42と抵抗R52との間の接続点P22を、ダイオードD2を介して第1分圧回路40の抵抗R22と抵抗R32との間の接続点P15に接続している。このため、第2分圧回路60は、システム22の印加電圧がゼロとなった場合、ダイオードD2を介して、分圧電圧DSmin5を低電位側入力端子S5に出力することとなる。
次に、図5~図9に基づいて電圧検出装置30の動作について説明する。
図5は、リレースイッチSN1,SP1,SN2,SP2がオンされた場合における電圧検出装置30の動作、及び電流の流れを示す図である。図5では、破線により、電流の流れを示す。
図5に示すように、入力端子S1には、端子間電圧が第1の分圧比により分圧された分圧電圧DS1が入力される。入力端子V1には、端子間電圧が第2の分圧比により分圧された分圧電圧DV1が入力される。入力端子S3には、システム21への印加電圧が第3の分圧比により分圧された分圧電圧DS3が入力される。入力端子V3には、システム21への印加電圧が第4の分圧比により分圧された分圧電圧DV3が入力される。入力端子S5には、システム22への印加電圧が第5の分圧比により分圧された分圧電圧DS5が入力される。入力端子V5には、システム22への印加電圧が第6の分圧比により分圧された分圧電圧DV5が入力される。そして、各分圧電圧の大小関係は、DS1<DV1<DS3<DV3<DS5<DV5となっている。
これにより、入力端子S1→入力端子V1→入力端子S3→入力端子V3→入力端子S5→入力端子V5の順番で段階的に入力される分圧電圧が高くなる。このため、ダイオードD11,D13,D15,D51,D53,D55を介して電流が回り込むことを防止できる。
したがって、監視IC50は、入力端子S1,V1に入力された2つの分圧電圧DS1,DV1に基づいて、端子間電圧を精度よく検出することができる。同様に、監視IC50は、入力端子S3,V3に入力された2つの分圧電圧DS3,DV3に基づいて、システム21への印加電圧を精度よく検出することができる。システム22への印加電圧も同様に精度よく検出できる。
なお、第2分圧回路60における第7の分圧比は、第1分圧回路40の第3の分圧比よりも小さく、端子間電圧とシステム21への印加電圧は、ほぼ同等である。このため、端子間電圧を第7の分圧比で分圧した分圧電圧DSmin3は、システム21への印加電圧を第3の分圧比で分圧した分圧電圧DS3よりも小さくなる。このため、第2分圧回路60からの分圧電圧DSmin3は、入力端子S3に入力されず、第1分圧回路40からの分圧電圧DS3が、入力端子S3に入力される。
同様に、第2分圧回路60における第8の分圧比は、第1分圧回路40の第5の分圧比よりも小さく、端子間電圧とシステム22への印加電圧は、ほぼ同等である。このため、端子間電圧を第8の分圧比で分圧した分圧電圧DSmin5は、システム22への印加電圧を第5の分圧比で分圧した分圧電圧DS5よりも小さくなる。このため、第2分圧回路60からの分圧電圧DSmin5は、入力端子S5に入力されず、第1分圧回路40からの分圧電圧DS3が、入力端子S5に入力される。
図6は、リレースイッチSN1,SP1がオフされ、リレースイッチSN2,SP2がオンされた場合における電圧検出装置30の動作、及び電流の流れを示す図である。図5では、破線により、第1分圧回路40における電流を示す。また、一点鎖線により、第2分圧回路60における電流を示す。
図6に示すように、入力端子S1には、端子間電圧が第1の分圧比により分圧された分圧電圧DS1が入力される。入力端子V1には、端子間電圧が第2の分圧比により分圧された分圧電圧DV1が入力される。入力端子S5には、システム22への印加電圧が第5の分圧比により分圧された分圧電圧DS5が入力される。入力端子V5には、システム22への印加電圧が第6の分圧比により分圧された分圧電圧DV5が入力される。
一方、前提により組電池10からシステム21への通電は遮断されているため、システム21への印加電圧は0Vである。よって、第1分圧回路40による分圧電圧も0Vである。このため、第2分圧回路60による分圧電圧DSmin3は、0Vよりも高いので、一点鎖線に示すように、組電池10の正極側端子10a→スイッチSW3→抵抗R41→ダイオードD1→抵抗R31→抵抗R61→組電池10の負極側端子10bの経路に電流が流れる。
これにより入力端子S3には、端子間電圧が第7の分圧比により分圧された分圧電圧DSmin3が入力される。入力端子V3には、ダイオードD13を介して、分圧電圧DSmin3が入力される。そして、各分圧電圧の大小関係は、DS1<DV1<DSmin3<DS5<DV5となっている。
これにより、入力端子S1→入力端子V1→入力端子S3,V3→入力端子S5→入力端子V5の順番で段階的に入力される分圧電圧が高くなる。このため、ダイオードD11,D13,D15,D51,D53,D55を介して電流が回り込むことを防止できる。したがって、監視IC50は、端子間電圧及びシステム22への印加電圧を精度よく検出することができる。
図7は、リレースイッチSN2,SP2がオフされ、リレースイッチSN1,SP1がオンされた場合における電圧検出装置30の動作、及び電流の流れを示す図である。図7では、破線により、第1分圧回路40における電流を示す。また、一点鎖線により、第2分圧回路60における電流を示す。
図7に示すように、入力端子S1には、端子間電圧が第1の分圧比により分圧された分圧電圧DS1が入力される。入力端子V1には、端子間電圧が第2の分圧比により分圧された分圧電圧DV1が入力される。入力端子S3には、システム21への印加電圧が第3の分圧比により分圧された分圧電圧DS3が入力される。入力端子V3には、システム21への印加電圧が第4の分圧比により分圧された分圧電圧DV3が入力される。
一方、前提により組電池10からシステム22への通電は遮断されているため、図6において説明した理由と同様の理由で、入力端子S5,V5には、端子間電圧が第8の分圧比により分圧された分圧電圧DSmin5が入力される。そして、各分圧電圧の大小関係は、DS1<DV1<DS3<DV3<DSmin5となっている。
これにより、入力端子S1→入力端子V1→入力端子S3→入力端子V3→入力端子S5,V5の順番で段階的に入力される分圧電圧が高くなる。このため、ダイオードD11,D13,D15,D51,D53,D55を介して電流が回り込むことを防止できる。したがって、監視IC50は、端子間電圧及びシステム22への印加電圧を精度よく検出することができる。
図8は、リレースイッチSN1,SP1,SN2,SP2がオンされ、スイッチSW0がオフ固着(オンできない)した場合における電圧検出装置30の動作、及び電流の流れを示す図である。図8では、破線により、電流の流れを示す。
図8に示すように、入力端子S3には、システム21への印加電圧が第3の分圧比により分圧された分圧電圧DS3が入力される。入力端子V3には、システム21への印加電圧が第4の分圧比により分圧された分圧電圧DV3が入力される。入力端子S5には、システム22への印加電圧が第5の分圧比により分圧された分圧電圧DS5が入力される。入力端子V5には、システム22への印加電圧が第6の分圧比により分圧された分圧電圧DV5が入力される。一方、スイッチSW0は、オンできないため、入力端子S1、V1は、負極側電源経路11bと同電位、すなわち、0Vとなる。
これにより、入力端子S1,V1(=0V)→入力端子S3→入力端子V3→入力端子S5→入力端子V5の順番で段階的に入力される分圧電圧が高くなる。このため、ダイオードD11,D13,D15,D51,D53,D55を介して電流が回り込むことを防止できる。したがって、監視IC50は、システム21,22への印加電圧を精度よく検出することができる。また、監視IC50は、スイッチSW0の故障を検知することができる。
図9は、リレースイッチSN1,SP1,SN2,SP2がオフされた場合における電圧検出装置30の動作、及び電流の流れを示す図である。図9では、一点鎖線により、第2分圧回路60における電流を示す。
図9に示すように、入力端子S1には、端子間電圧が第1の分圧比により分圧された分圧電圧DS1が入力される。入力端子V1には、端子間電圧が第2の分圧比により分圧された分圧電圧DV1が入力される。
一方、前提により組電池10からシステム21,22への通電は遮断されているため、上述した理由と同様の理由で、入力端子S3,V3には、端子間電圧が第7の分圧比により分圧された分圧電圧DSmin3が入力される。また、入力端子S5,V5には、端子間電圧が第8の分圧比により分圧された分圧電圧DSmin5が入力される。そして、各分圧電圧の大小関係は、DS1<DV1<DSmin3<DSmin5となっている。
これにより、入力端子S1→入力端子V1→入力端子S3,V3→入力端子S5,V5の順番で段階的に入力される分圧電圧が高くなる。このため、ダイオードD11,D13,D15,D51,D53,D55を介して電流が回り込むことを防止できる。したがって、監視IC50は、端子間電圧を精度よく検出することができる。
第1実施形態の構成によれば、次のような効果を得ることができる。
第1分圧回路40は、入力端子S1,V1,S3,V3,S5,V6ごとに、段階的に異なる分圧比(第1の分圧比~第6の分圧比)で端子間電圧又はシステム21,22の印加電圧を分圧して、出力する。これにより、端子間電圧、及び各システム21,22の印加電圧がほぼ同じであっても第1分圧回路40によって、各入力端子S1,V1,S3,V3,S5,V6に入力される分圧電圧を段階的に高くすることが可能となる。したがって、図5に示すように、回り込み電流の発生を防止し、精度よく電圧を検出することができる。
第2分圧回路60は、システム21,22ごとに、段階的に異なる分圧比(第7の分圧比及び第8の分圧比)で端子間電圧を分圧する。そして、第2分圧回路60は、組電池10との通電が遮断されたシステム21,22が存在する場合、当該システム21,22に対して設定されている入力チャネルCH3,CH5に分圧電圧DSmin3,DSmin5を出力する。
また、第2分圧回路60による第7の分圧比は、第1分圧回路40による第3の分圧比に比較して小さく、かつ、第3の分圧比よりも1段階小さい第2の分圧比に比較して大きく設定されている。これにより、分圧電圧の大小関係は、DV1<DSmin3<DS3となる。このため、図6に示すように、リレースイッチSN1,SP1がオフとなったときのみ、入力端子S3,V3に分圧電圧DSmin3が入力される。また、この場合に、入力端子V1に入力される分圧電圧DV1よりも、入力端子S3に入力される分圧電圧DSmin3のほうが大きくなるため、入力端子V1から入力端子S3への回り込み電流が発生することを防止できる。また、DSmin3<DS5となり、入力端子S3,V3に入力される分圧電圧DSmin3よりも、入力端子S5に入力される分圧電圧DS5のほうが大きくなるため、入力端子S3,V3から入力端子S5への回り込み電流が発生することを防止できる。
同様に、図7に示すように、リレースイッチSN2,SP2がオフとなった場合にも、回り込み電流を防止できる。また、DSmin3<DSmin5であるため、図9に示すように、リレースイッチSN1,SP1,SN2,SP2が全てオフの場合であっても、入力チャネルCH1から入力チャネルCH3,SH5へ電流が回り込むことを防止することができる。
第1分圧回路40における第3の分圧比及び第5の分圧比は、電圧降下量を考慮して設定されている。具体的には、最大降下量N1max<分圧電圧DS3となるように第3の分圧比が設定されており、最大降下量N2max<分圧電圧DS5となるように第5の分圧比が設定されている。これにより、電圧降下が生じたとしても、負電圧が生じず、各入力端子S1,V1,S3,V3,S5,V6に入力される分圧電圧を段階的に高くすることが可能となり、回り込み電流を防止できる。
また、第1分圧回路40は、端子間電圧を2つの異なる分圧比で分圧し、監視IC50は、組電池10に対して設定された入力チャネルCH1を介して、2つの分圧電圧DS1,DV1を入力し、それらの分圧電圧DS1,DV1の差分に基づいて、端子間電圧を検出する。このため、印加電圧と、端子間電圧を検出する回路を共通化することができる。また、図8に示すように、スイッチSW0のオフ固着を検出することができる。
監視IC50には、分圧電圧が入力されるため、耐圧を小さくすることができ、小型化できる。また、監視IC50の内部において、差動増幅回路52及びAD変換器53を一体化し、演算装置54は、誤差を補正しているため、検出精度を向上させることができる。また、組電池の電池セルの電圧検出に利用される監視IC50をそのまま採用することができるため、開発コストを抑えることができる。
第1の分圧比~第6の分圧比は、段階的に設定されている。また、第7の分圧比は、第2の分圧比と第3の分圧比との間に設定されており、第8の分圧比は、第4の分圧比と第5の分圧比との間に設定されている。これにより、図10に示すように、各分圧電圧は段階的に電位が高くなる。つまり、DS1<DV1<DSimn3<DS3<DV3<DSimn5<DS5<DV5となっている。これにより、リレースイッチSN1,SP1,SN2,SP2のオンオフ状態にかかわらず、入力端子S1,V1,S3,V3,S5,V5に入力される分圧電圧をこの順番で段階的に高くすることができる。なお、図10では、印加電圧及び端子間電圧は、同じであることを前提としたときにおける各分圧電圧を図示したものである。
しかしながら、回路公差や電流量によっては、各分圧電圧にずれが生じる可能性がある。そして、このずれが大きくなる場合、入力される分圧電圧の大小関係を維持することが難しくなる。そこで、第1実施形態の監視IC50では、図2に示すように、分圧電圧が入力される入力チャネルを、1つおきに設定した。つまり、分圧電圧DS5と分圧電圧DSmin5との間、分圧電圧DSmin5と分圧電圧DV3の間、分圧電圧DS3と分圧電圧DSmin3との間、及び分圧電圧DSmin3と分圧電圧DV1の間にマージンを設けるため、入力チャネルCH2,CH4を読み捨てチャネルとして割り当てることとした。これにより、回路公差などにより、各分圧電圧にずれが生じたとしても、入力される分圧電圧の大小関係を維持することができ、回り込み電流を確実に防止できる。
(第2実施形態)
上記第1実施形態の構成を、次の第2実施形態のように変更してもよい。以下、第2実施形態では、主に、上記各実施形態で説明した構成に対する相違部分について説明する。
第1実施形態において、第2分圧回路60は、印加電圧が0Vとなった場合、分圧電圧DSmin3,DSmin5をダイオードD1,D2を介して、入力端子S3,S5に入力するように構成されていた。しかしながら、実際に第2分圧回路60から入力端子S3,S5に入力される電圧は、ダイオードD1,D2の特性(順方向電圧降下)により、分圧電圧DSmin3,DSmin5よりも所定値Vf(Vfは一定値)だけ降下することがわかっている。このため、図11(a)に示すように、端子間電圧が所定値以下となった場合、DV1>DSmin3-Vfとなる可能性があり、この場合、回り込み電流が発生し、検出精度が悪化するという問題がある。
そこで、第2実施形態では、第2分圧回路の構成を変更している。以下、第2実施形態の第2分圧回路160について説明する。図12に示すように、抵抗R41と抵抗R51との間の接続点P21は、切替部としてのスイッチSD1を介して第1分圧回路40の抵抗R21と抵抗R31との間の接続点P13に接続されている。それとともに、接続点P21は、比較部としてのコンパレータCP1の非反転入力端子側が接続されている。
また、第2分圧回路160は、抵抗R71と抵抗R72との直列接続体を備え、当該直列接続体の一端は、システム21の正極側電源経路23aにおいてリレースイッチSP1よりもシステム21の側に接続され、他端は、組電池10の負極側電源経路11bに接続されている。そして、抵抗R71と抵抗R72との間の接続点P31は、コンパレータCP1の反転入力端子側が接続されている。つまり、コンパレータCP1の反転入力端子側には、正極側電源経路23aと負極側電源経路11bとの間における印加電圧を第9の分圧比(R72/(R71+R72))で分圧した分圧電圧DP1が入力されるようになっている。なお、第9の分圧比は、第7の分圧比よりも若干大きく設定されている。
そして、コンパレータCP1は、入力した分圧電圧DSmin3と分圧電圧DP1とを比較し、分圧電圧DSmin3のほうが、分圧電圧DP1よりも大きいと判定した場合、スイッチSD1をオンするように構成されている。前述したように、第9の分圧比は、第7の分圧比よりも若干大きく設定されているため、リレースイッチSN1,SP1がオンされ、システム21に端子間電圧と同程度の印加電圧が印加されている場合、分圧電圧DSmin3<分圧電圧DP1となる。
一方で、リレースイッチSN1,SP1がオフされ、システム21への通電が遮断された場合、分圧電圧DSmin3>分圧電圧DP1となり、コンパレータCP1は、分圧電圧DSmin3のほうが、分圧電圧DP1よりも大きいと判定し、スイッチSD1をオンする。そして、スイッチSD1がオンされると、分圧電圧DSmin3が、入力端子S3に入力されることとなる。
また、図12に示すように、抵抗R42と抵抗R52との間の接続点P22は、切替部としてのスイッチSD2を介して第1分圧回路40の抵抗R22と抵抗R32との間の接続点P15に接続されている。それとともに、接続点P22は、比較部としてのコンパレータCP2の非反転入力端子側が接続されている。
また、第2分圧回路160は、抵抗R73と抵抗R74との直列接続体を備え、当該直列接続体の一端は、システム22の正極側電源経路24aにおいてリレースイッチSP2よりもシステム22の側に接続され、他端は、組電池10の負極側電源経路11bに接続されている。そして、抵抗R73と抵抗R74との間の接続点P32は、コンパレータCP2の反転入力端子側が接続されている。つまり、コンパレータCP2の反転入力端子側には、正極側電源経路24aと負極側電源経路11bとの間における印加電圧を第10の分圧比(R74/(R73+R74))で分圧した分圧電圧DP2が入力されるようになっている。なお、第10の分圧比は、第8の分圧比よりも若干大きく設定されている。
そして、コンパレータCP2は、入力した分圧電圧DSmin5と分圧電圧DP2とを比較し、分圧電圧DSmin5のほうが、分圧電圧DP2よりも大きいと判定した場合、スイッチSD2をオンするように構成されている。
前述同様、リレースイッチSN2,SP2がオフされ、システム22への通電が遮断された場合、分圧電圧DSmin5>分圧電圧DP2となり、コンパレータCP2は、スイッチSD2をオンする。そして、スイッチSD2がオンされると、分圧電圧DSmin5が、入力端子S5に入力されることとなる。
上記第2実施形態の構成によれば、以下の効果を得ることができる。
第2分圧回路160は、各システム21,22への印加電圧と、組電池10の端子間電圧との比較に基づいて、組電池10との通電が遮断されたシステム21,22が存在するか否かを判定する。具体的には、コンパレータCP1は、分圧電圧DSmin3と分圧電圧DP1とを比較し、分圧電圧DSmin3のほうが、分圧電圧DP1よりも大きいと判定した場合、スイッチSD1をオンする。そして、分圧電圧DP1は、システム21の正極側電源経路23aと組電池10の負極側端子10bとの間の電圧を、第9の分圧比で分圧したものである。このため、リレースイッチSN1,SP1がオフされれば、分圧電圧DP1もゼロとなるので、コンパレータCP1は、スイッチSD1をオンして、分圧電圧DSmin3を入力端子S3に入力することとなる。
以上により、図11(b)に示すように、リレースイッチSN1,SP1がオンされている場合には、第1分圧回路40による分圧電圧DS3が入力端子S3に入力され、常に、入力端子V1に入力される分圧電圧DV1よりも高くなる。一方、リレースイッチSN1,SP1がオフされている場合には、分圧電圧DSmin3が入力端子S3に入力される。このとき、ダイオードを介さずに入力端子S3に分圧電圧DSmin3がそのまま入力されるので、入力端子S3に入力される分圧電圧DSmin3は、常に、入力端子V1に入力される分圧電圧DV1よりも高くなる。以上により、回り込み電流を防止することができる。
なお、分圧電圧DSmin5も同様に、電圧降下することなく、入力端子S5に入力することができ、回り込み電流を防止できる。
(第3実施形態)
上記第2実施形態の構成を、次の第3実施形態のように変更してもよい。以下、第2実施形態では、主に、上記各実施形態で説明した構成に対する相違部分について説明する。この第3実施形態では、第2実施形態の構成を基本構成として説明する。
上記第2実施形態において、コンパレータCP1,CP2は、各正極側電源経路23a,24aと組電池10の負極側端子10bとの間における各電圧の分圧電圧を入力し、システム21,22への通電が遮断されたか否かを判定していた。しかしながら、各正極側電源経路23a,24aと組電池10の負極側端子10bとの間における各電圧は、端子間電圧と同程度であり、抵抗R71~R74の耐圧を確保する必要がある。このため、抵抗R71~R74が大型化する虞があった。
そこで、図13に示すように、第3実施形態の第2分圧回路260では、第1分圧回路40における抵抗R21と抵抗R31との接続点P13を、コンパレータCP1の非反転入力端子側に接続し、分圧電圧DS3が入力されるように構成している。これにより、コンパレータCP1は、分圧電圧DS3と、分圧電圧DSmin3とを比較し、分圧電圧DSmin3のほうが大きい場合、スイッチSD1をオンして、分圧電圧DSmin3を入力端子S3に入力することとなる。
そして、前述したように、第1分圧回路40の第3の分圧比は、第2分圧回路260の第7の分圧比よりも大きい。このため、リレースイッチSN1,SP1がオンされ、システム21に端子間電圧と同程度の電圧が印加されている場合、分圧電圧DSmin3のほうが小さいと判定される。一方、リレースイッチSN1,SP1がオフされ、システム21への通電が遮断されている場合、分圧電圧DSmin3のほうが大きいと判定され、スイッチSD1がオンされる。
以上により、リレースイッチSN1,SP1がオフされている場合には、分圧電圧DSmin3が入力端子S3に入力される。このとき、ダイオードを介さずに入力端子S3に分圧電圧DSmin3がそのまま入力されるので、入力端子S3に入力される分圧電圧DSmin3は、常に、入力端子V1に入力される分圧電圧DV1よりも高くなる。よって、回り込み電流を防止することができる。
同様に、第1分圧回路40における抵抗R22と抵抗R32との接続点P15を、コンパレータCP2の非反転入力端子側に接続し、分圧電圧DS5が入力されるように構成している。これにより、リレースイッチSN2,SP2がオフされている場合には、分圧電圧DSmin5が入力端子S5に入力される。このとき、ダイオードを介さずに入力端子S3に分圧電圧DSmin5がそのまま入力されるので、入力端子S5に入力される分圧電圧DSmin5は、常に、入力端子V3に入力される分圧電圧よりも高くなる。よって、回り込み電流を防止することができる。
(変形例)
・上記第3実施形態において、コンパレータCP1は、分圧電圧DSmin3のほうが大きい場合、スイッチSD1をオンしている。この別例として、コンパレータCP1は、分圧電圧DSmin3のほうが、分圧電圧DS3に対して所定の閾値以上大きい場合、スイッチSD1をオンしてもよい。つまり、コンパレータCP1に不感帯やヒステリシスを設けてもよい。これにより、システム21の印加電圧が端子間電圧と同程度であり、かつ、第3の分圧比と第7の分圧比との差が小さくても、スイッチSD1が頻繁にオンオフされること(チャタリング)を防止し、ノイズを抑制することができる。また、コンパレータCP2も同様に構成してもよい。
・上記実施形態において、監視IC50は、組電池10の端子間電圧を検出しなくてもよい。
・上記実施形態では、分圧電圧を入力する(すなわち、電圧を検出させる)入力チャネルを1つおきに設定した。つまり、入力チャネルCH1,CH3,CH5を電圧検出用の入力チャネルとして設定した。この別例として、分圧電圧を入力する(すなわち、電圧を検出させる)入力チャネルを連続して設定してもよい。例えば、図14に示すように、入力チャネルCH1~CH3に分圧電圧を入力してもよい。これによれば、利用されない入力チャネルの数を減らすことができる。
・上記実施形態において、印加電圧を検出するシステムの数を任意に変更してもよい。
・上記実施形態において、入力チャネルCH1において、組電池10の端子間電圧を検出したが、端子間電圧を検出させる入力チャネルを変更してもよい。
10…組電池、21,22…システム、30…電圧検出装置、40…第1分圧回路、50…監視IC、CH3,CH5…入力チャネル、S3,S5…低電位側入力端子、V3,V5…高電位側入力端子。

Claims (8)

  1. 蓄電池(10)と、前記蓄電池に対して並列に接続され、前記蓄電池の端子間電圧がそれぞれ印加される複数のシステム(21,22)と、を備えた電源システムに対して適用され、前記各システムに印加された印加電圧をそれぞれ検出する電圧検出装置(30)において、
    前記各システムの前記印加電圧をそれぞれ2つの異なる分圧比で分圧する第1分圧回路(40)と、
    前記各システムごとに入力チャネル(CH3,CH5)が設定されており、前記第1分圧回路から前記入力チャネルを介して入力された2つの分圧電圧の差分に基づいて、前記各システムの前記印加電圧をそれぞれ検出する検出回路(50)と、を備え、
    前記入力チャネルは、それぞれ1対の入力端子(S3,V3,S5,V5)を有しており、
    前記第1分圧回路は、前記入力端子ごとに、段階的に異なる分圧比で前記印加電圧を分圧して、出力する電圧検出装置。
  2. 前記蓄電池の前記端子間電圧を分圧する第2分圧回路(60)を備え、
    前記第2分圧回路は、前記各システムごとに、段階的に異なる分圧比で前記端子間電圧を分圧するとともに、システムスイッチ部(SN1,SP1、SN2,SP2)により前記蓄電池との通電が遮断された前記システムが存在する場合、当該システムに対して設定されている前記入力チャネルに前記分圧電圧を出力する請求項1に記載の電圧検出装置。
  3. 前記1対の入力端子には、高電位側入力端子(V3,V5)と、低電位側入力端子(S3,S5)と、があり、
    前記第2分圧回路によって前記入力チャネルに出力される分圧電圧の分圧比は、前記第1分圧回路によって当該入力チャネルの高電位側入力端子に入力される分圧電圧の分圧比よりも1段階大きい分圧比に比較して小さく、かつ、前記第1分圧回路において当該入力チャネルの低電位側入力端子に入力される分圧電圧の分圧比よりも1段階小さい分圧比に比較して大きく設定されている請求項2に記載の電圧検出装置。
  4. 前記第2分圧回路は、前記各システムへの印加電圧と、前記端子間電圧との比較に基づいて、前記システムスイッチ部により前記蓄電池との通電が遮断された前記システムが存在するか否かを判定する請求項2又は3に記載の電圧検出装置。
  5. 前記第2分圧回路は、
    前記第1分圧回路によって分圧された分圧電圧と、前記第2分圧回路によって分圧された分圧電圧との比較に基づいて、通電が遮断された前記システムが存在するか否かを判定する比較部(CP1,CP2)と、
    前記比較部によって通電が遮断された前記システムが存在すると判定された場合、前記第1分圧回路の代わりに前記第2分圧回路によって分圧された前記分圧電圧を前記入力チャネルに出力させる切替部(SD1,SD2)と、を有する請求項2又は3に記載の電圧検出装置。
  6. 前記比較部は、前記第2分圧回路から入力される分圧電圧のほうが、前記第1分圧回路から入力される分圧電圧よりも所定の閾値以上大きい場合に、通電が遮断された前記システムが存在すると判定する請求項5に記載の電圧検出装置。
  7. 前記第1分圧回路における分圧比は、電圧降下量を考慮して設定されている請求項1~6のうちいずれか1項に記載の電圧検出装置。
  8. 前記第1分圧回路は、前記端子間電圧を2つの異なる分圧比で分圧し、
    前記検出回路は、前記蓄電池に対して設定された前記入力チャネル(CH1)を介して、前記第1分圧回路から2つの分圧電圧を入力し、それらの分圧電圧の差分に基づいて、前記端子間電圧を検出する請求項1~7のうちいずれか1項に記載の電圧検出装置。
JP2020061375A 2020-03-30 2020-03-30 電圧検出装置 Active JP7151741B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020061375A JP7151741B2 (ja) 2020-03-30 2020-03-30 電圧検出装置
PCT/JP2021/010037 WO2021200033A1 (ja) 2020-03-30 2021-03-12 電圧検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020061375A JP7151741B2 (ja) 2020-03-30 2020-03-30 電圧検出装置

Publications (2)

Publication Number Publication Date
JP2021164194A JP2021164194A (ja) 2021-10-11
JP7151741B2 true JP7151741B2 (ja) 2022-10-12

Family

ID=77927880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020061375A Active JP7151741B2 (ja) 2020-03-30 2020-03-30 電圧検出装置

Country Status (2)

Country Link
JP (1) JP7151741B2 (ja)
WO (1) WO2021200033A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023849A1 (ja) 2005-08-25 2007-03-01 Matsushita Electric Industrial Co., Ltd. 電圧モニタ装置とそれを用いた蓄電装置
JP2011097818A (ja) 2009-10-02 2011-05-12 Panasonic Electric Works Co Ltd 配電システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847251A (ja) * 1994-07-29 1996-02-16 Internatl Business Mach Corp <Ibm> スイッチング・レギュレータ、情報処理装置及びその制御方法
JP3536505B2 (ja) * 1996-01-18 2004-06-14 いすゞ自動車株式会社 電気自動車用電源装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023849A1 (ja) 2005-08-25 2007-03-01 Matsushita Electric Industrial Co., Ltd. 電圧モニタ装置とそれを用いた蓄電装置
JP2011097818A (ja) 2009-10-02 2011-05-12 Panasonic Electric Works Co Ltd 配電システム

Also Published As

Publication number Publication date
WO2021200033A1 (ja) 2021-10-07
JP2021164194A (ja) 2021-10-11

Similar Documents

Publication Publication Date Title
US8487629B2 (en) Battery system, electric vehicle, and battery control apparatus
JP5353914B2 (ja) 電池電圧監視装置
US11881566B2 (en) Battery pack monitoring system
US10622685B2 (en) Problem detection apparatus
US20150077124A1 (en) Assembled battery module and disconnection detecting method
JP6477593B2 (ja) 組電池監視システム
US10215810B2 (en) Battery monitoring system
JP2014020914A (ja) 漏電検出装置
JP6137007B2 (ja) 異常検出装置
JP2012159407A (ja) 電池電圧監視装置
JP2019158539A (ja) 電池監視装置
US10288694B2 (en) Secondary battery monitoring device and method for diagnosing failure
US20180231613A1 (en) Semiconductor device and battery monitoring system
US20230147606A1 (en) Management device and power supply system
CN108226794B (zh) 二次电池监视装置及故障诊断方法
JP7151741B2 (ja) 電圧検出装置
US11079439B2 (en) Protection circuit for battery monitoring device, and battery monitoring device
KR20210131148A (ko) 퓨즈 진단 장치, 퓨즈 진단 방법, 배터리 관리 시스템 및 배터리 팩
CN111971564B (zh) 车载用的电压检测电路
JP7310747B2 (ja) 電圧検出装置
CN107797054B (zh) 高压检测电路及方法、检测器、电池系统、运载工具与计算机可读存储介质
EP4006560A1 (en) Diagnosis circuit of parallel mosfet comprising mux, and diagnosis method using same
JP6658381B2 (ja) 漏電判定装置
JP2012047519A (ja) 電池の状態監視装置
JP2022508101A (ja) バッテリ管理システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R151 Written notification of patent or utility model registration

Ref document number: 7151741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151