JP7137363B2 - 露光方法、露光装置、物品の製造方法及び計測方法 - Google Patents

露光方法、露光装置、物品の製造方法及び計測方法 Download PDF

Info

Publication number
JP7137363B2
JP7137363B2 JP2018111245A JP2018111245A JP7137363B2 JP 7137363 B2 JP7137363 B2 JP 7137363B2 JP 2018111245 A JP2018111245 A JP 2018111245A JP 2018111245 A JP2018111245 A JP 2018111245A JP 7137363 B2 JP7137363 B2 JP 7137363B2
Authority
JP
Japan
Prior art keywords
substrate
measurement
height direction
positions
unevenness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018111245A
Other languages
English (en)
Other versions
JP2019215399A (ja
JP2019215399A5 (ja
Inventor
将紀 田井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018111245A priority Critical patent/JP7137363B2/ja
Priority to US16/433,229 priority patent/US11194257B2/en
Priority to KR1020190067706A priority patent/KR102555768B1/ko
Priority to CN201910498815.XA priority patent/CN110579946A/zh
Publication of JP2019215399A publication Critical patent/JP2019215399A/ja
Publication of JP2019215399A5 publication Critical patent/JP2019215399A5/ja
Application granted granted Critical
Publication of JP7137363B2 publication Critical patent/JP7137363B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、露光方法、露光装置、物品の製造方法及び計測方法に関する。
ICやLSIなどの半導体デバイス、液晶表示デバイス、CCDなどの撮像デバイス、磁気ヘッドなどのデバイスを製造する際に、原版のパターンを基板に投影する投影光学系を有する露光装置が使用されている。露光装置において、原版のパターンを精度よく基板に転写するためには、基板の表面形状による影響が少ない基準面を決定し、かかる基準面を投影光学系の結像面に高精度に配置することが重要となる。
ステップ・アンド・スキャン方式の露光装置(スキャナー)では、基板を保持する基板ステージを走査方向に駆動しながら、基板ステージに保持された基板を露光する。その際、投影光学系の結像面と基板の基準面との間の距離をフォーカスセンサで計測し、その計測結果に基づいて、基板ステージを結像面に直交する方向に駆動して基準面を結像面に逐次合わせ込む追従駆動が行われる。このような追従駆動では、基板ステージの走査中に、露光位置の前方において、投影光学系の結像面と基板の基準面との間の距離をフォーカスセンサ(先読センサ)で予め計測する(先読みする)ことが必要となる。
追従駆動では、基本的には、基板の表面形状が平坦であることを前提としている。一方、近年の基板は、多層のパターンで構成されていることがある。このような基板の表面(下地)は、凹凸を多く含む段差構造を有するため、かかる凹凸に基板ステージを追従させようとすると、基板ステージの駆動量の急峻な変動によって追従誤差が生じ、フォーカス精度が低下する。
従って、段差構造を有する基板に対して追従駆動を適用するためには、基板の表面の凹凸に対する対処が必要となる。そこで、段差構造を有する基板に対する追従駆動を改善するために、凹凸によって生じる基準面との計測オフセットを計測点ごとに管理することで、基板ステージの駆動量の急峻な変動を抑制する技術が提案されている(特許文献1参照)。
特開平9-45608号公報
しかしながら、露光装置においては、一般的に、斜入射方式のフォーカスセンサが用いられるため、フォーカスセンサから基板までの距離(フォーカス方向の位置)が変化すると、計測点が横方向にシフトすることになる。従って、従来技術のように、あるフォーカス方向の位置で計測オフセットを求めてしまうと、フォーカス方向の位置が変化した場合、計測点のシフトに起因して、凹凸によって生じる基準面との計測オフセットが正しく反映されず、追従誤差が生じてしまう。このように、従来技術では、計測点のシフトの影響に対して、フォーカス精度の低下を抑制するための有効な手段が提供されていない。
本発明は、このような従来技術の課題に鑑みてなされ、フォーカス精度の点で有利な露光方法を提供することを例示的目的とする。
上記目的を達成するために、本発明の一側面としての露光方法は、原版と基板とを走査方向に移動させながら前記基板を露光する露光方法であって、前記基板の高さ方向の複数の位置のそれぞれに前記基板を位置させて、前記複数の位置のそれぞれについて、前記基板を前記走査方向に移動させながら前記基板上の複数の計測点のそれぞれに光を斜入射させて各計測点の前記高さ方向の位置の第1計測値を計測部で取得する第1工程と、前記第1工程で取得した前記複数の位置のそれぞれにおける各計測点の第1計測値に基づいて、前記基板の面形状を求めて前記基板に存在する凹凸の位置を特定する第2工程と、前記基板を露光する際に、前記第2工程で特定した前記凹凸の位置と、前記基板を前記走査方向に移動させながら前記複数の計測点のそれぞれに光を斜入射させて前記計測部で得られる各計測点の前記高さ方向の位置の第2計測値とに基づいて、前記基板の前記高さ方向の位置が目標位置となるように前記基板を駆動する第3工程と、を有することを特徴とする。
本発明の更なる目的又はその他の側面は、以下、添付図面を参照して説明される好ましい実施形態によって明らかにされるであろう。
本発明によれば、例えば、フォーカス精度の点で有利な露光方法を提供することができる。
本発明の一側面としての露光装置の構成を示す概略図である。 基板と、フォーカス計測部の計測光との位置関係を示す図である。 投影光学系の結像面と、基板の基準面と、計測光との位置関係を示す図である。 基板上の計測点のシフトを説明するための図である。 投影光学系の結像面と、基板の基準面と、計測光との位置関係を示す図である。 基板上の計測点の一例を示す図である。 基板上の各計測点の計測値の補正を説明するための図である。 基板上の各計測点と基板の面との関係を示す図である。 基板ステージの目標位置の補正を説明するための図である。 図1に示す露光装置の動作を説明するためのフローチャートである。
以下、添付図面を参照して、本発明の好適な実施の形態について説明する。なお、各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。
図1は、本発明の一側面としての露光装置100の構成を示す概略図である。露光装置100は、原版1と基板5とを移動させながら基板5を露光(走査露光)して、原版1のパターンを基板上に転写するステップ・アンド・スキャン方式の露光装置(スキャナー)である。露光装置100は、図1に示すように、原版ステージ2と、第1計測部3と、投影光学系4と、基板ホルダ6と、基板ステージ7と、第2計測部8と、第3計測部9と、制御部10と、フォーカス計測部30とを有する。
また、本実施形態では、基板5の表面に平行な方向をXY平面とするXYZ座標系を用いて方向を示す。XYZ座標系におけるX軸、Y軸及びZ軸のそれぞれに平行な方向をX方向、Y方向及びZ方向とし、X軸周りの回転、Y軸周りの回転及びZ軸周りの回転のそれぞれをθX、θY及びθZとする。
原版ステージ2は、基板5に転写すべき微細なパターンが形成された原版1を保持する。原版ステージ2は、例えば、原版1を吸着するための吸着部(不図示)を含み、吸着部によって原版1を真空吸着することで原版1を保持する。原版ステージ2は、Y方向に移動するためのアクチュエータ(不図示)を含み、かかるアクチュエータとしては、主に、リニアモータが用いられる。
第1計測部3は、例えば、干渉計や光学式リニアエンコーダを含み、Y方向における原版ステージ2の位置を計測する。また、原版ステージ2のチルト制御を可能とするために、第1計測部3は、原版ステージ2の側面に設けられた計測面の少なくとも3箇所の位置を計測して原版ステージ2のチルト成分を取得する。第1計測部3で計測された原版ステージ2の位置は、制御部10に入力される。
原版ステージ2に保持された原版1は、照明光学系(不図示)によって照明される。原版1のパターンの像は、投影光学系4を介して縮小されて基板5に転写される。
基板ステージ7は、基板ホルダ6を介して、基板5を保持する。基板ステージ7は、基板5及び基板ホルダ6を吸着(真空吸着)するための吸着部(不図示)を含む。基板ホルダ6は、基板5の凹凸を少なくするために、基板ステージ側の面及び基板側の面の両面ともフラットに加工されている。また、基板ホルダ6は、温度変化による変形を軽減するために、セラミックスなどの温度安定性の高い材料で構成されている。基板ステージ7は、X方向、Y方向及びZ方向に移動するためのアクチュエータを含み、かかるアクチュエータとしては、リニアモータやボイスコイルモータが用いられる。
第2計測部8は、X方向及びY方向における基板ステージ7の位置を計測する。第3計測部9は、Z方向における基板ステージ7の位置を計測する。また、原版ステージ2と同様に、基板ステージ7のチルト制御を可能とするために、第2計測部8は、基板ステージ7の側面に設けられた計測面の少なくとも3箇所の位置を計測する。第2計測部8及び第3計測部9で計測された基板ステージ7の位置は、制御部10に入力される。
制御部10は、CPUやメモリなどを含むコンピュータで構成され、記憶部に記憶されたプログラムに従って露光装置100の各部を統括的に制御して露光装置100を動作させる。制御部10は、基板上の複数のショット領域のそれぞれにパターンを転写するために、原版ステージ2及び基板ステージ7を制御する。また、制御部10は、パターンを正確に結像するために、走査露光中に、フォーカス計測部30から、投影光学系4の結像面と基板5との距離、傾き及び基板5の基準面に関する情報を取得する。そして、制御部10は、基板ステージ7をZ方向に駆動して、基板5の基準面を投影光学系4の結像面に逐次合わせ込む追従駆動を行う。
フォーカス計測部30は、光源11と、投影レンズ12と、反射ミラー13及び14と、受光レンズ15と、シリンドリカルレンズ16と、ラインセンサ17と、演算部18とを含む。光源11からの光は、スリット(不図示)に投射される。スリットからの光(スリットで形成された投影マーク)は、投影レンズ12及び反射ミラー13を介して、基板5の複数の位置に一定角度で入射(斜入射)する。基板5で反射された光は、反射ミラー14及び受光レンズ15を介して、シリンドリカルレンズ16に入射する。投影レンズ12及び受光レンズ15は、テレセントリックレンズで構成されている。シリンドリカルレンズ16に入射した光は一次元に積算され、ラインセンサ17によって、各画素位置における光強度の情報が取得する。ラインセンサ17は、CCDやCMOSセンサなどで構成され、基板5で反射された光を検出する。ラインセンサ17は、スリットで形成される投影マークの数に応じて複数配置される。演算部18は、ラインセンサ17で取得された光強度の情報に基づいて、フォーカス計測部30と基板5との間の距離、傾き、基板5の基準面を演算して、制御部10に入力する。
図2は、基板5と、フォーカス計測部30の計測光(反射ミラー13で反射されて基板5に入射する光)との位置関係を示す図である。露光装置100では、基板5を走査方向(Y方向)の前後に走査(駆動)しながら基板5を露光する。そのため、フォーカス計測部30は、露光位置(露光領域)でフォーカスを計測するための計測光SCと、露光位置より走査方向に対して離れた位置でフォーカスを計測(先読み)するための計測光SF及びSBとを基板5に入射させる。ここで、フォーカスとは、基板5の高さ方向(Z方向)の位置、例えば、投影光学系4の結像面と基板5の基準面との間の距離を含む。
図3(a)及び図3(b)は、投影光学系4の結像面と、基板5の基準面と、計測光SC、SF及びSBとの位置関係を示す図である。図3(a)及び図3(b)では、露光走査中の状態を示し、基板ステージ7が+Y方向(基板5の高さ方向(Z方向)に直交する方向)に走査され、先読み計測は計測光SFで行うことを想定している。
図3(a)に示すように、基板ステージ7の走査中に、計測光SFによって、投影光学系4の結像面と基板5の基準面との間の距離ΔZを計測する。そして、図3(b)に示すように、計測光SFで計測した基板上の計測点MPが露光位置Cに到達する前に、基板ステージ7を+Z方向にΔZだけ駆動し、計測点MPが露光位置Cに到達したら露光を開始する。また、基板上の計測点MPの露光と同時に、計測光SCによって、露光位置Cでのフォーカス誤差を計測する。これらの動作を基板上の計測点の位置を変更しながら連続的に行うことで、走査露光を可能としている。
フォーカス計測部30は、斜入射方式のフォーカスセンサであるため、図4に示すように、フォーカス計測部30と基板5との間の距離が変化すると、基板上の計測点がX方向にシフトする。例えば、計測光が+X方向から入射角θで基板5に入射する場合、基板5の位置が-Z方向にΔZだけ変化すると、計測点MPは、計測点MP’で示すように、-X方向にΔX(=ΔZ/tanθ)だけシフトする。
図5(a)及び図5(b)は、基板上の計測点のシフトを詳細に説明するための図であって、投影光学系4の結像面と、基板5の基準面と、計測光SC、SF及びSBとの位置関係を示している。図5(a)及び図5(b)では、走査露光中の状態を示し、基板ステージ7が+Y方向に走査され、先読み計測は計測光SFで行うことを想定している。
図5(a)に示すように、投影光学系4の結像面と基準面との間の距離がΔZ1である場合と、投影光学系4の結像面と基準面との間の距離がΔZ2である場合とでは、それぞれ、X(ΔZ1)及びX(ΔZ2)で示すように、基板上での計測点が異なる。ここで、従来技術のように、基板5の凹凸(段差)19によって生じる基準面との計測オフセットを求めることを考える。例えば、投影光学系4の結像面と基準面との間の距離ΔZ2で計測オフセットを求めるとする。この場合、投影光学系4の結像面と基準面との間の距離ΔZ1から追従駆動を行うと、基板5の凹凸19による計測オフセットΔZ’が反映されず、図5(b)に示すように、基板ステージ7の駆動量ΔZに誤差が生じてしまう。また、投影光学系4の結像面と基準面との間の距離ΔZ1で計測オフセットを求め、投影光学系4の結像面と基準面との間の距離ΔZ2から追従駆動を行っても同様に、基板ステージ7の駆動量ΔZに誤差が生じてしまう。
そこで、本実施形態では、基板5に凹凸19が存在している場合であっても、走査露光時に高精度な追従駆動を実現し、フォーカス精度の点で有利な技術を提供する。
<第1実施形態>
図6(a)は、基板ステージ7(基板5)のZ方向の複数の位置のそれぞれにおいて、フォーカス計測部30によって計測される基板上の計測点(白点)を示す図である。図6(a)では、図2に示す計測光SF、SC及びSBのそれぞれに対応する基板上の計測点(黒点)のうち、計測光SFに対応する基板上の計測点を示している。
本実施形態では、走査露光を開始する前に、まず、基板ステージ7(基板5)がZ位置(Z方向の位置)Z(0)に位置するように基板ステージ7を駆動する。そして、基板ステージ7を+Y方向に走査しながら、基板上の各計測点にてフォーカスを計測する。この際、Z位置Z(0)における基板上の計測点は、図6(b)に示すように、(Y(0),Z(0))、(Y(1),Z(0))、・・・、(Y(4),Z(0))となる。また、フォーカス計測部30によって、各計測点に対応する計測値FZ(FZ(Y(0),Z(0))、FZ(Y(1),Z(0))、・・・、FZ(Y(4),Z(0)))を取得する。
次いで、基板ステージ7がZ位置Z(1)に位置するように基板ステージ7を駆動する。そして、基板ステージ7を+Y方向に走査しながら、基板上の各計測点にてフォーカスを計測する。この際、Z位置Z(1)における基板上の計測点は、図6(c)に示すように、(Y(0),Z(1))、(Y(1),Z(1))、・・・、(Y(4),Z(1))となる。また、フォーカス計測部30によって、各計測点に対応する計測値FZ(FZ(Y(0),Z(1))、FZ(Y(1),Z(1))、・・・、FZ(Y(4),Z(1)))を取得する。
同様に、基板ステージ7がZ位置Z(2)に位置するように基板ステージ7を駆動する。そして、基板ステージ7を+Y方向に走査しながら、基板上の各計測点にてフォーカスを計測する。この際、Z位置Z(2)における基板上の計測点は、図6(d)に示すように、(Y(0),Z(2))、(Y(1),Z(2))、・・・、(Y(4),Z(2))となる。また、フォーカス計測部30によって、各計測点に対応する計測値FZ(FZ(Y(0),Z(2))、FZ(Y(1),Z(2))、・・・、FZ(Y(4),Z(2)))を取得する。
このように、基板ステージ7(基板5)のZ位置を変化させることで、基板上の計測点がX方向にシフトする。従って、複数のZ位置に基板5を位置させて、複数のZ位置のそれぞれについて、基板をY方向に移動させながら各計測点の計測値FZを取得することで、Z位置を基準とした基板5の面形状を求めて凹凸19の位置を特定することができる。
各Z位置について基板上の各計測点の計測値FZ(第1計測値)を取得したら、以下に示すように、計測点ごとに、計測値FZと基板ステージ7(基板5)のZ位置との差分ΔFZ(計測オフセット)を求める。
ΔFZ((Y(0),Z(0))=FZ((Y(0),Z(0))-Z(0)
ΔFZ((Y(1),Z(0))=FZ((Y(1),Z(0))-Z(0)
・・・
ΔFZ((Y(4),Z(0))=FZ((Y(4),Z(0))-Z(0)
ΔFZ((Y(0),Z(1))=FZ((Y(0),Z(1))-Z(1)
ΔFZ((Y(1),Z(1))=FZ((Y(1),Z(1))-Z(1)
・・・
ΔFZ((Y(4),Z(1))=FZ((Y(4),Z(1))-Z(1)
ΔFZ((Y(0),Z(2))=FZ((Y(0),Z(2))-Z(2)
ΔFZ((Y(1),Z(2))=FZ((Y(1),Z(2))-Z(2)
・・・
ΔFZ((Y(4),Z(2))=FZ((Y(4),Z(2))-Z(2)
図7(a)は、フォーカス計測部30によって計測される基板上の各計測点の計測値FZと、第3計測部9によって計測される基板ステージ7のZ位置との関係を示す図である。図7(a)では、縦軸は、基板上の各計測点の計測値FZを示し、横軸は、基板ステージ7のZ位置を示している。図7(a)を参照するに、基板5の形状がフラットな計測点では、計測値FZとZ位置がリニアに変化している。一方、基板5に存在する凹凸19に位置する計測点(Y(2),Z(2))では、計測値FZ(Y(2),Z(2))とZ位置Z(2)との間に差分ΔFZ(Y(2),Z(2))が生じる。
図7(b)は、走査露光時にY位置(Y方向の位置)Y(2)で基板5に存在する凹凸19を計測すると仮定した場合において、基板上の各計測点の計測値FZの補正を概念的に示す図である。走査露光を開始した後に基板上の各計測点にてフォーカスを計測して取得した計測値FZ(第2計測値)と、差分ΔFZとに基づいて、各計測点の計測値FZを補正する。
例えば、基板ステージ7がY位置Y(0)及びY(1)のそれぞれに位置してフォーカスを計測する際に、基板ステージ7のZ位置がZ(0)の近傍に位置している場合を考える。この場合、以下に示すように、基板上の各計測点の計測値FZから、各計測点(Y(0),Z(0))、(Y(1),Z(0))における差分ΔFZを差し引いた値を補正後の計測値FZ’として取得する。
FZ’(Y(0),Z(0))=FZ(Y(0),Z(0))-ΔFZ(Y(0),Z(0))
FZ’(Y(1),Z(0))=FZ(Y(1),Z(0))-ΔFZ(Y(1),Z(0))
次に、基板ステージ7がY位置Y(2)に位置してフォーカスを計測する際に、基板ステージ7のZ位置がZ(2)の近傍に位置している場合を考える。この場合、以下に示すように、計測値FZを、計測点(Y(2),Z(2))での差分ΔFZで補正して、補正後の計測値FZ’を取得する。
FZ’(Y(2),Z(2))=FZ(Y(2),Z(2))-ΔFZ(Y(2),Z(2))
計測値FZ(Y(2),Z(2)には、基板5に存在する凹凸19に起因する計測誤差が含まれているが、差分ΔFZ(Y(2),Z(2))を差し引くことで計測誤差が除去される。
次に、基板ステージ7がY位置Y(3)及びY(4)のそれぞれに位置してフォーカスを計測する際に、基板ステージ7のZ位置がZ(0)の近傍に位置している場合を考える。この場合、以下に示すように、基板上の各計測点の計測値FZから、各計測点(Y(3),Z(0))、(Y(4),Z(0))における差分ΔFZを差し引いた値を補正後の計測値FZ’として取得する。
FZ’(Y(3),Z(0))=FZ(Y(3),Z(0))-ΔFZ(Y(3),Z(0))
FZ’(Y(4),Z(0))=FZ(Y(4),Z(0))-ΔFZ(Y(4),Z(0))
従って、基板上の各計測点における補正後の計測値FZ’は、以下で表される。
FZ’(Y(0),Z(0))=FZ(Y(0),Z(0))-ΔFZ(Y(0),Z(0))
FZ’(Y(1),Z(0))=FZ(Y(1),Z(0))-ΔFZ(Y(1),Z(0))
FZ’(Y(2),Z(2))=FZ(Y(2),Z(2))-ΔFZ(Y(2),Z(2))
FZ’(Y(3),Z(0))=FZ(Y(3),Z(0))-ΔFZ(Y(3),Z(0))
FZ’(Y(4),Z(0))=FZ(Y(4),Z(0))-ΔFZ(Y(4),Z(0))
本実施形態によれば、走査露光時に基板上の計測点が凹凸19にシフトしても、走査露光前に求めた差分ΔFZで計測値FZを補正することで計測誤差を除去することができる。なお、このような補正は、図2に示す計測光SF、SC及びSBのそれぞれが入射する基板上の各計測点に対して行われる。従って、露光装置100では、基板5を走査露光する際に、基板ステージ7をZ方向に駆動して基板5(の基準面)を投影光学系4の結像面に逐次合わせ込む追従駆動を高精度に行うことが可能となるため、フォーカス精度の低下を抑制することができる。
<第2実施形態>
本実施形態では、走査露光前に求めた差分ΔFZに基づいて、走査露光時における基板ステージ7の目標位置を補正する場合について説明する。基板ステージ7の目標位置を決定するためには、基板上の各計測点の計測値FZから基板5の面形状を求める必要がある。
基板5の面形状を求める際には、一般的に、最小2乗法が用いられる。図8は、基板上の各計測点と基板5の面(面形状)との関係を示す図である。図8では、基板5の面を1次の近似面とする。基板上の各計測点を(X0,Y0,Z0)、(X1,Y1,Z1)、(X2,Y2,Z2)とすると、近似面は、面(S=ax+by+c)と各計測点との距離Δz0、Δz1、Δz2が最小になる係数(a、b、c)を決定することで求められる。
図9(a)は、図2に示す計測光SFによる計測箇所S(0)、S(1)、S(2)を示す図である。上述したように、走査露光を開始する前に、基板ステージ7(基板)5がZ位置Z(0)、Z(1)及びZ(2)のそれぞれに位置するように基板ステージ7を駆動する。そして、各Z位置において、基板ステージ7を+Y方向に走査しながら、Y位置Y(0)、Y(1)、Y(2)、Y(3)のそれぞれでフォーカスを計測する。次いで、基板上の計測点(Y(0),Z(0))、(Y(1),Z(1))、・・・、(Y(4),Z(2))の計測値から基板5の面形状20を求める。
図9(b)は、Y位置Y(2)における1次の近似面と、各計測箇所S(0)、S(1)、S(2)と、基板ステージ7のZ方向の駆動量との関係を示す図である。計測点(Y(2),Z(2))を除く計測点から求められる基板5の近似面をSとする。近似面Sは、基板5に存在する凹凸19の影響を受けていないため、ここでは、基板5の基準面とする。図9(b)を参照するに、基板ステージ7の駆動量は、投影光学系4の結像面と基板5の基準面との差分ΔZoであり、走査露光時には、基板ステージ7を+Z方向にΔZoだけ駆動する。
一方、計測点(Y(2),Z(2))では、基板5に存在する凹凸19の影響を受けるため、計測箇所S(0)の計測値と基板5の基準面との間に差分ΔFZ(Y(2),Z(2))が生じ、近似面は、チルト成分θを含む近似面S’となる。ここで、Y位置Y(2)における基板ステージ7の駆動量は、投影光学系4の結像面と基板5の基準面との差分ΔZoに差分ΔFZ’(Y(2),Z(2))を加算した値となる。
図9(c)は、投影光学系4の結像面に追従するための基板ステージ7の目標位置の補正を概念的に示す図である。ここで、基板ステージ7の目標位置をTZとすると、各計測点にて目標位置TZから差分ΔFZ’を差し引いた値を補正後の目標位置TZ’とする。
例えば、基板ステージ7のZ位置がZ(0)である場合、Z位置Z(0)でフォーカスを計測して得られる計測値に基づいて、以下に示すように、基板ステージ7の目標位置TZ’を決定する。
TZ’(Y(0),Z(0))=TZ(Y(0))-ΔFZ’(Y(0),Z(0))
TZ’(Y(1),Z(0))=TZ(Y(1))-ΔFZ’(Y(1),Z(0))
TZ’(Y(2),Z(0))=TZ(Y(2))-ΔFZ’(Y(2),Z(0))
TZ’(Y(3),Z(0))=TZ(Y(3))-ΔFZ’(Y(3),Z(0))
TZ’(Y(4),Z(0))=TZ(Y(4))-ΔFZ’(Y(4),Z(0))
基板5の面形状20がフラットである場合、差分ΔFZ’はゼロとなるため、Y位置(0)、Y(1)、Y(3)及びY(4)における目標位置TZと補正後の目標位置TZ’とは一致する。
基板ステージ7のZ位置がZ(1)である場合についても、上述したのと同様となる。一方、基板ステージ7のZ位置がZ(2)である場合、基板ステージ7の目標位置TZ’は、以下に示すようになる。
TZ’(Y(0),Z(2))=TZ(Y(0))-ΔFZ’(Y(0),Z(2))
TZ’(Y(1),Z(2)=TZ(Y(1))-ΔFZ’(Y(1),Z(2))
TZ’(Y(2),Z(2))=TZ(Y(2))-ΔFZ’(Y(2),Z(2))
TZ’(Y(3),Z(2))=TZ(Y(3))-ΔFZ’(Y(3),Z(2))
TZ’(Y(4),Z(2))=TZ(Y(4))-ΔFZ’(Y(4),Z(2))
このように、基板上の計測点(Y(2),Z(2))では、基板5に存在する凹凸19に起因して、基板ステージ7の駆動量の誤差が生じるが、走査露光前に求めた差分ΔFZ’(Y(2),Z(2))で目標位置を補正することで誤差を除去することができる。従って、露光装置100では、基板5を走査露光する際に、基板ステージ7をZ方向に駆動して基板5(の基準面)を投影光学系4の結像面に逐次合わせ込む追従駆動を高精度に行うことが可能となるため、フォーカス精度の低下を抑制することができる。なお、本実施形態では、基板ステージ7のZ方向の目標位置の補正について説明したが、基板ステージ7のチルトの目標位置の補正にも適用可能である。
以下、図10を参照して、露光装置100の動作、具体的には、基板5の搬入から走査露光を終了するまでの動作について説明する。露光装置100では、走査露光を開始する前に、複数のZ方向の位置のそれぞれについて、基板5を走査しながらフォーカスを計測することで計測オフセットを決定する。
S1002では、露光装置100に基板5を搬入して、かかる基板5を基板ステージ7に保持させる。S1004では、フォーカス計測部30で計測すべき基板上の計測点を設定する。具体的には、基板上の計測点として、Y位置(Y(0)、・・・、Y(n))とZ位置(Z(0)、・・・、Z(m))との組み合わせを設定する。
S1006では、上述したように、基板ステージ7を走査しながら、フォーカス計測部30によって、S1004で設定した基板上の各計測点にてフォーカスを計測する。これにより、基板上の各計測点の計測値FZが得られる。
S1008では、S1006で得られた計測値FZに基づいて、基板5の基準面を生成する。本実施形態では、上述したように、投影光学系4の結像面の近傍のZ位置における各計測点の計測値に基づいて、基板5の基準面を生成する。S1010では、上述したように、基板上の計測点ごとに、S1006で得られた計測値FZと基板ステージ7のZ位置との差分ΔFZを求める。
S1012では、走査露光を開始する。走査露光では、基板ステージ7を走査方向に走査しながら、フォーカス計測部30によって、基板上の各計測点が露光位置に到達する前にフォーカスを計測して計測値を取得する。そして、基板上の各計測点が露光位置に到達するまでに基板ステージ7(基板5)のZ位置が目標位置に位置するように、基板ステージ7を駆動する(即ち、基板5の基準面を投影光学系4の結像面に逐次合わせ込む追従駆動を行う)。
S1014では、走査露光時における現在の基板ステージ7のY位置及びZ位置のそれぞれに対して、近傍点Y(k1)及びZ(k2)を決定する。なお、本実施形態では、近傍点Y(k1)及びZ(k2)を決定しているが、近傍点Y(k1)及びZ(k2)を決定するのではなく、現在の基板ステージ7のY位置及びZ位置を取得してもよい。
S1016では、走査露光時にフォーカス計測部30から得られる計測値FZを差分ΔFZで補正しながら基板ステージ7の追従駆動を行う。具体的には、S1010で求めた差分ΔFZのうち、S1014で決定した近傍点Y(k1)及びZ(k2)に対応する差分ΔFZ(Y(k1),Z(k2))を選択する。そして、上述したように、計測値FZ(Y(k1),Z(k2))を差分ΔFZ(Y(k1),Z(k2))で補正しながら基板ステージ7を追従駆動させる。
S1018では、基板5に対する走査露光が終了したかどうかを判定する。基板5に対する走査露光が終了している場合には、S1020に移行する。一方、基板5に対する走査露光が終了していない場合には、S1014に移行して、走査露光を継続する。
S1020では、露光装置100に全ての基板5を搬入しかたかどうかを判定する。露光装置100に全ての基板5を搬入した場合には、動作を終了する。一方、露光装置100に全ての基板5を搬入していない場合には、S1022に移行する。
S1022では、露光装置100に次の基板5を搬入して、かかる基板5を基板ステージ7に保持させ、走査露光を開始するために、S1012に移行する。同一の下地処理が行われた一連の基板(例えば、1つのロット内の基板)を走査露光する場合、基板間の下地のばらつきは少ないと考えられる。そこで、本実施形態では、一連の基板のうち最初の基板(例えば、ロット内の先頭の基板)に対して差分ΔFZを求め、最初の基板を除く基板については、最初の基板で求めた差分ΔFZを用いて計測値を補正する。この場合、全ての基板に対してフォーカスを計測して差分ΔFZを求める場合と比べて、処理時間を短縮することができる。但し、同一の下地処理が行われた一連の基板であっても、全ての基板に対してフォーカスを計測して差分ΔFZを求めるようにしてもよい(S1020のNOからS1004に移行してもよい)。
基板上の計測点に関しては、処理に要する時間や精度の影響を考慮して、その位置や数を設定するとよい。また、基板ステージ7の追従駆動を更に高精度に制御するため、各計測点の位置と差分ΔFZとを用いて、1次又は2次以上の多項式補間を行い、内挿を求めることも可能である。また、基板ステージ7の駆動可能な軸を増やし、より多くの位置の組み合わせから計測点を設定してもよい。
フォーカス計測部30に関しては、ラインセンサ17のそれぞれの特性を考慮して、ラインセンサ17ごとに差分ΔFZを求めるとよい。これにより、ラインセンサ17の特性にばらつきがある場合であっても、差分ΔFZを正確に求めることが可能となり、基板ステージ7の高精度な追従駆動を実現することができる。
本実施形態では、任意の基板で求めた差分ΔFZを、同一の厚さを有する基板に適用する場合について説明したが、各基板が有する厚さに関する影響を考慮して差分ΔFZを決定してもよい。
本発明の実施形態における物品の製造方法は、例えば、デバイス(半導体素子、磁気記憶媒体、液晶表示素子など)、カラーフィルタ、光学部品、MEMSなどの物品を製造するのに好適である。かかる製造方法は、露光装置100を用いて、上述した実施形態の露光方法によって、感光剤が塗布された基板を露光する工程と、露光された感光剤を現像する工程とを含む。また、現像された感光剤のパターンをマスクとして基板に対してエッチング工程やイオン注入工程などを行い、基板上に回路パターンが形成される。これらの露光、現像、エッチングなどの工程を繰り返して、基板上に複数の層からなる回路パターンを形成する。後工程で、回路パターンが形成された基板に対してダイシング(加工)を行い、チップのマウンティング、ボンディング、検査工程を行う。また、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、レジスト剥離など)を含みうる。本実施形態における物品の製造方法は、従来に比べて、物品の性能、品質、生産性及び生産コストの少なくとも1つにおいて有利である。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。例えば、本発明は、ステップ・アンド・スキャン方式の露光装置だけではなく、ステップ・アンド・リピート方式の露光装置(ステッパー)にも適用可能である。また、凹凸を含む基板の面形状を計測する計測方法も本発明の一側面を構成する。かかる計測方法では、上述したように、基板の高さ方向の複数の位置のそれぞれについて、基板を高さ方向に直交する方向に移動させながら基板上の各計測点の高さ方向の位置の計測値を取得する。そして、基板上の各計測点の計測値に基づいて、基板に存在する凹凸の位置を特定して基板の面形状を求める。
100:露光装置 1:原版 4:投影光学系 5:基板 10:制御部 30:フォーカス計測部

Claims (20)

  1. 原版と基板とを走査方向に移動させながら前記基板を露光する露光方法であって、
    前記基板の高さ方向の複数の位置のそれぞれに前記基板を位置させて、前記複数の位置のそれぞれについて、前記基板を前記走査方向に移動させながら前記基板上の複数の計測点のそれぞれに光を斜入射させて各計測点の前記高さ方向の位置の第1計測値を計測部で取得する第1工程と、
    前記第1工程で取得した前記複数の位置のそれぞれにおける各計測点の第1計測値に基づいて、前記基板の面形状を求めて前記基板に存在する凹凸の位置を特定する第2工程と、
    前記基板を露光する際に、前記第2工程で特定した前記凹凸の位置と、前記基板を前記走査方向に移動させながら前記複数の計測点のそれぞれに光を斜入射させて前記計測部で得られる各計測点の前記高さ方向の位置の第2計測値とに基づいて、前記基板の前記高さ方向の位置が目標位置となるように前記基板を駆動する第3工程と、
    を有することを特徴とする露光方法。
  2. 前記第1工程は、前記基板の高さ方向の前記複数の位置に対応した前記第1計測値を取得することを特徴とする請求項1に記載の露光方法。
  3. 前記第2工程は、前記第1計測値と前記基板の高さ方向の前記複数の位置との関係に基づいて、前記凹凸の位置を特定することを特徴とする請求項1又は2に記載の露光方法。
  4. 前記第2工程は、前記第1計測値と前記基板の高さ方向の前記複数の位置との差分に基づいて、前記凹凸の位置を特定することを特徴とする請求項1乃至3のうちいずれか1項に記載の露光方法。
  5. 前記複数の位置のそれぞれについて、前記第1計測値に基づいて、前記第2工程で特定した前記凹凸の位置に起因して前記第2計測値に生じる計測誤差を補正するための各計測点でのオフセットを求める第4工程を更に有し、
    前記第3工程では、前記オフセットのうち、前記第2計測値を得たときの前記基板の前記高さ方向の位置に対応するオフセットで前記第2計測値又は前記目標位置を補正することを特徴とする請求項1乃至4のうちいずれか1項に記載の露光方法。
  6. 前記第4工程では、前記複数の位置のそれぞれにおける前記各計測点の前記第1計測値と、前記複数の位置のそれぞれとの差分を、前記オフセットとして求めることを特徴とする請求項5に記載の露光方法。
  7. 前記第3工程では、前記各計測点の前記第2計測値と前記第2計測値を得たときの前記基板の前記高さ方向の位置に対応する前記各計測点でのオフセットとの差分に基づいて、前記基板の前記高さ方向の位置が前記目標位置となるように前記基板を駆動することを特徴とする請求項5又は6に記載の露光方法。
  8. 前記第3工程では、前記目標位置と前記第2計測値を得たときの前記基板の前記高さ方向の位置に対応する前記各計測点との差分を新たな目標位置とし、前記第2計測値に基づいて、前記基板の前記高さ方向の位置が前記新たな目標位置となるように前記基板を駆動することを特徴とする請求項5又は6に記載の露光方法。
  9. 前記第3工程では、前記複数の計測点のそれぞれが露光位置に到達する前に各計測点の前記第2計測値を取得し、各計測点が前記露光位置に到達するまでに前記基板の前記高さ方向の位置が前記目標位置となるように前記基板を駆動することを特徴とする請求項1乃至8のうちいずれか1項に記載の露光方法。
  10. 複数の基板を露光する場合に、
    前記複数の基板のうち、先頭の基板については前記第1工程、前記第2工程及び前記第3工程を行い、
    前記複数の基板のうち、前記先頭の基板を除く基板については、前記先頭の基板に対する前記第2工程で特定した前記凹凸の位置を用いて、前記第3工程を行うことを特徴とする請求項1乃至9のうちいずれか1項に記載の露光方法。
  11. 原版と基板とを走査方向に移動させながら前記基板を露光する露光方法であって、
    前記基板の高さ方向の複数の位置のそれぞれに前記基板を位置させて、前記複数の位置のそれぞれについて、前記基板を前記走査方向に移動させながら前記基板上の複数の計測点のそれぞれに光を斜入射させて各計測点の前記高さ方向の位置の第1計測値を取得する第1工程と、
    前記第1工程で取得した前記複数の位置のそれぞれにおける各計測点の第1計測値に基づいて、前記基板の面形状を求めて前記基板に存在する凹凸の位置を特定する第2工程と、
    前記基板を露光する際に、前記第2工程で特定した前記凹凸の位置と、前記基板を前記走査方向に移動させながら前記複数の計測点のそれぞれに光を斜入射させて得られる各計測点の前記高さ方向の位置の第2計測値とに基づいて、前記基板の前記高さ方向の位置が目標位置となるように前記基板を駆動する第3工程と、
    前記複数の位置のそれぞれについて、前記第1計測値に基づいて、前記第2工程で特定した前記凹凸の位置に起因して前記第2計測値に生じる計測誤差を補正するための各計測点でのオフセットを求める第4工程と、
    を有し、
    前記第3工程では、前記オフセットのうち、前記第2計測値を得たときの前記基板の前記高さ方向の位置に対応するオフセットで前記第2計測値又は前記目標位置を補正することを特徴とする露光方法。
  12. 原版と基板とを走査方向に移動させながら前記基板を露光する露光方法であって、
    前記基板の高さ方向の複数の位置のそれぞれに前記基板を位置させて、前記複数の位置のそれぞれについて、前記基板を前記走査方向に移動させながら前記基板上の複数の計測点のそれぞれに光を斜入射させて各計測点の前記高さ方向の位置の第1計測値を取得する第1工程と、
    前記第1工程で取得した前記複数の位置のそれぞれにおける各計測点の第1計測値と前記基板の高さ方向の前記複数の位置との差分に基づいて、前記基板の面形状を求めて前記基板に存在する凹凸の位置を特定する第2工程と、
    前記基板を露光する際に、前記第2工程で特定した前記凹凸の位置と、前記基板を前記走査方向に移動させながら前記複数の計測点のそれぞれに光を斜入射させて得られる各計測点の前記高さ方向の位置の第2計測値とに基づいて、前記基板の前記高さ方向の位置が目標位置となるように前記基板を駆動する第3工程と、
    を有することを特徴とする露光方法。
  13. 原版と基板とを走査方向に移動させながら前記基板を露光する露光装置であって、
    前記基板上の複数の計測点のそれぞれに光を斜入射させて各計測点の前記基板の高さ方向の位置の計測値を取得する計測部と、
    前記基板を露光する処理を制御する制御部と、を有し、
    前記制御部は、
    前記基板の高さ方向の複数の位置のそれぞれに前記基板を位置させて、前記複数の位置のそれぞれについて、前記基板を前記走査方向に移動させながら前記複数の計測点を前記計測部で計測して各計測点の前記高さ方向の位置の第1計測値を取得し、
    取得した前記複数の位置のそれぞれにおける各計測点の第1計測値に基づいて、前記基板の面形状を求めて前記基板に存在する凹凸の位置を特定し、
    前記基板を露光する際に、特定した前記凹凸の位置と、前記基板を前記走査方向に移動させながら前記複数の計測点を前記計測部で計測して得られる各計測点の前記高さ方向の位置の第2計測値とに基づいて、前記基板の前記高さ方向の位置が目標位置となるように前記基板を駆動する、ことを特徴とする露光装置。
  14. 前記制御部は、前記複数の位置のそれぞれについて、前記第1計測値に基づいて、前記凹凸の位置に起因して前記第2計測値に生じる計測誤差を補正するための各計測点でのオフセットを求め、
    前記オフセットのうち、前記第2計測値を得たときの前記基板の前記高さ方向の位置に対応するオフセットで前記第2計測値又は前記目標位置を補正することを特徴とする請求項13に記載の露光装置。
  15. 前記計測部は、前記複数の計測点のそれぞれで反射された光を検出する複数のセンサを含み、
    前記複数のセンサのそれぞれについて、前記オフセットを求めることを特徴とする請求項14に記載の露光装置。
  16. 原版と基板とを走査方向に移動させながら前記基板を露光する露光装置であって、
    前記基板上の複数の計測点のそれぞれに光を斜入射させて各計測点の前記基板の高さ方向の位置の計測値を取得する計測部と、
    前記基板を露光する処理を制御する制御部と、を有し、
    前記制御部は、
    前記基板の高さ方向の複数の位置のそれぞれに前記基板を位置させて、前記複数の位置のそれぞれについて、前記基板を前記走査方向に移動させながら前記複数の計測点を前記計測部で計測して各計測点の前記高さ方向の位置の第1計測値を取得し、
    取得した前記複数の位置のそれぞれにおける各計測点の第1計測値に基づいて、前記基板の面形状を求めて前記基板に存在する凹凸の位置を特定し、
    前記基板を露光する際に、特定した前記凹凸の位置と、前記基板を前記走査方向に移動させながら前記複数の計測点を前記計測部で計測して得られる各計測点の前記高さ方向の位置の第2計測値とに基づいて、前記基板の前記高さ方向の位置が目標位置となるように前記基板を駆動し、
    前記複数の位置のそれぞれについて、前記第1計測値に基づいて、特定した前記凹凸の位置に起因して前記第2計測値に生じる計測誤差を補正するための各計測点でのオフセットを求め、
    前記基板の前記高さ方向の位置が目標位置となるように前記基板を駆動する際に、前記オフセットのうち、前記第2計測値を得たときの前記基板の前記高さ方向の位置に対応するオフセットで前記第2計測値又は前記目標位置を補正する、ことを特徴とする露光装置。
  17. 原版と基板とを走査方向に移動させながら前記基板を露光する露光装置であって、
    前記基板上の複数の計測点のそれぞれに光を斜入射させて各計測点の前記基板の高さ方向の位置の計測値を取得する計測部と、
    前記基板を露光する処理を制御する制御部と、を有し、
    前記制御部は、
    前記基板の高さ方向の複数の位置のそれぞれに前記基板を位置させて、前記複数の位置のそれぞれについて、前記基板を前記走査方向に移動させながら前記複数の計測点を前記計測部で計測して各計測点の前記高さ方向の位置の第1計測値を取得し、
    取得した前記複数の位置のそれぞれにおける各計測点の第1計測値と前記基板の高さ方向の前記複数の位置との差分に基づいて、前記基板の面形状を求めて前記基板に存在する凹凸の位置を特定し、
    前記基板を露光する際に、特定した前記凹凸の位置と、前記基板を前記走査方向に移動させながら前記複数の計測点を前記計測部で計測して得られる各計測点の前記高さ方向の位置の第2計測値とに基づいて、前記基板の前記高さ方向の位置が目標位置となるように前記基板を駆動する、ことを特徴とする露光装置。
  18. 請求項13乃至17のうちいずれか1項に記載の露光装置を用いて基板を露光する工程と、
    露光した前記基板を現像する工程と、
    現像された前記基板から物品を製造する工程と、
    を有することを特徴とする物品の製造方法。
  19. 凹凸を含む基板の面形状を計測する計測方法であって、
    前記基板の高さ方向の複数の位置のそれぞれに前記基板を位置させて、前記複数の位置のそれぞれについて、前記基板を前記高さ方向に直交する方向に移動させながら前記基板上の複数の計測点のそれぞれに光を斜入射させて各計測点の前記高さ方向の位置の第1計測値を計測部で取得する第1工程と、
    前記第1工程で取得した前記複数の位置のそれぞれにおける各計測点の第1計測値に基づいて、前記凹凸の位置を特定して前記基板の面形状を求める第2工程と、
    前記第2工程で特定した前記凹凸の位置と、前記基板を前記高さ方向に直交する方向に移動させながら前記複数の計測点のそれぞれに光を斜入射させて前記計測部で得られる各計測点の前記高さ方向の位置の第2計測値とに基づいて、前記基板の高さ方向の位置が目標位置となるように前記基板を駆動する第3工程と、
    を有することを特徴とする計測方法。
  20. 凹凸を含む基板の面形状を計測する計測方法であって、
    前記基板の高さ方向の複数の位置のそれぞれに前記基板を位置させて、前記複数の位置のそれぞれについて、前記基板を前記高さ方向に直交する方向に移動させながら前記基板上の複数の計測点のそれぞれに光を斜入射させて各計測点の前記高さ方向の位置の第1計測値を取得する第1工程と、
    前記第1工程で取得した前記複数の位置のそれぞれにおける各計測点の第1計測値と前記基板の高さ方向の前記複数の位置との差分に基づいて、前記凹凸の位置を特定して前記基板の面形状を求める第2工程と、
    を有することを特徴とする計測方法。
JP2018111245A 2018-06-11 2018-06-11 露光方法、露光装置、物品の製造方法及び計測方法 Active JP7137363B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018111245A JP7137363B2 (ja) 2018-06-11 2018-06-11 露光方法、露光装置、物品の製造方法及び計測方法
US16/433,229 US11194257B2 (en) 2018-06-11 2019-06-06 Exposure method, exposure apparatus, method of manufacturing article, and measurement method
KR1020190067706A KR102555768B1 (ko) 2018-06-11 2019-06-10 노광 방법, 노광 장치, 물품 제조 방법 및 계측 방법
CN201910498815.XA CN110579946A (zh) 2018-06-11 2019-06-11 曝光方法、曝光装置、制造物品的方法以及测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018111245A JP7137363B2 (ja) 2018-06-11 2018-06-11 露光方法、露光装置、物品の製造方法及び計測方法

Publications (3)

Publication Number Publication Date
JP2019215399A JP2019215399A (ja) 2019-12-19
JP2019215399A5 JP2019215399A5 (ja) 2021-07-26
JP7137363B2 true JP7137363B2 (ja) 2022-09-14

Family

ID=68764837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018111245A Active JP7137363B2 (ja) 2018-06-11 2018-06-11 露光方法、露光装置、物品の製造方法及び計測方法

Country Status (4)

Country Link
US (1) US11194257B2 (ja)
JP (1) JP7137363B2 (ja)
KR (1) KR102555768B1 (ja)
CN (1) CN110579946A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214432A (ja) 2003-01-06 2004-07-29 Canon Inc 露光方法及び装置
WO2005096354A1 (ja) 2004-03-30 2005-10-13 Nikon Corporation 露光装置、露光方法及びデバイス製造方法、並びに面形状検出装置
JP2009092389A (ja) 2007-10-03 2009-04-30 Canon Inc 測定装置、露光装置及びデバイス製造方法
US20090296057A1 (en) 2008-05-27 2009-12-03 The Research Foundation Of State University Of New York Automated determination of height and tilt of a substrate surface within a lithography system
CN102087483A (zh) 2010-12-27 2011-06-08 中国科学院光电技术研究所 一种用于投影光刻中焦面检测的光学系统
US20130182264A1 (en) 2010-09-28 2013-07-18 Carl Zeiss Smt Gmbh Projection Exposure Tool for Microlithography and Method for Microlithographic Exposure

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3376179B2 (ja) * 1995-08-03 2003-02-10 キヤノン株式会社 面位置検出方法
JP4191923B2 (ja) * 2001-11-02 2008-12-03 株式会社東芝 露光方法および露光装置
JP4250637B2 (ja) * 2006-06-14 2009-04-08 キヤノン株式会社 走査露光装置及びデバイス製造方法
EP3418807A1 (en) 2006-08-31 2018-12-26 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JP6327861B2 (ja) * 2014-01-07 2018-05-23 キヤノン株式会社 リソグラフィ装置、リソグラフィ方法、および物品の製造方法
JP6267530B2 (ja) * 2014-02-04 2018-01-24 キヤノン株式会社 露光装置、および物品の製造方法
JP6552312B2 (ja) * 2015-07-16 2019-07-31 キヤノン株式会社 露光装置、露光方法、およびデバイス製造方法
JP6770641B2 (ja) * 2016-11-02 2020-10-14 エーエスエムエル ネザーランズ ビー.ブイ. 高さセンサ、リソグラフィ装置、及びデバイスを製造するための方法
JP6364059B2 (ja) * 2016-11-18 2018-07-25 キヤノン株式会社 露光装置、露光方法、および物品の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214432A (ja) 2003-01-06 2004-07-29 Canon Inc 露光方法及び装置
WO2005096354A1 (ja) 2004-03-30 2005-10-13 Nikon Corporation 露光装置、露光方法及びデバイス製造方法、並びに面形状検出装置
JP2009092389A (ja) 2007-10-03 2009-04-30 Canon Inc 測定装置、露光装置及びデバイス製造方法
US20090296057A1 (en) 2008-05-27 2009-12-03 The Research Foundation Of State University Of New York Automated determination of height and tilt of a substrate surface within a lithography system
US20130182264A1 (en) 2010-09-28 2013-07-18 Carl Zeiss Smt Gmbh Projection Exposure Tool for Microlithography and Method for Microlithographic Exposure
CN102087483A (zh) 2010-12-27 2011-06-08 中国科学院光电技术研究所 一种用于投影光刻中焦面检测的光学系统

Also Published As

Publication number Publication date
JP2019215399A (ja) 2019-12-19
CN110579946A (zh) 2019-12-17
US11194257B2 (en) 2021-12-07
KR20190140408A (ko) 2019-12-19
US20190377269A1 (en) 2019-12-12
KR102555768B1 (ko) 2023-07-17

Similar Documents

Publication Publication Date Title
JP3376179B2 (ja) 面位置検出方法
JP5498243B2 (ja) 露光装置、露光方法及びデバイス製造方法
JPS6028137B2 (ja) 工作物上にマスクをコピ−する方法
US9639008B2 (en) Lithography apparatus, and article manufacturing method
JP3880155B2 (ja) 位置決め方法及び位置決め装置
US5981116A (en) Alignment in a projection exposure method
JP4280523B2 (ja) 露光装置及び方法、デバイス製造方法
CN109100920B (zh) 曝光装置以及物品的制造方法
JP4125177B2 (ja) 露光装置
KR102222673B1 (ko) 노광 장치 및 물품 제조 방법
US10488764B2 (en) Lithography apparatus, lithography method, and method of manufacturing article
JPH09223650A (ja) 露光装置
JP2010087310A (ja) 露光装置およびデバイス製造方法
JP7137363B2 (ja) 露光方法、露光装置、物品の製造方法及び計測方法
JP4174324B2 (ja) 露光方法及び装置
JP3754743B2 (ja) 表面位置設定方法、ウエハ高さ設定方法、面位置設定方法、ウエハ面位置検出方法および露光装置
JP3428825B2 (ja) 面位置検出方法および面位置検出装置
KR100405398B1 (ko) 기판의위치결정방법
JPH09236425A (ja) 面位置検出方法
JPH11168050A (ja) 露光方法及び装置
JP2009194247A (ja) 露光装置
JPH1064808A (ja) マスクの位置合わせ方法及び投影露光方法
JP2023077924A (ja) 露光装置、露光方法、および物品製造方法
JP2024066628A (ja) 露光装置、露光方法、及び物品の製造方法
JP6053316B2 (ja) リソグラフィー装置、および、物品製造方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220902

R151 Written notification of patent or utility model registration

Ref document number: 7137363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151