JP7481969B2 - ゴム組成物およびその用途 - Google Patents

ゴム組成物およびその用途 Download PDF

Info

Publication number
JP7481969B2
JP7481969B2 JP2020150127A JP2020150127A JP7481969B2 JP 7481969 B2 JP7481969 B2 JP 7481969B2 JP 2020150127 A JP2020150127 A JP 2020150127A JP 2020150127 A JP2020150127 A JP 2020150127A JP 7481969 B2 JP7481969 B2 JP 7481969B2
Authority
JP
Japan
Prior art keywords
mass
group
rubber
cyclopentadienyl
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020150127A
Other languages
English (en)
Other versions
JP2022044488A5 (ja
JP2022044488A (ja
Inventor
和輝 樋口
雄二 石井
光太郎 市野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2020150127A priority Critical patent/JP7481969B2/ja
Publication of JP2022044488A publication Critical patent/JP2022044488A/ja
Publication of JP2022044488A5 publication Critical patent/JP2022044488A5/ja
Application granted granted Critical
Publication of JP7481969B2 publication Critical patent/JP7481969B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、ゴム組成物およびその用途に関する。
エチレン・プロピレン・非共役ジエン共重合体ゴム(EPDM)に代表されるエチレン・α-オレフィン系ゴムは、その分子構造の主鎖に不飽和結合を有していないため、汎用されている共役ジエン系ゴムに比べ、耐熱老化性および耐候性に優れることから、自動車用部品、電線用材料、建築土木資材、工業材部品、各種樹脂の改質材等の用途に幅広く用いられている。
一方、自動車等のタイヤ用途には、スチレン・ブタジエンゴム(SBR)が広く用いられている。スチレン・ブタジエンゴムなどのジエン系ゴムは、単独では耐候性が不十分であるため、タイヤ等、屋外で長期間使用する用途に用いる場合には、耐候性を改良するためにアミン系老化防止剤やパラフィン系ワックスなどを添加して用いるのが通常である。しかしながら、アミン系老化防止剤やパラフィン系ワックス等を配合したジエン系ゴム製品は、時間の経過とともに、その表面にこれらの成分がブリードアウトし、表面に変色を生じる場合がある。また、店頭などでの保管中においても、ブリードアウトによる変色や粉吹き等の外観悪化を生じ、商品価値の低下を招く場合があった。このため、ゴム成分自体による耐候性の向上が望まれていた。
このような問題を解決するために、スチレン・ブタジエンゴムにエチレン・プロピレン・ジエンゴム(EPDM)を配合して、耐候性を向上させることが検討されてはいるが、スチレン・ブタジエンゴムとEPDMとは、熱架橋を行う際に相分離を生じやすく、十分な耐疲労性が得られないという問題があった。
本出願人は、エチレンと、α-オレフィンと、特定のトリエン化合物とに由来する構造単位からなるランダム共重合体ゴムと、ジエン系ゴムと、カーボンブラックと、加硫剤とを含有するゴム組成物を提案している(特許文献1参照)。このゴム組成物は、エチレン・α-オレフィン・トリエンランダム共重合体ゴムが、ジエン系ゴムとほぼ同等の早い加硫速度を示すことから、ジエン系ゴムとの相分離を生じにくく、ジエン系ゴムが本来的に有している優れた機械強度特性を損なわず、タイヤサイドウォール用途に好適である。
また本出願人は、α-オレフィンに由来する構造単位と、非共役ポリエンに由来する構造単位とを含有する非共役ポリエン系共重合体と、軟化剤とを含有する組成物と、ジエン系ゴムとを混合したゴム組成物が、制動性能および燃費性能に優れたタイヤの形成に好適であることを見出し、これを提案している(特許文献2,3参照)。
現在、タイヤの製造においては、スチレン・ブタジエン系ゴムや天然ゴムなどのジエン系ゴムを主成分とする未架橋の組成物をシート状等に成形し、表面のみを電子線で架橋してダレを防止した後、タイヤ形状に組み立てを行い、硫黄架橋する工程が主に採用されている。
さらに、天然ゴム(NR)、スチレン-ブタジエンゴム(SBR)、ブタジエンゴム(BR)などのジエン系ゴムは、耐動的疲労性及び動的特性に優れるゴムとして知られており、自動車タイヤ及び防振ゴムの原料ゴムとして使用されている。しかしながら、昨今、これらのゴム製品が使用される環境が大きく変化し、ゴム製品の耐熱老化性および耐候性の向上が求められており、例えば、自動車タイヤのトレッド及びタイヤサイドウォールには、特に耐候性が求められている。しかしながら、現行ジエン系ゴムが具備する優れた機械的特性、耐疲労性及び動的特性を保持し、しかも、良好な耐候性を有するゴムは従来なかった。
それゆえ、機械的特性、耐動的疲労性及び動的特性に優れるジエン系ゴムと、耐熱老化性及び耐候性に優れるエチレン・プロピレン・非共役ジエン共重合体ゴム(EPDM)等のエチレン・炭素数3~20のα-オレフィン・非共役ポリエン共重合体とのブレンド系ゴム組成物が、種々検討されている。しかしながら、エチレン・炭素数3~20のα-オレフィン・非共役ポリエン共重合体が有する動的特性のレベルとジエン系ゴムが有する動的特性のレベルとが異なっているため、均一な物性を示すブレンド系ゴム組成物は、従来得られなかった。なお、自動車タイヤにおける動的特性は、燃費を悪化させない材料であるか否かを問題にし、その指標はtanδ(損失正接)値であり、tanδ値が低いほど動的特性が優れている。
また、タイヤトレッドはタイヤが路面と接する部分のゴム部品であり、スタッドレスタイヤにおいては通常のノーマルタイヤに求められるウェットグリップ性能および燃費性能に加え、優れた氷上制動性能が求められる。
特開2001-123025号公報 国際公開第2005/105912号 国際公開第2005/105913号
本発明の目的は、タイヤトレッドに用いた場合にウェットグリップ、燃費性能、耐疲労性を維持し、氷上制動性能を向上させ得るゴム組成物をえることにある。
本発明者らは、上記課題を達成するために鋭意研究を重ねた。その結果、ジエン系ゴムに、特定のエチレン・α-オレフィン・非共役ポリエン共重合体を配合したゴム組成物を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明は、ジエン系ゴム(B)とエチレンと、炭素原子数4~20のα-オレフィンと、下記一般式(I)および(II)からなる群から選ばれる部分構造を合計で分子中に2つ以上含む非共役ポリエンとに由来する構成単位を有し、かつ、下記要件(i)~(vi)を満たすエチレン・α-オレフィン・非共役ポリエン共重合体(A)を含有してなり、前記ジエン系ゴム(B)100質量部当たり前記共重合体(A)を0.5質量部以上、50質量部以下の範囲で含有することを特徴とするゴム組成物に係る。
Figure 0007481969000001
(i)エチレン(a1)に由来する構造単位と、炭素数4~20のα-オレフィン(a2)に由来する構造単位とのモル比[(a1)/(a2)]が、40/60~99.9/0.1である;
(ii)非共役ポリエン(a3)に由来する構造単位の質量分率が、共重合体(A)100質量%中、0.07質量%~10質量%である;
(iii)共重合体(A)の重量平均分子量(Mw)と、非共役ポリエン(a3)に由来する構造単位の質量分率〔(a3)の質量分率(質量%)〕と、非共役ポリエン(a3)の分子量〔(a3)の分子量〕とが、下記式(1)を満たす;
4.5≦Mw×(a3)の質量分率/100/(a3)の分子量≦40 …(1)
(iv)レオメーターを用いて線形粘弾性測定(190℃)により得られた、周波数ω=0.1rad/sでの複素粘度η*(ω=0.1)(Pa・sec)と、周波数ω=100rad/sでの複素粘度η*(ω=100)(Pa・sec)との比P(η*(ω=0.1)/η*(ω=100))と、極限粘度[η]と、非共役ポリエン(a3)に由来する構造単位の質量分率((a3)の質量分率(質量%))とが、下記式(2)を満たす;
P/([η] 2.9 )≦(a3)の質量分率×6 …(2)
(v)ゲルパーミエイションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)と数平均分子量(Mn)との比(分子量分布;Mw/Mn)が4~30の範囲にある;
(vi)前記数平均分子量(Mn)が2000~30,000である。
本発明のゴム組成物は、タイヤとして用いた場合に、ウェットグリップ、燃費性能、耐疲労性を維持しつつ、氷上制動性能を向上させることが期待できる。
実施例で用いた連続重合装置の概略図である。
<ジエン系ゴム(B)>
本発明のゴム組成物を構成する成分の一つであるジエン系ゴム(B)は、分子内に共役ジエンから導かれる単位を有するゴムであり、分子内に二重結合を有する公知のジエン系ゴムを制限なく使用でき、これらを1種単独で用いてもよく、2種以上組み合わせて用いてもよい。
本発明に係るジエン系ゴム(B)としては、共役ジエン化合物を主モノマーとする重合体または共重合体ゴムが好ましく用いられる。本発明において、ジエン系ゴムには、天然ゴム(NR)、水添ゴムも含まれる。ジエン系ゴム(B)としては、通常、未架橋のものを採用することができ、ヨウ素価が100以上、好ましくは200以上、さらに好ましくは250以上のものが望ましい。
本発明に係るジエン系ゴム(B)の具体例としては、天然ゴム(NR)、イソプレンゴム(IR)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)、アクリロニトリル・ブタジエンゴム(NBR)、ニトリルゴム、水添ニトリルゴムなどが挙げられる。
本発明において、ジエン系ゴム(B)としては、天然ゴム(NR)、イソプレンゴム(IR)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)がより好ましく、スチレン・ブタジエンゴム(SBR)が特に好ましい。これらのジエン系ゴム(B)は1種単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
天然ゴム(NR)としては、グリーンブック(天然ゴム各種等級品の国際品質包装基準)により規格化された天然ゴムを用いることができる。イソプレンゴム(IR)としては、比重が0.91~0.94、ムーニー粘度〔ML1+4(100℃),JIS K6300〕が30~120のものが好ましく用いられる。
スチレン・ブタジエンゴム(SBR)としては、比重が0.91~0.98、ムーニー粘度〔ML1+4(100℃),JIS K6300〕が20~120のものが好ましく用いられる。ブタジエンゴム(BR)としては、比重が0.90~0.95、ムーニー粘度〔ML1+4(100℃),JIS K6300〕が20~120のものが好ましく用いられる。
<エチレン・α-オレフィン・非共役ポリエン共重合体(A)>
本発明のゴム組成物を形成する成分の一つであるエチレン・α-オレフィン・非共役ポリエン共重合体(A)〔以下、「共重合体(A)」と略記する場合がある、〕は、エチレン(a1)と、炭素原子数4~20のα-オレフィン(a2)と、下記一般式(I)および(II)からなる群から選ばれる部分構造を合計で分子中に2つ以上含む非共役ポリエン(a3)とに由来する構成単位を有し、かつ、下記要件(i)~(vi)を満たす共重合体である。
Figure 0007481969000002
〈α-オレフィン(a2)〉
上記炭素原子数4~20のα-オレフィン(a2)としては、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-エイコセンなどが挙げられる。これらのうち、1-ブテン、1-ヘキセン、1-オクテンなどの炭素原子数4~8のα-オレフィンが好ましく、特に1-ブテンが好ましい。このようなα-オレフィンは、原料コストが比較的安価であり、得られる共重合体(A)が優れた機械的性質を示し、さらにゴム弾性を持った成形体を得ることができるため好ましい。
上記α-オレフィン(a2)は一種単独で用いても、二種以上を用いてもよい。
〈非共役ポリエン(a3)〉
上記非共役ポリエン(a3)は、下記一般式(I)および(II)からなる群から選ばれる部分構造を合計で分子中に2つ以上含む化合物が挙げられる。
Figure 0007481969000003
上記非共役ポリエン(a3)としては、5-ビニル-2-ノルボルネン(VNB)、ノルボルナジエン、1,4-ヘキサジエン、ジシクロペンタジエンなどが挙げられる。これらのうちでは、入手容易性が高く、重合後の架橋反応時に過酸化物との反応性が良好で、重合体組成物の耐熱性が向上しやすいことから、非共役ポリエン(a3)がVNBを含むことが好ましく、非共役ポリエン(a3)がVNBであることがより好ましい。非共役ポリエン(a3)は一種単独で用いても、二種以上を用いてもよい。
上記共重合体(A)は、上記(a1)、(a2)、(a3)に由来する構造単位に加えて、さらに上記般式(I)および(II)からなる群から選ばれる部分構造を分子中に1つのみ含む非共役ポリエン(a4)に由来する構成単位を有していてもよい。
上記非共役ポリエン(a4)としては、5-エチリデン-2-ノルボルネン(ENB)、5-メチレン-2-ノルボルネン、5-(2-プロペニル)-2-ノルボルネン、5-(3-ブテニル)-2-ノルボルネン、5-(1-メチル-2-プロペニル)-2-ノルボルネン、5-(4-ペンテニル)-2-ノルボルネン、5-(1-メチル-3-ブテニル)-2-ノルボルネン、5-(5-ヘキセニル)-2-ノルボルネン、5-(1-メチル-4-ペンテニル)-2-ノルボルネン、5-(2,3-ジメチル-3-ブテニル)-2-ノルボルネン、5-(2-エチル-3-ブテニル)-2-ノルボルネン、5-(6-ヘプテニル)-2-ノルボルネン、5-(3-メチル-5-ヘキセニル)-2-ノルボルネン、5-(3,4-ジメチル-4-ペンテニル)-2-ノルボルネン、5-(3-エチル-4-ペンテニル)-2-ノルボルネン、5-(7-オクテニル)-2-ノルボルネン、5-(2-メチル-6-ヘプテニル)-2-ノルボルネン、5-(1,2-ジメチル-5-ヘキセニル)-2-ノルボルネン、5-(5-エチル-5-ヘキセニル)-2-ノルボルネン、5-(1,2,3-トリメチル-4-ペンテニル)-2-ノルボルネンなどが挙げられる。これらのうちでは、入手容易性が高く、重合後の架橋反応時に硫黄や加硫促進剤との反応性が高く、架橋速度を制御しやすく、良好な機械物性が得られやすいことからENBが好ましい。非共役ポリエン(a4)は一種単独で用いても、二種以上を用いてもよい。
〈要件(i)〉
本発明に係る共重合体(A)は、エチレン(a1)に由来する構造単位と、炭素数4~20のα-オレフィン(a2)に由来する構造単位とのモル比[(a1)/(a2)]が、40/60~99.9/0.1、好ましくは50/50~90/10、より好ましくは55/45~85/15、さらに好ましくは55/45~78/22である。
要件(i)を満たす共重合体(A)を用いることにより、ゴム弾性、機械的強度および柔軟性に優れた成形体が得られゴム組成物を得ることができる。
なお、共重合体(A)中のエチレン量(エチレン(a1)に由来する構成単位の含量)およびα-オレフィン量(α-オレフィン(a2)に由来する構成単位の含量)は、13C-NMRにより求めることができる。
〈要件(ii)〉
本発明に係る共重合体(A)は、非共役ポリエン(a3)に由来する構造単位の質量分率が、共重合体(A)100質量%中、0.07質量%~10質量%、好ましくは0.07質量%~8質量%である。
共重合体(A)中の非共役ポリエン(a3)量(非共役ポリエン(a3)に由来する構成単位の含量)は、13C-NMRにより求めることができる。
〈要件(iii)〉
本発明に係る共重合体(A)は、共重合体(A)の重量平均分子量(Mw)と、非共役ポリエン(a3)に由来する構造単位の質量分率〔(a3)の質量分率(質量%)〕と、非共役ポリエン(a3)の分子量〔(a3)の分子量〕とが、下記式(1)を満たす;
4.5≦Mw×(a3)の質量分率/100/(a3)の分子量≦40 …(1)
〈要件(iv)〉
本発明に係る共重合体(A)は、レオメーターを用いて線形粘弾性測定(190℃)により得られた、周波数ω=0.1rad/sでの複素粘度η*(ω=0.1)(Pa・sec)と、周波数ω=100rad/sでの複素粘度η*(ω=100)(Pa・sec)との比P(η*(ω=0.1)/η*(ω=100))と、極限粘度[η]と、非共役ポリエン(a3)に由来する構造単位の質量分率((a3)の質量分率(質量%))とが、下記式(2)を満たす;
P/([η] 2.9 )≦(a3)の質量分率×6 …(2)
〈要件(v)〉
本発明に係る共重合体(A)は、ゲルパーミエイションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)と数平均分子量(Mn)との比(分子量分布;Mw/Mn)が4~30の範囲にある。
〈要件(vi)〉
本発明に係る共重合体(A)は、前記数平均分子量(Mn)が2000~30,000である。
上記共重合体(A)の重量平均分子量(Mw)および数平均分子量は、ゲルパーミエイションクロマトグラフィー(GPC)で測定されるポリスチレン換算の数値として求めることができる。
〈エチレン・α-オレフィン・非共役ポリエン共重合体(A)の製造方法〉
本発明に係る上記共重合体(A)は、エチレン(a1)と、α-オレフィン(a2)と、非共役ポリエン(a3)と、必要に応じて非共役ポリエン(a4)とからなるモノマーを共重合してなる共重合体である。
上記共重合体(A)は、上記要件(i)~(vi)を満たす限りにおいて、どのような製法で調製されてもよいが、メタロセン化合物の存在下にモノマーを共重合して得られたものであることが好ましく、メタロセン化合物を含む触媒系の存在下にモノマーを共重合して得られたものであることがより好ましく、特定のメタロセン化合物を含有する重合触媒の存在下で共重合を行う工程(1)と、触媒失活剤としてアルコールを添加して前記重合触媒の失活を行う工程(2)とを含む方法により得られたものであることがさらに好ましい。
≪メタロセン化合物≫
上記共重合体(A)は、好ましくは、下記一般式[A1]で表される化合物から選ばれる少なくとも1種のメタロセン化合物を含有する重合触媒系の存在下に、モノマーを共重合して得られたものであることが望ましい。モノマーの共重合を、このようなメタロセン化合物を含む重合触媒系を用いて行うと、得られる共重合体中に含有される長鎖分岐が抑制され、上記要件を満たす共重合体(A)を容易に調製することができる。
Figure 0007481969000004
式[A1]中、R1、R2、R3、R4、R5、R8、R9およびR12はそれぞれ独立に水素原子、炭化水素基、ケイ素含有基またはケイ素含有基以外のヘテロ原子含有基を示し、R1~R4のうち隣接する二つの基同士は互いに結合して環を形成していてもよい。
炭化水素基としては、炭素数1~20の炭化水素基が好ましく、具体的には、炭素数1~20のアルキル基、炭素原子数7~20のアリールアルキル基、炭素原子数6~20のアリール(aryl)基あるいは置換アリール(aryl)基などが挙げられる。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、アリル(allyl)基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、アミル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デカニル基、3-メチルペンチル基、1,1-ジエチルプロピル基、1,1-ジメチルブチル基、1-メチル-1-プロピルブチル基、1,1-プロピルブチル基、1,1-ジメチル-2-メチルプロピル基、1-メチル-1-イソプロピル-2-メチルプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルニル基、アダマンチル基、フェニル基、o-トリル基、m-トリル基、p-トリル基、キシリル基、イソプロピルフェニル基、t-ブチルフェニル基、ナフチル基、ビフェニル基、ターフェニル基、フェナントリル基、アントラセニル基、ベンジル基、クミル基を挙げることができ、メトキシ基、エトキシ基、フェノキシ基などの酸素含有基、ニトロ基、シアノ基、N-メチルアミノ基、N,N-ジメチルアミノ基、N-フェニルアミノ基などの窒素含有基、ボラントリイル基、ジボラニル基などのホウ素含有基、スルホニル基、スルフェニル基などのイオウ含有基を含むものも炭化水素基として挙げられる。
上記炭化水素基は、水素原子がハロゲン原子で置換されていてもよく、例えば、トリフルオロメチル基、トリフルオロメチルフェニル基、ペンタフルオロフェニル基、クロロフェニル基などを挙げることができる。
ケイ素含有基としては、シリル基、シロキシ基、炭化水素置換シリル基、炭化水素置換シロキシ基などを挙げることができる。例えば、メチルシリル基、ジメチルシリル基、トリメチルシリル基、エチルシリル基、ジエチルシリル基、トリエチルシリル基、ジフェニルメチルシリル基、トリフェニルシリル基、ジメチルフェニルシリル基、ジメチル-t-ブチルシリル基、ジメチル(ペンタフルオロフェニル)シリル基などを挙げることができる。
6およびR11は水素原子、炭化水素基、ケイ素含有基およびケイ素含有基以外のヘテロ原子含有基から選ばれる同一の原子または同一の基であり、R7およびR10は水素原子、炭化水素基、ケイ素含有基およびケイ素含有基以外のヘテロ原子含有基から選ばれる同一の原子または同一の基であり、R6およびR7は互いに結合して環を形成していてもよく、R10およびR11は互いに結合して環を形成していてもよい。ただし、R6、R7、R10およびR11が全て水素原子であることはない。
13およびR14はそれぞれ独立にアリール基を示す。
1はジルコニウム原子を示す。
1は炭素原子またはケイ素原子を示す。
Qはハロゲン原子、炭化水素基、ハロゲン化炭化水素基、炭素原子数4~20の中性の共役もしくは非共役ジエン、アニオン配位子または孤立電子対で配位可能な中性配位子を示し、jは1~4の整数を示し、jが2以上の整数の場合は複数あるQはそれぞれ同一でも異なっていてもよい。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、好ましくは塩素原子である。
炭化水素基としては、炭素数1~10の炭化水素基が好ましく、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、2-メチルプロピル基、1,1-ジメチルプロピル基、2,2-ジメチルプロピル基、1、1-ジエチルプロピル基、1-エチル-1-メチルプロピル基、1,1,2,2-テトラメチルプロピル基、sec-ブチル基、t-ブチル基、1,1-ジメチルブチル基、1,1,3-トリメチルブチル基、ネオペンチル基、シクロヘキシルメチル基、シクロヘキシル基、1-メチル-1-シクロヘキシル基、ベンジル基等が挙げられ、好ましくはメチル基、エチル基、ベンジル基である。
炭素原子数4~20の中性の共役もしくは非共役ジエンとしては、炭素数4~10の中性の共役もしくは非共役ジエンが好ましい。中性の共役もしくは非共役ジエンの具体例としては、s-シス-またはs-トランス-η4-1,3-ブタジエン、s-シス-またはs-トランス-η4-1,4-ジフェニル-1,3-ブタジエン、s-シス-またはs-トランス-η4-3-メチル-1,3-ペンタジエン、s-シス-またはs-トランス-η4-1,4-ジベンジル-1,3-ブタジエン、s-シス-またはs-トランス-η4-2,4-ヘキサジエン、s-シス-またはs-トランス-η4-1,3-ペンタジエン、s-シス-またはs-トランス-η4-1,4-ジトリル-1,3-ブタジエン、s-シス-またはs-トランス-η4-1,4-ビス(トリメチルシリル)-1,3-ブタジエン等が挙げられる。
アニオン配位子の具体例としては、メトキシ、t-ブトキシ、フェノキシ等のアルコキシ基、アセテート、ベンゾエート等のカルボキシレート基、メシレート、トシレート等のスルホネート基等が挙げられる。
孤立電子対で配位可能な中性配位子の具体例としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物、またはテトラヒドロフラン、ジエチルエーテル、ジオキサン、1,2-ジメトキシエタン等のエーテル類が挙げられる。
上記式[A1]における置換基R1~R4を有するシクロペンタジエニル基としては、R1~R4が水素原子である無置換シクロペンタジエニル基、3-t-ブチルシクロペンタジエニル基、3-メチルシクロペンタジエニル基、3-トリメチルシリルシクロペンタジエニル基、3-フェニルシクロペンタジエニル基、3-アダマンチルシクロペンタジエニル基、3-アミルシクロペンタジエニル基、3-シクロヘキシルシクロペンタジエニル基などの3位1置換シクロペンタジエニル基、3-t-ブチル-5-メチルシクロペンタジエニル基、3-t-ブチル-5-エチルシクロペンタジエニル基、3-フェニル-5-メチルシクロペンタジエニル基、3,5-ジ-t-ブチルシクロペンタジエニル基、3,5-ジメチルシクロペンタジエニル基、3-フェニル-5-メチルシクロペンタジエニル基、3-トリメチルシリル-5-メチルシクロペンタジエニル基などの3,5位2置換シクロペンタジエニル基などが挙げることができるがこの限りではない。メタロセン化合物の合成のし易さ、製造コスト及び非共役ポリエンの共重合能の観点から、無置換(R1~R4が水素原子)であるシクロペンタジエニル基が好ましい。
式[A1]における置換基R5~R12を有するフルオレニル基としては、R5~R12が水素原子である無置換フルオレニル基、2-メチルフルオレニル基、2-t-ブチルフルオレニル基、2-フェニルフルオレニル基などの2位1置換フルオレニル基、4-メチルフルオレニル基、4-t-ブチルフルオレニル基、4-フェニルフルオレニル基などの4位1置換フルオレニル基、あるいは2,7-ジ-t-ブチルフルオレニル基、3,6-ジ-t-ブチルフルオレニル基などの2,7位もしくは3,6位2置換フルオレニル基、2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル基、2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル基などの2,3,6,7位4置換フルオレニル基、あるいは下記一般式[V-I]、[V-II]で表されるようなR6とR7が互いに結合し環を形成し、R10とR11が互いに結合し環を形成している2,3,6,7位4置換フルオレニル基などが挙げられるが、この限りではない。
Figure 0007481969000005
Figure 0007481969000006
式[V-I]、[V-II]中、R5、R8、R9、R12は前記一般式[A1]における定義と同様であり、
a、Rb、Rc、Rd、Re、Rf、RgおよびRhは、それぞれ独立に水素原子または炭素数1~5のアルキル基であり、隣接した置換基と互いに結合して環を形成していてもよい。前記アルキル基としては、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、アミル基、n-ペンチル基を例示できる。また、式[V-I]中、RxおよびRyはそれぞれ独立に炭素数1~3の不飽和結合を有してもよい炭化水素基であり、RxがRaまたはRcが結合した炭素と共同して二重結合を形成していてもよく、RyがReまたはRgが結合した炭素と共同して二重結合を形成していてもよく、RxおよびRyがともに炭素数1または2の飽和あるいは不飽和の炭化水素基であることが好ましい。
上記一般式[V-I]または[V-II]で表される化合物として、具体的には、式[V-III]で表されるオクタメチルオクタヒドロジベンゾフルオレニル基、
式[V-IV]で表されるテトラメチルドデカヒドロジベンゾフルオレニル基、
式[V-V]で表されるオクタメチルテトラヒドロジシクロペンタフルオレニル基、
式[V-VI]で表されるヘキサメチルジヒドロジシクロペンタフルオレニル基、
式[V-VII]で表されるb,h-ジベンゾフルオレニル基が挙げられる。
Figure 0007481969000007
Figure 0007481969000008
Figure 0007481969000009
Figure 0007481969000010
Figure 0007481969000011
これらのフルオレニル基を含む上記一般式[A1]で表されるメタロセン化合物はいずれも非共役ポリエンの共重合能に優れるが、Y1がケイ素原子である場合、2,7位2置換フルオレニル基、3,6位2置換フルオレニル基、2,3,6,7位4置換フルオレニル基、上記一般式[V-I]に表される2,3,6,7位4置換フルオレニル基を有する遷移金属化合物が特に優れる。Yが炭素原子である場合、R5からR12が水素原子である無置換フルオレニル基、3,6位2置換フルオレニル基、2,3,6,7位4置換フルオレニル基、上記一般式[V-I]に表される2,3,6,7位4置換フルオレニル基を有するメタロセン化合物が特に優れる。
なお、本発明では、上記一般式[A1]で表されるメタロセン化合物においては、Y1がケイ素原子で、R5からR12までが全て水素原子である場合は、R13とR14はメチル基、ブチル基、フェニル基、ケイ素置換フェニル基、シクロヘキシル基、ベンジル基以外の基から選ばれ;
1がケイ素原子で、R6とR11とが共にt-ブチル基であり、R5、R7、R8、R9、R10、R12がt-ブチル基でない場合は、R13とR14はベンジル基、ケイ素置換フェニル基以外の基から選ばれ;
1が炭素原子で、R5からR12が全て水素原子である場合は、R13、R14はメチル基、イソプロピル基、t-ブチル基、イソブチル基、フェニル基、p-t-ブチルフェニル基、p-n-ブチルフェニル基、ケイ素置換フェニル基、4-ビフェニル基、p-トリル基、ナフチル基、ベンジル基、シクロペンチル基、シクロヘキシル基、キシリル基以外の基から選ばれ;
1が炭素原子で、R6およびR11がt―ブチル基、メチル基あるいはフェニル基から選ばれる共通の基であり、R5、R7、R8、R9、R10およびR12と異なる基または原子である場合は、R13、R14はメチル基、フェニル基、p-t-ブチルフェニル基、p-n-ブチルフェニル基、ケイ素置換フェニル基、ベンジル基以外の基から選ばれ;
1が炭素原子で、R6がジメチルアミノ基、メトキシ基またはメチル基であり、R5、R7、R8、R9、R10、R11およびR12が、R6と異なる基または原子である場合は、R13、R14はメチル基、フェニル基以外の基から選ばれ;
1が炭素原子で、フルオレニル基及びR5~R12で構成される部位が、b,h-ジベンゾフルオレニルあるいはa,i-ジベンゾフルオレニルである場合は、R13、R14はメチル基、フェニル基以外の基から選ばれることが好ましい。
以下に、上記一般式[A1]で表されるメタロセン化合物の具体例を示すが、特にこれにより本発明の範囲が限定されるものでもない。
上記一般式[A1]で表されるメタロセン化合物の具体例としては、
Yがケイ素原子の場合では、ジフェニルシリレン(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)シリレン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、ジ(p-トリル)シリレン(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)シリレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)シリレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)シリレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)シリレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)シリレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)シリレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)シリレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)シリレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド、ジ(m-トリル)シリレン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、ジ(m-トリル)シリレン(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(m-トリル)シリレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(m-トリル)シリレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(m-トリル)シリレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(m-トリル)シリレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(m-トリル)シリレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(m-トリル)シリレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジ(m-トリル)シリレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジ(m-トリル)シリレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド等が挙げられる。
Yが炭素原子の場合では、ジフェニルメチレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド、ジ(m-トリル)メチレン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、ジ(m-トリル)メチレン(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(m-トリル)メチレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(m-トリル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(m-トリル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(m-トリル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(m-トリル)メチレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(m-トリル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジ(m-トリル)メチレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジ(m-トリル)メチレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-t-ブチルフェニル)メチレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(p-t-ブチルフェニル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(p-t-ブチルフェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(p-t-ブチルフェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-t-ブチルフェニル)メチレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-t-ブチルフェニル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジ(p-t-ブチルフェニル)メチレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジ(p-t-ブチルフェニル)メチレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド、ジ(4-ビフェニル)メチレン(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(4-ビフェニル)メチレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(4-ビフェニル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(4-ビフェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(4-ビフェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(4-ビフェニル)メチレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(4-ビフェニル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジ(4-ビフェニル)メチレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジ(4-ビフェニル)メチレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド、ジ(m-トリフルオロメチルフェニル)メチレン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、ジ(m-トリフルオロメチルフェニル)メチレン(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(m-トリフルオロメチルフェニル)メチレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(m-トリフルオロメチルフェニル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(m-トリフルオロメチルフェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(m-トリフルオロメチルフェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(m-トリフルオロメチルフェニル)メチレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(m-トリフルオロメチルフェニル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジ(m-トリフルオロメチルフェニル)メチレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジ(m-トリフルオロメチルフェニル)メチレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジクロリド、ジ(2-ナフチル)メチレン(シクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(2-ナフチル)メチレン(シクロペンタジエニル)(3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(2-ナフチル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(2-ナフチル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジ-t-ブチルフルオレニル)ジルコニウムジクロリド、ジ(2-ナフチル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(2-ナフチル)メチレン(シクロペンタジエニル)(テトラメチルドデカヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(2-ナフチル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジ(2-ナフチル)メチレン(シクロペンタジエニル)(ヘキサメチルジヒドロジシクロペンタフルオレニル)ジルコニウムジクロリド、ジ(2-ナフチル)メチレン(シクロペンタジエニル)(b,h-ジベンゾフルオレニル)ジルコニウムジク
ロリド等が挙げられる。
これらのメタロセン化合物の構造式の一例として、ジ(p-トリル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド(下記(A))、および、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド(下記(B))の構造式を以下に示す。
Figure 0007481969000012
上記メタロセン化合物は1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
上記共重合体(A)の調製に好適に用いることのできる、上記式[A1]で表されるメタロセン化合物は、特に限定されることなく任意の方法で製造することができる。例えば、J.Organomet.Chem.,63,509(1996)、WO2005/100410号公報、WO2006/123759号公報、WO01/27124号公報、特開2004-168744号公報、特開2004-175759号公報、特開2000-212194号公報などに記載の方法等に準拠して製造することができる。
≪メタロセン化合物を含む触媒≫
上記共重合体(A)の製造に好適に用いることのできる重合触媒としては、前述のメタロセン化合物[A1]を含み、モノマーを共重合できるものが挙げられる。
好ましくは、(a)前記一般式[A1]で表されるメタロセン化合物と、(b)(b-1)有機金属化合物、(b-2)有機アルミニウムオキシ化合物、および(b-3)該メタロセン化合物(a)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物(以下「イオン化イオン性化合物」ともいう。)と、さらに必要に応じて、(c)粒子状担体とから構成される重合触媒が挙げられる。以下、各成分について具体的に説明する。
≪化合物(b)≫
前記化合物(b)は、(b-1)有機金属化合物、(b-2)有機アルミニウムオキシ化合物および(b-3)イオン化イオン性化合物から選ばれる少なくとも1種の化合物であり、好ましくは、少なくとも前記有機金属化合物(b-1)を含む。
(b-1)有機金属化合物
前記有機金属化合物(b-1)としては、例えば下記一般式[VII]~[IX]のような周期律表第1、2族および第12、13族の有機金属化合物が用いられる。
(b-1a) 一般式:Ra mAl(ORbnpq …[VII]
(式[VII]中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)で表される有機アルミニウム化合物。
このような化合物として、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn-オクチルアルミニウムなどのトリアルキルアルミニウム、トリシクロアルキルアルミニウム、イソブチルアルミニウムジクロリド、ジエチルアルミニウムクロリド、エチルアルミニウムジクロリド、エチルアルミニウムセスキクロリド、メチルアルミニウムジクロリド、ジメチルアルミニウムクロリド、ジイソブチルアルミニウムハイドライドを例示することができる。
(b-1b) 一般式:M2AlRa 4 …[VIII]
(式[VIII]中、M2はLi、NaまたはKを示し、Raは炭素原子数が1~15、好ましくは1~4の炭化水素基である。)で表される周期律表第1族金属とアルミニウムとの錯アルキル化物。
このような化合物として、LiAl(C254、LiAl(C7154などを例示することができる。
(b-1c) 一般式:Rab3 …[IX]
(式[IX]中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、M3はMg、ZnまたはCdである。)で表される周期律表第2族または第12族金属を有するジアルキル化合物。
上記の有機金属化合物(b-1)の中では、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn-オクチルアルミニウムなどの有機アルミニウム化合物が好ましい。また、このような有機金属化合物(b-1)は、1種単独で用いてもよいし2種以上組み合せて用いてもよい。
(b-2)有機アルミニウムオキシ化合物
前記有機アルミニウムオキシ化合物(b-2)は、従来公知のアルミノキサンであってもよく、また特開平2-78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。
従来公知のアルミノキサンは、例えば下記のような方法によって製造することができ、通常、炭化水素溶媒の溶液として得られる。
(1)吸着水を含有する化合物または結晶水を含有する塩類、例えば塩化マグネシウム水和物、硫酸銅水和物、硫酸アルミニウム水和物、硫酸ニッケル水和物、塩化第1セリウム水和物などの炭化水素媒体懸濁液に、トリアルキルアルミニウムなどの有機アルミニウム化合物を添加して、吸着水または結晶水と有機アルミニウム化合物とを反応させる方法。
(2)ベンゼン、トルエン、エチルエーテル、テトラヒドロフランなどの媒体中で、トリアルキルアルミニウムなどの有機アルミニウム化合物に直接水、氷または水蒸気を作用させる方法。
(3)デカン、ベンゼン、トルエンなどの媒体中でトリアルキルアルミニウムなどの有機アルミニウム化合物に、ジメチルスズオキシド、ジブチルスズオキシドなどの有機スズ酸化物を反応させる方法。
なお、前記アルミノキサンは、少量の有機金属成分を含有してもよい。また回収された上記のアルミノキサンの溶液から溶媒または未反応有機アルミニウム化合物を蒸留して除去した後、溶媒に再溶解またはアルミノキサンの貧溶媒に懸濁させてもよい。
アルミノキサンを調製する際に用いられる有機アルミニウム化合物としては、前記(b-1a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物を挙げることができる。
これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、中でも、トリメチルアルミニウム、トリイソブチルアルミニウムが特に好ましい。
上記のような有機アルミニウム化合物は、1種単独でまたは2種以上組み合せて用いられる。
また本発明で用いられる有機アルミニウムオキシ化合物(b-2)の一態様であるベンゼン不溶性の有機アルミニウムオキシ化合物は、60℃のベンゼンに溶解するAl成分がAl原子換算でベンゼン100重量%に対して通常10重量%以下、好ましくは5重量%以下、特に好ましくは2重量%以下であるもの、すなわち、ベンゼンに対して不溶性または難溶性であるものが好ましい。
本発明で用いられる有機アルミニウムオキシ化合物(b-2)としては、下記一般式[X]で表されるボロンを含んだ有機アルミニウムオキシ化合物を挙げることもできる。
Figure 0007481969000013
式[X]中、R1は炭素原子数が1~10の炭化水素基を示し、R2~R5は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数が1~10の炭化水素基を示す。
前記一般式[X]で表されるボロンを含んだ有機アルミニウムオキシ化合物は、
一般式:R1-B(OH)2 …[XI]
(式[XI]中、R1は前記一般式[X]におけるR1と同じ基を示す。)で表されるアルキルボロン酸と、有機アルミニウム化合物とを、不活性ガス雰囲気下に不活性溶媒中で、-80℃~室温の温度で1分~24時間反応させることにより製造できる。
前記一般式[XI]で表されるアルキルボロン酸としては、メチルボロン酸、エチルボロン酸、イソプロピルボロン酸、n-プロピルボロン酸、n-ブチルボロン酸、イソブチルボロン酸、n-ヘキシルボロン酸、シクロヘキシルボロン酸、フェニルボロン酸、3,5-ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸、3,5-ビス(トリフルオロメチル)フェニルボロン酸などが挙げられる。
これらの中では、メチルボロン酸、n-ブチルボロン酸、イソブチルボロン酸、3,5-ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸が好ましい。これらは1種単独でまたは2種以上組み合せて用いられる。
このようなアルキルボロン酸と反応させる有機アルミニウム化合物としては、前記(b-1a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物を挙げることができる。これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、特にトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムが好ましい。
上記のような有機アルミニウムオキシ化合物(b-2)は、1種単独でまたは2種以上組み合せて用いられる。
(b-3)イオン化イオン性化合物
前記イオン化イオン性化合物(b-3)としては、特開平1-501950号公報、特表平1-502036号公報、特表平3-179005号公報、特開平3-179006号公報、特開平3-207703号公報、特開平3-207704号公報、USP5321106号などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などを挙げることができる。さらに、ヘテロポリ化合物およびイソポリ化合物も挙げることができる。このようなイオン化イオン性化合物(b-3)は、1種単独でまたは2種以上組み合せて用いられる。
具体的には、ルイス酸としては、BR3(Rは、フッ素、メチル基、トリフルオロメチル基などの置換基を有していてもよいフェニル基またはフッ素である)で示される化合物が挙げられ、たとえばトリフルオロボロン、トリフェニルボロン、トリス(4-フルオロフェニル)ボロン、トリス(3,5-ジフルオロフェニル)ボロン、トリス(4-フルオロメチルフェニル)ボロン、トリス(ペンタフルオロフェニル)ボロン、トリス(p-トリル)ボロン、トリス(o-トリル)ボロン、トリス(3,5-ジメチルフェニル)ボロンなどが挙げられる。
イオン性化合物としては、たとえば下記一般式[XII]で表される化合物が挙げられる。
Figure 0007481969000014
式[XII]中、R1+としては、H+、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンなどが挙げられる。R2~R5は、互いに同一でも異なっていてもよく、有機基、好ましくはアリール基または置換アリール基である。
前記カルボニウムカチオンとして具体的には、トリフェニルカルボニウムカチオン、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオンなどの三置換カルボニウムカチオンなどが挙げられる。
前記アンモニウムカチオンとして具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン、トリ(n-ブチル)アンモニウムカチオンなどのトリアルキルアンモニウムカチオン;
N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N,2,4,6-ペンタメチルアニリニウムカチオンなどのN,N-ジアルキルアニリニウムカチオン;
ジ(イソプロピル)アンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンなどが挙げられる。
前記ホスホニウムカチオンとして具体的には、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンなどが挙げられる。
1+としては、カルボニウムカチオン、アンモニウムカチオンなどが好ましく、特にトリフェニルカルボニウムカチオン、N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオンが好ましい。
またイオン性化合物として、トリアルキル置換アンモニウム塩、N,N-ジアルキルアニリニウム塩、ジアルキルアンモニウム塩、トリアリールホスフォニウム塩などを挙げることもできる。
トリアルキル置換アンモニウム塩として具体的には、たとえばトリエチルアンモニウムテトラ(フェニル)ホウ素、トリプロピルアンモニウムテトラ(フェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(フェニル)ホウ素、トリメチルアンモニウムテトラ(p-トリル)ホウ素、トリメチルアンモニウムテトラ(o-トリル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(ペンタフルオロフェニル)ホウ素、トリプロピルアンモニウムテトラ(o,p-ジメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(N、N-ジメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(p-トリフルオロメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(3、5-ジトリフルオロメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(o-トリル)ホウ素などが挙げられる。
N,N-ジアルキルアニリニウム塩として具体的には、たとえばN,N-ジメチルアニリニウムテトラ(フェニル)ホウ素、N,N-ジエチルアニリニウムテトラ(フェニル)ホウ素、N,N,2,4,6-ペンタメチルアニリニウムテトラ(フェニル)ホウ素などが挙げられる。
ジアルキルアンモニウム塩として具体的には、たとえば、ジ(1-プロピル)アンモニウムテトラ(ペンタフルオロフェニル)ホウ素、ジシクロヘキシルアンモニウムテトラ(フェニル)ホウ素などが挙げられる。
さらにイオン性化合物として、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、フェロセニウムテトラ(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムペンタフェニルシクロペンタジエニル錯体、N,N-ジエチルアニリニウムペンタフェニルシクロペンタジエニル錯体、下記式[XIII]または[XIV]で表されるホウ素化合物などを挙げることもできる。なお、下記式中、Etはエチル基を示す。
Figure 0007481969000015
Figure 0007481969000016
ボラン化合物として具体的には、たとえばデカボラン;ビス〔トリ(n-ブチル)アンモニウム〕ノナボレート、ビス〔トリ(n-ブチル)アンモニウム〕デカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ウンデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ドデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕デカクロロデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ドデカクロロドデカボレートなどのアニオンの塩;トリ(n-ブチル)アンモニウムビス(ドデカハイドライドドデカボレート)コバルト酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ドデカハイドライドドデカボレート)ニッケル酸塩(III)などの金属ボランアニオンの塩などが挙げられる。
カルボラン化合物として具体的には、たとえば、4-カルバノナボラン、1,3-ジカルバノナボラン、6,9-ジカルバデカボラン、ドデカハイドライド-1-フェニル-1,3-ジカルバノナボラン、ドデカハイドライド-1-メチル-1,3-ジカルバノナボラン、ウンデカハイドライド-1,3-ジメチル-1,3-ジカルバノナボラン、7,8-ジカルバウンデカボラン、2,7-ジカルバウンデカボラン、ウンデカハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボラン、ドデカハイドライド-11-メチル-2,7-ジカルバウンデカボラン、トリ(n-ブチル)アンモニウム1-カルバデカボレート、トリ(n-ブチル)アンモニウム-1-カルバウンデカボレート、トリ(n-ブチル)アンモニウム-1-カルバドデカボレート、トリ(n-ブチル)アンモニウム-1-トリメチルシリル-1-カルバデカボレート、トリ(n-ブチル)アンモニウムブロモ-1-カルバドデカボレート、トリ(n-ブチル)アンモニウム-6-カルバデカボレート、トリ(n-ブチル)アンモニウム-7-カルバウンデカボレート、トリ(n-ブチル)アンモニウム-7,8-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウム-2,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムドデカハイドライド-8-メチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-エチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-ブチル―7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-アリル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-9-トリメチルシリル-7,8-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-4,6-ジブロモ-7-カルバウンデカボレートなどのアニオンの塩;
トリ(n-ブチル)アンモニウムビス(ノナハイドライド-1,3-ジカルバノナボレート)コバルト酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)鉄酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)コバルト酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)ニッケル酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)銅酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)金酸塩(III)、トリ(n-ブチル)アンモニウムビス(ノナハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボレート)鉄酸塩(III)、トリ(n-ブチル)アンモニウムビス(ノナハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボレート)クロム酸塩(III)、トリ(n-ブチル)アンモニウムビス(トリブロモオクタハイドライド-7,8-ジカルバウンデカボレート)コバルト酸塩(III)、トリス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)クロム酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)マンガン酸塩(IV)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)コバルト酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)ニッケル酸塩(IV)などの金属カルボランアニオンの塩などが挙げられる。
ヘテロポリ化合物は、ケイ素、リン、チタン、ゲルマニウム、ヒ素および錫から選ばれる原子と、バナジウム、ニオブ、モリブデンおよびタングステンから選ばれる1種または2種以上の原子からなっている。具体的には、リンバナジン酸、ゲルマノバナジン酸、ヒ素バナジン酸、リンニオブ酸、ゲルマノニオブ酸、シリコノモリブデン酸、リンモリブデン酸、チタンモリブデン酸、ゲルマノモリブデン酸、ヒ素モリブデン酸、錫モリブデン酸、リンタングステン酸、ゲルマノタングステン酸、錫タングステン酸、リンモリブドバナジン酸、リンタングストバナジン酸、ゲルマノタングストバナジン酸、リンモリブドタングストバナジン酸、ゲルマノモリブドタングストバナジン酸、リンモリブドタングステン酸、リンモリブドニオブ酸、およびこれらの酸の塩、例えば周期表第1族または2族の金属、具体的には、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等との塩、トリフェニルエチル塩等の有機塩が使用できるが、この限りではない。
イオン化イオン性化合物(b-3)の中では、上述のイオン性化合物が好ましく、その中でもトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートがより好ましい。
本発明において、重合触媒として、上記一般式[A1]で表されるメタロセン化合物(a)と、トリイソブチルアルミニウムなどの有機金属化合物(b-1)、メチルアルミノキサンなどの有機アルミニウムオキシ化合物(b-2)、およびトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートなどのイオン化イオン性化合物(b-3)とを含むメタロセン触媒を用いると、共重合体(A)の製造に際して非常に高い重合活性を示すことができる。
(c)粒子状担体
本発明で、必要に応じて用いられる(c)粒子状担体は、無機化合物または有機化合物であって、顆粒状ないしは微粒子状の固体である。
無機化合物としては、多孔質酸化物、無機ハロゲン化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。これらの具体例としては、WO2015/122495号公報に記載のものが挙げられる。
本発明で用いられる粘土、粘土鉱物、イオン交換性層状化合物は、そのまま用いてもよく、またボールミル、ふるい分けなどの処理を行った後に用いてもよい。また、新たに水を添加吸着させ、あるいは加熱脱水処理した後に用いてもよい。さらに、単独で用いても、2種以上を組み合わせて用いてもよい。
これらのうち、好ましいものは粘土または粘土鉱物であり、特に好ましいものはモンモリロナイト、バーミキュライト、ヘクトライト、テニオライトおよび合成雲母である。
有機化合物としては、粒径が10~300μmの範囲にある顆粒状ないしは微粒子状固体を挙げることができる。具体的には、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテンなどの炭素原子数が2~14のα-オレフィンを主成分として生成される(共)重合体またはビニルシクロヘキサン、スチレンを主成分として生成される(共)重合体、およびそれらの変成体を例示することができる。
本発明に使用されるメタロセン触媒は、メタロセン化合物(a)と、有機金属化合物(b-1)、有機アルミニウムオキシ化合物(b-2)およびイオン化イオン性化合物(b-3)から選ばれる少なくとも1種の化合物(b)と、必要に応じて用いられる担体(c)と共に、さらに必要に応じて特定の有機化合物成分(d)を含むこともできる。
(d)有機化合物成分
本発明において、前記有機化合物成分(d)は、必要に応じて重合性能および生成ポリマーの物性を向上させる目的で使用される。このような有機化合物としては、アルコール類、フェノール性化合物、カルボン酸、リン化合物およびスルホン酸塩等が挙げられるが、この限りではない。
≪共重合体(A)の製造方法および条件≫
上記共重合体(A)は、エチレン(a1)と、炭素原子数4~20のα-オレフィン(a2)と、非共役ポリエン(a3)と、必要に応じて非共役ポリエン(a4)とからなるモノマーを共重合して製造することができる。
このようなモノマーを共重合させる際、前述した重合触媒を構成する各成分の使用法、添加順序は任意に選ばれるが、下記(1)~(5)のような方法が例示される。
(1)メタロセン化合物(a)を単独で重合器に添加する方法。
(2)メタロセン化合物(a)および化合物(b)を任意の順序で重合器に添加する方法。
(3)メタロセン化合物(a)を担体(c)に担持した触媒成分、化合物(b)を任意の順序で重合器に添加する方法。
(4)化合物(b)を担体(c)に担持した触媒成分、メタロセン化合物(a)を任意の順序で重合器に添加する方法。
(5)メタロセン化合物(a)と化合物(b)とを担体(c)に担持した触媒成分を重合器に添加する方法。
上記(2)~(5)の各方法においては、メタロセン化合物(a)、化合物(b)、担体(c)の少なくとも2つは予め接触されていてもよい。
化合物(b)が担持されている上記(4)、(5)の各方法においては、必要に応じて担持されていない化合物(b)を、任意の順序で添加してもよい。この場合、化合物(b)は、担体(c)に担持されている化合物(b)と同一でも異なっていてもよい。
また、上記の担体(c)にメタロセン化合物(a)が担持された固体触媒成分、担体(c)にメタロセン化合物(a)および化合物(b)が担持された固体触媒成分は、オレフィンが予備重合されていてもよく、予備重合された固体触媒成分上に、さらに、触媒成分が担持されていてもよい。
上記共重合体(A)は、上記のような重合触媒の存在下に、モノマーを共重合することにより好適に得ることができる。
上記のような重合触媒を用いて、オレフィンの重合を行うに際して、メタロセン化合物(a)は、反応容積1リットル当り、通常10-12~10-2モル、好ましくは10-10~10-8モルになるような量で用いられる。
化合物(b-1)は、化合物(b-1)と、メタロセン化合物(a)中の全遷移金属原子(M)とのモル比〔(b-1)/M〕が、通常0.01~50000、好ましくは0.05~10000となるような量で用いられる。化合物(b-2)は、化合物(b-2)中のアルミニウム原子と、メタロセン化合物(a)中の全遷移金属(M)とのモル比〔(b-2)/M〕が、通常10~50000、好ましくは20~10000となるような量で用いられる。化合物(b-3)は、化合物(b-3)と、メタロセン化合物(a)中の遷移金属原子(M)とのモル比〔(b-3)/M〕が、通常1~20、好ましくは1~15となるような量で用いられる。
本発明において、共重合体(A)を製造する方法は、溶液(溶解)重合、懸濁重合などの液相重合法または気相重合法のいずれにおいても実施可能であり、特に限定されないが、下記重合反応液を得る工程を有することが好ましい。
重合反応液を得る工程とは、脂肪族炭化水素を重合溶媒として用い、上記メタロセン触媒、好ましくは、前記一般式[A1]におけるY1に結合しているR13、R14がフェニル基、あるいは、アルキル基またはハロゲン基により置換されたフェニル基であり、R7、R10がアルキル置換基を有する遷移金属化合物を含む重合触媒の存在下に、エチレン(a1)と、炭素原子数3~20のα-オレフィン(a2)と、非共役ポリエン(a3)および必要に応じて非共役ポリエン(a4)とからなるモノマーを共重合し、共重合体(A)の重合反応液を得る工程である。
重合溶媒としては、例えば、脂肪族炭化水素、芳香族炭化水素などが挙げられる。具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素が挙げられ、1種単独で、あるいは2種以上を組み合わせて用いることができる。また、オレフィン自身を溶媒として用いることもできる。なお、これらのうち、得られる共重合体(A)との分離、精製の観点から、ヘキサンが好ましい。
また、重合温度は、通常-50~+200℃、好ましくは0~+150℃の範囲、より好ましくは、+70~+110℃の範囲であり、用いるメタロセン触媒系の到達分子量、重合活性によるが、より高温(+70℃以上)であることが触媒活性、共重合性および生産性の観点から望ましい。
重合圧力は、通常常圧~10MPaゲージ圧、好ましくは1.1~5MPaゲージ圧、より好ましくは1.2~2.0MPaゲージ圧の条件下であり、重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。さらに重合を反応条件の異なる2段以上に分けて行うことも可能である。本発明ではこのうち、モノマーを連続して反応器に供給して共重合を行う方法を採用することが好ましい。
反応時間(共重合が連続法で実施される場合には平均滞留時間)は、触媒濃度、重合温度などの条件によっても異なるが、通常0.5分間~5時間、好ましくは5分間~3時間、より好ましくは10分~2時間である。
得られる共重合体(A)の分子量は、重合系内に水素を存在させるか、または重合温度を変化させることによっても調節することができる。さらに、使用する化合物(b)の量により調節することもできる。具体的には、トリイソブチルアルミニウム、メチルアルミノキサン、ジエチル亜鉛等が挙げられる。水素を添加する場合、その量はオレフィン1kgあたり0.001~100NL程度が適当である。
また、エチレン(a1)と上記α-オレフィン(a2)との仕込みのモル比(エチレン(a1)/α‐オレフィン(a2))は、好ましくは40/60~99.9/0.1、より好ましくは50/50~90/10、さらに好ましくは55/45~85/15、最も好ましくは55/45~78/22である。
非共役ポリエン(a3)の仕込み量は、エチレン(a1)と、α-オレフィン(a2)と、非共役ポリエン(a3)との合計(全モノマー仕込み量)100重量%に対して、通常0.07~10重量%、好ましくは0.1重量%~8.0重量%、より好ましくは0.5重量%~5.0重量%である。
本発明では、前記重合触媒の存在下で共重合を行う工程(1)の後、触媒失活剤を添加して前記重合触媒の失活を行う工程(2)を含むことが好ましい。
前記触媒失活剤としては、アルコール類を用いることができ、メタノールまたはエタノールが好ましく、エタノールが特に好ましい。
前記工程(2)において、前記触媒失活剤を、前記有機金属化合物(b-1)に対して、好ましくは0.05~3.0mol倍、より好ましくは0.06~2.5mol倍、さらに好ましくは0.08~2.0mol倍の量で添加することにより、エタノール等の触媒失活剤で変質した触媒がわずかに生成して低分子量成分を適度に重合する結果、分子量分布が適度に広い共重合体(A)を得ることができる。一方、触媒失活剤の添加量が多すぎると、変質触媒がほとんど生成されず、低分子量成分の重合がほとんど行われないため、得られる共重合体(A)の分子量分布の狭くなる傾向にある。また、触媒失活剤を添加しない、もしくは添加量が少なすぎると、変質触媒が多く生成して低分子量成分を多量に重合するため、得られる共重合体(A)の低分子量成分の含有量が多くなり過ぎる傾向にある。
〈加硫剤(C)〉
本発明のゴム組成物を構成する成分の一つである加硫剤(C)は、上記ジエン系ゴム(B)および上記共重合体(A)を加硫可能である限り特に限定されず、硫黄系化合物、過酸化物系架橋剤などゴムの分野において通常用いられる種々のものであってもよい。
本発明においては、好適な加硫剤(C)として、イオウ系化合物が挙げられる。イオウ系化合物によりゴム組成物を架橋することで、ジクミルパーオキサイド等の過酸化物系架橋剤を用いた場合と比べて、成形体に同等の低温特性を与えつつ、格段に優れた柔軟性や機械的特性を付与することができる。
イオウ系化合物の種類としては、イオウ、塩化イオウ、二塩化イオウ、モルフォリンジスルフィド、アルキルフェノールジスルフィド、テトラメチルチウラムジスルフィド、ジチオカルバミン酸セレン等が挙げられる。この中でも、イオウやテトラメチルチウラムジスルフィドが好ましい。
一方、ジエン系ゴム(B)の種類によっては、加硫剤として過酸化物系架橋剤を用いることもできる。
過酸化物系架橋剤としては、
1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス(t-ブチルパーオキシ)オクタン、1,1-ビス(t-ブチルパーオキシ)シクロドデカンなどのパーオキシケタール、並びに、
ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、α、α'-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサンなどのジアルキルパーオキサイド等が挙げられる。
〈カーボンブラック(D)〉
本発明のゴム組成物を構成する成分の一つであるカーボンブラック(D)は、ゴムに配合して成形体の機械的強度、反発弾性、耐摩耗性などの物性を向上させる配合剤の一種である。
カーボンブラック(D)としては、例えば、旭#55G、旭#60G(以上、旭カーボン(株)製)、シースト(SRF、GPF、FEF、MAF、HAF、ISAF、SAF、FT、MT、G-SO等)(以上、東海カーボン(株)製)などの公知のものを使用することができる。これらは、単独で使用することもできるし、併用することもできる。また、シランカップリング剤などで表面処理したものを使用することもできる。
〈白色フィラー(E)〉
本発明のゴム組成物を構成する成分の一つである白色フィラー(E)は、疎水性シリカ、親水性シリカ、両親媒性シリカ等のシリカ、両微粉ケイ酸、活性化炭酸カルシウム、軽質炭酸カルシウム、重質炭酸カルシウム、タルク、クレーなどが挙げられる。これらの充填剤は、1種単独で用いても、2種以上を組み合わせて用いてもよい。
白色フィラー(E)の平均粒子径は、好ましくは1~50nm、より好ましくは2~45nm、さらに好ましくは5~40nmの範囲にある。
また、本発明に係る白色フィラー(E)は表面処理されたものであってもよい。
〈シランカップリング剤(F)〉
本発明のゴム組成物を構成する成分の一つであるシランカップリング剤(F)しては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、ビニルトリクロルシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N,N'-ビス(3-(トリメトキシシリル)プロピル)エチレンジアミン、ポリオキシエチレンプロピルトリアルコキシシラン、ポリエトキシジメチルシロキサン、p-スチリルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシランが挙げられる。
<ゴム組成物>
本発明のゴム組成物は、上記ジエン系ゴム(B)と上記エチレン・α-オレフィン・非共役ポリエン共重合体(A)を含有してなり、前記ジエン系ゴム(B)100質量部当たり前記共重合体(A)を0.5質量部以上、50質量部以下、好ましくは1~40質量部、より好ましくは5~30質量部の範囲で含む。
本発明のゴム組成物中の、ジエン系ゴム(B)と共重合体(A)との合計の含有量は3質量%以上、好ましくは5質量%以上であり、上限は特にないが90質量%以下であることが望ましい。
本発明のゴム組成物は、タイヤトレッドに用いた場合にウェットグリップ、燃費性能、耐疲労性を維持し、氷上制動性能を向上させ得る。
また、本発明のゴム組成物から得られる成形体は、ゴム弾性、耐候性、耐オゾン性にも優れ、特に機械特性、耐候性、耐疲労性に優れている。
本発明のゴム組成物は、好ましくは上記エチレン・α-オレフィン・非共役ポリエン共重合体(A)に加え、上記加硫剤(C)を0.2~15質量部、さらに好ましくは0.3~10質量部、より好ましくは1~7質量部、上記カーボンブラック(D)を5~100質量部、さらに好ましくは5~70質量部、より好ましくは5~50質量部、上記白色フィラー(E)を5~150質量部、さらに好ましくは10~120質量部、より好ましくは20~100質量部、および上記シランカップリング剤(F)を0.2~10質量部、さらに好ましくは0.5~9質量部、より好ましくは1~8質量部の範囲で含む。
本発明のゴム組成物は、上記ジエン系ゴム(B)、上記共重合体(A)、上記加硫剤(C)、上記カーボンブラック(D)、上記白色フィラー(E)、および上記シランカップリング剤(F)に加え、必要に応じて、その他の成分、例えば、可塑剤、加硫促進剤、共架橋剤、加硫助剤、加工助剤、老化防止剤、活性剤等の種々の添加剤が挙げられる。また、必要に応じて、公知の発泡剤、発泡助剤、着色剤、分散剤、難燃剤、耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤および増粘剤等もその他の成分として用いうる。
《その他の成分》
〈可塑剤〉
本発明のゴム組成物は、その用途に応じて、可塑剤、具体的には、ゴムの分野において軟化剤として一般的に用いられる公知の可塑剤をさらに含んでいてもよい。
このような可塑剤の具体例としては、プロセスオイル、潤滑油、パラフィン油、流動パラフィン、石油アスファルト、およびワセリン等の石油系軟化剤;コールタール、およびコールタールピッチ等のコールタール系軟化剤;ひまし油、アマニ油、ナタネ油、大豆油、およびヤシ油等の脂肪油系軟化剤;蜜ロウ、カルナウバロウ、およびラノリン等のロウ類;リシノール酸、パルミチン酸、ステアリン酸、ステアリン酸バリウム、ステアリン酸カルシウム、およびラウリン酸亜鉛等の脂肪酸またはその塩;ナフテン酸、パイン油、およびロジンまたはその誘導体;テルペン樹脂、石油樹脂、アタクチックポリプロピレン、およびクマロンインデン樹脂等の合成高分子物質;ジオクチルフタレート、ジオクチルアジペート、およびジオクチルセバケート等のエステル系軟化剤;その他、マイクロクリスタリンワックス、液状ポリブタジエン、変性液状ポリブタジエン、液状チオコール、炭化水素系合成潤滑油、トール油、およびサブ(ファクチス)などが挙げられる。なかでも、石油系軟化剤が好ましい。石油系軟化剤の中では、石油系プロセスオイルが好ましく、この中でもパラフィン系プロセスオイル、ナフテン系プロセスオイル、アロマ系プロセスオイル等がさらに好ましい。
ここで、上記可塑剤の含有量は、その用途により適宜選択でき、通常、ジエン系ゴム(B)100質量部に対して、最大200質量部、好ましくは最大150質量部、より好ましくは最大130質量部が望ましい。
〈加硫促進剤〉
本発明に係るゴム組成物は、上記成分に加え加硫促進剤をさらに含んでいてもよい。
加硫促進剤の具体例としては、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド(例えば、「サンセラーCM」(商品名;三新化学工業株式会社製)など)、N-オキシジエチレン-2-ベンゾチアゾールスルフェンアミド、N,N'-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド、2-メルカプトベンゾチアゾール(例えば、「サンセラーM」(商品名;三新化学工業株式会社製)など)、2-(4-モルホリノジチオ)ペンゾチアゾール(例えば、「ノクセラーMDB-P」(商品名;三新化学工業株式会社製)など)、2-(2,4-ジニトロフェニル)メルカプトベンゾチアゾール、2-(2,6-ジエチル-4-モルフォリノチオ)ベンゾチアゾール、ジベンゾチアジルジスルフィド等のチアゾール系;ジフェニルグアニジン、トリフェニルグアニジン、ジオルソトリルグアニジン等のグアニジン系;アセトアルデヒド-アニリン縮合物、ブチルアルデヒド-アニリン縮合物、アルデヒドアミン系;2-メルカプトイミダゾリン等のイミダゾリン系;ジエチルチオウレア、ジブチルチオウレア等のチオウレア系;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド(例えば、「サンセラーTT」(商品名;三新化学工業株式会社製)など)等のチウラム系;ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛(例えば、「サンセラーBZ」(商品名;三新化学工業株式会社製)など)、ジエチルジチオカルバミン酸テルル等のジチオ酸塩系;エチレンチオ尿素(例えば、「サンセラー22-C」(商品名;三新化学工業株式会社製)など)、N,N'-ジエチルチオ尿素等のチオウレア系;ジブチルキサトゲン酸亜鉛等のザンテート系;その他亜鉛華(例えば、「META-Z102」(商品名;井上石灰工業株式会社製)などの酸化亜鉛)等が挙げられる。
本発明のゴム組成物が加硫促進剤を含む場合は、その含有量は、ジエン系ゴム(B)100質量部に対して、好ましくは0.1~15質量部、より好ましくは0.5~10質量部である。このような含有量でゴム組成物に加硫促進剤が含まれることにより、ゴム組成物が優れた架橋特性を有し、得られる成形体からのブルームの発生がより低減する。
〈共架橋剤〉
上記架橋剤として過酸化物系架橋剤を用いる場合には、ゴム組成物の加硫速度改善や、得られる成形体の物性などを目的として、必要に応じて、適宜な共架橋剤をさらに含むことができる。
共架橋剤の例として、ブレンマーPDE-100(日本油脂株式会社製商品名)の如きポリエチレングリコールジメタクリレート(PEGDM)、ジアリルフタレート(DAP)、タイク(日本化成株式会社製商品名)の如きトリアリルイソシアヌレート(TAIC)、タック(株式会社武蔵野化学研究所製商品名)の如きトリアリルシアヌレート(TAC)、アクリエステルTHF(三菱レーヨン株式会社製商品名)の如きメタクリル酸テトラヒドロフルフリル(THFMA)、サンエステルEG(三新化学工業株式会社製商品名)やアクリエステルED(三菱レーヨン株式会社製商品名)の如きジメタクリル酸エチレン(EDMA)、アクリエステルBD(三菱レーヨン株式会社製商品名)の如きジメタクリル酸1,3-ブチレン(BDMA)、サンエステルTMPMA(三新化学工業株式会社製商品名)やアクリエステルTMP(三菱レーヨン株式会社製商品名)やハイクロスM(精工化学株式会社製商品名)の如きトリメタクリル酸トリメチロールプロパン(TMPMA)などが挙げられる。
本発明のゴム組成物が共架橋剤を含む場合は、その量は、ジエン系ゴム(B)100質量部に対して、1~10質量部程度が適当である。
またこの態様のゴム組成物においては、過酸化物系架橋剤を用いた架橋の際にメタクリル酸エステルやタイク(日本化成株式会社)の如きトリアリルイソシアヌレート(TAIC)、などを加硫助剤としてさらに添加してもよい。
〈加硫助剤〉
加硫助剤の具体的例としては、酸化マグネシウム、亜鉛華(例えば、「META-Z102」(商品名;井上石灰工業株式会社製)などの酸化亜鉛)などが挙げられる。
本発明のゴム組成物が加硫助剤を含む場合は、その量は、ジエン系ゴム(B)100質量部に対して、通常、1~20質量部である。
〈加工助剤〉
本発明のゴム組成物は、加工助剤をさらに含んでいてもよい。
加工助剤としては、通常のゴムの加工に使用される化合物を使用することができる。具体的には、リシノール酸、ステアリン酸、パルチミン酸、ラウリン酸等の高級脂肪酸;ステアリン酸バリウム、ステアリン酸亜鉛、ステアリン酸カルシウム等の高級脂肪酸の塩;リシノール酸、ステアリン酸、パルチミン酸、ラウリン酸等の高級脂肪酸のエステル類などが挙げられる。
本発明のゴム組成物が加工助剤を含む場合は、その量はジエン系ゴム(B)100質量部に対して、10質量部以下、好ましくは5質量部以下の量で用いられるが、要求される物性値に応じて適宜最適量を決定することが望ましい。
〈老化防止剤〉
本発明のゴム組成物は、架橋して得られる成形体の製品寿命を長くするために、老化防止剤を含有してもよい。また、老化防止剤としては、従来公知の老化防止剤、例えばアミン系老化防止剤、フェノール系老化防止剤、イオウ系老化防止剤等が挙げられる。
老化防止剤としては、具体的には、フェニルブチルアミン、N,N-ジ-2-ナフチル-p-フェニレンジアミン等の芳香族第2級アミン系老化防止剤、ジブチルヒドロキシトルエン、テトラキス-[メチレン-3-(3',5'-ジ-t-ブチル-4'-ヒドロキシフェニル)プロピオネート]メタン等のフェノール系老化防止剤;ビス[2-メチル-4-(3-n-アルキルチオプロピオニルオキシ)-5-t-ブチルフェニル]スルフィド等のチオエーテル系老化防止剤;ジブチルジチオカルバミン酸ニッケル等のジチオカルバミン酸塩系老化防止剤;2-メルカプトベンゾイルイミダゾール、2-メルカプトベンゾイミダゾールの亜鉛塩、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート等のイオウ系老化防止剤等が挙げられる。これらの老化防止剤は、1種単独であるいは2種以上の組み合わせで用いることがでる。
本発明のゴム組成物が老化防止剤を含む場合は、その量は、ジエン系ゴム(B)100質量部に対して、通常、0.3~10質量部、好ましくは0.5~7.0質量部、さらに好ましくは0.7~5.0質量部である。老化防止剤の量が上記範囲内であると、ゴム組成物を架橋(加硫)する際の加硫阻害を低減することができ、得られる成形体からブルームの発生を低減することができる。
〈活性剤〉
本発明のゴム組成物は、必要に応じて、活性剤を1種単独あるいは2種以上含有していてもよい。
活性剤の具体的な例としては、ジ-n-ブチルアミン、ジシクロヘキシルアミン、モノエタノールアミン、「アクチングB」(商品名;吉冨製薬株式会社製)、「アクチングSL」(商品名;吉冨製薬株式会社製)などのアミン類;ジエチレングリコール、ポリエチレングリコール、レシチン、トリアリルトリメリテート、脂肪族および芳香族カルボン酸の亜鉛化合物(例えば、「Struktol activator 73」、「Struktol IB 531」および「Struktol FA541」(商品名;Schill&Seilacher社製))などのアミン系活性剤;「ZEONET ZP」(商品名;日本ゼオン株式会社製)などの過酸化亜鉛調整物;オクタデシルトリメチルアンモニウムブロミド、合成ハイドロタルサイト、特殊四級アンモニウム化合物(例えば、「アーカード2HF」(商品名;ライオン・アクゾ株式会社製))などが挙げられる。
本発明のゴム組成物が活性剤を含む場合は、その量は、ジエン系ゴム(B)100質量部に対して、通常、0.2~10質量部、好ましくは0.3~5質量部、さらに好ましくは0.5~4質量部である。
〈タイヤ用ゴム材料〉
本発明のゴム組成物は、タイヤ用ゴム材料に好適に用い得る。
本発明のタイヤ用ゴム材料は優れた(氷上)制動性能と優れた燃費性能とが両立しているほか、本発明に係るタイヤ用ゴム材料は、ゴム弾性、耐候性、耐オゾン性にも優れ、特に機械特性、耐疲労性に優れている。また、該ゴム材料は耐摩耗性にも優れている。したがって本発明に係るタイヤ用ゴム材料を適用すれば、優れた制動性能と優れた燃費性能とが両立し、ゴム弾性、耐候性、耐オゾン性にも優れ、特に機械特性、耐疲労性(ロングライフ性能)、ウェットグリップに優れたタイヤを得ることができる。また、耐摩耗性に優れたタイヤを得ることができる。
タイヤ用ゴム材料の具体的な用途としては、タイヤインナーライナー、タイヤインナーチューブ、タイヤフラップ、タイヤショルダー、タイヤビード、タイヤトレッドおよびタイヤサイドウォールなどの用途が挙げられる。このうち、タイヤトレッド、タイヤサイドウォールの用途に好適に用いることができ、特にタイヤトレッドに好適に用いることができる。
また、本発明に係るゴム組成物は、上述の通り各種任意成分を特に制限なく含有することができるが、ゴム組成物を構成するジエン系ゴム(B)と共重合体(A)とが、良好な相溶性を有し、これらを含むゴム組成物を用いると相分離を生じることなく架橋成形体を製造することができ、しかも、共重合体(A)が、得られる架橋成形体に優れた耐候性を与えるため、ゴム組成物中における耐候剤や酸化防止剤などの含有量が抑制された場合にも、耐候性に優れた架橋成形体を容易に得ることができる。このため耐候剤や酸化防止剤などの添加剤含有量を好適に抑制することができ、経済的であるとともにブリードアウトによる架橋成形体の品質劣化を防ぐことができる。
<ゴム組成物の調製方法>
ゴム組成物の調製方法としては、例えば、ゴム組成物に含まれる各成分を、例えば、ミキサー、ニーダー、ロール等の従来知られる混練機、さらに二軸押出機のような連続混練機等を用いて混合する方法、ゴム組成物に含まれる各成分が溶解または分散した溶液を調製し、溶媒を除去する方法等が挙げられる。
また、本発明に係るゴム組成物は、ジエン系ゴム(B)と共重合体(A)、必要に応じて任意成分とを同時にあるいは逐次配合して調製することができる。
ゴム組成物の調製方法は、特に限定されるものではなく、一般的なゴム配合物の調製方法を特に制限なく採用することができる。たとえば、本発明のゴム組成物が任意成分を含有する場合、任意成分の少なくとも一部を、ジエン系ゴム(B)あるいは共重合体(A)とあらかじめ混合した後に残りの任意成分を配合してもよく、また、ジエン系ゴム(B)および共重合体(A)を配合した後に任意成分を添加して配合してもよい。
たとえばバンバリーミキサー、ニーダー、インターミックス等のインターナルミキサー類を用いて、ジエン系ゴム(B)および共重合体(A)、および必要に応じて配合する他の成分を、80~170℃の温度で3~10分間混練した後、必要に応じて架橋剤およびさらに必要に応じて架橋促進剤、架橋助剤、発泡剤などを加えて、オープンロールなどのロール類あるいはニーダーを用いて、ロール温度40~80℃で5~30分間混練した後、分出しすることにより調製することができる。このようにして通常リボン状またはシート状のゴム組成物が得られる。上記のインターナルミキサー類での混練温度が低い場合には、架橋剤、架橋促進剤、発泡剤などを同時に混練することもできる。
<成形体>
本発明の成形体は、前述の本発明のゴム組成物を加硫(架橋とも表示する)することにより得られる。なお、加硫の際には、金型を用いても、用いなくてもよい。金型を用いない場合には、ゴム組成物は、通常、連続的に成形、架橋される。
ゴム組成物を加硫する方法としては、(a)加硫剤を含有するゴム組成物を、通常、押出し成形、プレス成形、インジェクション成形等の成形法や、ロール加工により所望形状に予備成形し、成形と同時にまたは成形物を架橋槽内に導入して加熱する方法や、(b)加硫剤を含有するゴム組成物を、(a)の方法と同様の方法で予備成形し、次いで電子線を照射する方法を例示することができる。
なお、(a)の方法では、加熱によりゴム組成物中の架橋剤による架橋反応が起こり、成形体が得られる。また、(b)の方法では、電子線により架橋反応が起こり、成形体が得られる。(b)の方法においては通常、予備成形が施されたゴム組成物に、0.1~10MeVのエネルギーを有する電子線を、ゴム組成物の吸収線量が通常は0.5~36Mrad、好ましくは0.5~20Mrad、さらに好ましくは1~10Mradになるように照射する。
また、ゴム組成物の加硫(架橋)は、未架橋のゴム組成物を、通常、押出成形機、カレンダーロール、プレス、射出成形機またはトランスファー成形機などの成形機を用いた種々の成形法よって所望形状に予備成形し、成形と同時にまたは成形物を架橋槽内に導入して加熱するか、あるいは、電子線、X線、γ線、α線およびβ線などの放射線を照射することにより架橋する放射線架橋により行うことができる。成形あるいは予備成形の方法としては、押出成形、射出成形、インフレーション成形、ブロー成形、押出ブロー成形、プレス成形、真空成形、カレンダー成形及び発泡成形などにより、所望の形状に成形する公知の成形方法を適宜採用することができる。また、架橋成形体が発泡体の場合は、発泡剤を配合した未架橋のゴム組成物を発泡成形した後に電子線照射あるいは加熱により架橋するか、発泡成形と同時に架橋を進行させることにより製造することができる。さらに、ゴム組成物を架橋する工程は、加熱による架橋と電子線架橋とを組み合わせて行ってもよい。
上記ゴム組成物を加熱により架橋する場合には、通常、硫黄、硫黄系化合物、過酸化物などの加硫剤を含むゴム組成物を用いて、熱空気、ガラスビーズ流動床、UHF(極超短波電磁波)、スチームまたはLCM(熱溶融塩槽)などの加熱形態の架橋槽を用いて、150~270℃の温度で1~30分間加熱することが好ましい。硫黄架橋または過酸化物架橋は、架橋工程に特殊な装置を必要としない利点があるため、従来からゴム組成物の架橋工程に広く用いられている。
また、電子線照射により架橋する電子線架橋により架橋を行う場合は、通常架橋剤を含有しないゴム組成物を用いて、予備成形されたゴム組成物に、電子線を照射して、架橋成形体を製造することが好ましい。電子線照射による架橋は、架橋剤を用いなくても行うことができ、架橋工程において揮発物の発生が少ないという利点がある。
電子線照射による架橋工程を伴う架橋成形体の製造は、具体的には、例えば次のようにして行うことができる。まずバンバリーミキサーなどのミキサーを用い、ジエン系ゴム(B)、および必要に応じて各種添加剤ならびに架橋助剤などを、80~170℃の温度で3~10分間混練した後、オープンロールなどのロール類を用い、ロール温度40~80℃で5~30分間混練した後、分出し、リボン状またはシート状のゴム組成物を調製するか、または、容器内などで各成分をブレンドすることによりゴム組成物を調製する。このようにして調製されたゴム組成物はシート状等のまま、あるいは押出成形機、カレンダーロール、射出成形機またはプレスにより所望の形状に成形するか、または押出機よりストランド状に押し出してカッター等により粉砕してペレットにして電子線を照射する。あるいは、架橋助剤などの化合物を含浸したジエン系ゴム(B)および共重合体(A)などの粉体に直接電子線を照射して、ゴム組成物の架橋物を調製してもよい。電子線の照射は、通常0.1~10MeV(メガエレクトロンボルト)、好ましくは0.3~5MeVのエネルギーを有する電子線を、吸収線量が通常0.5~100kGy(キログレイ)、好ましくは0.5~70kGyになるように行う。
γ線照射は、電子線照射と比べてゴム組成物に対する透過度が高く、特にゴム組成物をペレット形状にしたものに照射する場合、少量を直接照射するだけでペレット内部まで充分架橋させることができる。γ線の照射は、ゴム組成物にγ線照射量が通常0.1~50kGy、好ましくは0.3~50kGyになるように行うことができる。
成形体の架橋度は、ゲル分率で表すことができる。通常、架橋体のゲル分率は、1~80%である。しかしながら本発明における架橋成形体では、架橋の程度はこの範囲に限定されるものではなく、ゲル分率が10%未満、特には0.5%未満のゲル分率を示す架橋度の低い架橋体においても、架橋度の高い本発明の架橋成形体と同様、外観表面に優れるような効果は得られる。
本発明に係る成形体は、ゴム特性を有する各種製品の用途に制限なく利用することができる。本発明に係る架橋成形体は、製品の少なくとも一部を構成していればよく、全体が本発明に係る成形体から構成されていることも好ましく、また、本発明の成形体が製品の少なくとも一部を構成する、積層体あるいは複合体であることも好ましい。積層体としては、2層以上の層を有する多層積層体のうち、少なくともその1層が本発明に係る成形体である積層体が挙げられ、たとえば、多層フィルムおよびシート、多層容器、多層チューブ、水系塗料の一構成成分として含まれる多層塗膜積層体等の形態が挙げられる。
本発明に係る成形体は、耐候性に特に優れることから、タイヤや電線被覆材などの屋外で長期間使用する用途にも好適に用いることができ、特に各種タイヤの少なくとも一部を構成するタイヤ部材用途に好適に使用することができる。
本発明の成形体は、ジエン系ゴムが本来有する優れた機械的強度および耐疲労性(ロングライフ性能)を保持し、かつ、優れたウェットグリップ性能および氷上制動性能を示す。本発明の架橋成形体を用いたタイヤトレッドやタイヤサイドウォールなどのタイヤ部材は、耐候性に優れるとともに、耐動的疲労特性に優れる。
<発泡体>
本発明のゴム組成物は発泡体としても用い得る。本発明に係る発泡体は、発泡剤を含有する本発明のゴム組成物を架橋および発泡することにより得られる。
前記ゴム組成物は、発泡剤を含むため、ゴム組成物を加熱することによって、架橋剤による架橋反応と共に、発泡剤が分解して炭酸ガスや窒素ガスを発生する。このため、気泡構造を有する発泡体が得られる。
<用途>
本発明のゴム組成物は、低温特性、機械特性、押出し成形性、プレス成形性、インジェクション成形性等の成形性、およびロール加工性に非常に優れており、本発明のゴム組成物から、低温特性(低温での柔軟性、ゴム弾性等)、機械特性などに優れる成形体を好適に得ることができる。
また、本発明のゴム組成物は、上記の共重合体(A)を含むので、加工性、成形性および架橋特性に優れ、耐熱安定性、ロングライフ性能、ウェットグリップ性能および氷上制動性能に優れた成形体を製造することができるため、本発明のゴム組成物から得られた成形体は、高温下での長期使用が見込まれる用途やスタッドレスタイヤなどの用途にも好適に使用することができる。
本発明のゴム組成物、該組成物から得られる成形体、たとえば、架橋体や発泡体などは、様々な用途に用いることができる。具体的には、タイヤ用ゴム材料、O-リング、工業用ロール、パッキン(例えばコンデンサーパッキン)、ガスケット、ベルト(例えば、断熱ベルト、複写機ベルト、搬送ベルト)、自動車用ホースなどのホース類(例えば、ターボチャージャーホース、ウォーターホース、ブレーキリザーバーホース、ラジエターホース、エアーホース)、防振ゴム、防振材あるいは制振材(例えば、エンジンマウント、モーターマウント)、マフラーハンガー、スポンジ(例えば、ウェザーストリップスポンジ、断熱スポンジ、プロテクトスポンジ、微発泡スポンジ)、ケーブル(イグニッションケーブル、キャブタイヤケーブル、ハイテンションケーブル)、電線被覆材(高圧電線被覆材、低電圧電線被覆材、舶用電線被覆材)、グラスランチャネル、カラー表皮材、給紙ロール、ルーフィングシート等に好適に用いられる。これらのうちでも、自動車用内外装部品や耐熱性を求められる用途に好適に用いられ、タイヤトレッド等のタイヤ用ゴム材料として好適である。
<タイヤトレッド>
本発明に係るタイヤトレッドは上記本発明のタイヤ用ゴム材料を用いて形成されるものである。本発明のタイヤ用ゴム材料を加硫して得られるタイヤトレッドを適用すれば、優れた(氷上)制動性能と優れた燃費性能とが両立し、ゴム弾性、耐候性、耐オゾン性にも優れ、特に機械特性、耐疲労性(ロングライフ性能)、ウェットグリップに優れたタイヤを得ることができる。また、耐摩耗性に優れたタイヤを得ることができる。
<タイヤ>
本発明に係るタイヤは上記タイヤトレッドを備える。本発明に係るタイヤは優れた(氷上)制動性能と優れた燃費性能とが両立し、ゴム弾性、耐候性、耐オゾン性にも優れ、特に機械特性、耐疲労性(ロングライフ性能)、ウェットグリップに優れる。また、該タイヤは耐摩耗性にも優れる。
以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。なお、実施例および比較例における各特性の評価方法は次の通りである。
<エチレン・α-オレフィン・非共役ポリエン共重合体(A)の組成>
エチレン・α-オレフィン・非共役ポリエン共重合体(A)の、各構成単位の質量分率(質量%)は、13C-NMRによる測定値により求めた。測定値は、ECX400P型核磁気共鳴装置(日本電子製)を用いて、測定温度:120℃、測定溶媒:オルトジクロロベンゼン/重水素化ベンゼン=4/1、積算回数:8000回にて、共重合体の13C-NMRのスペクトルを測定して得た。
<ヨウ素価>
エチレン・α-オレフィン・非共役ポリエン共重合体(A)のヨウ素価は、滴定法により求めた。具体的には、以下の方法で測定した。
エチレン・α-オレフィン・非共役ポリエン共重合体(A)0.5gを四塩化炭素60mlに溶解し、少量のウィス試薬および20%ヨウ化カリウム溶液を加え、0.1mol/Lチオ硫酸ナトリウム溶液で適定した。終点付近では澱粉指示薬を加え、よく攪拌しながら薄紫色が消えるところまで適定し、試料100gに対する消費されるハロゲンの量としてヨウ素のg数を算出した。
<極限粘度>
極限粘度[η]は、(株)離合社製全自動極限粘度計を用いて、温度:135℃、測定溶媒:デカリンにて測定した。
<ムーニー粘度>
ムーニー粘度ML(1+4)100℃は、ムーニー粘度計「SMV-202」((株)島津製作所製)を用いて、JIS K6300(1994)に準じて100℃で測定した。
<重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn)>
重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)で測定されるポリスチレン換算の数値である。測定装置および条件は、以下のとおりである。なお、分子量は、市販の単分散ポリスチレンを用いて検量線を作成し、換算法に基づいて算出した。
装置:ゲル透過クロマトグラフ Alliance GP2000型(Waters社製)、解析装置:Empower2(Waters社製)、
カラム:TSKgel GMH6-HT×2+TSKgel GMH6-HTL×2(7.5mmI.D.×30cm、東ソー社製)、
カラム温度:140℃、
移動相:o-ジクロロベンゼン(0.025%BHT含有)、
検出器:示差屈折計(RI)、
流速:1.0mL/min、
注入量:400μL、
サンプリング時間間隔:1s、
カラム較正:単分散ポリスチレン(東ソー社製)、
分子量換算:旧法EPR換算/粘度を考慮した較正法。
<低分子量成分>
上記のGPC測定によって得られたチャートが2つ以上のピークを示した場合、全体のピーク面積に対する、最も分子量が小さい側に現れたピークの面積の割合(%)を、分子量が2000以下である低分子量成分の含有量とした。なお、GPC測定によって得られたチャートが1つのピークしか示さなかった場合、低分子量成分の含有量を0%とした。
<複素粘度η*
レオメーターとして、粘弾性測定装置Ares(Rheometric Scientific社製)を用い、190℃、歪み1.0%の条件で、周波数ω=0.01rad/sでの複素粘度η* (ω=0.01)、周波数ω=0.1rad/sでの複素粘度η* (ω=0.1)、周波数ω=10rad/sでの複素粘度η* (ω=10)および周波数ω=100rad/sでの複素粘度η* (ω=100)(いずれも単位はPa・sec)を測定した。また、得られた結果より、η* (ω=0.1)とη* (ω=100)との複素粘度の比(η*比)であるP値(η* (ω=0.1)/η* (ω=100))を算出した。
<1000炭素原子あたりの長鎖分岐数(LCB1000c)>
上述した方法で測定した。
実施例および比較例で用いたジエン系ゴム(B)およびエチレン・α-オレフィン・非共役ポリエン共重合体(A)を以下に示す。
(1)ジエン系ゴム(B)
(1-1)天然ゴム
ジエン系ゴム(B-1)として、天然ゴムとして、竹原ゴム社販売の〔NR(RSS#3)を用いた。
(1-2)ブタジエンゴム
ジエン系ゴム(B-2)として、ブタジエンゴム(商品名;Nipole BR1200、日本ゼオン(株)製)を用いた。
(2)エチレン・α-オレフィン・非共役ポリエン共重合体(A)
エチレン・α-オレフィン・非共役ポリエン共重合体(A)として以下の製造方法で得たエチレン・プロピレン・VNB共重合体(A-1)用いた。
〔エチレン・プロピレン・VNB共重合体(A-1)の製造方法〕
図1に示した連続重合装置を用いてエチレン・プロピレン・VNB共重合体(A-1)を得た。
容積300リットルの連続重合反応器Cに、管6より脱水精製したヘキサン溶媒を58.3L/hrの割合で供給し、管7よりトリイソブチルアルミニウムを4.5mmol/hrの割合で、(C65)3CB(C65)4(CB-3)を0.150mmol/hrの割合で、ジ(p-トリル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド〔MC-2(MC-46)〕を0.030mmol/hrの割合で連続的に供給した。
同時に重合反応器C内に、エチレンと1-ブテンと水素とVNBを、エチレンを3.2kg/hrの割合で、1-ブテンを13.5kg/hrの割合で、水素20リットル/hrの割合で、VNBを290g/hrの割合で、各々管4、5、6より連続供給し、重合温度95℃、全圧1.6MPaG、滞留時間1.0時間の条件下で共重合を行なった。
重合反応器Cで生成したエチレン・1-ブテン・VNB共重合体の溶液は、管8を介して流量88.0L/hrの割合で連続的に排出させ、温度170℃に昇温して(圧力は4.1MPaGに上昇した)相分離器Dに供給した。このとき、管8には重合禁止剤であるエタノールを、重合反応器Cから抜き出した液体成分中のトリイソブチルアルミニウムに対して0.5mol倍の量で連続的に導入した。
相分離器Dで、エチレン・1-ブテン・VNB共重合体の溶液を大部分のエチレン・1-ブテン・VNB共重合体を含む濃厚相(下相部)と少量のポリマーを含む希薄相(上相部)とに分離した。
分離された濃厚相を、85.4L/hrの割合で、管11を介して熱交換器Kに導き、さらにホッパーE内に導いて、ここで溶媒を蒸発分離し、エチレン・1-ブテン・VNB共重合体を8.0kg/hrの割合で得た。
得られたエチレン・1-ブテン・VNB共重合体(A-1)のポリマー物性を表1に示す。
エタノールとトリイソブチルアルミニウムの比を重合反応器Cからサンプリングして測定したところ0.02mol倍であった。
エチレン・1-ブテン・VNB共重合体濃度を、管9、管10、管11からサンプリングして測定したところ、管9では43.8g/リットル-溶媒、管10では4.3g/l-溶媒、管11では103.7g/L-溶媒であった。この結果、相分離器Dにおいて約2.4倍のポリマ-濃度まで濃縮されていることが確認された。一方、希薄相の共重合体濃度は4.3g/L-溶媒であり、熱交換器Gでの冷却時に、ポリマーの析出等によるスケーリングは認められず長時間運転が可能であった。
Figure 0007481969000017
<未加硫のゴム組成物の物性>
(1)ムーニースコーチ
125℃における最低粘度(Vm)およびスコーチ時間(t5)は、JIS K6300に準拠して、ムーニー粘度計((株)島津製作所製SMV202型)を用いて、125℃の条件下で測定した。
(2)加硫速度
実施例および比較例における未加硫のゴム組成物を用いて、測定装置:MDR2000(ALPHA TECHNOLOGIES 社製)により、温度170℃および時間20分の測定条件下で、加硫速度(tc90)を以下のとおり測定した。
一定温度および一定のせん断速度の条件下で得られるトルク変化を測定した。トルクの最大値と最小値との差の90%のトルクに達成するまでの時間を加硫速度(tc90;分)とした。
<加硫したゴム組成物の物性>
(1)硬さ試験(デュロ-A硬度)
JIS K 6253に従い、架橋シートの硬度(タイプAデュロメータ、HA)の測定は、平滑な表面をもっている2mmのシート状ゴム成形品6枚を用いて、平らな部分を積み重ねて厚み約12mmとして行った。ただし、試験片に異物の混入したもの、気泡のあるもの、およびキズのあるものは用いなかった。また、試験片の測定面の寸法は、押針先端が試験片の端から12mm以上離れた位置で測定できる大きさとした。硬度が低いほど氷上制動性能が良いという指標となる。
(2)引張り試験
JIS K 6251に従い、測定温度23℃、引張速度500mm/分の条件で引張試験を行い、シートの破断強度(TB)〔MPa〕および破断伸び(EB)〔%〕を測定した。すなわち、シート状の架橋成形体を打抜いてJIS K 6251(2001年)に記載されている3号形ダンベル試験片を調製した。この試験片を用いて同JIS K 6251に規定される方法に従い、測定温度25℃、引張速度500mm/分の条件で引張り試験を行ない、伸び率が25%であるときの引張応力〔25%モジュラス(M25)〕、伸び率が100%であるときの引張応力〔100%モジュラス(M100)〕、引張破断点応力(TB)および引張破断点伸び(EB)を測定した。M25が低いほど耐疲労性(ロングライフ性能)および氷上制動性能が良いという指標となり、M100が低いほどウェットグリップ性能が良いという指標となる。また、EBが大きいほど耐疲労性(ロングライフ性能)が良いという指標となる。
(3)圧縮永久歪み(CS)
JIS K 6262に従い、直径29mm、高さ(厚さ)12.5mmの架橋体を試験片とした。荷重をかける前の試験片高さ(12.5mm)に対して25%圧縮し、スペーサーごと70℃のギヤーオーブン中にセットして22時間熱処理した。次いで試験片を取出し、室温で30分間放置後、試験片の高さを測定し下記の計算式で圧縮永久歪み(%)を算出した。
0℃圧縮永久歪は、0℃の恒温槽中にセットして22時間処理した。次いで試験片を恒温槽内で取出し、30分放置後、試験片の高さを測定し以下の計算式で圧縮永久歪み(%)を算出した。
圧縮永久歪み(%)={(t0-t1)/(t0-t2)}×100
t0:試験片の試験前の高さ
t1:試験片を前記条件で処理し室温で30分間放置した後の高さ
t2:試験片の測定金型に取り付けた状態での高さ
(4)引張粘弾性試験
貯蔵弾性率E';実施例および比較例によって得られた加硫ゴム1mmシートについて、TA-Instruments社製のRSA-G2を用いて窒素下で動的粘弾性を測定した。ここで、貯蔵弾性率(E')は、粘弾性体に正弦的振動ひずみを与えたときの応力と、ひずみの関係を表わす複素弾性率を構成する項であり、TA-Instruments社製のRSA-G2による、引張モード(歪み1%)により-70℃~100度の温度領域において4℃/minの昇温速度、周波数10Hzにて測定される値である。
tanδ;実施例および比較例によって得られた加硫ゴム1mmシートについて、TA-Instruments社製のRSA-G2を用いて窒素下で動的粘弾性を測定した。ここで、tanδ(0℃、60℃)=E"/E'にて求められる値である。
E'@-20℃(E+7)およびE'@0℃(E+7)が低いほど氷上制動性能が良いという指標となる。また、tanδ0℃が大きいほどウェットグリップが良いという指標となる。
〔実施例1〕
<ゴム組成物の調製および成形体の製造>
ジエン系ゴム(B-1)として上記天然ゴム:55質量部およびジエン系ゴム(B-2)として上記ブタジエンゴム:45質量部〔合計:100質量部〕に対して、上記エチレン・プロピレン・VNB共重合体(A-1)20質量部、架橋助剤として酸化亜鉛(ZnO#1・酸化亜鉛2種、ハクスイテック(株)製)3質量部、加工助剤としてステアリン酸(ステアリン酸つばきシリーズ、日油(株)製)2質量部、カーボンブラック(ショウブラックN-339、昭和キャボット(株)社製)15質量部、白色フィラーとしてシリカ(ニップシルVN3、東ソー・シリカ(株)製)65質量部、シランカップリング剤(Si-69、EVONIK社製)4.5質量部、軟化剤としてアロマ系オイル(AH-16、出光興産(株)製)20質量部、加硫剤として硫黄2質量部、加硫促進剤としてサンセラーCM(三新化学(株)製)2質量部およびサンセラーD(三新化学(株)製)1.8質量部を、BB-4型バンバリーミキサー(神戸製鋼所製)を用いて混練し、ゴム配合物を得た。
前記混練では、シリカ/カップリング剤/ポリマーを2分間素練りし、次いで酸化亜鉛、ステアリン酸、カーボンブラック、アロマ系オイルを入れて、2分間混練した。その後、ラムを上昇させて掃除を行い、更に1分間混練し、未加硫のゴム配合物(G-1)を得た。
前記ゴム配合物(G-1)を8インチロール(日本ロール(株)社製)を用いて、前ロールの表面温度50℃、後ロールの表面温度50℃、前ロールの回転数18rpm、後ロールの回転数16rpmに巻きつけて混練した。
混練は、前記混合物に、切り返し3回、丸め通し6回を行い、厚み2.2~2.5mmのシートとしてゴム組成物を得ることで行った。得られたゴム組成物を用いて、未加硫のゴム配合物(G-1)の特性を評価した。結果を表2に示す。
次いでプレス成形機を用いて170℃で10分間プレス処理を行って、厚さ2mmおよび1mmの架橋体(G-2)シートを作製した。得られた架橋体(G-2)シートを用いて、硬さ試験、引張試験、引張粘弾性試験を行った。
また、170℃で15分間の条件で架橋を行い、厚み12.5mm、直径29mmの架橋体(G-3)を得た。架橋体(G-3)を用いて、圧縮永久歪みの測定を行った。
ゴム組成物および架橋体の評価結果を表2に示す。
[比較例1]
実施例1において、エチレン・プロピレン・VNB共重合体(A-1)を配合しなかったこと以外は実施例1と同様にしてゴム組成物および架橋成形体を製造し、各種物性の測定を行った。
結果を表2に示す。
Figure 0007481969000018
C 重合反応器
D 相分離器
E ホッパー
F ポンプ
G 熱交換器
H 熱交換器
I 熱交換器
J 熱交換器
K 熱交換器

Claims (6)

  1. ジエン系ゴム(B)と
    エチレン(a1)に由来する構造単位と、炭素原子数4~20のα-オレフィン(a2)に由来する構造単位と、下記一般式(I)および(II)からなる群から選ばれる部分構造を合計で分子中に2つ以上含む非共役ポリエン(a3)に由来する構成単位を有し、前記非共役ポリエン(a3)が5-ビニル-2-ノルボルネンを含み、かつ、下記要件(i)~(vi)を満たすエチレン・α-オレフィン・非共役ポリエン共重合体(A)と、
    を含有、前記ジエン系ゴム(B)100質量部当たり前記共重合体(A)を0.5質量部以上、50質量部以下の範囲で含有することを特徴とするゴム組成物:
    Figure 0007481969000019
    (i)エチレン(a1)に由来する構造単位と、炭素数4~20のα-オレフィン(a2)に由来する構造単位とのモル比[(a1)/(a2)]が、40/60~99.9/0.1である;
    (ii)非共役ポリエン(a3)に由来する構造単位の質量分率が、共重合体(A)100質量%中、0.07質量%~10質量%である;
    (iii)共重合体(A)の重量平均分子量(Mw)と、非共役ポリエン(a3)に由来する構造単位の質量分率〔(a3)の質量分率(質量%)〕と、非共役ポリエン(a3)の分子量〔(a3)の分子量〕とが、下記式(1)を満たす;
    4.5≦Mw×(a3)の質量分率/100/(a3)の分子量≦40 …(1)
    (iv)レオメーターを用いて線形粘弾性測定(190℃)により得られた、周波数ω=0.1rad/sでの複素粘度η*(ω=0.1)(Pa・sec)と、周波数ω=100rad/sでの複素粘度η*(ω=100)(Pa・sec)との比P(η*(ω=0.1)/η*(ω=100))と、極限粘度[η]と、非共役ポリエン(a3)に由来する構造単位の質量分率((a3)の質量分率(質量%))とが、下記式(2)を満たす;
    P/([η]2.9)≦(a3)の質量分率×6 …(2)
    (v)ゲルパーミエイションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)と数平均分子量(Mn)との比(分子量分布;Mw/Mn)が4~30の範囲にある;
    (vi)前記数平均分子量(Mn)が2000~30,000である。
  2. 前記ジエン系ゴム(B):100質量部に対して、エチレン・α-オレフィン・非共役ポリエン共重合体(A)を1~40質量部の範囲で含むことを特徴とする請求項1に記載のゴム組成物。
  3. ジエン系ゴム(B)100質量部に対して、さらに
    加硫剤(C)を0.2~15質量部、
    カーボンブラック(D)を5~100質量部、
    白色フィラー(E)を5~150質量部、および
    シランカップリング剤(F)を0.2~10質量部の範囲で含むことを特徴とする、請求項1または2に記載のゴム組成物。
  4. 請求項1~3のいずれかに記載のゴム組成物からなるタイヤ用ゴム材料。
  5. 請求項4に記載のタイヤ用ゴム材料を用いて形成されたタイヤトレッド。
  6. 請求項5に記載のタイヤトレッドを備えたタイヤ。
JP2020150127A 2020-09-07 2020-09-07 ゴム組成物およびその用途 Active JP7481969B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020150127A JP7481969B2 (ja) 2020-09-07 2020-09-07 ゴム組成物およびその用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020150127A JP7481969B2 (ja) 2020-09-07 2020-09-07 ゴム組成物およびその用途

Publications (3)

Publication Number Publication Date
JP2022044488A JP2022044488A (ja) 2022-03-17
JP2022044488A5 JP2022044488A5 (ja) 2023-05-24
JP7481969B2 true JP7481969B2 (ja) 2024-05-13

Family

ID=80679175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020150127A Active JP7481969B2 (ja) 2020-09-07 2020-09-07 ゴム組成物およびその用途

Country Status (1)

Country Link
JP (1) JP7481969B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035725A (ja) 2002-07-03 2004-02-05 Yokohama Rubber Co Ltd:The 改良された氷上摩擦力を有するゴム組成物及びそれを用いた空気入りタイヤ
WO2019124223A1 (ja) 2017-12-18 2019-06-27 三井化学株式会社 架橋成形体およびその製造方法
WO2019180802A1 (ja) 2018-03-20 2019-09-26 三井化学株式会社 エチレン・α-オレフィン・非共役ポリエン共重合体、その製造方法および用途
JP2021518868A (ja) 2018-04-11 2021-08-05 エクソンモービル ケミカル パテンツ インコーポレイテッド タイヤトレッド性能改善のためのプロピレン系ポリマー添加剤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035725A (ja) 2002-07-03 2004-02-05 Yokohama Rubber Co Ltd:The 改良された氷上摩擦力を有するゴム組成物及びそれを用いた空気入りタイヤ
WO2019124223A1 (ja) 2017-12-18 2019-06-27 三井化学株式会社 架橋成形体およびその製造方法
WO2019180802A1 (ja) 2018-03-20 2019-09-26 三井化学株式会社 エチレン・α-オレフィン・非共役ポリエン共重合体、その製造方法および用途
JP2021518868A (ja) 2018-04-11 2021-08-05 エクソンモービル ケミカル パテンツ インコーポレイテッド タイヤトレッド性能改善のためのプロピレン系ポリマー添加剤

Also Published As

Publication number Publication date
JP2022044488A (ja) 2022-03-17

Similar Documents

Publication Publication Date Title
US10975223B2 (en) Resin composition and use thereof
EP3106481B1 (en) Ethylene/alpha-olefin/non-conjugated polyene copolymer, production method therefor, and use therefor
EP3424705B1 (en) Laminate and application for same
KR102520290B1 (ko) 에틸렌·α-올레핀·비공액 폴리엔 공중합체, 그의 제조 방법 및 용도
EP3584074B1 (en) Laminate
JP6914662B2 (ja) 防振ゴム用組成物および防振ゴム製品
EP3584075B1 (en) Laminate
JP7481969B2 (ja) ゴム組成物およびその用途
JP2022044490A (ja) ゴム組成物およびその用途
JP2022044489A (ja) ゴム組成物およびその用途
JP2023091323A (ja) ゴム組成物およびその用途
JP2019059894A (ja) 防振ゴム用組成物および防振ゴム製品
TWI765009B (zh) 乙烯.α-烯烴.非共軛多烯共聚合體、其製造方法及用途
JP7141931B2 (ja) エチレン系共重合体組成物およびホース製品
JP2019059895A (ja) 防振ゴム用組成物および防振ゴム製品
JP2019059893A (ja) 防振ゴム用組成物および防振ゴム製品
JP2019127514A (ja) 防振ゴム用組成物および防振ゴム製品
JP2019127513A (ja) 防振ゴム用組成物および防振ゴム製品

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240426

R150 Certificate of patent or registration of utility model

Ref document number: 7481969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150