JP7141581B2 - Pyroelectric Porcelain Materials for Surface Mountable Pyroelectric Infrared Sensors - Google Patents

Pyroelectric Porcelain Materials for Surface Mountable Pyroelectric Infrared Sensors Download PDF

Info

Publication number
JP7141581B2
JP7141581B2 JP2018131471A JP2018131471A JP7141581B2 JP 7141581 B2 JP7141581 B2 JP 7141581B2 JP 2018131471 A JP2018131471 A JP 2018131471A JP 2018131471 A JP2018131471 A JP 2018131471A JP 7141581 B2 JP7141581 B2 JP 7141581B2
Authority
JP
Japan
Prior art keywords
pyroelectric
infrared sensors
sample
curie temperature
surface mountable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018131471A
Other languages
Japanese (ja)
Other versions
JP2020007198A (en
Inventor
想悟 古郡
智昭 松崎
信二 福永
文雄 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ceramic Co Ltd
Original Assignee
Nippon Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ceramic Co Ltd filed Critical Nippon Ceramic Co Ltd
Priority to JP2018131471A priority Critical patent/JP7141581B2/en
Publication of JP2020007198A publication Critical patent/JP2020007198A/en
Application granted granted Critical
Publication of JP7141581B2 publication Critical patent/JP7141581B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、焦電性磁器組成物に関し、特に、表面実装対応の焦電型赤外線センサに用いて好適な焦電性磁器組成物に関する。 TECHNICAL FIELD The present invention relates to a pyroelectric ceramic composition, and more particularly to a pyroelectric ceramic composition suitable for use in surface mountable pyroelectric infrared sensors.

従来、照明機器、空調機器、防犯機器等の人感センサとして焦電型の赤外線センサが用いられ、赤外線センサに使用される受光素子には焦電性磁器組成物が使用されている。 Conventionally, pyroelectric infrared sensors have been used as human sensors for lighting equipment, air conditioners, security equipment, etc., and pyroelectric ceramic compositions have been used for light receiving elements used in infrared sensors.

赤外線センサの性能は焦電体磁器組成物の有する特性に起因し、高性能な赤外線センサを得るためには、焦電係数が大きく、適度な比誘電率を有し、熱容量の小さな焦電性磁器組成物が要求される。 The performance of an infrared sensor is due to the characteristics of the pyroelectric porcelain composition. A porcelain composition is required.

また、赤外線センサは他の電子部品と組み合わせて用いられることが多いため小型化が求められており、プリント基板上に表面実装可能な赤外線センサが要求されている。そのためにはリフロー処理時の高温(例えば、260℃以上)に曝されても特性が劣化しない、高いキュリー温度を有する焦電性磁器組成物が求められる。 In addition, since the infrared sensor is often used in combination with other electronic components, miniaturization is required, and an infrared sensor that can be surface-mounted on a printed circuit board is required. For this purpose, a pyroelectric ceramic composition having a high Curie temperature is required which does not deteriorate in properties even when exposed to high temperatures (for example, 260° C. or higher) during reflow treatment.

特許文献1では、Pbの一部を20~30モル%の範囲でCaに置換した二成分系のPbTiO-Pb(Co1/21/2)Oによって良好な特性の焦電性磁器組成物を得ることに成功している。Pbの一部をCaに置換することで赤外線センサに適した検出感度を実現し、Tiの一部を(Co1/21/2)に置換することで焼結性の向上と分極条件の緩和を図っている。 In Patent Document 1, two-component system PbTiO 3 —Pb(Co 1/2 W 1/2 )O 3 in which part of Pb is replaced with Ca in the range of 20 to 30 mol % has good pyroelectric properties. We have successfully obtained a porcelain composition. By replacing part of Pb with Ca, detection sensitivity suitable for infrared sensors is realized, and by replacing part of Ti with (Co 1/2 W 1/2 ), sinterability is improved and polarization conditions are improved. is intended to alleviate

特開平6-267330号JP-A-6-267330

しかしながら、上記特許文献1の焦電性磁器組成物は有するキュリー温度が260℃以下であるため、この焦電性磁器組成物を用いた焦電素子をリフロー処理すると、焦電特性が劣化し、赤外線センサの性能が低下する場合があるという問題があった。 However, since the pyroelectric ceramic composition of Patent Document 1 has a Curie temperature of 260° C. or lower, when a pyroelectric element using this pyroelectric ceramic composition is subjected to reflow treatment, the pyroelectric characteristics deteriorate, There is a problem that the performance of the infrared sensor may deteriorate.

さらに、焦電型赤外線センサの検出感度は、焦電性磁器組成物の比誘電率εrが小さく、焦電係数λが大きいほど高くなるが、比誘電率が小さすぎても赤外線検出器の外部回路の浮遊容量の影響を受けてノイズが大きくなる。そのため、適度な比誘電率並びに大きな焦電係数を示す焦電性磁器組成物の開発が急がれている。 Furthermore, the detection sensitivity of the pyroelectric infrared sensor increases as the relative permittivity εr of the pyroelectric ceramic composition decreases and the pyroelectric coefficient λ increases. Noise increases due to the influence of stray capacitance in the circuit. Therefore, the development of a pyroelectric porcelain composition exhibiting a moderate dielectric constant and a large pyroelectric coefficient is urgently needed.

このような背景から本発明では、高いキュリー温度を有しながらも適度な比誘電率並びに大きな焦電係数を示す二成分系PbTiO-Pb(Co1/21/2)Oの焦電性磁器組成物を提供することを目的とする。 Against this background, in the present invention, the focus of the binary system PbTiO 3 —Pb(Co 1/2 W 1/2 )O 3 which exhibits a moderate dielectric constant and a large pyroelectric coefficient while having a high Curie temperature. An object of the present invention is to provide an electrically conductive ceramic composition.

焦電性磁器組成物のキュリー温度を高くするためには、Pbに対するCaの置換量、及びTiに対する(Co1/21/2)の置換量を減らす事が必須となる。しかしながら、Ca及び(Co1/21/2)の置換量を減らすと比誘電率の増加並びに焦電係数が小さくなることにより赤外線センサの感度が低下する。 In order to increase the Curie temperature of the pyroelectric ceramic composition, it is essential to reduce the substitution amount of Ca for Pb and the substitution amount of (Co 1/2 W 1/2 ) for Ti. However, when the substitution amounts of Ca and (Co 1/2 W 1/2 ) are reduced, the relative permittivity increases and the pyroelectric coefficient decreases, thereby decreasing the sensitivity of the infrared sensor.

そこで本発明では、Pbの一部をCaに加えて少量のLaにも置換することで、Caの置換量を減らしてキュリー温度を高くしながら焦電係数を大きくすることを可能にしている。また、添加物としてMn、Ni、Cr、Alを含有させることで比誘電率及び焦電係数を赤外線検出器に適した値に制御している。これにより、リフロー処理にも耐え得る高いキュリー温度と適度な比誘電率並びに大きな焦電係数を有する、優れた焦電特性を示す焦電性磁器組成物を提供することができる。 Therefore, in the present invention, by substituting a small amount of La in addition to Ca in addition to Ca, it is possible to increase the pyroelectric coefficient while reducing the Ca substitution amount and raising the Curie temperature. Moreover, by containing Mn, Ni, Cr, and Al as additives, the dielectric constant and pyroelectric coefficient are controlled to values suitable for infrared detectors. This makes it possible to provide a pyroelectric porcelain composition exhibiting excellent pyroelectric properties, such as a high Curie temperature that can withstand reflow treatment, an appropriate dielectric constant, and a large pyroelectric coefficient.

より具体的には、一般式(PbCaLa){Ti(1―z)(Co1/21/2}O(ただし、0.75≦w<1.00、0.10≦x≦0.20、0<y<0.05、0.02≦z≦0.15)で表される化合物を主成分とし、添加物として当該成分100モルに対しMn、Cr、Ni、Alをそれぞれ0.01~3.00%含有することを特徴としている。 More specifically, the general formula ( PbwCaxLay ) { Ti (1-z) ( Co1 / 2W1/ 2 ) z }O3 ( where 0.75≤w<1.00, 0.10 ≤ x ≤ 0.20, 0 < y < 0.05, 0.02 ≤ z ≤ 0.15) as the main component, and as additives, Mn, Cr per 100 mol of the component , Ni and Al in an amount of 0.01 to 3.00%.

本発明は、一般式(PbCaLa){Ti(1―z)(Co1/21/2}O(ただし、0.75≦w<1.00、0.10≦x≦0.20、0<y<0.05、0.02≦z≦0.15)で表される化合物を主成分とし、添加物として当該成分100モルに対しMn、Cr、Ni、Alをそれぞれ0.01~3.00%含有しているため、リフロー処理にも耐え得る高いキュリー温度と適度な比誘電率並びに高い焦電係数を有する、優れた焦電特性を示す焦電性磁器組成物を得ることができる。 The present invention uses the general formula ( PbwCaxLay ) { Ti (1-z) ( Co1/ 2W1 /2 ) z }O3 ( where 0.75≤w<1.00, 0.75≤w<1.00, 0.00). 10 ≤ x ≤ 0.20, 0 < y < 0.05, 0.02 ≤ z ≤ 0.15) is the main component, and Mn, Cr, Ni is added to 100 mol of the component. , 0.01 to 3.00% of Al, respectively, so it has a high Curie temperature that can withstand reflow treatment, a moderate dielectric constant, and a high pyroelectric coefficient, and exhibits excellent pyroelectric characteristics. A magnetic porcelain composition can be obtained.

また、本発明の焦電素子はTiの一部を(Co1/21/2)に置換しているため、焼結性が高く、分極が容易であることも特徴としている。 Further, the pyroelectric element of the present invention is characterized by high sinterability and easy polarization because part of Ti is replaced with (Co 1/2 W 1/2 ).

以下に、本発明の実施形態について詳細に説明する。 Embodiments of the present invention are described in detail below.

本発明の焦電性磁器組成物は、一般式(PbCaLa){Ti(1―z)(Co1/21/2}O(ただし、0.75≦w<1.00、0.10≦x≦0.20、0<y<0.05、0.02≦z≦0.15)で表される化合物を主成分とし、添加物として当該成分100モルに対しMn、Cr、Ni、Alを0.01~3.00%含有されていることを特徴とする。wの値はPbの含有量であり、wの値を操作することで+3価のLaに置換したことによりずれたペロブスカイト構造のAサイトのイオンのバランスを整え、赤外線検出器として適切な抵抗値となるよう調節している。x、yの値はそれぞれPbに対するCa、Laの置換量であり、xの値が0.20を超える、yの値が0.05以上になるとキュリー温度が260℃未満に低下し、リフロー処理に耐えられない。一方、xの値が0.10未満、yの値が0になると比誘電率の増加及び焦電係数の低下により良好な焦電特性が得られない上に、磁器組成物の焼結性が低下し、緻密な焼結体が得られなくなる。また、zの値はTiに対する(Co1/21/2)の置換量であり、zの値が0.15を超えるとキュリー温度が260℃未満に低下し、リフロー処理に耐えられない。一方、0.02未満になると磁器組成物の焼結性の低下及び分極に高温、高電圧が必要になり、特性の安定した焦電体が得られなくなる。さらに、添加物の含有量が0.01~3.00モル%の範囲外であるとき、焦電体の特性向上効果は薄くなり、適度な比誘電率並びに大きな焦電係数を有する焦電体が得られなくなる。 The pyroelectric ceramic composition of the present invention has the general formula ( PbwCaxLay ) { Ti (1-z) ( Co1 / 2W1/ 2 ) z }O3 ( where 0.75≤w <1.00, 0.10 ≤ x ≤ 0.20, 0 < y < 0.05, 0.02 ≤ z ≤ 0.15) as a main component, and 100 mol of the component as an additive It is characterized by containing 0.01 to 3.00% of Mn, Cr, Ni, and Al. The value of w is the content of Pb, and by manipulating the value of w, the balance of ions in the A site of the perovskite structure that has shifted due to substitution with +3 valent La is adjusted, and the resistance value appropriate for an infrared detector is obtained. is adjusted so that The values of x and y are the amounts of Ca and La substituted for Pb, respectively. intolerable. On the other hand, when the value of x is less than 0.10 and the value of y is 0, good pyroelectric properties cannot be obtained due to an increase in the dielectric constant and a decrease in the pyroelectric coefficient, and the sinterability of the ceramic composition deteriorates. It becomes difficult to obtain a dense sintered body. In addition, the value of z is the amount of substitution of (Co 1/2 W 1/2 ) with respect to Ti, and when the value of z exceeds 0.15, the Curie temperature drops below 260° C. and cannot withstand reflow treatment. . On the other hand, if it is less than 0.02, the sinterability of the porcelain composition is lowered, and high temperature and high voltage are required for polarization, so that a pyroelectric body with stable characteristics cannot be obtained. Furthermore, when the content of the additive is outside the range of 0.01 to 3.00 mol%, the effect of improving the properties of the pyroelectric body is reduced, and the pyroelectric body having a moderate relative permittivity and a large pyroelectric coefficient will not be obtained.

本発明の焦電性磁器組成物の製造方法について説明する。主成分の原料として、PbO、CaCO、La、TiO、CoO、WO、添加物の原料としてMn、Cr、NiO、Alを所定量秤量する。そして、この原料粉末を粉砕媒体及び水と共にボールミルに投入して湿式混合を行う。その後、乾燥処理を行い、900~1100℃で所定時間仮焼した。次に、この仮焼粉末を再びボールミル中で湿式粉砕し、乾燥処理を行う。この粉砕粉末にバインダーを加えて造粒し、所定の大きさに加圧成型する。そして、この成型体を1000~1200℃で所定時間焼成し、焼結体の鏡面研磨・加工処理を行った後、電極を焦電体に形成させる。そして、この焦電体を所定温度に加熱された絶縁性溶液中で所定の直流電圧を印加して分極を行うことで、焦電素子を製造することができる。 A method for producing the pyroelectric ceramic composition of the present invention will be described. PbO, CaCO 3 , La 2 O 3 , TiO 2 , CoO and WO 3 as raw materials for main components, and Mn 3 O 4 , Cr 2 O 3 , NiO and Al 2 O 3 as raw materials for additives are weighed in predetermined amounts. . Then, this raw material powder is put into a ball mill together with grinding media and water for wet mixing. Then, it was dried and calcined at 900 to 1100° C. for a predetermined time. Next, the calcined powder is wet-ground again in the ball mill and dried. A binder is added to the pulverized powder, granulated, and pressure-molded into a predetermined size. Then, this molded body is fired at 1000 to 1200° C. for a predetermined time, and after the sintered body is mirror-polished and processed, electrodes are formed on the pyroelectric body. A pyroelectric element can be manufactured by applying a predetermined DC voltage to the pyroelectric body in an insulating solution heated to a predetermined temperature to polarize the pyroelectric body.

次に、本発明の実施例を具体的に説明する。 Next, examples of the present invention will be specifically described.

まず、主成分の原料としてPbO、CaCO、La、TiO、CoO、WO、添加物の原料としてMn、Cr、NiO、Alを準備し、表1に示す組成となるように秤量した。次に、これらの原料粉末をジルコニアボール及び水と共にボールミルに投入し、湿式で十二分に混合した。混合原料を乾燥させた後、この混合原料を大気雰囲気下、900~1100℃の温度で約2時間仮焼を行った。次に、この仮焼物をジルコニアボールと水と共にボールミルに投入し、約18時間湿式で粉砕後、乾燥した。この粉末に5.5重量%の水を添加して造粒を行った後、40メッシュの篩を使用して整粒し、得られた粉末を2.0~3.0×10Paの圧力でプレス成型し、23mm×23mm×10mmの成型体を作製した。 First, prepare PbO, CaCO 3 , La 2 O 3 , TiO 2 , CoO, and WO 3 as raw materials for main components, and Mn 3 O 4 , Cr 2 O 3 , NiO, and Al 2 O 3 as raw materials for additives, It was weighed so as to have the composition shown in Table 1. Next, these raw material powders were put into a ball mill together with zirconia balls and water, and thoroughly mixed in a wet process. After drying the mixed raw material, this mixed raw material was calcined at a temperature of 900 to 1100° C. for about 2 hours in an air atmosphere. Next, this calcined product was put into a ball mill together with zirconia balls and water, wet-ground for about 18 hours, and then dried. After granulating by adding 5.5% by weight of water to this powder, it was sized using a 40-mesh sieve, and the obtained powder was sieved at a pressure of 2.0 to 3.0×10 8 Pa. It was press-molded under pressure to produce a molding of 23 mm×23 mm×10 mm.

この成型体を1000~1200℃で1~10時間保持し、本焼成を行なった。この焼結体を研磨加工した後、銀ペーストで電極を形成した。そして、50~120℃の絶縁性の溶液中で1~8kV/mmの直流電流を10~30分印加して分極処理を行った。これにより、表1の試料を得た。 This molding was held at 1000 to 1200° C. for 1 to 10 hours to carry out main firing. After polishing this sintered body, an electrode was formed with a silver paste. Then, a DC current of 1 to 8 kV/mm was applied in an insulating solution at 50 to 120° C. for 10 to 30 minutes for polarization treatment. As a result, the samples in Table 1 were obtained.

各試料の比誘伝率εrは、LFインピーダンス・アナライザ4192A(横川ヒューレット・パッカード製)を用いて各試料の静電容量を測定し、静電容量と各試料の厚さから計算して求めた。 The relative permittivity εr of each sample was obtained by measuring the capacitance of each sample using LF Impedance Analyzer 4192A (manufactured by Yokogawa Hewlett-Packard) and calculating from the capacitance and the thickness of each sample. .

また、各試料の比誘伝率εrの温度特性を測定し、比誘電率が極大値を示す温度を各試料のキュリー温度Tcとした。 Also, the temperature characteristics of the relative permittivity εr of each sample were measured, and the temperature at which the relative permittivity showed a maximum value was defined as the Curie temperature Tc of each sample.

各試料の焦電係数λは、各試料を恒温槽に入れ、35℃から70℃まで温度を変化させてデジタル・エレクトロメータTR8652(アドバンテスト製)で各試料の焦電電流Iを測定、下記の式を用いることで求めた。
λ=I/(S・ΔT)
S:試料の電極面積(cm) ΔT:温度変化量(K)
The pyroelectric coefficient λ of each sample was measured by placing each sample in a constant temperature bath, changing the temperature from 35 ° C. to 70 ° C., and measuring the pyroelectric current I of each sample with a digital electrometer TR8652 (manufactured by Advantest). It was obtained by using the formula
λ=I/(S・ΔT)
S: Electrode area of sample (cm 2 ) ΔT: Temperature change amount (K)

表1は、試料番号の組成、及び測定結果を示している。 Table 1 shows the composition of sample numbers and the measurement results.

Figure 0007141581000001
Figure 0007141581000001

試料番号1~5より、Pbに対するCaの置換量が0.20を超えると比誘電率εrが大きくなるとともに、キュリー温度Tcが260℃以下となり、赤外線センサの感度が劣化してしまうことが分かった。一方、置換量が0.10未満になると焼結性が低下し、緻密な焼成体を得ることが困難であった。また、焦電係数λが3以下と小さくなるため、赤外線センサの感度が低くなり、好ましくない。従って、Caの置換量としては0.10≦x≦0.20が好ましい。 From sample numbers 1 to 5, it is found that when the amount of Ca substituted for Pb exceeds 0.20, the dielectric constant εr increases and the Curie temperature Tc becomes 260° C. or lower, resulting in deterioration of the sensitivity of the infrared sensor. rice field. On the other hand, when the amount of substitution is less than 0.10, the sinterability deteriorates, making it difficult to obtain a dense sintered body. Moreover, since the pyroelectric coefficient λ is as small as 3 or less, the sensitivity of the infrared sensor is lowered, which is not preferable. Therefore, the substitution amount of Ca is preferably 0.10≦x≦0.20.

試料番号3及び6~8より、Pbに対するLaの置換量が増加するに従って、焦電係数が大きく向上することが分かる。しかし、置換量が0.05以上になるとキュリー温度Tcが260℃以下となり、リフロー処理により焦電体の焦電特性が大きく劣化してしまう。従って、Laの置換量としては0<y<0.05が好ましい。 From sample numbers 3 and 6 to 8, it can be seen that the pyroelectric coefficient is greatly improved as the substitution amount of La for Pb increases. However, when the substitution amount is 0.05 or more, the Curie temperature Tc becomes 260° C. or less, and the pyroelectric properties of the pyroelectric body are greatly deteriorated by the reflow process. Therefore, the substitution amount of La is preferably 0<y<0.05.

さらに、Pbに対するCa及びLaの置換量がそれぞれ0.10≦x≦0.20、0<y<0.05であることから、Aサイトのイオンバランスを整えるためには主成分中に含まれるPbの量が0.75≦w<1.00であることが好ましい。 Furthermore, since the substitution amounts of Ca and La with respect to Pb are 0.10 ≤ x ≤ 0.20 and 0 < y < 0.05, respectively, it is necessary to add Preferably, the amount of Pb is 0.75≦w<1.00.

試料番号3及び9~12より、Tiに対する(Co1/21/2)の置換量が増加するに従って焦電係数λが向上するが、置換量が0.15を超えるとキュリー温度Tcが260℃以下となり、リフロー処理により焦電体の焦電特性が大きく劣化することが分かった。また、置換量が0.02未満になると焼結性が低下し、緻密な焼成体を得ることが困難であった。従って、(Co1/21/2)の置換量としては0.02≦z≦0.15が好ましい。 From sample numbers 3 and 9 to 12, the pyroelectric coefficient λ improves as the substitution amount of (Co 1/2 W 1/2 ) for Ti increases, but when the substitution amount exceeds 0.15, the Curie temperature Tc The temperature became 260° C. or lower, and it was found that the pyroelectric properties of the pyroelectric body were greatly deteriorated by the reflow treatment. Moreover, when the substitution amount is less than 0.02, the sinterability is lowered, and it is difficult to obtain a dense fired body. Therefore, the substitution amount of (Co 1/2 W 1/2 ) is preferably 0.02≦z≦0.15.

試料番号13では、Mnを添加しなかったために緻密な焼結体を得ることができなかった。試料番号3及び14より、Ni並びにCrを添加することにより比誘電率εrが200程度まで増加し、赤外線センサのノイズ耐性が向上することが分かった。試料番号3及び15より、Alを添加することにより比誘電率εrが低下し、赤外線センサの検出感度が向上することが分かった。また、試料番号16~22より、(PbCaLa){Ti(1―z)(Co1/21/2}Oに対し、Mn、Cr、Ni、Alを0.01~3.00モル%添加した組成は、比誘電率εrが適度に低く、焦電係数λが大きな焦電体を与えることが分かった。 In Sample No. 13, a dense sintered body could not be obtained because Mn was not added. From sample numbers 3 and 14, it was found that the addition of Ni and Cr increased the relative permittivity εr to about 200 and improved the noise resistance of the infrared sensor. From sample numbers 3 and 15, it was found that the addition of Al reduces the dielectric constant εr and improves the detection sensitivity of the infrared sensor. Further, from sample numbers 16 to 22, (Pb w Ca x La y ) {Ti (1-z) (Co 1/2 W 1/2 ) z } O 3 , Mn, Cr, Ni, and Al are 0 It has been found that compositions containing 0.01 to 3.00 mol % of these elements give pyroelectric bodies having a moderately low dielectric constant εr and a large pyroelectric coefficient λ.

以上の結果より、PbをCa及びLaに適切な量で置換した二成分系のPbTiO-Pb(Co1/21/2)Oに、さらに添加物としてMn、Cr、Ni、Alを適切な量を添加することで高いキュリー温度を有し、リフロー処理による焦電特性の劣化が無く、適度な比誘電率並び大きな焦電係数を示す、表面実装対応可能な焦電型赤外線センサ用の焦電性磁器組成物を得た。 From the above results, binary PbTiO 3 —Pb(Co 1/2 W 1/2 )O 3 in which Pb is substituted with Ca and La in appropriate amounts, and further additives Mn, Cr, Ni, Al Pyroelectric infrared sensor that can be surface-mounted with a high Curie temperature by adding an appropriate amount of A pyroelectric ceramic composition for

Claims (1)

一般式が(PbCaLa){Ti(1―z)(Co1/21/2}O(ただし、0.75≦w<1.00、0.10≦x≦0.20、0<y<0.05、0.02≦z≦0.15)を主成分とし、添加物として当該成分100モルに対しMn、Cr、 Ni、Alをそれぞれ0.01~3.00%含有し、さらに260℃以上のキュリー温度 を有することを特徴とした焦電性磁器組成物。The general formula is ( PbwCaxLay ) { Ti (1-z) ( Co1/ 2W1 /2 ) z }O3 ( where 0.75≤w<1.00, 0.10≤x ≤ 0.20, 0 < y < 0.05, 0.02 ≤ z ≤ 0.15) as main components, and as additives, Mn, Cr, Ni, and Al are each 0.01 to 0.01 per 100 mol of the component. 3. A pyroelectric porcelain composition characterized by containing 3.00% and further having a Curie temperature of 260°C or higher.
JP2018131471A 2018-07-11 2018-07-11 Pyroelectric Porcelain Materials for Surface Mountable Pyroelectric Infrared Sensors Active JP7141581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018131471A JP7141581B2 (en) 2018-07-11 2018-07-11 Pyroelectric Porcelain Materials for Surface Mountable Pyroelectric Infrared Sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018131471A JP7141581B2 (en) 2018-07-11 2018-07-11 Pyroelectric Porcelain Materials for Surface Mountable Pyroelectric Infrared Sensors

Publications (2)

Publication Number Publication Date
JP2020007198A JP2020007198A (en) 2020-01-16
JP7141581B2 true JP7141581B2 (en) 2022-09-26

Family

ID=69150575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018131471A Active JP7141581B2 (en) 2018-07-11 2018-07-11 Pyroelectric Porcelain Materials for Surface Mountable Pyroelectric Infrared Sensors

Country Status (1)

Country Link
JP (1) JP7141581B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191051A (en) * 1984-03-08 1985-09-28 東芝ライテック株式会社 Pyroelectric type infrared ray decting element
JPS63151667A (en) * 1986-12-16 1988-06-24 京セラ株式会社 Piezoelectric ceramic composition
JPH02174276A (en) * 1988-12-27 1990-07-05 Sumitomo Metal Ind Ltd Piezoelectric porcelain material
JPH0753603B2 (en) * 1990-08-10 1995-06-07 株式会社大真空 Pyroelectric porcelain composition

Also Published As

Publication number Publication date
JP2020007198A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP5272754B2 (en) Dielectric porcelain composition and electronic component
JP5664228B2 (en) Dielectric porcelain composition and electronic component
JP4085289B2 (en) Pyroelectric porcelain composition, pyroelectric element, and infrared detector
CN111718195B (en) Dielectric composition and electronic component
JP5910317B2 (en) Dielectric porcelain composition and electronic component
JP5418323B2 (en) Dielectric porcelain composition and electronic component
KR101767672B1 (en) Dielectric ceramic composition and electronic component
CN110317054B (en) Dielectric composition and electronic component
JP2011173776A (en) Dielectric ceramic composition and electronic component
JP7141581B2 (en) Pyroelectric Porcelain Materials for Surface Mountable Pyroelectric Infrared Sensors
CN110317055B (en) Dielectric composition and electronic component
JP5668569B2 (en) Dielectric porcelain composition and electronic component
KR101429034B1 (en) Dielectric ceramic composition and electronic component
TWI412504B (en) A dielectric ceramic composition, a method for preparing a dielectric ceramic composition, and an electronic component
JP4779466B2 (en) Barium titanate semiconductor porcelain composition
JP6020068B2 (en) Dielectric porcelain composition and electronic component
JP5614503B2 (en) Dielectric porcelain composition and electronic component
JP5035278B2 (en) Dielectric porcelain composition and electronic component
KR940003969B1 (en) Ceramic capacitor
JP3385136B2 (en) Dielectric porcelain composition
JP3445879B2 (en) Dielectric porcelain composition
JP2023117898A (en) Dielectric ceramic composition
KR100335290B1 (en) The Composition and Manufacturing Methods of NTC (Negative Temperature Coefficient) Thermistor
JPH1095667A (en) Dielectric ceramic composition and ceramic capacitor
JP4099979B2 (en) Piezoelectric ceramic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220817

R150 Certificate of patent or registration of utility model

Ref document number: 7141581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150