JP7141932B2 - エチレン系共重合体組成物およびホース製品 - Google Patents

エチレン系共重合体組成物およびホース製品 Download PDF

Info

Publication number
JP7141932B2
JP7141932B2 JP2018225069A JP2018225069A JP7141932B2 JP 7141932 B2 JP7141932 B2 JP 7141932B2 JP 2018225069 A JP2018225069 A JP 2018225069A JP 2018225069 A JP2018225069 A JP 2018225069A JP 7141932 B2 JP7141932 B2 JP 7141932B2
Authority
JP
Japan
Prior art keywords
group
copolymer
ethylene
molecular weight
cyclopentadienyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018225069A
Other languages
English (en)
Other versions
JP2020084137A (ja
Inventor
啓介 宍戸
義治 菊地
三樹男 細谷
恭巨 有野
優樹 末利
健太郎 山本
光太郎 市野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2018225069A priority Critical patent/JP7141932B2/ja
Publication of JP2020084137A publication Critical patent/JP2020084137A/ja
Application granted granted Critical
Publication of JP7141932B2 publication Critical patent/JP7141932B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、エチレン系共重合体および特定の水酸化マグネシウムを含むエチレン系共重合体組成物およびその用途に関し、詳しくは、バギング性に優れたエチレン系共重合体組成物およびホース製品等に関する。
エチレン・α-オレフィン共重合体、たとえばエチレン・α-オレフィン・非共役ポリエン共重合体などのエチレン系共重合体は、主鎖に不飽和結合を持たないため、ジエン系のゴムと比較して耐候性、耐熱性、耐オゾン性に優れ、自動車工業部品、工業用ゴム製品、電気絶縁材、土木建材用品、ゴム引布等のゴム製品等に広く用いられている。
エチレン・α-オレフィン共重合体をホース用途に用いる場合には、一般に、エチレン・プロピレン共重合体を主成分とし、これにカーボンブラック等の補強材を配合したゴム組成物が使用されている。
特許文献1には、成形性を悪化させることなく、体積抵抗率を向上させて、車体に流れる微電流によるホースの腐食劣化を防止する手段として、エチレン・炭素原子数3~20のα-オレフィン・非共役ポリエン共重合体、不飽和カルボン酸またはその誘導体がグラフトされたグラフト変性エチレン・α-オレフィン共重合体およびカーボンブラック等の補強材を含有する自動車水系ホース用ゴム組成物が開示されている。
さらに近年、クルマに対して下記のような要求が高まっており、エンジンルーム内の材料である自動車水系ホース用ゴム組成物は更なる耐熱老化性が必要となっている。
1) 乗り心地改善のためのキャビンエリアの拡大に伴うエンジンルームの縮小
2) 日本、欧州をはじめとする騒音規制の強化に伴うエンジン、その周りの部品の遮音材での覆い
ホース用組成物を作製するためにはニーダーなどの混練機での混練後にオープンロールでのさらなる混練と押出し機フィード用のリボン作製が行われるが、耐熱老化性のためにはカーボンブラック、オイルなどの副資材の充填量を少なくした(低充填の)コンパウンドがロールに十分に巻き付かず、ロール表面から剥がれ落ちる現象、いわゆるバギングが起こり、押出し機フィード用のリボン作製が困難となり、生産効率低下に繋がる。
特開2018-119097号公報
バギングが起こると、良好なホース用組成物を調製することができず、高性能なホース製品を製造することが困難になる。
ホース用組成物に対しては、従来のホース用組成物よりもさらに耐バギング性が高いことが望まれている。
本発明は、従来のEPDM系自動車水系ホース用ゴム組成物と比べ、耐バギング性と耐熱老化性のバランスに優れた組成物を提供することを課題とする。
本発明者らは、上記課題を解決するために鋭意研究した結果、エチレン・α-オレフィン・非共役ポリエン共重合体に、特定の性状を有する水酸化マグネシウムを添加することにより、耐バギング性に優れた組成物が得られることを見出し、本発明を完成するに至った。
すなわち、本発明は、例えば、以下の項[1]~[8]に関する。
[1] エチレン(a1)に由来する構成単位と、炭素原子数3~20のα-オレフィン(a2)に由来する構成単位と、非共役ポリエン(a3)に由来する構成単位とを有するエチレン・α-オレフィン・非共役ポリエン共重合体(A)、および該エチレン・α-オレフィン・非共役ポリエン共重合体(A)100質量部に対して1~100質量部の、アスペクト比5~100を有する水酸化マグネシウム(C)を含むエチレン系共重合体組成物。
[2] 前記共重合体(A)が、下記(i)~(vii)の条件を満たすことを特徴とする項[1]に記載のエチレン系共重合体組成物:
(i)エチレン(a1)に由来する構造単位と、α-オレフィン(a2)に由来する構造単位とのモル比[(a1)/(a2)]が、40/60~99.9/0.1である;
(ii)非共役ポリエン(a3)に由来する構成単位の重量分率が、共重合体(A)100質量%中、0.07質量%~10質量%である;
(iii)共重合体(A)の重量平均分子量(Mw)と、非共役ポリエン(a3)に由来する構成単位の重量分率((a3)の重量分率(質量%))と、非共役ポリエン(a3)の分子量((a3)の分子量)とが、下記式(1)を満たす;
4.5≦Mw×(a3)の重量分率/100/(a3)の分子量≦40 …(1)
(iv)レオメーターを用いて線形粘弾性測定(190℃)により得られた、周波数ω=0.1rad/sでの複素粘度η * ( ω =0.1) (Pa・sec)と、周波数ω=100rad/sでの複素粘度η * ( ω =100) (Pa・sec)との比P(η * ( ω =0.1) η * ( ω =100) )と、極限粘度[η]と、非共役ポリエン(a3)に由来する構成単位の重量分率((a3)の重量分率)とが、下記式(2)を満たす;
P/([η] 2.9)≦(a3)の重量分率×6 …(2)
(v)ゲルパーミエイションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)と数平均分子量(Mn)との割合(分子量分布;Mw/Mn)が8~30の範囲にある;
(vi)前記数平均分子量(Mn)が30,000以下である;
(vii)GPC測定によって得られるチャートが2つ以上のピークを示し、最も分子量が小さい側に現れるピークの面積が、全体のピーク面積の1~20%の範囲である。
[3] 前記非共役ポリエン(a3)が、下記一般式(I)および(II)からなる群より選ばれる部分構造を合計で分子中に2つ以上含むことを特徴とする項[1]または[2]に記載のエチレン系共重合体組成物。
Figure 0007141932000001
[4] 前記非共役ポリエン(a3)が5-ビニル-2-ノルボルネン(VNB)を含むことを特徴とする項[1]~[3]のいずれか一項に記載のエチレン系共重合体組成物
[5] 前記α-オレフィン(a2)がプロピレンであることを特徴とする項[1]~[4]のいずれか一項に記載のエチレン系共重合体組成物。
[6] ホース用である項[1]~[5]のいずれか一項に記載のエチレン系共重合体組成物。
[7] 項[1]~[6]のいずれか一項に記載のエチレン系共重合体組成物の架橋体。
[8] 項[7]に記載の架橋体を含むホース製品。
本発明のエチレン系共重合体組成物は、耐バギング性に優れ、さらに優れた耐熱老化性および押出し性をも有する。本発明のエチレン系共重合体組成物を用いることにより、性能の高いホース製品を製造することが可能である。
図1は、耐バギング性の評価基準を示す写真である。図1(1-1)は、評点1「組成物がロールに全く巻き付かず、すぐにバギングする」の具体的態様を示す。図1(1-2)は、評点2「組成物がロールに一時的に巻き付くが、すぐにロール表面から剥れ、バギングする」の具体的態様を示す。図1(1-3)は、評点3「組成物がロールは巻き付き、度々バンク部分から剥れるが、バギングしない」の具体的態様を示す。図1(1-4)は、評点4「組成物がロールに容易に巻き付き、極まれにバンク部分から剥れるが、バギングしない」の具体的態様を示す。図1(1-5)は、評点5「組成物がロールに容易に巻き付き、全くバンク部分から剥れず、バギングしない」の具体的態様を示す。 図2は、実施例で用いた連続重合装置の概略図である。
《エチレン・α-オレフィン・非共役ポリエン共重合体(A)》
本発明で用いられる共重合体(A)は、エチレン(a1)に由来する構成単位と、炭素原子数3~20のα-オレフィン(a2)に由来する構成単位と、非共役ポリエン(a3)に由来する構成単位に由来する構成単位とを有する。
上記α-オレフィン(a2)としては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-エイコセンなどが挙げられる。これらのうち、プロピレン、1-ブテン、1-ヘキセン、1-オクテンなどの炭素原子数3~8のα-オレフィンが好ましく、特にプロピレンが好ましい。このようなα-オレフィンは、原料コストが比較的安価であり、得られる共重合体(A)が優れた機械的性質を示し、さらにゴム弾性を持った成形体を得ることができるため好ましい。
上記α-オレフィン(a2)は一種単独で用いても、二種以上を用いてもよい。すなわち、上記共重合体(A)は、少なくとも1種の炭素原子数3~20のα-オレフィン(a2)に由来する構成単位を含んでおり、2種以上の炭素原子数3~20のα-オレフィン(a2)に由来する構成単位を含んでいてもよい。
上記非共役ポリエン(a3)としては、非共役不飽和結合を2個以上有する化合物であれば特に制限されないが、例えば下記一般式(I)および(II)からなる群から選ばれる部分構造を合計で分子中に2つ以上含む化合物が挙げられる。
Figure 0007141932000002
上記非共役ポリエン(a3)としては、5-ビニル-2-ノルボルネン(VNB)、ノルボルナジエン、1,4-ヘキサジエン、ジシクロペンタジエンなどが挙げられる。これらのうちでは、入手容易性が高く、重合後の架橋反応時に過酸化物との反応性が良好で、重合体組成物の耐熱性が向上しやすいことから、非共役ポリエン(a3)がVNBを含むことが好ましく、非共役ポリエン(a3)がVNBであることがより好ましい。非共役ポリエン(a3)は一種単独で用いても、二種以上を用いてもよい。
上記共重合体(A)は、上記(a1)、(a2)、(a3)に由来する構造単位に加えて、さらに上記般式(I)および(II)からなる群から選ばれる部分構造を分子中に1つのみ含む非共役ポリエン(a4)に由来する構成単位を有していてもよい。
上記非共役ポリエン(a4)としては、5-エチリデン-2-ノルボルネン(ENB)、5-メチレン-2-ノルボルネン、5-(2-プロペニル)-2-ノルボルネン、5-(3-ブテニル)-2-ノルボルネン、5-(1-メチル-2-プロペニル)-2-ノルボルネン、5-(4-ペンテニル)-2-ノルボルネン、5-(1-メチル-3-ブテニル)-2-ノルボルネン、5-(5-ヘキセニル)-2-ノルボルネン、5-(1-メチル-4-ペンテニル)-2-ノルボルネン、5-(2,3-ジメチル-3-ブテニル)-2-ノルボルネン、5-(2-エチル-3-ブテニル)-2-ノルボルネン、5-(6-ヘプテニル)-2-ノルボルネン、5-(3-メチル-5-ヘキセニル)-2-ノルボルネン、5-(3,4-ジメチル-4-ペンテニル)-2-ノルボルネン、5-(3-エチル-4-ペンテニル)-2-ノルボルネン、5-(7-オクテニル)-2-ノルボルネン、5-(2-メチル-6-ヘプテニル)-2-ノルボルネン、5-(1,2-ジメチル-5-ヘキセニル)-2-ノルボルネン、5-(5-エチル-5-ヘキセニル)-2-ノルボルネン、5-(1,2,3-トリメチル-4-ペンテニル)-2-ノルボルネンなどが挙げられる。これらのうちでは、入手容易性が高く、重合後の架橋反応時に硫黄や加硫促進剤との反応性が高く、架橋速度を制御しやすく、良好な機械物性が得られやすいことからENBが好ましい。非共役ポリエン(a4)は一種単独で用いても、二種以上を用いてもよい。
上記共重合体(A)が、上記非共役ポリエン(a4)に由来する構成単位を含む場合、その割合は本発明の目的を損なわない範囲において特に限定されるものではないが、通常、0~20質量%、好ましくは0~8質量%、より好ましくは0.01~8質量%程度の重量分率で含む(ただし、(a1)、(a2)、(a3)、(a4)の重量分率の合計を100質量%とする)。
上記共重合体(A)は、下記(i)~(vii)の要件(以下、それぞれ要件(i)~(vii)とも記す。)を満たすことが好ましい。
(i)エチレン(a1)に由来する構造単位と、α-オレフィン(a2)に由来する構造単位とのモル比[(a1)/(a2)]が、40/60~99.9/0.1である。
(ii)非共役ポリエン(a3)に由来する構成単位の重量分率が、共重合体(A)100質量%中、0.07質量%~10質量%である。
(iii)共重合体(A)の重量平均分子量(Mw)と、非共役ポリエン(a3)に由来する構成単位の重量分率((a3)の重量分率(質量%))と、非共役ポリエン(a3)の分子量((a3)の分子量)とが、下記式(1)を満たす。
4.5≦Mw×(a3)の重量分率/100/(a3)の分子量≦40 …(1)
(iv)レオメーターを用いて線形粘弾性測定(190℃)により得られた、周波数ω=0.1rad/sでの複素粘度η* (ω=0.1)(Pa・sec)と、周波数ω=100rad/sでの複素粘度η* (ω=100)(Pa・sec)との比P(η* (ω=0.1)/η* (ω=100))と、極限粘度[η]と、非共役ポリエン(a3)に由来する構成単位の重量分率((a3)の重量分率)とが、下記式(2)を満たす。
P/([η]2.9)≦(a3)の重量分率×6 …(2)
(v)ゲルパーミエイションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)と数平均分子量(Mn)との割合(分子量分布;Mw/Mn)が8~30の範囲にある。
(vi)前記数平均分子量(Mn)が30,000以下である。
(vii)GPC測定によって得られるチャートが2つ以上のピークを示し、最も分子量が小さい側に現れるピークの面積が、全体のピーク面積の1~20%の範囲である。
≪要件(i)≫
要件(i)は、上記共重合体(A)中のエチレン(a1)/α-オレフィン(a2)のモル比が40/60~99.9/0.1を満たすことを特定するものであり、このモル比は、好ましくは50/50~90/10、より好ましくは55/45~85/15、さらに好ましくは55/45~78/22である。
要件(i)を満たす共重合体(A)を用いることにより、ゴム弾性、機械的強度および柔軟性に優れたエチレン系共重合体組成物を得ることができる。なお、共重合体(A)中のエチレン量(エチレン(a1)に由来する構成単位の含量)およびα-オレフィン量(α-オレフィン(a2)に由来する構成単位の含量)は、13C-NMRにより求めることができる。
≪要件(ii)≫
要件(ii)は、非共役ポリエン(a3)に由来する構成単位の重量分率が、上記共重合体(A)100質量%中(すなわち全構成単位の重量分率の合計100質量%中)、0.07質量%~10質量%の範囲であることを特定するものである。この非共役ポリエン(a3)に由来する構成単位の重量分率は、好ましくは0.1質量%~8.0質量%、より好ましくは0.5質量%~5.0質量%である。
要件(ii)を満たす共重合体(A)は、充分な硬度を有し、機械特性に優れたものとなり、また、過酸化物を用いて架橋した場合、早い架橋速度を示すものとなる。なお、共重合体(A)中の非共役ポリエン(a3)量(非共役ポリエン(a3)に由来する構成単位の含量)は、13C-NMRにより求めることができる。
≪要件(iii)≫
要件(iii)は、上記共重合体(A)において、共重合体(A)の重量平均分子量(Mw)と、共重合体(A)中における非共役ポリエン(a3)に由来する構成単位の重量分率((a3)の重量分率:質量%)と、非共役ポリエン(a3)の分子量((a3)の分子量)とが、上記式(1)を満たすことを特定するものである。要件(iii)の上記式(1)は、下記式(1’)であることが好ましい。
4.5≦Mw×(a3)の重量分率/100/(a3)の分子量≦35 …(1’)
上記共重合体(A)が、要件(iii)を満たすことにより、非共役ポリエン(a3)に由来する構造単位の含有量が適切であり、十分な架橋性能を示し、架橋速度に優れるとともに、優れた機械特性を示すエチレン系共重合体組成物を製造することができる。なお、共重合体(A)の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算の数値として求めることができる。
上記共重合体(A)において、「Mw×(a3)の重量分率/100/(a3)の分子量」が上記式(1)又は(1’)を満たす場合、架橋程度が適切となり、機械的物性と耐熱老化性とがバランスよく優れたエチレン系共重合体組成物を製造することができる。「Mw×(a3)の重量分率/100/(a3)の分子量」の値が低すぎると、架橋性が不足して架橋速度が遅くなることなることがあり、また該値が高すぎると、過度に架橋が生じて機械的物性が悪化することがある。
≪要件(iv)≫
要件(iv)は、上記共重合体(A)の、レオメーターを用いた線形粘弾性測定(190℃)により得られる、周波数ω=0.1rad/sでの複素粘度η* (ω=0.1)(Pa・sec)と、周波数ω=100rad/sでの複素粘度η* (ω=100)(Pa・sec)との比P(η* (ω=0.1)/η* (ω=100))と、極限粘度[η]と、上記非共役ポリエン(a3)に由来する構成単位の重量分率((a3)の重量分率:質量%)とが、上記式(2)を満たすことを特定するものである。要件(iv)の上記式(2)は、下記式(2’)であることが好ましい。
P/([η]2.9)≦(a3)の重量分率×5.7 …(2’)
ここで、周波数ω=0.1rad/sでの複素粘度η* (ω=0.1)と、周波数ω=100rad/sでの複素粘度η* (ω=100)との比P(η* (ω=0.1)/η* (ω=100))は、粘度の周波数依存性を表すものであって、式(2)の左辺にあたるP/([η]2.9)は、短鎖分岐や分子量などの影響はあるものの、長鎖分岐が多い場合に高い値を示す傾向がある。一般に、エチレン・α-オレフィン・非共役ポリエン共重合体では、非共役ポリエンに由来する構成単位を多く含むほど、長鎖分岐を多く含む傾向があるが、本発明の共重合体(A)は、従来公知のエチレン・α-オレフィン・非共役ポリエン共重合体よりも長鎖分岐が少ないことにより、上記式(2)を満たすことができると考えられる。
本発明において、P値は、粘弾性測定装置Ares(Rheometric Scientific社製)を用い、190℃、歪み1.0%、周波数を変えた条件で測定を行って求めた、0.1rad/sでの複素粘度と、100rad/sでの複素粘度とから、比(η*比)を求めたものである。なお、極限粘度[η]は、135℃のデカリン中で測定された値を意味する。
≪要件(v)≫
要件(v)は、上記共重合体(A)の、ゲルパーミエイションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)と数平均分子量(Mn)との割合(分子量分布;Mw/Mn)が8~30の範囲にあることを特定するものである。この分子量分布(Mw/Mn)は、好ましくは9~28、より好ましくは10~26の範囲である。
上記共重合体(A)が、要件(v)を満たす場合、低分子量成分を適切な量で含有するため、加工性が良好となる。
なお、上記共重合体(A)の重量平均分子量(Mw)および数平均分子量は、ゲルパーミエイションクロマトグラフィー(GPC)で測定されるポリスチレン換算の数値として求めることができる。
≪要件(vi)≫
要件(vi)は、上記共重合体(A)の前記数平均分子量(Mn)が30,000以下であることを特定するものである。前記数平均分子量(Mn)は、好ましくは3,000~26,000、より好ましくは6,000~23,000の範囲である。
上記共重合体(A)が、要件(vi)を満たす場合、低分子量成分を適切な量で含有するため、加工性が良好となる。
≪要件(vii)≫
要件(vii)は、上記共重合体(A)のGPC測定によって得られるチャートが2つ以上のピークを示し、最も分子量が小さい側に現れるピークの面積が、全体のピーク面積の20%以下であることを特定するものである。全体のピーク面積に対して、前記の最も分子量が小さい側に現れるピークの面積は、好ましくは2~18%、より好ましくは3~16%である。
上記共重合体(A)が、要件(vii)を満たす場合、該共重合体(A)の分子量分布が二峰性等の多峰性を示すこととなり、高分子量成分と低分子量成分とを適切な割合で含み、加工性が良好となる。
上記共重合体(A)は、要件(i)~(vii)の他、さらに要件(viii)~(x)を満たすことが好ましい。
≪要件(viii)≫
上記共重合体(A)は、3D-GPCを用いて得られた1000炭素原子あたりの長鎖分岐数(LCB1000C)と、重量平均分子量(Mw)の自然対数[Ln(Mw)]とが、下記式(3)を満たすことが好ましく、下記式(3’)を満たすことがより好ましい。
LCB1000C≦1-0.07×Ln(Mw) …(3)
LCB1000C≦1-0.071×Ln(Mw) …(3’)
上記式(3)又は(3’)により、上記共重合体(A)の単位炭素数当たりの長鎖分岐含量の上限値が特定される。
このような共重合体(A)は、含まれる長鎖分岐の割合が少なく、過酸化物を用いて架橋を行う場合の硬化特性に優れるとともに、耐熱老化性に優れたエチレン系共重合体組成物を得ることができる。
ここで、Mwと1000炭素原子あたりの長鎖分岐数(LCB1000C)は、3D-GPCを用いた構造解析法により求めることができる。本明細書においては、具体的には、次のようにして求めた。
3D-高温GPC装置PL-GPC220型(Polymer Laboratories社製)を用い、絶対分子量分布を求め、同時に粘度計で極限粘度を求めた。主な測定条件は以下の通り。
検出器:示差屈折率計/GPC装置内蔵
2角度光散乱光度計PD2040型(Precison Detectors社製)
ブリッジ型粘度計PL-BV400型(Polymer Laboratories社製)
カラム:TSKgel GMHHR-H(S)HT×2本+TSKgel GMHHR-M(S)×1本
(いずれも1本当たり内径7.8mmφ×長さ300mm)
温度:140℃
移動相:1,2,4-トリクロロベンゼン(0.025%BHT含有)
注入量:0.5mL
試料濃度:ca 1.5mg/mL
試料濾過:孔径1.0μm焼結フィルターにて濾過
上記において、絶対分子量の決定に必要なdn/dc値は標準ポリスチレン(分子量190000)のdn/dc値0.053と単位注入質量あたりの示差屈折率計の応答強度より、試料ごとに決定した。
粘度計より得られた極限粘度と光散乱光度計より得られた絶対分子量の関係より溶出成分毎の長鎖分岐パラメーターg'iを下記式(v-1)から算出した。
Figure 0007141932000003
ここで、[η]=KMv;v=0.725の関係式を適用した。
また、g'として各平均値を下記式(v-2)、(v-3)、(v-4)から算出した。なお、短鎖分岐のみを有すると仮定したTrendlineは試料ごとに決定した。
Figure 0007141932000004
更にg'wを用いて、分子鎖あたりの分岐点数BrNo、炭素1000個あたりの長鎖分岐数LCB1000C、単位分子量あたりの分岐度λを算出した。BrNo算出はZimm-Stockmayerの下記式(v-5)、また、LCB1000Cとλの算出は下記式(v-6)、(v-7)を用いた。gは慣性半径Rgから求められる長鎖分岐パラメーターであり、極限粘度から求められるg'との間に次の単純な相関付けが行われている。式中のεは分子の形に応じて種々の値が提案されている。ここではε=1(すなわちg'=g)と仮定して計算を行った。
Figure 0007141932000005
λ=BrNo/M …(V-6)
LCB1000C=λ×14000 …(V-7)
式(V-7)中、「14000」はメチレン(CH2)単位で1000個分の分子量を表す。
上記共重合体(A)の極限粘度[η]は、好ましくは0.1~5dL/g、より好ましくは0.5~5.0dL/g、さらに好ましくは0.9~4.0dL/gである。
また、上記共重合体(A)の重量平均分子量(Mw)は、好ましくは10,000~600,000、より好ましくは30,000~500,000、さらに好ましくは50,000~400,000である。
上記共重合体(A)は、上記の極限粘度[η]および重量平均分子量(Mw)を兼ね備えて満たすことが好ましい。
上記共重合体(A)では、上述したように、非共役ポリエン(a3)がVNBを含むことが好ましく、VNBであることがより好ましい。すなわち、上述した式(1)、式(2)および後述する式(4)等において、「(a3)の重量分率」が「VNBの重量分率」(質量%)であることが好ましい。
上記共重合体(A)は、上述したように、上記(a1)、(a2)および(a3)に由来する構造単位に加えて、さらに、上記非共役ポリエン(a4)に由来する構成単位を、0質量%~20質量%の重量分率(ただし、(a1)、(a2)、(a3)、(a4)の重量分率の合計を100質量%とする)で含むことも好ましい。この場合には、下記(ix)の要件を満たすことが好ましい。
≪要件(ix)≫
上記共重合体(A)の重量平均分子量(Mw)と、非共役ポリエン(a3)に由来する構成単位の重量分率((a3)の重量分率(質量%))と、非共役ポリエン(a4)に由来する構成単位の重量分率((a4)の重量分率(質量%))と、非共役ポリエン(a3)の分子量((a3)の分子量)と、非共役ポリエン(a4)の分子量((a4)の分子量)とが、下記式(4)を満たす。
4.5≦Mw×{((a3)の重量分率/100/(a3)の分子量)+((a4)の重量分率/100/(a4)の分子量)}≦45 …(4)
式(4)では、共重合体1分子中の非共役ジエン((a3)と(a4)の合計)の含量を特定している。
上記(a4)に由来する構造単位を含む共重合体(A)が式(4)を満たすことにより、機械物性および耐熱老化性に優れたエチレン系共重合体組成物を得ることができる。
要件(ix)を満たさず、式(4)中の「Mw×{((a3)の重量分率/100/(a3)の分子量)+((a4)の重量分率/100/(a4)の分子量)}」の値が低すぎると、すなわち非共役ジエンの含量が少なすぎると、十分な架橋がなされず適切な機械物性が得られないことがあり、該値が高すぎると、すなわち非共役ジエンの含量が多すぎると、架橋が過剰となり機械物性が悪化することがあり、さらに耐熱老化性が悪化することもある。
≪要件(x)≫
上記共重合体(A)は、特に限定されるものではないが、レオメーターを用いた線形粘弾性測定(190℃)により得られる、周波数ω=0.01rad/sでの複素粘度η* (ω=0.01)(Pa・sec)と、周波数ω=10rad/sでの複素粘度η* (ω=10)(Pa・sec)と、非共役ポリエン(a3)に由来する見かけのヨウ素価とが、下記式(5)を満たすことが好ましい。
Log{η* (ω=0.01)}/Log{η* (ω=10)}≦0.0753×{非共役ポリエン(a3)に由来する見かけのヨウ素価}+1.42 …(5)
ここで、複素粘度η* (ω=0.01)および複素粘度η* (ω=10)は、要件(iv)における複素粘度η* (ω=0.1)および複素粘度η* (ω=100)と測定周波数以外は同様にして求められる。また、非共役ポリエン(a3)に由来する見かけのヨウ素価は、次式により求められる。
(a3)に由来する見かけのヨウ素価=(a3)の重量分率×253.81/(a3)の分子量
上記式(5)において、左辺は長鎖分岐量の指標となる剪断速度依存性を表し、右辺は重合時に長鎖分岐として消費されていない非共役ポリエン(a3)の含有量の指標を表す。上記共重合体(A)が上記式(5)を満たすと、長鎖分岐の程度が高すぎないため好ましい。一方、上記式(5)を満たさない場合、共重合した非共役ポリエン(a3)のうち、長鎖分岐の形成に消費された割合が多いこと分かる。
さらに、上記共重合体(A)は、非共役ポリエン(a3)に由来する構成単位を十分な量で含有することが好ましく、共重合体中における非共役ポリエン(a3)に由来する構成単位の重量分率((a3)の重量分率(質量%))と、共重合体の重量平均分子量(Mw)とが、下記式(6)を満たすことがより好ましい。
6-0.45×Ln(Mw)≦(a3)の重量分率≦10 …(6)
また、上記共重合体(A)は、重量平均分子量(Mw)あたりの、非共役ポリエン(a3)に由来する構成単位の数(na3)が、好ましくは6個以上、より好ましくは6個以上40個以下、さらに好ましくは7個以上39個以下、特に好ましくは10個以上38個以下である。
このような共重合体(A)は、VNBなどの非共役ポリエン(a3)から導かれる構成単位を十分な量で含有し、かつ、長鎖分岐含有量が少なく、過酸化物を用いて架橋を行う場合の硬化特性に優れ、成形性がよく、機械的特性などの物性バランスに優れるとともに、特に耐熱老化性に優れる。
また、上記共重合体(A)は、重量平均分子量(Mw)あたりの、非共役ポリエン(a4)に由来する構成単位の数(na4)が、好ましくは29個以下、より好ましくは10個以下、さらに好ましくは1個未満である。
このような共重合体(A)は、ENBなどの非共役ポリエン(a4)から導かれる構成単位の含有量が本発明の目的を損なわない範囲に抑制されており、後架橋を生じにくく、十分な耐熱老化性を有する。
ここで、共重合体(A)の重量平均分子量(Mw)あたりの、非共役ポリエン(a3)に由来する構成単位の数(na3)または非共役ポリエン(a4)に由来する構成単位の数(na4)は、非共役ポリエン(a3)または(a4)の分子量と、共重合体中における非共役ポリエン(a3)または(a4)に由来する構成単位の重量分率((a3)または(a4)の重量分率(質量%))と、共重合体(A)の重量平均分子量(Mw)とから、下記式により求めることができる。
(na3)=(Mw)×{(a3)の重量分率/100}/非共役ポリエン(a3)の分子量
(na4)=(Mw)×{(a4)の重量分率/100}/非共役ポリエン(a4)の分子量
上記共重合体(A)において、重量平均分子量(Mw)あたりの、非共役ポリエン(a3)および(a4)に由来するそれぞれの構成単位の数(na3)および(na4)が、いずれも上記の範囲を満たす場合、共重合体(A)は、長鎖分岐含有量が少なく、かつ、過酸化物を用いて架橋を行う場合の硬化特性に優れ、成形性がよく、機械的特性などの物性バランスに優れるとともに、後架橋を生じにくく特に耐熱老化性に優れたものとなるため好ましい。
<共重合体(A)の調製>
上記共重合体(A)は、エチレン(a1)と、α-オレフィン(a2)と、非共役ポリエン(a3)と、必要に応じて非共役ポリエン(a4)とからなるモノマーを共重合してなる共重合体である。
上記共重合体(A)は、上記要件(i)~(vii)を満たす限りにおいて、どのような製法で調製されてもよいが、メタロセン化合物の存在下にモノマーを共重合して得られたものであることが好ましく、メタロセン化合物を含む触媒系の存在下にモノマーを共重合して得られたものであることがより好ましく、特定のメタロセン化合物を含有する重合触媒の存在下で共重合を行う工程(1)と、触媒失活剤としてアルコールを添加して前記重合触媒の失活を行う工程(2)とを含む方法により得られたものであることがさらに好ましい。
≪メタロセン化合物≫
上記共重合体(A)は、好ましくは、下記一般式[A1]で表される化合物から選ばれる少なくとも1種のメタロセン化合物を含有する重合触媒系の存在下に、モノマーを共重合して得られたものであることが望ましい。モノマーの共重合を、このようなメタロセン化合物を含む重合触媒系を用いて行うと、得られる共重合体中に含有される長鎖分岐が抑制され、上記要件を満たす共重合体(A)を容易に調製することができる。
Figure 0007141932000006
式[A1]中、R1、R2、R3、R4、R5、R8、R9およびR12はそれぞれ独立に水素原子、炭化水素基、ケイ素含有基またはケイ素含有基以外のヘテロ原子含有基を示し、R1~R4のうち隣接する二つの基同士は互いに結合して環を形成していてもよい。
炭化水素基としては、炭素数1~20の炭化水素基が好ましく、具体的には、炭素数1~20のアルキル基、炭素原子数7~20のアリールアルキル基、炭素原子数6~20のアリール(aryl)基あるいは置換アリール(aryl)基などが挙げられる。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、アリル(allyl)基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、アミル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デカニル基、3-メチルペンチル基、1,1-ジエチルプロピル基、1,1-ジメチルブチル基、1-メチル-1-プロピルブチル基、1,1-プロピルブチル基、1,1-ジメチル-2-メチルプロピル基、1-メチル-1-イソプロピル-2-メチルプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルニル基、アダマンチル基、フェニル基、o-トリル基、m-トリル基、p-トリル基、キシリル基、イソプロピルフェニル基、t-ブチルフェニル基、ナフチル基、ビフェニル基、ターフェニル基、フェナントリル基、アントラセニル基、ベンジル基、クミル基を挙げることができ、メトキシ基、エトキシ基、フェノキシ基などの酸素含有基、ニトロ基、シアノ基、N-メチルアミノ基、N,N-ジメチルアミノ基、N-フェニルアミノ基などの窒素含有基、ボラントリイル基、ジボラニル基などのホウ素含有基、スルホニル基、スルフェニル基などのイオウ含有基を含むものも炭化水素基として挙げられる。
上記炭化水素基は、水素原子がハロゲン原子で置換されていてもよく、例えば、トリフルオロメチル基、トリフルオロメチルフェニル基、ペンタフルオロフェニル基、クロロフェニル基などを挙げることができる。
ケイ素含有基としては、シリル基、シロキシ基、炭化水素置換シリル基、炭化水素置換シロキシ基などを挙げることができる。例えば、メチルシリル基、ジメチルシリル基、トリメチルシリル基、エチルシリル基、ジエチルシリル基、トリエチルシリル基、ジフェニルメチルシリル基、トリフェニルシリル基、ジメチルフェニルシリル基、ジメチル-t-ブチルシリル基、ジメチル(ペンタフルオロフェニル)シリル基などを挙げることができる。
6およびR11は水素原子、炭化水素基、ケイ素含有基およびケイ素含有基以外のヘテロ原子含有基から選ばれる同一の原子または同一の基であり、R7およびR10は水素原子、炭化水素基、ケイ素含有基およびケイ素含有基以外のヘテロ原子含有基から選ばれる同一の原子または同一の基であり、R6およびR7は互いに結合して環を形成していてもよく、R10およびR11は互いに結合して環を形成していてもよい。ただし、R6、R7、R10およびR11が全て水素原子であることはない。
13およびR14はそれぞれ独立にアリール基を示す。
1はジルコニウム原子を示す。
1は炭素原子またはケイ素原子を示す。
Qはハロゲン原子、炭化水素基、ハロゲン化炭化水素基、炭素原子数4~20の中性の共役もしくは非共役ジエン、アニオン配位子または孤立電子対で配位可能な中性配位子を示し、jは1~4の整数を示し、jが2以上の整数の場合は複数あるQはそれぞれ同一でも異なっていてもよい。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、好ましくは塩素原子である。
炭化水素基としては、炭素数1~10の炭化水素基が好ましく、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、2-メチルプロピル基、1,1-ジメチルプロピル基、2,2-ジメチルプロピル基、1、1-ジエチルプロピル基、1-エチル-1-メチルプロピル基、1,1,2,2-テトラメチルプロピル基、sec-ブチル基、t-ブチル基、1,1-ジメチルブチル基、1,1,3-トリメチルブチル基、ネオペンチル基、シクロヘキシルメチル基、シクロヘキシル基、1-メチル-1-シクロヘキシル基、ベンジル基等が挙げられ、好ましくはメチル基、エチル基、ベンジル基である。
炭素原子数4~20の中性の共役もしくは非共役ジエンとしては、炭素数4~10の中性の共役もしくは非共役ジエンが好ましい。中性の共役もしくは非共役ジエンの具体例としては、s-シス-またはs-トランス-η4-1,3-ブタジエン、s-シス-またはs-トランス-η4-1,4-ジフェニル-1,3-ブタジエン、s-シス-またはs-トランス-η4-3-メチル-1,3-ペンタジエン、s-シス-またはs-トランス-η4-1,4-ジベンジル-1,3-ブタジエン、s-シス-またはs-トランス-η4-2,4-ヘキサジエン、s-シス-またはs-トランス-η4-1,3-ペンタジエン、s-シス-またはs-トランス-η4-1,4-ジトリル-1,3-ブタジエン、s-シス-またはs-トランス-η4-1,4-ビス(トリメチルシリル)-1,3-ブタジエン等が挙げられる。
アニオン配位子の具体例としては、メトキシ、t-ブトキシ、フェノキシ等のアルコキシ基、アセテート、ベンゾエート等のカルボキシレート基、メシレート、トシレート等のスルホネート基等が挙げられる。
孤立電子対で配位可能な中性配位子の具体例としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物、またはテトラヒドロフラン、ジエチルエーテル、ジオキサン、1,2-ジメトキシエタン等のエーテル類が挙げられる。
上記式[A1]における置換基R1~R4を有するシクロペンタジエニル基としては、R1~R4が水素原子である無置換シクロペンタジエニル基、3-t-ブチルシクロペンタジエニル基、3-メチルシクロペンタジエニル基、3-トリメチルシリルシクロペンタジエニル基、3-フェニルシクロペンタジエニル基、3-アダマンチルシクロペンタジエニル基、3-アミルシクロペンタジエニル基、3-シクロヘキシルシクロペンタジエニル基などの3位1置換シクロペンタジエニル基、3-t-ブチル-5-メチルシクロペンタジエニル基、3-t-ブチル-5-エチルシクロペンタジエニル基、3-フェニル-5-メチルシクロペンタジエニル基、3,5-ジ-t-ブチルシクロペンタジエニル基、3,5-ジメチルシクロペンタジエニル基、3-フェニル-5-メチルシクロペンタジエニル基、3-トリメチルシリル-5-メチルシクロペンタジエニル基などの3,5位2置換シクロペンタジエニル基などが挙げることができるがこの限りではない。メタロセン化合物の合成のし易さ、製造コスト及び非共役ポリエンの共重合能の観点から、無置換(R1~R4が水素原子)であるシクロペンタジエニル基が好ましい。
式[A1]における置換基R5~R12を有するフルオレニル基としては、
5~R12が水素原子である無置換フルオレニル基、
2-メチルフルオレニル基、2-t-ブチルフルオレニル基、2-フェニルフルオレニル基などの2位1置換フルオレニル基、
4-メチルフルオレニル基、4-t-ブチルフルオレニル基、4-フェニルフルオレニル基などの4位1置換フルオレニル基、
あるいは2,7-ジ-t-ブチルフルオレニル基、3,6-ジ-t-ブチルフルオレニル基などの2,7位もしくは3,6位2置換フルオレニル基、
2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル基、2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル基などの2,3,6,7位4置換フルオレニル基、
あるいは下記一般式[V-I]、[V-II]で表されるようなR6とR7が互いに結合し環を形成し、R10とR11が互いに結合し環を形成している2,3,6,7位4置換フルオレニル基などが挙げられるが、この限りではない。
Figure 0007141932000007
Figure 0007141932000008
式[V-I]、[V-II]中、R5、R8、R9、R12は前記一般式[A1]における定義と同様であり、
a、Rb、Rc、Rd、Re、Rf、RgおよびRhは、それぞれ独立に水素原子または炭素数1~5のアルキル基であり、隣接した置換基と互いに結合して環を形成していてもよい。前記アルキル基としては、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、アミル基、n-ペンチル基を例示できる。また、式[V-I]中、RxおよびRyはそれぞれ独立に炭素数1~3の不飽和結合を有してもよい炭化水素基であり、RxがRaまたはRcが結合した炭素と共同して二重結合を形成していてもよく、RyがReまたはRgが結合した炭素と共同して二重結合を形成していてもよく、RxおよびRyがともに炭素数1または2の飽和あるいは不飽和の炭化水素基であることが好ましい。
上記一般式[V-I]または[V-II]で表される化合物として、具体的には、式[V-III]で表されるオクタメチルオクタヒドロジベンゾフルオレニル基、式[V-IV]で表されるテトラメチルドデカヒドロジベンゾフルオレニル基、式[V-V]で表されるオクタメチルテトラヒドロジシクロペンタフルオレニル基、式[V-VI]で表されるヘキサメチルジヒドロジシクロペンタフルオレニル基、式[V-VII]で表されるb,h-ジベンゾフルオレニル基が挙げられる。
Figure 0007141932000009
Figure 0007141932000010
Figure 0007141932000011
Figure 0007141932000012
Figure 0007141932000013
これらのフルオレニル基を含む上記一般式[A1]で表されるメタロセン化合物はいずれも非共役ポリエンの共重合能に優れるが、Y1がケイ素原子である場合、2,7位2置換フルオレニル基、3,6位2置換フルオレニル基、2,3,6,7位4置換フルオレニル基、上記一般式[V-I]に表される2,3,6,7位4置換フルオレニル基を有する遷移金属化合物が特に優れる。Yが炭素原子である場合、R5からR12が水素原子である無置換フルオレニル基、3,6位2置換フルオレニル基、2,3,6,7位4置換フルオレニル基、上記一般式[V-I]に表される2,3,6,7位4置換フルオレニル基を有するメタロセン化合物が特に優れる。
なお、本発明では、上記一般式[A1]で表されるメタロセン化合物においては、Y1がケイ素原子で、R5からR12までが全て水素原子である場合は、R13とR14はメチル基、ブチル基、フェニル基、ケイ素置換フェニル基、シクロヘキシル基、ベンジル基以外の基から選ばれ;
1がケイ素原子で、R6とR11とが共にt-ブチル基であり、R5、R7、R8、R9、R10、R12がt-ブチル基でない場合は、R13とR14はベンジル基、ケイ素置換フェニル基以外の基から選ばれ;
1が炭素原子で、R5からR12が全て水素原子である場合は、R13、R14はメチル基、イソプロピル基、t-ブチル基、イソブチル基、フェニル基、p-t-ブチルフェニル基、p-n-ブチルフェニル基、ケイ素置換フェニル基、4-ビフェニル基、p-トリル基、ナフチル基、ベンジル基、シクロペンチル基、シクロヘキシル基、キシリル基以外の基から選ばれ;
1が炭素原子で、R6およびR11がt―ブチル基、メチル基あるいはフェニル基から選ばれる共通の基であり、R5、R7、R8、R9、R10およびR12と異なる基または原子である場合は、R13、R14はメチル基、フェニル基、p-t-ブチルフェニル基、p-n-ブチルフェニル基、ケイ素置換フェニル基、ベンジル基以外の基から選ばれ;
1が炭素原子で、R6がジメチルアミノ基、メトキシ基またはメチル基であり、R5、R7、R8、R9、R10、R11およびR12が、R6と異なる基または原子である場合は、R13、R14はメチル基、フェニル基以外の基から選ばれ;
1が炭素原子で、フルオレニル基及びR5~R12で構成される部位が、b,h-ジベンゾフルオレニルあるいはa,i-ジベンゾフルオレニルである場合は、R13、R14はメチル基、フェニル基以外の基から選ばれることが好ましい。
以下に、上記一般式[A1]で表されるメタロセン化合物の具体例を示すが、特にこれにより本発明の範囲が限定されるものでもない。
上記一般式[A1]で表されるメタロセン化合物の具体例としては、
Yがケイ素原子の場合では、
ジフェニルシリレン(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジフェニルシリレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジフェニルシリレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジフェニルシリレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジフェニルシリレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジフェニルシリレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジフェニルシリレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジフェニルシリレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジフェニルシリレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(p-トリル)シリレン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、
ジ(p-トリル)シリレン(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(p-トリル)シリレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(p-トリル)シリレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(p-トリル)シリレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(p-トリル)シリレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(p-トリル)シリレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(p-トリル)シリレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジ(p-トリル)シリレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジ(p-トリル)シリレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(m-トリル)シリレン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、
ジ(m-トリル)シリレン(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(m-トリル)シリレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(m-トリル)シリレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(m-トリル)シリレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(m-トリル)シリレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(m-トリル)シリレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(m-トリル)シリレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジ(m-トリル)シリレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジ(m-トリル)シリレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド
等が挙げられる。
Yが炭素原子の場合では、
ジフェニルメチレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジフェニルメチレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(p-トリル)メチレン(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(p-トリル)メチレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(p-トリル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(p-トリル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(p-トリル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(p-トリル)メチレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(p-トリル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジ(p-トリル)メチレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジ(p-トリル)メチレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(m-トリル)メチレン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、
ジ(m-トリル)メチレン(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(m-トリル)メチレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(m-トリル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(m-トリル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(m-トリル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(m-トリル)メチレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(m-トリル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジ(m-トリル)メチレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジ(m-トリル)メチレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(p-t-ブチルフェニル)メチレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(p-t-ブチルフェニル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(p-t-ブチルフェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(p-t-ブチルフェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(p-t-ブチルフェニル)メチレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(p-t-ブチルフェニル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジ(p-t-ブチルフェニル)メチレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジ(p-t-ブチルフェニル)メチレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(4-ビフェニル)メチレン(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(4-ビフェニル)メチレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(4-ビフェニル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(4-ビフェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(4-ビフェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(4-ビフェニル)メチレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(4-ビフェニル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジ(4-ビフェニル)メチレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジ(4-ビフェニル)メチレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、
ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、
ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(m-トリフルオロメチルフェニル)メチレン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、
ジ(m-トリフルオロメチルフェニル)メチレン(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(m-トリフルオロメチルフェニル)メチレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(m-トリフルオロメチルフェニル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(m-トリフルオロメチルフェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(m-トリフルオロメチルフェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(m-トリフルオロメチルフェニル)メチレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(m-トリフルオロメチルフェニル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジ(m-トリフルオロメチルフェニル)メチレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジ(m-トリフルオロメチルフェニル)メチレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(2-ナフチル)メチレン(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(2-ナフチル)メチレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(2-ナフチル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(2-ナフチル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、
ジ(2-ナフチル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(2-ナフチル)メチレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、
ジ(2-ナフチル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジ(2-ナフチル)メチレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、
ジ(2-ナフチル)メチレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド
等が挙げられる。
これらのメタロセン化合物の構造式の一例として、ジ(p-トリル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド(下記(A))、および、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド(下記(B))の構造式を以下に示す。
Figure 0007141932000014
上記メタロセン化合物は1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
上記共重合体(A)の調製に好適に用いることのできる、上記式[A1]で表されるメタロセン化合物は、特に限定されることなく任意の方法で製造することができる。例えば、J.Organomet.Chem.,63,509(1996)、WO2005/100410号公報、WO2006/123759号公報、WO01/27124号公報、特開2004-168744号公報、特開2004-175759号公報、特開2000-212194号公報などに記載の方法等に準拠して製造することができる。
≪メタロセン化合物を含む触媒≫
上記共重合体(A)の製造に好適に用いることのできる重合触媒としては、前述のメタロセン化合物[A1]を含み、モノマーを共重合できるものが挙げられる。
好ましくは、
(a)前記一般式[A1]で表されるメタロセン化合物と、
(b)(b-1)有機金属化合物、(b-2)有機アルミニウムオキシ化合物、および(b-3)該メタロセン化合物(a)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物(以下「イオン化イオン性化合物」ともいう。)と、
さらに必要に応じて、
(c)粒子状担体とから構成される重合触媒が挙げられる。以下、各成分について具体的に説明する。
≪化合物(b)≫
前記化合物(b)は、(b-1)有機金属化合物、(b-2)有機アルミニウムオキシ化合物および(b-3)イオン化イオン性化合物から選ばれる少なくとも1種の化合物であり、好ましくは、少なくとも前記有機金属化合物(b-1)を含む。
(b-1)有機金属化合物
前記有機金属化合物(b-1)としては、例えば下記一般式[VII]~[IX]のような周期表第1、2族および第12、13族の有機金属化合物が用いられる。
(b-1a) 一般式:Ra mAl(ORbnpq …[VII]
(式[VII]中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)で表される有機アルミニウム化合物。
このような化合物として、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn-オクチルアルミニウムなどのトリアルキルアルミニウム、トリシクロアルキルアルミニウム、イソブチルアルミニウムジクロリド、ジエチルアルミニウムクロリド、エチルアルミニウムジクロリド、エチルアルミニウムセスキクロリド、メチルアルミニウムジクロリド、ジメチルアルミニウムクロリド、ジイソブチルアルミニウムハイドライドを例示することができる。
(b-1b) 一般式:M2AlRa 4 …[VIII]
(式[VIII]中、M2はLi、NaまたはKを示し、Raは炭素原子数が1~15、好ましくは1~4の炭化水素基である。)で表される周期表第1族金属とアルミニウムとの錯アルキル化物。
このような化合物として、LiAl(C254、LiAl(C7154などを例示することができる。
(b-1c) 一般式:Rab3 …[IX]
(式[IX]中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、M3はMg、ZnまたはCdである。)で表される周期表第2族または第12族金属を有するジアルキル化合物。
上記の有機金属化合物(b-1)の中では、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn-オクチルアルミニウムなどの有機アルミニウム化合物が好ましい。また、このような有機金属化合物(b-1)は、1種単独で用いてもよいし2種以上組み合せて用いてもよい。
(b-2)有機アルミニウムオキシ化合物
前記有機アルミニウムオキシ化合物(b-2)は、従来公知のアルミノキサンであってもよく、また特開平2-78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。
従来公知のアルミノキサンは、例えば下記のような方法によって製造することができ、通常、炭化水素溶媒の溶液として得られる。
(1)吸着水を含有する化合物または結晶水を含有する塩類、例えば塩化マグネシウム水和物、硫酸銅水和物、硫酸アルミニウム水和物、硫酸ニッケル水和物、塩化第1セリウム水和物などの炭化水素媒体懸濁液に、トリアルキルアルミニウムなどの有機アルミニウム化合物を添加して、吸着水または結晶水と有機アルミニウム化合物とを反応させる方法。
(2)ベンゼン、トルエン、エチルエーテル、テトラヒドロフランなどの媒体中で、トリアルキルアルミニウムなどの有機アルミニウム化合物に直接水、氷または水蒸気を作用させる方法。
(3)デカン、ベンゼン、トルエンなどの媒体中でトリアルキルアルミニウムなどの有機アルミニウム化合物に、ジメチルスズオキシド、ジブチルスズオキシドなどの有機スズ酸化物を反応させる方法。
なお、前記アルミノキサンは、少量の有機金属成分を含有してもよい。また回収された上記のアルミノキサンの溶液から溶媒または未反応有機アルミニウム化合物を蒸留して除去した後、溶媒に再溶解またはアルミノキサンの貧溶媒に懸濁させてもよい。
アルミノキサンを調製する際に用いられる有機アルミニウム化合物としては、前記(b-1a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物を挙げることができる。
これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、中でも、トリメチルアルミニウム、トリイソブチルアルミニウムが特に好ましい。
上記のような有機アルミニウム化合物は、1種単独でまたは2種以上組み合せて用いられる。
また本発明で用いられる有機アルミニウムオキシ化合物(b-2)の一態様であるベンゼン不溶性の有機アルミニウムオキシ化合物は、60℃のベンゼンに溶解するAl成分がAl原子換算でベンゼン100質量%に対して通常10質量%以下、好ましくは5質量%以下、特に好ましくは2質量%以下であるもの、すなわち、ベンゼンに対して不溶性または難溶性であるものが好ましい。
本発明で用いられる有機アルミニウムオキシ化合物(b-2)としては、下記一般式[X]で表されるボロンを含んだ有機アルミニウムオキシ化合物を挙げることもできる。
Figure 0007141932000015
式[X]中、R1は炭素原子数が1~10の炭化水素基を示し、R2~R5は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数が1~10の炭化水素基を示す。
前記一般式[X]で表されるボロンを含んだ有機アルミニウムオキシ化合物は、
一般式:R1-B(OH)2 …[XI]
(式[XI]中、R1は前記一般式[X]におけるR1と同じ基を示す。)
で表されるアルキルボロン酸と、
有機アルミニウム化合物とを、不活性ガス雰囲気下に不活性溶媒中で、-80℃~室温の温度で1分~24時間反応させることにより製造できる。
前記一般式[XI]で表されるアルキルボロン酸としては、メチルボロン酸、エチルボロン酸、イソプロピルボロン酸、n-プロピルボロン酸、n-ブチルボロン酸、イソブチルボロン酸、n-ヘキシルボロン酸、シクロヘキシルボロン酸、フェニルボロン酸、3,5-ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸、3,5-ビス(トリフルオロメチル)フェニルボロン酸などが挙げられる。
これらの中では、メチルボロン酸、n-ブチルボロン酸、イソブチルボロン酸、3,5-ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸が好ましい。これらは1種単独でまたは2種以上組み合せて用いられる。
このようなアルキルボロン酸と反応させる有機アルミニウム化合物としては、前記(b-1a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物を挙げることができる。これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、特にトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムが好ましい。
上記のような有機アルミニウムオキシ化合物(b-2)は、1種単独でまたは2種以上組み合せて用いられる。
(b-3)イオン化イオン性化合物
前記イオン化イオン性化合物(b-3)としては、特表平1-501950号公報、特表平1-502036号公報、特開平3-179005号公報、特開平3-179006号公報、特開平3-207703号公報、特開平3-207704号公報、USP5321106号などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などを挙げることができる。さらに、ヘテロポリ化合物およびイソポリ化合物も挙げることができる。このようなイオン化イオン性化合物(b-3)は、1種単独でまたは2種以上組み合せて用いられる。
具体的には、ルイス酸としては、BR3(Rは、フッ素、メチル基、トリフルオロメチル基などの置換基を有していてもよいフェニル基またはフッ素である)で示される化合物が挙げられ、たとえばトリフルオロボロン、トリフェニルボロン、トリス(4-フルオロフェニル)ボロン、トリス(3,5-ジフルオロフェニル)ボロン、トリス(4-フルオロメチルフェニル)ボロン、トリス(ペンタフルオロフェニル)ボロン、トリス(p-トリル)ボロン、トリス(o-トリル)ボロン、トリス(3,5-ジメチルフェニル)ボロンなどが挙げられる。
イオン性化合物としては、たとえば下記一般式[XII]で表される化合物が挙げられる。
Figure 0007141932000016
式[XII]中、R1+としては、H+、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンなどが挙げられる。R2~R5は、互いに同一でも異なっていてもよく、有機基、好ましくはアリール基または置換アリール基である。
前記カルボニウムカチオンとして具体的には、トリフェニルカルボニウムカチオン、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオンなどの三置換カルボニウムカチオンなどが挙げられる。
前記アンモニウムカチオンとして具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン、トリ(n-ブチル)アンモニウムカチオンなどのトリアルキルアンモニウムカチオン;
N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N,2,4,6-ペンタメチルアニリニウムカチオンなどのN,N-ジアルキルアニリニウムカチオン;
ジ(イソプロピル)アンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンなどが挙げられる。
前記ホスホニウムカチオンとして具体的には、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンなどが挙げられる。
1+としては、カルボニウムカチオン、アンモニウムカチオンなどが好ましく、特にトリフェニルカルボニウムカチオン、N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオンが好ましい。
またイオン性化合物として、トリアルキル置換アンモニウム塩、N,N-ジアルキルアニリニウム塩、ジアルキルアンモニウム塩、トリアリールホスフォニウム塩などを挙げることもできる。
トリアルキル置換アンモニウム塩として具体的には、たとえばトリエチルアンモニウムテトラ(フェニル)ホウ素、トリプロピルアンモニウムテトラ(フェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(フェニル)ホウ素、トリメチルアンモニウムテトラ(p-トリル)ホウ素、トリメチルアンモニウムテトラ(o-トリル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(ペンタフルオロフェニル)ホウ素、トリプロピルアンモニウムテトラ(o,p-ジメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(N、N-ジメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(p-トリフルオロメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(3、5-ジトリフルオロメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(o-トリル)ホウ素などが挙げられる。
N,N-ジアルキルアニリニウム塩として具体的には、たとえばN,N-ジメチルアニリニウムテトラ(フェニル)ホウ素、N,N-ジエチルアニリニウムテトラ(フェニル)ホウ素、N,N,2,4,6-ペンタメチルアニリニウムテトラ(フェニル)ホウ素などが挙げられる。
ジアルキルアンモニウム塩として具体的には、たとえば、ジ(1-プロピル)アンモニウムテトラ(ペンタフルオロフェニル)ホウ素、ジシクロヘキシルアンモニウムテトラ(フェニル)ホウ素などが挙げられる。
さらにイオン性化合物として、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、フェロセニウムテトラ(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムペンタフェニルシクロペンタジエニル錯体、N,N-ジエチルアニリニウムペンタフェニルシクロペンタジエニル錯体、下記式[XIII]または[XIV]で表されるホウ素化合物などを挙げることもできる。なお、下記式中、Etはエチル基を示す。
Figure 0007141932000017
Figure 0007141932000018
ボラン化合物として具体的には、たとえば
デカボラン;
ビス〔トリ(n-ブチル)アンモニウム〕ノナボレート、ビス〔トリ(n-ブチル)アンモニウム〕デカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ウンデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ドデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕デカクロロデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ドデカクロロドデカボレートなどのアニオンの塩;
トリ(n-ブチル)アンモニウムビス(ドデカハイドライドドデカボレート)コバルト酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ドデカハイドライドドデカボレート)ニッケル酸塩(III)などの金属ボランアニオンの塩などが挙げられる。
カルボラン化合物として具体的には、たとえば、4-カルバノナボラン、1,3-ジカルバノナボラン、6,9-ジカルバデカボラン、ドデカハイドライド-1-フェニル-1,3-ジカルバノナボラン、ドデカハイドライド-1-メチル-1,3-ジカルバノナボラン、ウンデカハイドライド-1,3-ジメチル-1,3-ジカルバノナボラン、7,8-ジカルバウンデカボラン、2,7-ジカルバウンデカボラン、ウンデカハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボラン、ドデカハイドライド-11-メチル-2,7-ジカルバウンデカボラン、トリ(n-ブチル)アンモニウム1-カルバデカボレート、トリ(n-ブチル)アンモニウム-1-カルバウンデカボレート、トリ(n-ブチル)アンモニウム-1-カルバドデカボレート、トリ(n-ブチル)アンモニウム-1-トリメチルシリル-1-カルバデカボレート、トリ(n-ブチル)アンモニウムブロモ-1-カルバドデカボレート、トリ(n-ブチル)アンモニウム-6-カルバデカボレート、トリ(n-ブチル)アンモニウム-7-カルバウンデカボレート、トリ(n-ブチル)アンモニウム-7,8-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウム-2,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムドデカハイドライド-8-メチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-エチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-ブチル―7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-アリル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-9-トリメチルシリル-7,8-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-4,6-ジブロモ-7-カルバウンデカボレートなどのアニオンの塩;
トリ(n-ブチル)アンモニウムビス(ノナハイドライド-1,3-ジカルバノナボレート)コバルト酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)鉄酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)コバルト酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)ニッケル酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)銅酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)金酸塩(III)、トリ(n-ブチル)アンモニウムビス(ノナハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボレート)鉄酸塩(III)、トリ(n-ブチル)アンモニウムビス(ノナハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボレート)クロム酸塩(III)、トリ(n-ブチル)アンモニウムビス(トリブロモオクタハイドライド-7,8-ジカルバウンデカボレート)コバルト酸塩(III)、トリス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)クロム酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)マンガン酸塩(IV)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)コバルト酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)ニッケル酸塩(IV)などの金属カルボランアニオンの塩などが挙げられる。
ヘテロポリ化合物は、ケイ素、リン、チタン、ゲルマニウム、ヒ素および錫から選ばれる原子と、バナジウム、ニオブ、モリブデンおよびタングステンから選ばれる1種または2種以上の原子からなっている。具体的には、リンバナジン酸、ゲルマノバナジン酸、ヒ素バナジン酸、リンニオブ酸、ゲルマノニオブ酸、シリコノモリブデン酸、リンモリブデン酸、チタンモリブデン酸、ゲルマノモリブデン酸、ヒ素モリブデン酸、錫モリブデン酸、リンタングステン酸、ゲルマノタングステン酸、錫タングステン酸、リンモリブドバナジン酸、リンタングストバナジン酸、ゲルマノタングストバナジン酸、リンモリブドタングストバナジン酸、ゲルマノモリブドタングストバナジン酸、リンモリブドタングステン酸、リンモリブドニオブ酸、およびこれらの酸の塩、例えば周期表第1族または2族の金属、具体的には、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等との塩、トリフェニルエチル塩等の有機塩が使用できるが、この限りではない。
イオン化イオン性化合物(b-3)の中では、上述のイオン性化合物が好ましく、その中でもトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートがより好ましい。
本発明において、重合触媒として、上記一般式[A1]で表されるメタロセン化合物(a)と、トリイソブチルアルミニウムなどの有機金属化合物(b-1)、メチルアルミノキサンなどの有機アルミニウムオキシ化合物(b-2)、およびトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートなどのイオン化イオン性化合物(b-3)とを含むメタロセン触媒を用いると、共重合体(A)の製造に際して非常に高い重合活性を示すことができる。
(c)粒子状担体
本発明で、必要に応じて用いられる(c)粒子状担体は、無機化合物または有機化合物であって、顆粒状ないしは微粒子状の固体である。
無機化合物としては、多孔質酸化物、無機ハロゲン化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。これらの具体例としては、WO2015/122495号公報に記載のものが挙げられる。
本発明で用いられる粘土、粘土鉱物、イオン交換性層状化合物は、そのまま用いてもよく、またボールミル、ふるい分けなどの処理を行った後に用いてもよい。また、新たに水を添加吸着させ、あるいは加熱脱水処理した後に用いてもよい。さらに、単独で用いても、2種以上を組み合わせて用いてもよい。
これらのうち、好ましいものは粘土または粘土鉱物であり、特に好ましいものはモンモリロナイト、バーミキュライト、ヘクトライト、テニオライトおよび合成雲母である。
有機化合物としては、粒径が10~300μmの範囲にある顆粒状ないしは微粒子状固体を挙げることができる。具体的には、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテンなどの炭素原子数が2~14のα-オレフィンを主成分として生成される(共)重合体またはビニルシクロヘキサン、スチレンを主成分として生成される(共)重合体、およびそれらの変成体を例示することができる。
本発明に使用されるメタロセン触媒は、メタロセン化合物(a)と、有機金属化合物(b-1)、有機アルミニウムオキシ化合物(b-2)およびイオン化イオン性化合物(b-3)から選ばれる少なくとも1種の化合物(b)と、必要に応じて用いられる担体(c)と共に、さらに必要に応じて特定の有機化合物成分(d)を含むこともできる。
(d)有機化合物成分
本発明において、前記有機化合物成分(d)は、必要に応じて重合性能および生成ポリマーの物性を向上させる目的で使用される。このような有機化合物としては、アルコール類、フェノール性化合物、カルボン酸、リン化合物およびスルホン酸塩等が挙げられるが、この限りではない。
≪共重合体(A)の製造方法および条件≫
上記共重合体(A)は、エチレン(a1)と、炭素原子数3~20のα-オレフィン(a2)と、非共役ポリエン(a3)と、必要に応じて非共役ポリエン(a4)とからなるモノマーを共重合して製造することができる。
このようなモノマーを共重合させる際、前述した重合触媒を構成する各成分の使用法、添加順序は任意に選ばれるが、下記(1)~(5)のような方法が例示される。
(1)メタロセン化合物(a)を単独で重合器に添加する方法。
(2)メタロセン化合物(a)および化合物(b)を任意の順序で重合器に添加する方法。
(3)メタロセン化合物(a)を担体(c)に担持した触媒成分、化合物(b)を任意の順序で重合器に添加する方法。
(4)化合物(b)を担体(c)に担持した触媒成分、メタロセン化合物(a)を任意の順序で重合器に添加する方法。
(5)メタロセン化合物(a)と化合物(b)とを担体(c)に担持した触媒成分を重合器に添加する方法。
上記(2)~(5)の各方法においては、メタロセン化合物(a)、化合物(b)、担体(c)の少なくとも2つは予め接触されていてもよい。
化合物(b)が担持されている上記(4)、(5)の各方法においては、必要に応じて担持されていない化合物(b)を、任意の順序で添加してもよい。この場合、化合物(b)は、担体(c)に担持されている化合物(b)と同一でも異なっていてもよい。
また、上記の担体(c)にメタロセン化合物(a)が担持された固体触媒成分、担体(c)にメタロセン化合物(a)および化合物(b)が担持された固体触媒成分は、オレフィンが予備重合されていてもよく、予備重合された固体触媒成分上に、さらに、触媒成分が担持されていてもよい。
上記共重合体(A)は、上記のような重合触媒の存在下に、モノマーを共重合することにより好適に得ることができる。
上記のような重合触媒を用いて、オレフィンの重合を行うに際して、メタロセン化合物(a)は、反応容積1リットル当り、通常10-12~10-2モル、好ましくは10-10~10-8モルになるような量で用いられる。
化合物(b-1)は、化合物(b-1)と、メタロセン化合物(a)中の全遷移金属原子(M)とのモル比〔(b-1)/M〕が、通常0.01~50000、好ましくは0.05~10000となるような量で用いられる。化合物(b-2)は、化合物(b-2)中のアルミニウム原子と、メタロセン化合物(a)中の全遷移金属(M)とのモル比〔(b-2)/M〕が、通常10~50000、好ましくは20~10000となるような量で用いられる。化合物(b-3)は、化合物(b-3)と、メタロセン化合物(a)中の遷移金属原子(M)とのモル比〔(b-3)/M〕が、通常1~20、好ましくは1~15となるような量で用いられる。
本発明において、共重合体(A)を製造する方法は、溶液(溶解)重合、懸濁重合などの液相重合法または気相重合法のいずれにおいても実施可能であり、特に限定されないが、下記重合反応液を得る工程を有することが好ましい。
重合反応液を得る工程とは、脂肪族炭化水素を重合溶媒として用い、上記メタロセン触媒、好ましくは、前記一般式[A1]におけるY1に結合しているR13、R14がフェニル基、あるいは、アルキル基またはハロゲン基により置換されたフェニル基であり、R7、R10がアルキル置換基を有する遷移金属化合物を含む重合触媒の存在下に、エチレン(a1)と、炭素原子数3~20のα-オレフィン(a2)と、非共役ポリエン(a3)および必要に応じて非共役ポリエン(a4)とからなるモノマーを共重合し、共重合体(A)の重合反応液を得る工程である。
重合溶媒としては、例えば、脂肪族炭化水素、芳香族炭化水素などが挙げられる。具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素が挙げられ、1種単独で、あるいは2種以上を組み合わせて用いることができる。また、オレフィン自身を溶媒として用いることもできる。なお、これらのうち、得られる共重合体(A)との分離、精製の観点から、ヘキサンが好ましい。
また、重合温度は、通常-50~+200℃、好ましくは0~+150℃の範囲、より好ましくは、+70~+110℃の範囲であり、用いるメタロセン触媒系の到達分子量、重合活性によるが、より高温(+70℃以上)であることが触媒活性、共重合性および生産性の観点から望ましい。
重合圧力は、通常常圧~10MPaゲージ圧、好ましくは1.1~5MPaゲージ圧、より好ましくは1.2~2.0MPaゲージ圧の条件下であり、重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。さらに重合を反応条件の異なる2段以上に分けて行うことも可能である。本発明ではこのうち、モノマーを連続して反応器に供給して共重合を行う方法を採用することが好ましい。
反応時間(共重合が連続法で実施される場合には平均滞留時間)は、触媒濃度、重合温度などの条件によっても異なるが、通常0.5分間~5時間、好ましくは5分間~3時間、より好ましくは10分~2時間である。
得られる共重合体(A)の分子量は、重合系内に水素を存在させるか、または重合温度を変化させることによっても調節することができる。さらに、使用する化合物(b)の量により調節することもできる。具体的には、トリイソブチルアルミニウム、メチルアルミノキサン、ジエチル亜鉛等が挙げられる。水素を添加する場合、その量はオレフィン1kgあたり0.001~100NL程度が適当である。
また、エチレン(a1)と上記α-オレフィン(a2)との仕込みのモル比(エチレン(a1)/α‐オレフィン(a2))は、好ましくは40/60~99.9/0.1、より好ましくは50/50~90/10、さらに好ましくは55/45~85/15、最も好ましくは55/45~78/22である。
非共役ポリエン(a3)の仕込み量は、エチレン(a1)と、α-オレフィン(a2)と、非共役ポリエン(a3)との合計(全モノマー仕込み量)100質量%に対して、通常0.07~10質量%、好ましくは0.1質量%~8.0質量%、より好ましくは0.5質量%~5.0質量%である。
本発明では、前記重合触媒の存在下で共重合を行う工程(1)の後、触媒失活剤を添加して前記重合触媒の失活を行う工程(2)を含むことが好ましい。
前記触媒失活剤としては、アルコール類を用いることができ、メタノールまたはエタノールが好ましく、エタノールが特に好ましい。
前記工程(2)において、前記触媒失活剤を、前記有機金属化合物(b-1)に対して、好ましくは0.05~3.0mol倍、より好ましくは0.06~2.5mol倍、さらに好ましくは0.08~2.0mol倍の量で添加することにより、エタノール等の触媒失活剤で変質した触媒がわずかに生成して低分子量成分を適度に重合する結果、分子量分布が適度に広い共重合体(A)を得ることができる。一方、触媒失活剤の添加量が多すぎると、変質触媒がほとんど生成されず、低分子量成分の重合がほとんど行われないため、得られる共重合体(A)の分子量分布の狭くなる傾向にある。また、触媒失活剤を添加しない、もしくは添加量が少なすぎると、変質触媒が多く生成して低分子量成分を多量に重合するため、得られる共重合体(A)の低分子量成分の含有量が多くなり過ぎる傾向にある。
〈その他の重合体〉
本発明のエチレン系共重合体組成物は、エチレン・α-オレフィン・非共役ポリエン共重合体(A)以外のその他の重合体(B)を含んでいてもよい。
その他の重合体(B)としては、エチレン・α-オレフィン・非共役ポリエン共重合体(A)以外のエチレン・α-オレフィン共重合体を挙げることができる。
前記α-オレフィンは通常、炭素数3~20のα-オレフィンであり、中でもプロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン等の炭素数3~10のα-オレフィンが好ましく、特にプロピレン、1-ブテンが好ましい。
エチレン・α-オレフィン共重合体(A)の具体例としては、好ましくは、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体が挙げられる。
本発明のエチレン系共重合体組成物がその他の重合体(B)を含む場合、重合体(B)の含有比率は、共重合体(A)と重合体(B)との合計100質量部に対し、好ましくは5~50質量部、より好ましくは10~40質量部である。
《水酸化マグネシウム(C)》
本発明のエチレン系共重合体組成物に含まれる成分の一つである水酸化マグネシウム(C)は、高アスペクト比を有する水酸化マグネシウムである。
水酸化マグネシウム(C)のアスペクト比は、5~100であり、好ましくは10~90、より好ましくは50~90である。
本発明のエチレン系共重合体組成物は、このような高アスペクト比の水酸化マグネシウム(C)を所定量含むことから、優れた耐バギング性を発現する。アスペクト比が5に満たない水酸化マグネシウムを使用しても優れた耐バギング性は得られない。
このような高アスペクト比を有する水酸化マグネシウム(C)の市販品としては、キスマ10(協和化学工業(株)製)などを挙げることができる。
<エチレン系共重合体組成物>
本発明のエチレン系共重合体組成物は、エチレン・α-オレフィン・非共役ポリエン共重合体(A)およびエチレン・α-オレフィン・非共役ポリエン共重合体(A)100質量部に対して1~100質量部、好ましくは1~50質量部、より好ましくは1~30質量部の水酸化マグネシウム(C)を含む。
本発明のエチレン系共重合体組成物は、エチレン・α-オレフィン・非共役ポリエン共重合体(A)および水酸化マグネシウム(C)を上記範囲で含むことにより、耐バギング性に優れる。
また、本発明の共重合体組成物は、上記エチレン・α-オレフィン・非共役ポリエン共重合体(A)および水酸化マグネシウム(C)、ならびに任意に含有される重合体(B)に加え、軟化剤、充填剤、架橋剤、その他の添加剤、例えば、加工助剤、活性剤、吸湿剤、さらに耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤および増粘剤等を配合してもよい。
また、本発明の共重合体組成物が、他の重合体を含む場合は、共重合体組成物中のエチレン・α-オレフィン・非共役ポリエン共重合体(A)の割合は、一般に20質量%以上、好ましくは30~90質量%である。
本発明の共重合体組成物は、エチレン・α-オレフィン・非共役ポリエン共重合体(A)および水酸化マグネシウム(C)と、必要に応じて配合されるその他の成分を、例えば、ミキサー、ニーダー、ロールなどの混練機を用いて所望の温度で混練することにより調製することができる。本発明に係る共重合体組成物は、前述のとおり、耐バギング性に優れるので、共重合体組成物の調製を良好に行うことができる。
〈架橋剤〉
架橋剤としては、有機過酸化物、フェノール樹脂、ヒドロシリコーン系化合物、アミノ樹脂、キノンまたはその誘導体、アミン系化合物、アゾ系化合物、エポキシ系化合物、イソシアネート系化合物等の、ゴムを架橋する際に一般に使用される架橋剤が挙げられる。これらのうちでは、有機過酸化物が好適である。
有機過酸化物としては、ジクミルペルオキシド(DCP)、ジ-tert-ブチルペルオキシド、2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキシン-3、1,3-ビス(tert-ブチルペルオキシイソプロピル)ベンゼン、1,1-ビス(tert-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルペルオキシ)バレレート、ベンゾイルペルオキシド、p-クロロベンゾイルペルオキシド、2,4-ジクロロベンゾイルペルオキシド、tert-ブチルペルオキシベンゾエート、ert-ブチルペルオキシイソプロピルカーボネート、ジアセチルペルオキシド、ラウロイルペルオキシド、tert-ブチルクミルペルオキシド等が挙げられる。
このうちでは、2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキシン-3、1,3-ビス(tert-ブチルペルオキシイソプロピル)ベンゼン、1,1-ビス(tert-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルペルオキシ)バレレート等の2官能性の有機過酸化物が好ましく、中でも、2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサンが最も好ましい。
架橋剤として有機過酸化物を用いる場合、その配合量は、エチレン・α-オレフィン・非共役ポリエン共重合体(A)および必要に応じて配合される他の架橋が必要な重合体の合計100質量部に対して、一般に0.1~20質量部、好ましくは0.2~15質量部、さらに好ましくは0.5~10質量部である。有機過酸化物の配合量が上記範囲内であると、共重合体組成物が優れた架橋特性を示すので好適である。
また、架橋剤として有機過酸化物を用いる場合、架橋助剤を併用することが好ましい。架橋助剤として、例えば、イオウ;p-キノンジオキシム等のキノンジオキシム系架橋助剤;エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート等のアクリル系架橋助剤;ジアリルフタレート、トリアリルイソシアヌレート等のアリル系架橋助剤;マレイミド系架橋助剤;ジビニルベンゼン;酸化亜鉛(例えば、ZnO#1・酸化亜鉛2種(JIS規格(K-1410))、ハクスイテック(株)社製)、酸化マグネシウム、亜鉛華(例えば、「META-Z102」(商品名:井上石灰工業(株)製)などの酸化亜鉛)等の金属酸化物などが挙げられる。架橋助剤の配合量は、有機過酸化物1モルに対して、通常0.5~10モル、好ましくは0.5~7モル、より好ましくは1~5モルである。
〈軟化剤〉
軟化剤の具体例としては、プロセスオイル、潤滑油、パラフィン油、流動パラフィン、石油アスファルト、ワセリン等の石油系軟化剤;コールタール等のコールタール系軟化剤;ヒマシ油、アマニ油、ナタネ油、大豆油、ヤシ油等の脂肪油系軟化剤;蜜ロウ、カルナウバロウ等のロウ類;リシノール酸、パルミチン酸、ステアリン酸、ステアリン酸バリウム、ステアリン酸カルシウム等の脂肪酸またはその塩;ナフテン酸、パイン油、ロジンまたはその誘導体;テルペン樹脂、石油樹脂、クマロンインデン樹脂等の合成高分子物質;ジオクチルフタレート、ジオクチルアジペート等のエステル系軟化剤;その他、マイクロクリスタリンワックス、液状ポリブタジエン、変性液状ポリブタジエン、炭化水素系合成潤滑油、トール油、サブ(ファクチス)などが挙げられ、石油系軟化剤が好ましく、プロセスオイルが特に好ましい。
共重合体組成物中の軟化剤の配合量は、エチレン・α-オレフィン・非共役ポリエン共重合体(A)および必要に応じて配合される他の重合体成分の合計100質量部に対して、一般に2~100質量部、好ましくは10~100質量部である。
〈無機充填剤〉
無機充填剤の具体例としては、軽質炭酸カルシウム、重質炭酸カルシウム、タルク、クレーなどの1種類または2種類以上が使用され、これらのうちでは、「ホワイトンSB」(商品名:白石カルシウム株式会社)等の重質炭酸カルシウムが好ましい。
共重合体組成物が、無機充填剤を含有する場合には、無機充填剤の配合量は、エチレン・α-オレフィン・非共役ポリエン共重合体(A)および必要に応じて配合される他の重合体の合計100質量部に対して、通常は2~50質量部、好ましくは5~50質量部である。配合量が上記範囲内であると、共重合体組成物の混練加工性が優れており、機械特性に優れたOA機器ロールを得ることができる。
〈補強剤〉
補強剤の具体例としては、カーボンブラック、シランカップリング剤で表面処理したカーボンブラック、シリカ、炭酸カルシウム、活性化炭酸カルシウム、微粉タルク、微粉ケイ酸などがあり、配合する場合には、エチレン・α-オレフィン・非共役ポリエン共重合体(A)および必要に応じて他の重合体の合計100質量部に対して、一般に30~200質量部、好ましくは50~180質量部である。
〈老化防止剤(安定剤)〉
本発明に係る共重合体組成物に、老化防止剤(安定剤)を配合することにより、これから形成される成形体の寿命を長くすることができる。このような老化防止剤として、従来公知の老化防止剤、例えば、アミン系老化防止剤、フェノール系老化防止剤、イオウ系老化防止剤などがある。
さらに、老化防止剤として、フェニルブチルアミン、N,N-ジ-2-ナフチル-p―フェニレンジアミン等の芳香族第2アミン系老化防止剤;ジブチルヒドロキシトルエン、テトラキス[メチレン(3,5-ジ-t-ブチル-4-ヒドロキシ)ヒドロシンナメート]メタン等のフェノール系老化防止剤;ビス[2-メチル-4-(3-n-アルキルチオプロピオニルオキシ)-5-t-ブチルフェニル]スルフィド等のチオエーテル系老化防止剤;ジブチルジチオカルバミン酸ニッケル等のジチオカルバミン酸塩系老化防止剤;2-メルカプトベンゾイルイミダゾール、2-メルカプトベンゾイミダゾール、2-メルカプトベンゾイミダゾールの亜鉛塩、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート等のイオウ系老化防止剤等が挙げられる。
これらの老化防止剤は、1種単独で、あるいは2種以上の組み合わせで用いることができ、その配合量は、エチレン・α-オレフィン・非共役ポリエン共重合体(A)および他の重合体の合計100質量部に対して、通常は0.3~10質量部、好ましくは0.5~7.0質量部である。このような範囲内とすることにより、得られる共重合体組成物から得られる成形体表面のブルームがなく、さらに加硫阻害の発生を抑制することができる。
〈加工助剤〉
本発明に係る加工助剤としては、一般に加工助剤としてゴムに配合されるものを広く用いることができる。
加工助剤の具体例としては、リシノール酸、ステアリン酸、パルミチン酸、ラウリン酸、ステアリン酸バリウム、ステアリン酸亜鉛、ステアリン酸カルシウム、エステル類などが挙げられる。これらのうち、ステアリン酸が好ましい。
加工助剤の配合量は、共重合体組成物に含まれるエチレン・α-オレフィン・非共役ポリエン共重合体(A)および他の重合体100質量部に対して、通常は10質量部以下、好ましくは8.0質量部以下である。
〈活性剤〉
活性剤の具体例としては、ジ-n-ブチルアミン、ジシクロヘキシルアミン、モノエラノールアミン等のアミン類;ジエチレングリコール、ポリエチレングリコール、レシチン、トリアリルートメリレート、脂肪族カルボン酸または芳香族カルボン酸の亜鉛化合物等の活性剤;過酸化亜鉛調整物;クタデシルトリメチルアンモニウムブロミド、合成ハイドロタルサイト、特殊四級アンモニウム化合物などが挙げられる。
活性剤の配合量は、エチレン・α-オレフィン・非共役ポリエン共重合体(A)およびそれ以外の重合体100質量部に対して、通常は0.2~10質量部、好ましくは0.3~5質量部である。
〈吸湿剤〉
吸湿剤の具体例としては、酸化カルシウム、シリカゲル、硫酸ナトリウム、モレキュラーシーブ、ゼオライト、ホワイトカーボンなどが挙げられる。
吸湿剤の配合量は、エチレン・α-オレフィン・非共役ポリエン共重合体(A)およびその他の重合体100質量部に対して、通常は0.5~15質量部、好ましくは1.0~12質量部である。
<共重合体組成物の架橋体>
本発明の架橋体は、前記共重合体組成物を架橋して得られる。
前記共重合体組成物から架橋体を製造するには、一般のゴムを加硫するときと同様に、未加硫のゴム組成物を上述したような方法で調製し、次に、このゴム組成物を意図する形状に成形した後に加硫を行えばよい。
前記のようにして調製された未加硫のゴム組成物は、種々の成形法により成形、加硫することができるが、圧縮成形、射出成形、注入成形などの型成形により成形、加硫する場合に最もその特性を発揮することができる。
圧縮成形の場合、たとえば、予め秤量した未加硫のゴム組成物を型に入れ、型を閉じた後120~270℃の温度で、30秒~120分加熱することにより、目的とする架橋体が得られる。
射出成形の場合、たとえば、リボン状あるいはペレット状のゴム組成物をスクリューにより予め設定した量だけポットに供給する。引き続き予備加熱されたゴム組成物をプランジャーにより金型内に1~20秒で送り込む。ゴム組成物を射出した後120~270℃の温度で、30秒~120分加熱することにより、目的とする架橋体が得られる。
注入成形の場合、たとえば、予め秤量したゴム組成物をポットに入れピストンにより金型内に1~20秒で注入する。ゴム組成物を注入した後120~270℃の温度で、30秒~120分加熱することにより、目的とする架橋体が得られる。
<共重合体組成物の用途>
前記共重合体組成物から得られた架橋体を所望の形状に成形することにより様々な製品を得ることができる。
本発明に係る共重合体組成物は、前述のとおり、耐バギング性に優れ、さらに耐熱老化性および押出し性にも優れるので、本発明の共重合体組成物はホース用として好適に使用することができ、本発明の共重合体組成物から優れた性能を有するホース製品を得ることができる。
以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。なお、以下の実施例および比較例における各物性の評価方法は次の通りである。
<エチレン・α-オレフィン・非共役ポリエン共重合体の組成>
エチレン・α-オレフィン・非共役ポリエン共重合体の、各構成単位の重量分率(質量%)は、13C-NMRによる測定値により求めた。測定値は、ECX400P型核磁気共鳴装置(日本電子製)を用いて、測定温度:120℃、測定溶媒:オルトジクロロベンゼン/重水素化ベンゼン=4/1、積算回数:8000回にて、共重合体の13C-NMRのスペクトルを測定して得た。
<ヨウ素価>
エチレン・α-オレフィン・非共役ポリエン共重合体ゴムのヨウ素価は、滴定法により求めた。具体的には、以下の方法で測定した。
エチレン・α-オレフィン・非共役ポリエン共重合体ゴム0.5gを四塩化炭素60mlに溶解し、少量のウィス試薬および20%ヨウ化カリウム溶液を加え、0.1mol/Lチオ硫酸ナトリウム溶液で適定した。終点付近では澱粉指示薬を加え、よく攪拌しながら薄紫色が消えるところまで適定し、試料100gに対する消費されるハロゲンの量としてヨウ素のg数を算出した。
<極限粘度>
極限粘度[η]は、(株)離合社製 全自動極限粘度計を用いて、温度:135℃、測定溶媒:デカリンにて測定した。
<重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn)>
重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算の数値である。測定装置および条件は、以下のとおりである。また、分子量は、市販の単分散ポリスチレンを用いて検量線を作成し、換算法に基づいて算出した。
装置:ゲル透過クロマトグラフ Alliance GP2000型(Waters社製)、
解析装置:Empower2(Waters社製)、
カラム:TSKgel GMH6-HT×2+TSKgel GMH6-HTL×2(7.5mmI.D.×30cm、東ソー社製)、
カラム温度:140℃、
移動相:o-ジクロロベンゼン(0.025%BHT含有)、
検出器:示差屈折計(RI)、流速:1.0mL/min、
注入量:400μL、
サンプリング時間間隔:1s、
カラム較正:単分散ポリスチレン(東ソー社製)、
分子量換算:旧法EPR換算/粘度を考慮した較正法。
<低分子量成分>
上記のGPC測定によって得られたチャートが2つ以上のピークを示した場合、全体のピーク面積に対する、最も分子量が小さい側に現れたピークの面積の割合(%)を、分子量が2000以下である低分子量成分の含有量とした。なお、GPC測定によって得られたチャートが1つのピークしか示さなかった場合、低分子量成分の含有量を0%とした。
<複素粘度η*
レオメーターとして、粘弾性測定装置Ares(Rheometric Scientific社製)を用い、190℃、歪み1.0%の条件で、周波数ω=0.01rad/sでの複素粘度η* (ω=0.01)、周波数ω=0.1rad/sでの複素粘度η* (ω=0.1)、周波数ω=10rad/sでの複素粘度η* (ω=10)および周波数ω=100rad/sでの複素粘度η* (ω=100)(いずれも単位はPa・sec)を測定した。また、得られた結果よりη* (ω=0.1)とη* (ω=100)との複素粘度の比(η*比)であるP値(η* (ω=0.1)/η* (ω=100))を算出した。
<1000炭素原子あたりの長鎖分岐数(LCB1000c)>
長鎖分岐数(LCB1000c)は、上述した方法で測定した。
<耐バギング性>
実施例および比較例の第一段階で得られた配合物をロールで混練した際における組成物の状態から組成物の耐バギング性を評価した。耐バギング性は、次の評点1~5により評価した。評点1~5に該当する具体的態様の例を図1の(1-1)~(1-5)にそれぞれ示す。
評点1:組成物がロールに全く巻き付かず、すぐバギングする。
評点2:組成物がロールに一時的に巻き付くが、すぐにロールから剥がれ、バギングする。
評点3:組成物がロールに巻き付き、度々バンク部分から剥がれるが、バギングしない。
評点4:組成物がロールに容易に巻き付き、極まれにバンク部分から剥がれるが、バギングしない。
評点5:組成物がロールに容易に巻き付き、全くバンク部分から剥がれず、バギングしない。
<押出し性>
まず、実施例および比較例の第一段階で得られた配合物を用いて作製した押出し機フィード用のリボンを押出し機にフィードし、6m/min の速度で中空状のチューブを押し出した。その後、押出したチューブの表面状態から押出し性を評価した。押出し性は、次の評点1~5により評価した。
評点1: 表面のうねりがあり、ささくれが著しく、光沢は無い。
評点2: 表面のうねりは無く、ささくれが著しく、光沢は無い。
評点3: 表面のうねりは無く、著しくはないがささくれはあり、光沢は無い。
評点4: 表面のうねりは無く、ほとんどささくれはなく、光沢は少しある。
評点5: 表面のうねりは無く、ささくれは全くなく、光沢ははっきりとある。
<未加硫ゴム物性の評価>
(1)ムーニー粘度(ML(1+4)125℃)
125℃におけるムーニー粘度(ML(1+4)125℃)は、JIS K6300に準拠して、ムーニー粘度計((株)島津製作所製SMV202型)を用いて、125℃の条件下で測定した。
(2)加硫速度
実施例および比較例における未架橋のゴム組成物を用いて、測定装置:MDR2000(ALPHA TECHNOLOGIES 社製)により、温度160℃および時間30分の測定条件下で、加硫速度(TC90)を以下のとおり測定した。
一定温度および一定のせん断速度の条件下で得られるトルク変化を測定した。トルクの最大値と最小値との差の90%のトルクに達成するまでの時間を加硫速度(TC90;分)とした。
<加硫ゴム物性>
(1)硬さ試験(デュロ-A硬度)
JIS K 6253に従い、シートの硬度(タイプAデュロメータ、HA)の測定は、平滑な表面をもっている2mmの加硫ゴムシート6枚を用いて、平らな部分を積み重ねて厚み約12mmとして行った。ただし、試験片に異物の混入したもの、気泡のあるもの、およびキズのあるものは用いなかった。また、試験片の測定面の寸法は、押針先端が試験片の端から12mm以上離れた位置で測定できる大きさとした。
(2)引張試験
実施例および比較例で得た加硫ゴムシートを打抜いてJIS K 6251(2001年)に記載されている3号形ダンベル試験片を調製した。この試験片を用いて同JIS K6251に規定される方法に従い、測定温度25℃、引張速度500mm/分の条件で引張り試験を行ない、25%モジュラス(M25)、50%モジュラス(M50)、100%モジュラス(M100)、200%モジュラス(M200)、300%モジュラス(M300)、引張破断点応力(TB)および引張破断点伸び(EB)を測定した。
<架橋密度>
架橋密度νは、下記の平衡膨潤を利用したFlory-Rehnerの式(a)から算出した。式(a)中のVRは架橋した2mmシートを37℃×72hの条件でトルエン抽出して求めた。
Figure 0007141932000019
[製造例1]
図2に示す連続重合装置を用いて、以下のようにしてエチレン・プロピレン・VNB共重合体(A-1)の製造を行った。
容積300リットルの重合反応器Cに、管6より脱水精製したヘキサン溶媒を58.3L/hr、管7よりトリイソブチルアルミニウム(TiBA)を4.5mmol/hr、(C65)3CB(C65)4を0.150mmol/hr、ジ(p-トリル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリドを0.030mmol/hrで連続的に供給した。同時に重合反応器C内に、エチレンを6.6kg/hr、プロピレンを9.3kg/hr、水素を18リットル/hr、VNBを340g/hrで、各々管2、3、4、5より連続供給し、重合温度87℃、全圧1.6MPaG、滞留時間1.0時間の条件下で共重合を行なった。
重合反応器Cで生成したエチレン・プロピレン・VNB共重合体の溶液を、管8を介して流量88.0リットル/hrで連続的に排出して温度170℃に昇温(圧力は4.1MPaGに上昇)して相分離器Dに供給した。このとき、管8には重合禁止剤であるエタノールを、重合反応器Cから抜き出した液体成分中のTiBAに対して0.1mol倍の量で連続的に導入した。
相分離器Dにおいて、エチレン・プロピレン・VNB共重合体の溶液を、大部分のエチレン・プロピレン・VNB共重合体を含む濃厚相(下相部)と少量のポリマーを含む希薄相(上相部)とに分離した。
分離された濃厚相を85.4リットル/hrで、管11を介して熱交換器Kに導き、さらにホッパーE内に導いて、ここで溶媒を蒸発分離し、エチレン・プロピレン・VNB共重合体を7.8kg/hrの量で得た。
得られたエチレン・プロピレン・VNB共重合体(A-1)の物性を上記の通り評価した。結果を表1に示す。なお、得られた共重合体(A-1)の分子量分布は二峰性を示した。
Figure 0007141932000020
[実施例1]
第一段階として、BB-4型バンバリーミキサー(神戸製鋼所製)を用いて、製造例1で得たエチレン・プロピレン・VNB共重合体(A-1)60質量部とエチレン・プロピレン共重合体40質量部を1分間素練りし、次いでこれに、アスペクト比が67である高アスペクト比水酸化マグネシウム(キスマ10、協和化学工業(株)製)10質量部、亜鉛華(ZnO#1、ハクスイテック(株)製)5質量部、タルク(ミストロンべーパータルク、日本ミストロン(株)製)80質量部、カーボンブラック(旭#60UG、旭カーボン(株)製)50質量部、パラフィン系プロセスオイル(ダイアナプロセスPW-380、出光興産(株)製)24質量部、一次老化防止剤(イルガノックス1010、BASF製)3質量部、二次老化防止剤(サンダントMB、三新化学工業(株)製)6質量部、ステアリン酸1質量部を加え、140℃で2分間混練した。その後、ラムを上昇させ掃除を行ない、さらに、1分間混練を行ない、約150℃で混練物を排出し、第一段階の配合物を得た。
次に、第二段階として、第一段階で得られた配合物を、6インチロ-ル(日本ロール(株)社製、前ロールの表面温度50℃、後ロールの表面温度50℃、前ロールの回転数16rpm、後ロールの回転数18rpm)に巻き付けて、これに、ジクミルパーオキシド(DCP-40C、化薬アクゾ社製)6.8質量部を加え10分間混練して未架橋のゴム配合物を得た。このゴム配合物を用いて、未加硫ゴム物性を評価した。
この未架橋のゴム配合物をシート状に分出し、100トンプレス成形機を用いて160℃で20分間プレスし、厚み2mmの加硫ゴムシートを調製した。これを用いて、加硫ゴム物性の評価、架橋密度、圧縮永久歪みおよび動倍率の測定を行った。結果を表2に示す。
[実施例2]
水酸化マグネシウム(C)であるキスマ10の配合量を20質量部に変更したこと以外は実施例1と同様に行い、ゴム組成物および架橋体を製造し、さらに実施例1と同様の評価を行った。結果を表2に示す。
[比較例1]
水酸化マグネシウム(C)であるキスマ10を配合しなかったこと以外は実施例1と同様に行い、ゴム組成物および架橋体を製造し、さらに実施例1と同様の評価を行った。結果を表2に示す。
Figure 0007141932000021
表2中の1)~9)は以下のとおりである。
1)ステアリン酸(ビーズステアリン酸つばき、日油株式会社製)
2)亜鉛華(ZnO#1、ハクスイテック(株)製)
3)老化防止剤(イルガノックス1010、BASF製)
4)老化防止剤(サンダントMB、三新化学工業(株)製)
5)カーボンブラック(旭#60UG、旭カーボン(株)社製)
6)タルク(ミストロンベーパータルク、日本ミストロン(株)製)
7)パラフィン系プロセスオイル(ダイアナプロセスPW-380、出光興産(株)製)
8)水酸化マグネシウム(キスマ10、協和化学工業(株)製)
9)ジクミルパーオキシド(DCP-40C、化薬アクゾ社製)
C 重合反応器
D 相分離器
E ホッパー
F ポンプ
G 熱交換器
H 熱交換器

Claims (7)

  1. エチレン(a1)に由来する構成単位と、炭素原子数3~20のα-オレフィン(a2)に由来する構成単位と、非共役ポリエン(a3)に由来する構成単位とを有するエチレン・α-オレフィン・非共役ポリエン共重合体(A)、および該エチレン・α-オレフィン・非共役ポリエン共重合体(A)100質量部に対して1~100質量部の、アスペクト比5~100を有する水酸化マグネシウム(C)を含み、
    前記共重合体(A)が、下記(i)~(vii)の条件を満たすことを特徴とするエチレン系共重合体組成物:
    (i)エチレン(a1)に由来する構造単位と、α-オレフィン(a2)に由来する構造単位とのモル比[(a1)/(a2)]が、40/60~99.9/0.1である;
    (ii)非共役ポリエン(a3)に由来する構成単位の重量分率が、共重合体(A)100質量%中、0.07質量%~10質量%である;
    (iii)共重合体(A)の重量平均分子量(Mw)と、非共役ポリエン(a3)に由来する構成単位の重量分率((a3)の重量分率(質量%))と、非共役ポリエン(a3)の分子量((a3)の分子量)とが、下記式(1)を満たす;
    4.5≦Mw×(a3)の重量分率/100/(a3)の分子量≦40 …(1)
    (iv)レオメーターを用いて線形粘弾性測定(190℃)により得られた、周波数ω=0.1rad/sでの複素粘度η * ( ω =0.1) (Pa・sec)と、周波数ω=100rad/sでの複素粘度η * ( ω =100) (Pa・sec)との比P(η * ( ω =0.1) η * ( ω =100) )と、極限粘度[η]と、非共役ポリエン(a3)に由来する構成単位の重量分率((a3)の重量分率)とが、下記式(2)を満たす;
    P/([η] 2.9)≦(a3)の重量分率×6 …(2)
    (v)ゲルパーミエイションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)と数平均分子量(Mn)との割合(分子量分布;Mw/Mn)が8~30の範囲にある;
    (vi)前記数平均分子量(Mn)が30,000以下である;
    (vii)GPC測定によって得られるチャートが2つ以上のピークを示し、最も分子量が小さい側に現れるピークの面積が、全体のピーク面積の1~20%の範囲である。
  2. 前記非共役ポリエン(a3)が、下記一般式(I)および(II)からなる群より選ばれる部分構造を合計で分子中に2つ以上含むことを特徴とする請求項に記載のエチレン系共重合体組成物。
    Figure 0007141932000022
  3. 前記非共役ポリエン(a3)が5-ビニル-2-ノルボルネン(VNB)を含むことを特徴とする請求項1または2に記載のエチレン系共重合体組成物
  4. 前記α-オレフィン(a2)がプロピレンであることを特徴とする請求項1~のいずれか一項に記載のエチレン系共重合体組成物。
  5. ホース用である請求項1~のいずれか一項に記載のエチレン系共重合体組成物。
  6. 請求項1~のいずれか一項に記載のエチレン系共重合体組成物の架橋体。
  7. 請求項に記載の架橋体を含むホース製品。
JP2018225069A 2018-11-30 2018-11-30 エチレン系共重合体組成物およびホース製品 Active JP7141932B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018225069A JP7141932B2 (ja) 2018-11-30 2018-11-30 エチレン系共重合体組成物およびホース製品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018225069A JP7141932B2 (ja) 2018-11-30 2018-11-30 エチレン系共重合体組成物およびホース製品

Publications (2)

Publication Number Publication Date
JP2020084137A JP2020084137A (ja) 2020-06-04
JP7141932B2 true JP7141932B2 (ja) 2022-09-26

Family

ID=70906607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018225069A Active JP7141932B2 (ja) 2018-11-30 2018-11-30 エチレン系共重合体組成物およびホース製品

Country Status (1)

Country Link
JP (1) JP7141932B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143312A (ja) 2002-10-25 2004-05-20 Arai Pump Mfg Co Ltd ゴム組成物
JP2006199934A (ja) 2004-12-22 2006-08-03 Furukawa Electric Co Ltd:The 難燃性樹脂組成物およびそれを用いた成形体
WO2012050222A1 (ja) 2010-10-12 2012-04-19 協和化学工業株式会社 高アスペクト比水酸化マグネシウム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3265639B2 (ja) * 1992-09-24 2002-03-11 住友化学工業株式会社 高強度難燃性ゴム組成物
JPH08306242A (ja) * 1995-05-01 1996-11-22 Fujikura Ltd 難燃性絶縁電線

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143312A (ja) 2002-10-25 2004-05-20 Arai Pump Mfg Co Ltd ゴム組成物
JP2006199934A (ja) 2004-12-22 2006-08-03 Furukawa Electric Co Ltd:The 難燃性樹脂組成物およびそれを用いた成形体
WO2012050222A1 (ja) 2010-10-12 2012-04-19 協和化学工業株式会社 高アスペクト比水酸化マグネシウム

Also Published As

Publication number Publication date
JP2020084137A (ja) 2020-06-04

Similar Documents

Publication Publication Date Title
US10975223B2 (en) Resin composition and use thereof
JP5357635B2 (ja) ゴム組成物およびその用途
JP5204727B2 (ja) ゴム組成物およびその用途
EP3584074B1 (en) Laminate
JP6914662B2 (ja) 防振ゴム用組成物および防振ゴム製品
JP6489774B2 (ja) 伝動ベルト用ゴム組成物
JP6808337B2 (ja) 伝動ベルト用ゴム組成物
US11964447B2 (en) Laminate
JP7141932B2 (ja) エチレン系共重合体組成物およびホース製品
JP7141930B2 (ja) エチレン系共重合体組成物およびホース製品
JP7141931B2 (ja) エチレン系共重合体組成物およびホース製品
JP6709641B2 (ja) シールパッキン
JP7198098B2 (ja) エチレン系共重合体組成物およびその用途
JP2023149103A (ja) エチレン系共重合体組成物およびホース製品
JP6949497B2 (ja) 防振ゴム用組成物および防振ゴム製品
JP2019059894A (ja) 防振ゴム用組成物および防振ゴム製品
JP7075222B2 (ja) 防振ゴム用組成物および防振ゴム製品
JP7189725B2 (ja) 伝動ベルト用共重合体組成物及び当該共重合体組成物からなる伝動ベルト
JP7428503B2 (ja) 積層体
JP2020122101A (ja) エチレン系共重合体組成物およびその用途
JP7481969B2 (ja) ゴム組成物およびその用途
JP2019059893A (ja) 防振ゴム用組成物および防振ゴム製品
JP2019127513A (ja) 防振ゴム用組成物および防振ゴム製品
JP2019059895A (ja) 防振ゴム用組成物および防振ゴム製品
JP2021042316A (ja) 伝動ベルト用組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R150 Certificate of patent or registration of utility model

Ref document number: 7141932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150