JP7125767B2 - Bending detection sensor - Google Patents

Bending detection sensor Download PDF

Info

Publication number
JP7125767B2
JP7125767B2 JP2019560916A JP2019560916A JP7125767B2 JP 7125767 B2 JP7125767 B2 JP 7125767B2 JP 2019560916 A JP2019560916 A JP 2019560916A JP 2019560916 A JP2019560916 A JP 2019560916A JP 7125767 B2 JP7125767 B2 JP 7125767B2
Authority
JP
Japan
Prior art keywords
detection sensor
metal plate
rolled alloy
young
modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019560916A
Other languages
Japanese (ja)
Other versions
JPWO2019124019A1 (en
Inventor
有 古谷野
熙榮 金
太希 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tsukuba NUC
Original Assignee
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tsukuba NUC filed Critical University of Tsukuba NUC
Publication of JPWO2019124019A1 publication Critical patent/JPWO2019124019A1/en
Application granted granted Critical
Publication of JP7125767B2 publication Critical patent/JP7125767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/28Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

この発明は、被測定対象の曲率の変化量や変化方向と力を検出可能な湾曲検出センサに関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a curvature detection sensor capable of detecting the amount of change in the curvature of an object to be measured, the direction of change, and force.

従来、一般的に知られている歪ゲージ(湾曲検出センサ)として、金属歪ゲージや半導体歪ゲージが挙げられる。このうち、金属歪ゲージは、例えば、樹脂フィルムなど薄い絶縁層上に、抵抗体となる金属線(金属箔)をジグザグのパターンで形成したものが挙げられる(例えば、特許文献1を参照)。こうした金属歪ゲージを被測定対象に貼り付けるなどして、被測定対象が変形すると、変形に応じて金属線も伸縮し、金属線の電気抵抗値が変化する。こうした電気抵抗値の変化を検出することで、被測定対象の歪を測定することができる。 Metal strain gauges and semiconductor strain gauges are conventionally known strain gauges (bending detection sensors). Among them, the metal strain gauge includes, for example, a metal wire (metal foil) as a resistor formed in a zigzag pattern on a thin insulating layer such as a resin film (see, for example, Patent Document 1). When the object to be measured is deformed by attaching such a metal strain gauge to the object to be measured, the metal wire also expands and contracts according to the deformation, and the electrical resistance value of the metal wire changes. The strain of the object to be measured can be measured by detecting such a change in electrical resistance.

また、半導体歪ゲージは、半導体の電気抵抗率が加えられた応力に応じて変化するピエゾ抵抗効果を利用したものであり、被測定対象の変形に対応して半導体が変形すると、半導体の結晶構造の変形によって電子の運動ポテンシャルが変化する。これにより、半導体中のキャリヤの移動度が変化し、電気抵抗が変化するので、この電気抵抗の変化を検出することで、被測定対象の歪を測定することができる。 In addition, the semiconductor strain gauge utilizes the piezoresistive effect in which the electrical resistivity of the semiconductor changes according to the stress applied. The deformation of the electron changes the kinetic potential of the electron. As a result, the mobility of carriers in the semiconductor changes and the electrical resistance changes, so the strain of the object to be measured can be measured by detecting the change in electrical resistance.

特開2016-125977号公報JP 2016-125977 A

しかしながら、従来の歪ゲージは、曲率が大きく変化する被測定対象に対しては、変形を測定することが難しいという課題があった。例えば、人体の関節の動きなど、大きな曲率で角度が直角以上に反復して繰り返し変形する被測定対象を従来の歪ゲージで検出することは困難である。例えば、従来の金属歪ゲージに用いられている抵抗体金属は弾性限が低い(最大でも0.7%程度)ため、人体の関節のような大きな曲げを与えると塑性変形を起こし、抵抗体金属が不可逆な変形をしてしまう。 However, the conventional strain gauge has a problem that it is difficult to measure the deformation of an object whose curvature changes greatly. For example, it is difficult for a conventional strain gauge to detect an object to be measured, such as the motion of a joint of a human body, which repeatedly deforms with a large curvature and an angle greater than a right angle. For example, since the resistive metal used in conventional metal strain gauges has a low elastic limit (maximum of about 0.7%), plastic deformation occurs when a large bending such as that of a human joint is applied. undergoes irreversible deformation.

一方、従来の半導体歪ゲージに用いられている半導体材料の多くは脆性材料であるため、人体の関節のような大きな曲げを追従することは困難である。
このため、大きな曲率で大角度の曲げを繰り返す被測定対象の変形を正確に測定することが可能な湾曲検出センサが望まれていた。また、被測定対象に加えられる力(応力)を正確に測定することが可能な湾曲検出センサが望まれていた。
On the other hand, since most of the semiconductor materials used in conventional semiconductor strain gauges are brittle materials, it is difficult for them to follow large bending such as the joints of the human body.
For this reason, there has been a demand for a curvature detection sensor that can accurately measure deformation of an object to be measured that repeatedly bends at a large curvature and at a large angle. Further, there has been a demand for a curvature detection sensor that can accurately measure the force (stress) applied to the object to be measured.

本発明は、前述した状況に鑑みてなされたものであって、曲率変化の大きな被測定対象に対して、歪を繰り返し正確に測定可能な湾曲検出センサを提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a curvature detection sensor capable of repeatedly and accurately measuring strain on an object to be measured having a large change in curvature.

発明者は、近年新たに見出された弾性限が3%に達する合金による圧延合金板を湾曲検出センサに適用することで、大きな曲率変化が繰り返し生じる被測定対象の歪を正確に測定できることを見出した。
すなわち、本発明の湾曲検出センサは、以下の構成を有する。
弾性限が1%以上で、ヤング率が互いに異なる第1金属板と第2金属板とを接合してなることを特徴とする。
The inventors have found that by applying a rolled alloy plate made of an alloy newly discovered in recent years whose elastic limit reaches 3% to a curvature detection sensor, it is possible to accurately measure the strain of an object to be measured in which large curvature changes occur repeatedly. Found it.
That is, the curvature detection sensor of the present invention has the following configuration.
A first metal plate and a second metal plate having an elastic limit of 1% or more and different Young's moduli are joined together.

また、本発明では、前記第1金属板のヤング率が40GPa以下で、かつ前記第2金属板のヤング率が40GPaよりも大きくてもよい。 Moreover, in the present invention, the Young's modulus of the first metal plate may be 40 GPa or less, and the Young's modulus of the second metal plate may be greater than 40 GPa.

また、本発明では、前記第2金属板は、ヤング率が50GPa以上であってもよい。 Further, in the present invention, the second metal plate may have a Young's modulus of 50 GPa or more.

また、本発明では、前記第1金属板および前記第2金属板の弾性限は、1.2%以上であってもよい。 Further, in the present invention, the elastic limits of the first metal plate and the second metal plate may be 1.2% or more.

また、本発明では、前記第1金属板および前記第2金属板は、Ti-Nb基合金からなっていてもよい。 Moreover, in the present invention, the first metal plate and the second metal plate may be made of a Ti—Nb based alloy.

また、本発明では、前記第1金属板と前記第2金属板とは、複数のスポット溶接部によって接合されていてもよい。 Further, in the present invention, the first metal plate and the second metal plate may be joined by a plurality of spot welds.

また、本発明では、前記第1金属板および前記第2金属板は、圧延合金板であってもよい。 Further, in the present invention, the first metal plate and the second metal plate may be rolled alloy plates.

また、本発明の別な湾曲検出センサは、以下の構成を有する。
弾性限が1%以上で、かつヤング率が互いに同じで、比抵抗が互いに異なる第3金属板と第4金属板とを接合してなることを特徴とする。
Another curvature detection sensor of the present invention has the following configuration.
A third metal plate and a fourth metal plate having an elastic limit of 1% or more, the same Young's modulus, and different specific resistances are joined together.

本発明の湾曲検出センサによれば、曲率変化の大きな被測定対象に生じる歪および加えられる力を繰り返し正確に測定可能な湾曲検出センサを提供することが可能になる。 According to the curvature detection sensor of the present invention, it is possible to provide a curvature detection sensor capable of repeatedly and accurately measuring strain and force applied to an object to be measured having a large change in curvature.

本発明の湾曲検出センサを示す断面図である。1 is a cross-sectional view showing a bending detection sensor of the present invention; FIG. 本発明の湾曲検出センサを用いた歪の測定形態の示す説明図である。FIG. 4 is an explanatory diagram showing a strain measurement form using the curvature detection sensor of the present invention; 本発明の実施例に係るグラフである。It is a graph concerning the example of the present invention. 本発明の実施例に係るグラフである。It is a graph concerning the example of the present invention. 本発明の実施例に係るグラフである。It is a graph concerning the example of the present invention.

以下、図面を参照して、本発明の一実施形態の湾曲検出センサについて説明する。なお、以下に示す各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。 A curvature detection sensor according to an embodiment of the present invention will be described below with reference to the drawings. It should be noted that each embodiment shown below is specifically described for better understanding of the gist of the invention, and does not limit the invention unless otherwise specified. In addition, in the drawings used in the following description, in order to make it easier to understand the features of the present invention, there are cases where the main parts are enlarged for convenience, and the dimensional ratio of each component is the same as the actual one. not necessarily.

図1は、本発明の一実施形態の湾曲検出センサを示す断面図である。
本発明の湾曲検出センサ10は、第1金属板である第1圧延合金板(第1金属板)11と、第2金属板である第2圧延合金板(第2金属板)12とを直接接合した板バネ状の部材である。
第1圧延合金板11は、例えば、弾性限が3%、ヤング率が30GPaのTi-Nb基合金を圧延成形した板材からなる。また、第2圧延合金板12は、例えば、弾性限が1.5%、ヤング率が70GPaのTi-Nb基合金を圧延成形した板材からなる。
なお、本実施形態では、第1金属板および第2金属板として圧延合金板を用いているが、これ以外の製法で形成された板状の単体金属または合金であってもよく、限定されるものでは無い。
FIG. 1 is a cross-sectional view showing a curvature detection sensor according to one embodiment of the present invention.
The bending detection sensor 10 of the present invention directly connects a first rolled alloy plate (first metal plate) 11, which is a first metal plate, and a second rolled alloy plate (second metal plate) 12, which is a second metal plate. It is a joined leaf spring-like member.
The first rolled alloy plate 11 is made of, for example, a plate material obtained by rolling a Ti—Nb-based alloy having an elastic limit of 3% and a Young's modulus of 30 GPa. The second rolled alloy plate 12 is made of, for example, a plate material obtained by rolling a Ti—Nb-based alloy having an elastic limit of 1.5% and a Young's modulus of 70 GPa.
In this embodiment, a rolled alloy plate is used as the first metal plate and the second metal plate. nothing.

本実施形態においては、第1圧延合金板11および第2圧延合金板12は、それぞれ幅3mm、長さ30mm、厚さ0.1mmの短冊状に形成されている。 In this embodiment, the first rolled alloy plate 11 and the second rolled alloy plate 12 are each formed in a strip shape with a width of 3 mm, a length of 30 mm, and a thickness of 0.1 mm.

第1圧延合金板11と第2圧延合金板12とは、スポット溶接によって、互いに直接接合されている。本実施形態では、第1圧延合金板11および第2圧延合金板12の長手方向に沿って、7.5mm間隔で2箇所のスポット溶接による接合部13(図2を参照)を形成している。 The first rolled alloy plate 11 and the second rolled alloy plate 12 are directly joined to each other by spot welding. In this embodiment, along the longitudinal direction of the first rolled alloy plate 11 and the second rolled alloy plate 12, two joints 13 (see FIG. 2) are formed by spot welding at intervals of 7.5 mm. .

例えば、2枚の合金板の全体を溶接したり、ロウ付けによって接合すると、接合時の熱によって合金の金属組織が破壊され、所期の特性が得られない懸念があるが、本実施形態のように、第1圧延合金板11と第2圧延合金板12とを局所的なスポット溶接によって接合することで、第1圧延合金板11および第2圧延合金板12を構成するTi-Nb基合金の金属組織を殆ど破壊せずに接合することができる。 For example, when two alloy plates are entirely welded or joined by brazing, the metal structure of the alloy is destroyed by the heat during joining, and there is a concern that the desired characteristics cannot be obtained. As such, by joining the first rolled alloy plate 11 and the second rolled alloy plate 12 by local spot welding, the Ti—Nb-based alloy constituting the first rolled alloy plate 11 and the second rolled alloy plate 12 can be joined with almost no destruction of the metal structure.

なお、第1圧延合金板11と第2圧延合金板12とを接合する接合方法の一例であるスポット溶接は、点状に溶接したり線状や面状に溶接するなど、各種溶接形状にすることができ、スポット溶接の形状や配列は限定されるものでは無い。 In addition, spot welding, which is an example of a joining method for joining the first rolled alloy plate 11 and the second rolled alloy plate 12, is made into various welding shapes such as spot welding, linear welding, and planar welding. The shape and arrangement of the spot welds are not limited.

図2に示すように、このような構成の湾曲検出センサ10の両端にそれぞれ電流端子T1,T2を設けて電流を印加し、また、スポット溶接を行った2箇所の接合部13にそれぞれ電圧端子S1,S2を設けて、この電圧端子S1と電圧端子S2との間の電圧を測定する。
なお、図2においては、直流電流によって測定する例を示しているが、交流電流やパルス電流を用いても測定することができる。
また、本実施形態では、電流端子T1,T2は、電圧端子S1,S2よりも長手方向の外側に設けているが、電流端子T1,T2の位置は限定されるものでは無く、例えば、電圧端子S1と電圧端子S2との間に電流端子T1,T2に設けることもできる。
As shown in FIG. 2, current terminals T1 and T2 are provided at both ends of the bending detection sensor 10 configured as described above to apply a current, and voltage terminals are connected to the two spot-welded joints 13, respectively. S1 and S2 are provided and the voltage between the voltage terminals S1 and S2 is measured.
Although FIG. 2 shows an example of measurement using a direct current, measurement can also be performed using an alternating current or a pulse current.
In this embodiment, the current terminals T1 and T2 are provided outside the voltage terminals S1 and S2 in the longitudinal direction, but the positions of the current terminals T1 and T2 are not limited. Current terminals T1 and T2 can also be provided between S1 and voltage terminal S2.

そして、例えば、湾曲検出センサ10の長手方向を屈曲させると、ヤング率が30GPaの第1圧延合金板11が、ヤング率が70GPaの第2圧延合金板12よりも大きく変形する。このように、第1圧延合金板11と第2圧延合金板12とが非対称に変形することにより湾曲検出センサ10の電気抵抗値が変化する。湾曲検出センサ10の屈曲前と屈曲後との電圧端子S1と電圧端子S2との間の電圧値の変化量(ΔV)や変化方向(ΔVの正負)を検出することによって、湾曲検出センサ10の曲率や屈曲方向を検出することができる。 For example, when the bending detection sensor 10 is bent in the longitudinal direction, the first rolled alloy plate 11 with a Young's modulus of 30 GPa deforms more than the second rolled alloy plate 12 with a Young's modulus of 70 GPa. As described above, the first rolled alloy plate 11 and the second rolled alloy plate 12 deform asymmetrically, thereby changing the electric resistance value of the bending detection sensor 10 . By detecting the amount of change (ΔV) and the direction of change (positive or negative of ΔV) in the voltage value between the voltage terminal S1 and the voltage terminal S2 of the bending detection sensor 10 before and after bending, the bending detection sensor 10 can be detected. Curvature and bending direction can be detected.

本発明の湾曲検出センサ10によれば、互いに力学特性、即ちヤング率が異なり、かつ弾性限が1%以上、例えば3%といった高弾性限の第1圧延合金板11と第2圧延合金板12とをスポット溶接で接合して湾曲検出センサ10を構成することによって、湾曲検出センサ10に加わった歪、例えば曲げ変形による曲率の検出とともに、曲げ方向の検出もできる。 According to the bending detection sensor 10 of the present invention, the first rolled alloy plate 11 and the second rolled alloy plate 12 have different mechanical properties, that is, Young's modulus, and have a high elastic limit of 1% or more, for example, 3%. By forming the curvature detection sensor 10 by spot welding, it is possible to detect not only the strain applied to the curvature detection sensor 10, for example, the curvature due to bending deformation, but also the bending direction.

また、本発明の湾曲検出センサ10によれば、弾性限が1%以上、例えば3%といった高弾性限の圧延合金板を用いることにより、従来の弾性限が0.7%程度であった金属材料を用いた歪ゲージでは塑性変形によって金属抵抗線が永久変形してしまうような高曲率の被測定物にも対応することできる。また、繰り返し屈曲などによっても第1圧延合金板11や第2圧延合金板12の破断が生じにくいため、反復して屈曲を繰り返す被測定対象にも適用できる。 In addition, according to the bending detection sensor 10 of the present invention, by using a rolled alloy plate with a high elastic limit of 1% or more, for example, 3%, metal with a conventional elastic limit of about 0.7% can be used. A strain gauge using a material can be applied to an object to be measured having a high curvature such that a metal resistance wire is permanently deformed by plastic deformation. In addition, since breakage of the first rolled alloy plate 11 and the second rolled alloy plate 12 is less likely to occur due to repeated bending, the present invention can be applied to objects to be measured that repeatedly bend repeatedly.

また、本発明の湾曲検出センサ10は材料の弾性範囲で動作するため、変形と応力の間には線型関係が成立する。よって、湾曲検出センサ10に作用している力を計測することができる。これにより、本発明の湾曲検出センサ10は、曲げ応力を測定するセンサとして用いることができる。 Also, since the bend detection sensor 10 of the present invention operates in the elastic range of the material, a linear relationship is established between deformation and stress. Therefore, the force acting on the bending detection sensor 10 can be measured. Thereby, the bending detection sensor 10 of the present invention can be used as a sensor for measuring bending stress.

また、本発明の湾曲検出センサ10によれば、弾性限が1%以上、例えば3%といった高弾性限の圧延合金板を用いているため、湾曲検出センサ10を歪検出のセンサと、板バネの機能を兼ねた部材として用いることができ、機械部品として用いれば、構造の簡略化を実現できる。更に、本発明の湾曲検出センサ10は、非線形性やヒステリシスがないため、振動検出センサとして用いることもできる。 Further, according to the bending detection sensor 10 of the present invention, a rolled alloy plate having a high elastic limit of 1% or more, for example, 3% is used. It can be used as a member that also has the function of , and if used as a mechanical part, the structure can be simplified. Furthermore, since the curvature detection sensor 10 of the present invention has no nonlinearity or hysteresis, it can also be used as a vibration detection sensor.

また、本発明の湾曲検出センサ10の第1圧延合金板11や第2圧延合金板12は、いずれも構成材料が金属であり、金属以外の材料を含まないので、超高真空などの環境においても用いることが可能である。また、湾曲検出センサ10の構成材料が金属であるために電気的に低インピーダンスであり、1V以下の低電圧でも歪を測定可能である。低インピーダンス素子であるから電気伝導度が低い水や有機溶媒中でも動作させることができる。
そして、本発明の湾曲検出センサ10は、2枚の圧延合金板を接合した構成のため、安価に、かつ容易に製造することができる。
In addition, since the first rolled alloy plate 11 and the second rolled alloy plate 12 of the bending detection sensor 10 of the present invention are both made of metal and do not contain materials other than metal, they can be used in an environment such as an ultra-high vacuum. can also be used. In addition, since the bending detection sensor 10 is made of metal, it has an electrically low impedance, and strain can be measured even at a low voltage of 1 V or less. Since it is a low-impedance device, it can be operated even in water or organic solvents, which have low electrical conductivity.
Further, since the bending detection sensor 10 of the present invention is configured by joining two rolled alloy plates, it can be manufactured inexpensively and easily.

なお、本発明の湾曲検出センサは、上述した実施形態に限定されるものでは無い。
例えば、互いに接合する2枚の圧延合金板は、少なくとも弾性限が1%以上で、一方のヤング率が40GPa以下、他方のヤング率が40GPaよりも大きい合金を用いればよく、Ti-Nb基の合金に限定されるものでは無い。
In addition, the curvature detection sensor of the present invention is not limited to the embodiment described above.
For example, the two rolled alloy plates to be joined to each other may use an alloy having at least an elastic limit of 1% or more, one having a Young's modulus of 40 GPa or less, and the other having a Young's modulus of 40 GPa or more. It is not limited to alloys.

また、上述した湾曲検出センサ10の形状は一例であり、こうした短冊状以外にも、被測定対象に合わせて任意の形状に形成することができる。
また、上述した湾曲検出センサ10では、第1圧延合金板11と第2圧延合金板12との接合方法としてスポット溶接を挙げているが、第1圧延合金板11や第2圧延合金板12を構成する合金の金属組織を全体的に破壊する方法でなければ、各種接合方法を採用することができ、接合方法を限定するものでは無い。例えば、接合方法として、接着剤による接合などを用いることができる。
Moreover, the shape of the curvature detection sensor 10 described above is an example, and it can be formed in any shape other than such a strip shape according to the object to be measured.
Further, in the above-described curvature detection sensor 10, spot welding is used as a method for joining the first rolled alloy plate 11 and the second rolled alloy plate 12, but the first rolled alloy plate 11 and the second rolled alloy plate 12 are Various joining methods can be employed as long as the method does not destroy the metal structure of the alloy constituting the joint, and the joining method is not limited. For example, as a bonding method, bonding with an adhesive or the like can be used.

また、上述した湾曲検出センサ10は、ヤング率が異なる2枚の圧延合金板を接合したものから構成されているが、ヤング率が異なる3枚以上の圧延合金板を接合させた構成にすることもできる。 In addition, the above-described bending detection sensor 10 is configured by joining two rolled alloy plates with different Young's moduli, but it may be configured by joining three or more rolled alloy plates with different Young's moduli. can also

本発明の湾曲検出センサは、弾性限が1%以上で、かつヤング率が互いに同じで、比抵抗が互いに異なる第3圧延合金板(第3金属板)と第4圧延合金板(第4金属板)とを互いに接合したものから構成することもできる。こうしたヤング率が互いに同じで、比抵抗が互いに異なる湾曲検出センサであっても、上述した湾曲検出センサ10と同様に、湾曲検出センサに加わった歪、例えば曲げ変形による曲率の検出とともに、曲げ方向の検出もできる。また、曲げ応力を測定する湾曲検出センサとして用いることができる。 The bending detection sensor of the present invention includes a third rolled alloy plate (third metal plate) and a fourth rolled alloy plate (fourth metal plate) having an elastic limit of 1% or more, the same Young's modulus, and different specific resistances. It can also be constructed by joining two plates together. Even if these bending detection sensors have the same Young's modulus and different specific resistances, as with the bending detection sensor 10 described above, the strain applied to the bending detection sensor, for example, the curvature due to bending deformation, is detected and the bending direction is detected. can also be detected. Moreover, it can be used as a bending detection sensor for measuring bending stress.

以上、本発明の実施形態を説明したが、これら実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and spirit of the invention, as well as the scope of the invention described in the claims and equivalents thereof.

以下、本発明の湾曲検出センサの発明に係る考察と実験例を示す。
金属試料に張力あるいは一軸性圧力を作用させると、試料の長さと断面積が変化するために電気抵抗が変化する。張力が作用すれば抵抗が上昇し、圧縮力が作用すれば抵抗が下がる。試料が通常の金属であれば弾性限が最大で0.7%程度であるため、電気抵抗が1%程度変化するほど応力を加えると塑性変形が起こり、応力を取り除いても試料形状が元に戻らない。
Hereinafter, considerations and experimental examples relating to the invention of the curvature detection sensor of the present invention will be shown.
When tension or uniaxial pressure is applied to a metal sample, the electrical resistance changes due to changes in the length and cross-sectional area of the sample. If tension is applied, the resistance increases, and if compressive force is applied, the resistance decreases. If the sample is a normal metal, the maximum elastic limit is about 0.7%, so if stress is applied enough to change the electrical resistance by about 1%, plastic deformation will occur. Dont return.

ここで弾性限が非常に大きい材料、例えば、最近見出された弾性限が3%程度に達するTi-Nb基合金を用いれば、繰り返し応力による形状の変化を電気抵抗値の測定で連続的に検出する湾曲検出センサを作製することができる。ヒステリシスが生じない弾性限以下の変形で使うため、応力と電気抵抗の間には線形の関係が成り立つので、電気抵抗で形状変化のみならず、応力も測定することが可能になる。 Here, if a material with a very large elastic limit, for example, a recently discovered Ti—Nb-based alloy with an elastic limit reaching about 3% is used, the change in shape due to repeated stress can be continuously measured by measuring the electrical resistance value. A bend detection sensor can be made to detect. Since deformation below the elastic limit does not cause hysteresis, there is a linear relationship between stress and electrical resistance, so it is possible to measure not only shape change but also stress by electrical resistance.

この場合、半導体材料と比べて数桁違いに比抵抗が小さい金属を使うので電気抵抗が小さく、測定に高電圧が不要になる。静電容量やインダクタンスを含まない純粋な電気抵抗値の変化を検出するため、交流でも直流でも測定可能となる。試料の変形に対応して電気抵抗が変化するために追従性が良好で、機械的な振動も検出することが可能になる。本発明の湾曲検出センサのように、ヤング率が大幅に異なる2つの金属板、例えば2つの圧延合金板(金属板)を接合した場合、屈曲させた際の内側と外側とで変形量が不釣り合いになるため、接合した圧延合金板全体の電気抵抗値に変化が生じる。 In this case, since a metal with a specific resistance that is several orders of magnitude lower than that of semiconductor materials is used, the electrical resistance is low, and high voltage is not required for measurement. Since it detects changes in pure electrical resistance that does not include capacitance or inductance, it can measure both AC and DC. Since the electrical resistance changes according to the deformation of the sample, it has good followability and can detect mechanical vibrations. As in the bending detection sensor of the present invention, when two metal plates having significantly different Young's moduli, such as two rolled alloy plates (metal plates), are joined together, the amount of deformation between the inside and the outside when bent is inadequate. Because of the balance, the electrical resistance value of the entire joined rolled alloy plate changes.

次に、抵抗値の変化を試算する。高ヤング率の圧延合金板の抵抗をR、低ヤング率の圧延合金板の抵抗をRとする。ここで、試算を容易にするために、試料を曲げ伸ばした時に高ヤング率の圧延合金板は伸縮せず、低ヤング率の圧延合金板だけがa=(1+δ)倍に長さが変わり、断面積は変わらないと見なす。2枚の圧延合金板の間に絶縁層を挟んで並列接続した時の合成抵抗Rは、式(1)となる。

Figure 0007125767000001
Next, a trial calculation is made of the change in the resistance value. Let RH be the resistance of the high Young's modulus rolled alloy plate, and RL be the resistance of the low Young's modulus rolled alloy plate. Here, in order to facilitate the trial calculation, the high Young's modulus rolled alloy plate does not expand and contract when the sample is bent and stretched, and only the low Young's modulus rolled alloy plate changes in length a = (1 + δ) times, Assume that the cross-sectional area remains unchanged. The combined resistance R when two rolled alloy plates are connected in parallel with an insulating layer sandwiched between them is given by the following equation (1).
Figure 0007125767000001

また、試料の変形前の抵抗との比は式(2)である。

Figure 0007125767000002
Also, the ratio to the resistance before deformation of the sample is given by equation (2).
Figure 0007125767000002

ここで、R=R=Rと簡略化すると式(3)となり、長さ変化率δの半分の抵抗変化が得られることがわかる。

Figure 0007125767000003
Here, simplifying as R H =R L =R 0 yields formula (3), and it can be seen that a resistance change that is half the length change rate δ can be obtained.
Figure 0007125767000003

ここで、R=1.2RとしてδとΔの関係をプロットすると図3に示すグラフとなる。このグラフによれば、およそδの半分程度の抵抗変化が得られることがわかる。Here, when the relationship between δ and Δ is plotted with R L =1.2R H , the graph shown in FIG. 3 is obtained. According to this graph, it can be seen that a resistance change about half of δ can be obtained.

以上の様な構造で湾曲検出センサーを作成し、2枚の圧延合金板の両端だけを固着させて、大きく曲げ変形をさせると、圧縮力が作用する側の板が座屈するため一方の圧延合金板の長さが縮まず、期待された抵抗変化が得られなかった。次に、座屈を防ぐために絶縁層をn等分し、切れ目で2枚の圧延合金板を固着したときの合成抵抗を求める。この場合、抵抗R/nとR/nが絶縁層の隙間で並列接続されたブロックがn個直列に接続された回路と等価である。したがって、合成抵抗は式(4)となり元の合成抵抗と全く変わらない。

Figure 0007125767000004
When a bending detection sensor is created with the structure described above, and only the two ends of the two rolled alloy plates are fixed to each other and subjected to a large bending deformation, the plate on the side where the compressive force acts buckles, so one of the rolled alloy plates is bent. The length of the plate did not shrink, and the expected resistance change was not obtained. Next, in order to prevent buckling, the insulating layer is divided into n equal parts, and the combined resistance when two rolled alloy plates are fixed at the cut is obtained. In this case, it is equivalent to a circuit in which n blocks in which resistors R H /n and R L /n are connected in parallel through gaps between insulating layers are connected in series. Therefore, the combined resistance is given by equation (4), which is completely the same as the original combined resistance.
Figure 0007125767000004

式(4)に示すように、合成抵抗は絶縁層の分割数nに依存しないので、座屈を防止するに必要な数だけ固定点を作ってもよい。必要であればn->∞として、絶縁層なしで2枚の圧延合金板どうしを密着させても結果は同じである。従って、絶縁層は不要であり、座屈を防ぐために2枚の圧延合金板を直接貼り合わせて湾曲検出センサーを作製できる。 As shown in equation (4), the combined resistance does not depend on the number n of divisions of the insulating layer, so as many fixing points as necessary to prevent buckling may be created. If necessary, the result is the same even if two rolled alloy plates are brought into close contact with each other without an insulating layer by setting n->∞. Therefore, an insulating layer is not required, and the bending detection sensor can be manufactured by directly bonding two rolled alloy plates to prevent buckling.

2枚の圧延合金板は接着剤やロウ付けで接合しても良いが、曲げたときに剥離せず、熱で材料の組織(力学特性)にダメージを与えない固着方法を用いる必要がある。本実施例では、2枚の圧延合金板どうしの接合にスポット溶接を用いた。スポット溶接によれば、局所的に温度が上がるが、他の大部分に影響を与えないので、材料特性への影響が小さい。また、ボルト締めなどによる接合と異なり、接合のために形状が大きくならず、コンパクトであるからセンサー作製に適している。 Two rolled alloy plates may be joined by an adhesive or brazing, but it is necessary to use a fixing method that does not cause separation when bent and does not damage the structure (mechanical properties) of the material due to heat. In this example, spot welding was used to join two rolled alloy plates. With spot welding, although the temperature rises locally, it has little effect on the material properties because it does not affect most of the other parts. In addition, unlike joining by bolting, etc., the shape does not become large due to joining, and it is compact, making it suitable for sensor fabrication.

平面状にした2枚の圧延合金板どうしを重ねてスポット溶接しても良いが、2枚の圧延合金板を屈曲させた状態で溶接すれば、屈曲させた状態を応力ゼロ、変形ゼロの基点にできる。湾曲検出センサーの長さが不足する場合は複数個の湾曲検出センサーを繋げるようにスポット溶接して1つの湾曲検出センサにすれば、任意の長さの湾曲検出センサを実現できる。 Two flat rolled alloy plates may be overlapped and spot-welded, but if the two rolled alloy plates are welded in a bent state, the bent state is the base point of zero stress and zero deformation. can be done. If the length of the curvature detection sensor is insufficient, a plurality of curvature detection sensors can be spot-welded so as to be connected to form one curvature detection sensor, thereby realizing an arbitrary length of the curvature detection sensor.

接合された2枚の圧延合金板の抵抗を測定する際に、圧延合金板の両端に電流端子を設け、また、2枚の圧延合金板がスポット溶接されている個所に電圧端子を設け、電圧端子間の電圧を測定すれば、電圧端子間の電気抵抗、すなわちこの湾曲検出センサの変形(歪)を検出することができる。また、任意の数の電圧端子を設け、それぞれの電圧端子間の電位差を検出すれば、湾曲検出センサのうち、部分的に変形している個所を検出することができる。 When measuring the resistance of two joined rolled alloy plates, current terminals are provided at both ends of the rolled alloy plates, and voltage terminals are provided at the point where the two rolled alloy plates are spot-welded. By measuring the voltage between the terminals, it is possible to detect the electrical resistance between the voltage terminals, that is, the deformation (distortion) of the bending detection sensor. Further, by providing an arbitrary number of voltage terminals and detecting the potential difference between the respective voltage terminals, it is possible to detect a portion of the bending detection sensor that is partially deformed.

試料比抵抗は温度にほぼ比例するので、使用環境の温度が大きく変化する場合は温度補正を行うことが好ましい(~5%/100K)。逆に、湾曲検出センサの変形が一定であれば温度センサーとしても機能する。 Since the sample resistivity is almost proportional to the temperature, it is preferable to perform temperature correction (~5%/100K) when the temperature of the usage environment changes greatly. Conversely, if the deformation of the bending detection sensor is constant, it also functions as a temperature sensor.

(実験例)
チタン基の高弾性限低ヤング率合金、高弾性限高ヤング率合金を用意した。どちらの合金も組成は同じであり、加工熱処理の違いによって、一方の合金のヤング率を30GPa、他方の合金のヤング率を70GPaにしたものである。
26℃における高弾性限高ヤング率合金の比抵抗は128μΩ・cm、高弾性限低ヤング率合金の比抵抗は155μΩ・cmである。こうした2つの合金の圧延板として、幅3mm、長さ30mm、厚さ0.12mmの短冊状の2枚の合金圧延板の直線部に7.5mm間隔で2箇所ずつスポット溶接を行い本発明の湾曲検出センサとした。なお、15mm間隔でスポット溶接を行った湾曲検出センサは、屈曲により座屈が発生した。
(Experimental example)
Titanium-based high elastic limit low Young's modulus alloy and high elastic limit high Young's modulus alloy were prepared. Both alloys have the same composition, and the Young's modulus of one alloy is set to 30 GPa, and the Young's modulus of the other alloy is set to 70 GPa by the difference in thermomechanical treatment.
At 26° C., the high elastic limit high Young's modulus alloy has a specific resistance of 128 μΩ·cm, and the high elastic limit low Young's modulus alloy has a specific resistance of 155 μΩ·cm. As the rolled sheets of these two alloys, two strip-shaped alloy rolled sheets having a width of 3 mm, a length of 30 mm, and a thickness of 0.12 mm were spot-welded at two points at intervals of 7.5 mm to the straight portions of the two alloy rolled sheets of the present invention. A curve detection sensor is used. Note that the bending detection sensor that was spot-welded at intervals of 15 mm caused buckling due to bending.

電気抵抗値は直流四端子法で測定した。測定電流は100mA、電圧端子間距離は29.3mmである。湾曲検出センサの変形による抵抗変化を測定するため、絶縁体丸棒に電圧端子の間を押しつけ、丸捧の半径に対して抵抗値をプロットした。屈曲前の平面状態での抵抗値は58.84mΩであった。 The electrical resistance value was measured by the DC four-terminal method. The measured current is 100 mA, and the distance between the voltage terminals is 29.3 mm. In order to measure the resistance change due to the deformation of the bending detection sensor, an insulator rod was pressed between the voltage terminals and the resistance value was plotted against the radius of the rod. The resistance value in the flat state before bending was 58.84 mΩ.

センサーを巻き付けた丸棒の半径に対して、湾曲検出センサーの抵抗をプロットしたグラフを図4に示す。□印は高弾性限低ヤング率圧延合金板に張力が加わる場合、○印は高弾性限低ヤング率圧延合金板に圧縮力が加わる場合を示している。事前の予想通り、張力に対しては抵抗が増加し、圧縮力に対しては抵抗が減少した。全体に曲率半径に対して双曲線的な変化していることがわかった。 A graph plotting the resistance of the bend detection sensor against the radius of the round bar around which the sensor is wrapped is shown in FIG. The □ mark indicates the case where tension is applied to the high elastic limit, low Young's modulus rolled alloy plate, and the ◯ mark indicates the case where compressive force is applied to the high elastic limit, low Young's modulus rolled alloy plate. As expected, the resistance increased against tension and decreased against compression. It was found that there was a hyperbolic change with respect to the radius of curvature as a whole.

湾曲検出センサを曲げたときに高弾性限高ヤング率圧延合金板の長さが変わらず、高弾性限低ヤング率圧延合金板の長さだけが変わると仮定すると、高弾性限高ヤング率圧延合金板の長さをl、曲率半径をr、曲げの中心角をθとすると、l=rθ、板の厚みをδrとすれば、高弾性限低ヤング率圧延合金板の寸法変化は(δl/l)=(δr/r)である。 Assuming that the length of the high elastic limit high Young's modulus rolled alloy plate does not change when the bending detection sensor is bent, and that only the length of the high elastic limit low Young's modulus rolled alloy plate changes, the high elastic limit high Young's modulus rolled If l is the length of the alloy plate, r is the radius of curvature, and θ is the central angle of bending, then l=rθ and δr is the thickness of the plate. /l)=(δr/r).

湾曲検出センサを曲げた時に高弾性限高ヤング率圧延合金板は長さが変わらないので電気抵抗値は変化せず、高弾性限低ヤング率圧延合金板の電気抵抗値だけが変わる。この場合、前述した通り、合成抵抗の変化率は高弾性限低ヤング率圧延合金板の長さ変化率の約半分になると考えられる。そこで、横軸を曲率半径の逆数に取ってプロットしたグラフを図5に示す。 Since the length of the high elastic limit high Young's modulus rolled alloy plate does not change when the bending detection sensor is bent, the electric resistance value does not change, and only the electric resistance value of the high elastic limit low Young's modulus rolled alloy plate changes. In this case, as described above, the rate of change in combined resistance is considered to be about half of the rate of change in length of the high elastic limit, low Young's modulus rolled alloy plate. FIG. 5 shows a graph plotted with the reciprocal of the curvature radius plotted on the horizontal axis.

この図5に示すグラフによれば、湾曲検出センサの変形形状が凸、凹のどちらについても同じ傾きで直線関係が得られた。なお、図5に示すグラフにおいて、破線は高弾性限高ヤング率圧延合金板の長さが変らないと仮定した場合の抵抗変化(ΔR/R)=0.5×(δr/r)である。実測値は単純計算の1.55倍程度であることがわかった。これは、単純計算では考慮に入れなかった湾曲検出センサの断面積が変化する影響などによるものと考えられる。また、図5の×印は、厚さ0.1mmの高弾性限低ヤング率圧延合金単板だけを曲げた場合であり、事前の予想通り電気抵抗値は変化していないことがわかる。 According to the graph shown in FIG. 5, a linear relationship with the same inclination was obtained for both convex and concave deformed shapes of the curvature detection sensor. In the graph shown in FIG. 5, the dashed line is the resistance change (ΔR / R) = 0.5 × (δr / r) when it is assumed that the length of the high elastic limit high Young's modulus rolled alloy plate does not change. . It turned out that the measured value is about 1.55 times the simple calculation. This is considered to be due to the influence of the change in the cross-sectional area of the curvature detection sensor, which was not taken into consideration in the simple calculation. In addition, the x mark in FIG. 5 indicates the case where only the high elastic limit low Young's modulus rolled alloy single plate with a thickness of 0.1 mm is bent, and it can be seen that the electrical resistance value does not change as expected in advance.

本発明の湾曲検出センサは、以下のような用途に利用することができる。
(1)肘や膝など生物の屈伸部位の計測。
(2)データグロープ、センサ一手袋など入力デバイス。
(3)ロボットや機械の屈伸検出。
(4)エンジンなどの機械的振動の測定。
(5)カンチレバー。
(6)溶液中の屈曲、応力測定。
(7)建築物など構造物の変形検出。
(8)応力や荷重の測定。
(9)電圧端子を多数点設け、変形する位置の検出。
(10)ドアの開閉検出、リクライニングシートの位置(角度)検出。
(11)真空中の変位や応力の測定。
(12)高弾性限材料の特性を生かした変位・応力検出機能内蔵の板バネ。
(13)医療用のリハビリ器具のセンサ、例えば関節曲げ角度の検出、通知用のセンサ
The curvature detection sensor of the present invention can be used for the following applications.
(1) Measurement of bending and stretching parts of living organisms such as elbows and knees.
(2) Input devices such as data gloves and sensor gloves.
(3) Bending and stretching detection of robots and machines.
(4) Measurement of mechanical vibrations of engines and the like.
(5) Cantilevers.
(6) Bending in solution, stress measurement.
(7) Deformation detection of structures such as buildings.
(8) Measurement of stress and load.
(9) A large number of voltage terminals are provided to detect the position of deformation.
(10) Detection of door opening/closing and position (angle) of reclining seat.
(11) Measurement of displacement and stress in vacuum.
(12) A leaf spring with a built-in displacement/stress detection function that utilizes the characteristics of high elastic limit materials.
(13) Sensors for medical rehabilitation equipment, for example sensors for detecting and notifying joint bending angles

10…湾曲検出センサ
11…第1圧延合金板(第1金属板)
12…第2圧延合金板(第2金属板)
DESCRIPTION OF SYMBOLS 10... Bending detection sensor 11... 1st rolled alloy plate (1st metal plate)
12... Second rolled alloy plate (second metal plate)

Claims (8)

弾性限が1%以上で、ヤング率が互いに異なる第1金属板と第2金属板とを接合してなることを特徴とする湾曲検出センサ。 A curve detection sensor comprising a first metal plate and a second metal plate having an elastic limit of 1% or more and different Young's moduli from each other. 前記第1金属板のヤング率が40GPa以下で、かつ前記第2金属板のヤング率が40GPaよりも大きいことを特徴とする請求項1記載の湾曲検出センサ。 2. The curvature detection sensor according to claim 1, wherein the Young's modulus of the first metal plate is 40 GPa or less, and the Young's modulus of the second metal plate is greater than 40 GPa. 前記第2金属板は、ヤング率が50GPa以上であることを特徴とする請求項2記載の湾曲検出センサ。 3. The curvature detection sensor according to claim 2, wherein said second metal plate has a Young's modulus of 50 GPa or more. 前記第1金属板および前記第2金属板の弾性限は、1.2%以上であることを特徴とする請求項1ないし3いずれか一項記載の湾曲検出センサ。 4. The curvature detection sensor according to claim 1, wherein the elastic limit of said first metal plate and said second metal plate is 1.2% or more. 前記第1金属板および前記第2金属板は、Ti-Nb基合金からなることを特徴とする請求項1ないし4いずれか一項記載の湾曲検出センサ。 5. The curvature detection sensor according to claim 1, wherein said first metal plate and said second metal plate are made of a Ti--Nb based alloy. 前記第1金属板と前記第2金属板とは、複数のスポット溶接部によって接合されていることを特徴とする請求項1ないし5いずれか一項記載の湾曲検出センサ。 6. The curvature detection sensor according to claim 1, wherein the first metal plate and the second metal plate are joined by a plurality of spot welds. 前記第1金属板および前記第2金属板は、圧延合金板であることを特徴とする請求項1ないし6いずれか一項記載の湾曲検出センサ。 7. The curvature detection sensor according to claim 1, wherein said first metal plate and said second metal plate are rolled alloy plates. 弾性限が1%以上で、かつヤング率が互いに同じで、比抵抗が互いに異なる第3金属板と第4金属板とを接合してなることを特徴とする湾曲検出センサ。 A curve detection sensor comprising a third metal plate and a fourth metal plate having an elastic limit of 1% or more, the same Young's modulus, and different specific resistances.
JP2019560916A 2017-12-20 2018-11-29 Bending detection sensor Active JP7125767B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017244241 2017-12-20
JP2017244241 2017-12-20
PCT/JP2018/043967 WO2019124019A1 (en) 2017-12-20 2018-11-29 Curvature detection sensor

Publications (2)

Publication Number Publication Date
JPWO2019124019A1 JPWO2019124019A1 (en) 2020-12-17
JP7125767B2 true JP7125767B2 (en) 2022-08-25

Family

ID=66994097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019560916A Active JP7125767B2 (en) 2017-12-20 2018-11-29 Bending detection sensor

Country Status (2)

Country Link
JP (1) JP7125767B2 (en)
WO (1) WO2019124019A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6258010B2 (en) 2013-11-14 2018-01-10 株式会社フジタ Elastic wave velocity measuring method and elastic wave velocity measuring system
JP6355404B2 (en) 2014-04-16 2018-07-11 キヤノン株式会社 Image forming apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355404A (en) * 1986-08-26 1988-03-09 Inoue Japax Res Inc Resistor for strain meter
JPH0684602A (en) * 1992-08-28 1994-03-25 Tokin Corp Thin film resistor material
JPH06258010A (en) * 1993-03-05 1994-09-16 Tokin Corp Strain gauge
JP5940639B2 (en) * 2014-12-18 2016-06-29 株式会社東芝 Strain detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6258010B2 (en) 2013-11-14 2018-01-10 株式会社フジタ Elastic wave velocity measuring method and elastic wave velocity measuring system
JP6355404B2 (en) 2014-04-16 2018-07-11 キヤノン株式会社 Image forming apparatus

Also Published As

Publication number Publication date
JPWO2019124019A1 (en) 2020-12-17
WO2019124019A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
US11015989B2 (en) Resistive-capacitive deformation sensor
JP5867688B2 (en) Tactile sensor and multi-axis tactile sensor
US20150122531A1 (en) Strain gauge
US9972768B2 (en) Actuator structure and method
JP2006226858A (en) Fluctuation load sensor, and tactile sensor using the same
JP2010520998A (en) Device including a contact detector
JP5799640B2 (en) Electrostrictive sensor
JP7125767B2 (en) Bending detection sensor
JP6324566B2 (en) Sensor using polymer gel
JP2002188968A (en) Maximum value memory sensor and maximum value measuring method
JP6673579B2 (en) Actuator
JP2014071085A (en) Thin-film sensor
Kim et al. Cross-shaped piezoelectric beam for torsion sensing
JP2017538107A (en) Deformable apparatus and method
JP2022009270A (en) Pressure distribution sensor
JP2018146428A (en) Pressure sensor
JP6256899B2 (en) Sensor using polymer gel
RU2661456C1 (en) Method and device of tensoelectric transformation
KR101953760B1 (en) Sensor capable of measuring pressure or shear stress, sensor substrate and insole using the same
CN110375634A (en) A kind of sliding rheostat strain gauge and its application method
JP2001336910A (en) Radio type distortion sensor
WO2021064810A1 (en) Expansion/contraction detecting device
JPWO2021064810A5 (en)
JP2008002927A (en) Pressure measuring device and method
JP2009150737A (en) Sensor and detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220805

R150 Certificate of patent or registration of utility model

Ref document number: 7125767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150