JPWO2021064810A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021064810A5
JPWO2021064810A5 JP2021550767A JP2021550767A JPWO2021064810A5 JP WO2021064810 A5 JPWO2021064810 A5 JP WO2021064810A5 JP 2021550767 A JP2021550767 A JP 2021550767A JP 2021550767 A JP2021550767 A JP 2021550767A JP WO2021064810 A5 JPWO2021064810 A5 JP WO2021064810A5
Authority
JP
Japan
Prior art keywords
expansion
contraction
base material
deformation
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021550767A
Other languages
Japanese (ja)
Other versions
JPWO2021064810A1 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/JP2019/038579 external-priority patent/WO2021064810A1/en
Publication of JPWO2021064810A1 publication Critical patent/JPWO2021064810A1/ja
Publication of JPWO2021064810A5 publication Critical patent/JPWO2021064810A5/ja
Pending legal-status Critical Current

Links

Description

本発明は、基材の伸縮変形を電気的に検出する伸縮検出装置に関するものである。 The present invention relates to a stretch detection device that electrically detects stretch deformation of a base material.

従来から、伸縮変形を電気的に検出する伸縮検出装置が提案されている。伸縮検出装置は、例えば実用新案登録第3208866号公報(特許文献1)に開示された腹囲変動量測定器のように、伸縮素材の伸縮に伴う静電容量や電気抵抗などの変化に基づいて検出対象の変形を検出するストレッチセンサを備えている。 Conventionally, an expansion / contraction detection device that electrically detects expansion / contraction deformation has been proposed. The expansion / contraction detection device detects based on changes in capacitance and electrical resistance due to expansion / contraction of the expansion / contraction material, such as the abdominal circumference fluctuation measuring device disclosed in Utility Model Registration No. 3208866 (Patent Document 1). It is equipped with a stretch sensor that detects the deformation of the object.

ところで、特許文献1におけるストレッチセンサの検出部は、検出部が設けられる基材に追従して伸縮変形することによって、基材の伸縮変形を電気的に検出する。具体的には、例えば、誘電体層の両面に電極が固着されたコンデンサによって検出部が構成されており、誘電体層が基材の伸縮変形に追従して変形することで、検出部を構成するコンデンサの静電容量が変化するようにされている。そして、基材の伸縮変形の有無や伸縮変形量を検出部の静電容量値に基づいて検出することで、検出対象の変形等を検出する。 By the way, the detection unit of the stretch sensor in Patent Document 1 electrically detects the expansion and contraction deformation of the base material by stretching and deforming following the base material provided with the detection unit. Specifically, for example, the detection unit is configured by a capacitor in which electrodes are fixed on both sides of the dielectric layer, and the dielectric layer is deformed according to the expansion and contraction deformation of the base material to form the detection unit. The capacitance of the capacitor is changed. Then, by detecting the presence or absence of expansion and contraction deformation of the base material and the amount of expansion and contraction deformation based on the capacitance value of the detection unit, the deformation of the detection target and the like are detected.

実用新案登録第3208866号公報Utility Model Registration No. 3208866 Gazette

しかし、本発明者が検討したところ、特許文献1のように検出部が基材に追従して変形する構造では、基材の伸長変形量が大きい場合に、正確な検出ができないおそれがあった。即ち、基材の伸長変形に追従し得る検出部が、基材の大きな伸長変形に伴って大きく伸長変形すると、検出部の電気的な変化を出力する電極の過大な変形などにより電気抵抗が著しく大きくなって、検出精度が低下したり、検出自体が不可能になるおそれがあった。 However, as a result of the study by the present inventor, in the structure in which the detection portion is deformed following the base material as in Patent Document 1, there is a possibility that accurate detection may not be possible when the amount of elongation and deformation of the base material is large. .. That is, when the detection unit that can follow the elongation deformation of the base material undergoes a large elongation deformation due to the large elongation deformation of the base material, the electrical resistance becomes remarkable due to the excessive deformation of the electrode that outputs the electrical change of the detection unit. As the size increases, the detection accuracy may decrease or the detection itself may become impossible.

本発明の解決課題は、大きな伸縮変形を正確に検出することができる、新規な構造の伸縮検出装置を提供することにある。 An object of the present invention is to provide an expansion / contraction detection device having a novel structure capable of accurately detecting a large expansion / contraction deformation.

以下、本発明を把握するための好ましい態様について記載するが、以下に記載の各態様は、例示的に記載したものであって、適宜に互いに組み合わせて採用され得るだけでなく、各態様に記載の複数の構成要素についても、可能な限り独立して認識及び採用することができ、適宜に別の態様に記載の何れかの構成要素と組み合わせて採用することもできる。それによって、本発明では、以下に記載の態様に限定されることなく、種々の別態様が実現され得る。 Hereinafter, preferred embodiments for grasping the present invention will be described, but each of the embodiments described below is described as an example, and not only can be appropriately combined with each other and adopted, but also described in each embodiment. The plurality of components of the above can be recognized and adopted independently as much as possible, and can be appropriately adopted in combination with any of the components described in another embodiment. Thereby, in the present invention, various other embodiments can be realized without being limited to the embodiments described below.

第一の態様は、 面方向に伸縮変形可能とされた薄肉の基材において、該基材の伸縮変形に追従して伸縮変形して該基材の伸縮変形を電気的に検出する検出部が設けられた伸縮検出装置であって、
前記検出部は、検出用電極が誘電体層の両面に重ね合わされた構造を有しており、前記基材の伸縮に伴う該誘電体層の伸縮を静電容量の変化に基づいて検出する静電容量型センサとされている一方、
基材が高伸縮部と低伸縮部を備えており、該基材における該低伸縮部の伸縮変形率が該高伸縮部よりも小さくされていると共に、
前記検出用電極が、該基材が略一定の幅寸法で長さ方向に直線的に延びている該高伸縮部と該高伸縮部の長さ方向の端部側に設けられて該高伸縮部よりも大きな断面形状で延びる該低伸縮部に跨って設けられており、且つ、該検出用電極が該低伸縮部から該高伸縮部の長さ方向途中部分までしか延び出していないものである。
In the first aspect, in a thin-walled base material that can be expanded and contracted in the plane direction, a detection unit that expands and contracts following the expansion and contraction of the base material and electrically detects the expansion and contraction of the base material. It is an expansion / contraction detection device provided,
The detection unit has a structure in which detection electrodes are superposed on both sides of the dielectric layer, and static electricity detects expansion and contraction of the dielectric layer due to expansion and contraction of the base material based on a change in capacitance. While it is said to be a capacitive sensor,
The base material has a high expansion / contraction portion and a low expansion / contraction portion, and the expansion / contraction deformation rate of the low expansion / contraction portion in the substrate is made smaller than that of the high expansion / contraction portion.
The detection electrode is provided on the highly stretchable portion in which the base material extends linearly in the length direction with a substantially constant width dimension and on the end side in the length direction of the highly stretchable portion. It is provided so as to straddle the low expansion / contraction portion extending in a cross-sectional shape larger than the portion, and the detection electrode extends only from the low expansion / contraction portion to the middle portion in the length direction of the high expansion / contraction portion . be.

本態様に従う構造とされた伸縮検出装置によれば、基材において伸縮変形率が低い低伸縮部に検出部が設けられることにより、基材全体の変形量が大きい場合にも、検出部が設けられる部分の変形量は抑えられる。それ故、基材が大きく変形する場合にも、検出部において大変形による電気抵抗の過剰な増大などが防止されて、基材の伸縮変形が検出部によって精度良く検出され得る。また、本態様に従う構造とされた伸縮検出装置によれば、基材の伸縮変形量が大きい場合には、検出部が低伸縮部にも位置していることで、検出部全体の伸縮変形量が抑えられて、検出部の過剰な変形による検出性能の低下などが防止される。また、基材の伸縮変形量が小さい場合には、高伸縮部が比較的に大きく変形することから、高伸縮部に位置する検出部によって検出感度の向上が図られる。更に、本態様に従う構造とされた伸縮検出装置によれば、基材の伸縮変形に伴う検出用電極及び誘電体層の変形によって、誘電体層を挟んで対向する検出用電極間の静電容量が変化する。この静電容量の変化の電気的な出力に基づいて、基材の伸縮変形量を精度よく検出することができる。 According to the expansion / contraction detection device having a structure according to this embodiment, the detection unit is provided in the low expansion / contraction portion of the base material having a low expansion / contraction deformation rate, so that the detection unit is provided even when the deformation amount of the entire base material is large. The amount of deformation of the part to be deformed is suppressed. Therefore, even when the base material is significantly deformed, the detection unit can accurately detect the expansion and contraction deformation of the base material by preventing the detection unit from excessively increasing the electric resistance due to the large deformation. Further, according to the expansion / contraction detection device having a structure according to this aspect, when the expansion / contraction deformation amount of the base material is large, the detection unit is also located in the low expansion / contraction part, so that the expansion / contraction deformation amount of the entire detection unit is obtained. Is suppressed, and deterioration of detection performance due to excessive deformation of the detection unit is prevented. Further, when the amount of expansion / contraction deformation of the base material is small, the high expansion / contraction portion is deformed relatively large, so that the detection sensitivity can be improved by the detection unit located in the high expansion / contraction portion. Further, according to the expansion / contraction detection device having a structure according to this embodiment, the capacitance between the detection electrodes and the detection electrodes facing each other across the dielectric layer due to the deformation of the detection electrode and the dielectric layer due to the expansion / contraction deformation of the base material. Changes. Based on the electrical output of this change in capacitance, the amount of expansion and contraction deformation of the base material can be accurately detected.

第二の態様は、第一の態様に記載された伸縮検出装置において、前記誘電体層が前記基材によって構成されているものである。 The second aspect is that in the expansion / contraction detection device described in the first aspect, the dielectric layer is composed of the base material .

本態様に従う構造とされた伸縮検出装置によれば、基材が誘電体層を兼ねていることによって、部品点数の削減が図られる。 According to the expansion / contraction detection device having a structure according to this aspect, the number of parts can be reduced because the base material also serves as a dielectric layer.

第三の態様は、第一又は第二の態様に記載された伸縮検出装置において、前記高伸縮部と前記低伸縮部は同一の材質で形成されているものである。 The third aspect is that in the expansion / contraction detection device according to the first or second aspect, the high expansion / contraction portion and the low expansion / contraction portion are made of the same material.

本態様に従う構造とされた伸縮検出装置によれば、例えば、高伸縮部と低伸縮部を備える基材の全体を一体形成することも可能になる。 According to the expansion / contraction detection device having a structure according to this aspect, for example, it is possible to integrally form the entire base material provided with the high expansion / contraction portion and the low expansion / contraction portion.

第四の態様は、第一~第三の何れか1つの態様に記載された伸縮検出装置において、前記低伸縮部の幅寸法が前記高伸縮部の幅寸法よりも大きくされているものである。 In the fourth aspect, in the expansion / contraction detection device according to any one of the first to third aspects, the width dimension of the low expansion / contraction portion is made larger than the width dimension of the high expansion / contraction portion. ..

本態様に従う構造とされた伸縮検出装置によれば、基材において幅寸法の違いによって低伸縮部と高伸縮部を設定することができる。例えば、前記第三の態様のように低伸縮部と高伸縮部を同一の材質で形成する場合に、低伸縮部と高伸縮部の伸縮率の違いを幅寸法の違いによって簡単に設定することができる。 According to the expansion / contraction detection device having a structure according to this aspect, the low expansion / contraction portion and the high expansion / contraction portion can be set in the base material depending on the difference in width dimension. For example, when the low-stretchable portion and the high-stretchable portion are formed of the same material as in the third aspect, the difference in the stretch ratio between the low-stretchable portion and the high-stretchable portion can be easily set by the difference in the width dimension. Can be done.

また、例えば、検出部が電極層や誘電体層などの複数が積層されて構成されている場合に、積層方向と直交する幅方向の寸法によって積層構造に影響することなく、高伸縮部と低伸縮部を設定することができる。 Further, for example, when a plurality of detection portions such as an electrode layer and a dielectric layer are laminated, the high expansion / contraction portion and the low expansion / contraction portion do not affect the laminated structure due to the dimensions in the width direction orthogonal to the stacking direction. The expansion and contraction part can be set.

第五の態様は、第一~第四の何れか1つの態様に記載された伸縮検出装置において、前記低伸縮部の厚さ寸法が前記高伸縮部の厚さ寸法よりも大きくされているものである。 A fifth aspect is the expansion / contraction detection device according to any one of the first to fourth aspects, wherein the thickness dimension of the low expansion / contraction portion is larger than the thickness dimension of the high expansion / contraction portion. Is.

本態様に従う構造とされた伸縮検出装置によれば、基材において厚さ寸法の違いによって低伸縮部と高伸縮部を設定することができる。例えば、前記第三の態様のように低伸縮部と高伸縮部を同一の材質で形成する場合に、低伸縮部と高伸縮部の伸縮率の違いを厚さ寸法の違いによって簡単に設定することができる。 According to the expansion / contraction detection device having a structure according to this aspect, the low expansion / contraction portion and the high expansion / contraction portion can be set in the base material depending on the difference in thickness and dimension. For example, when the low-stretchable portion and the high-stretchable portion are formed of the same material as in the third aspect, the difference in the stretch ratio between the low-stretchable portion and the high-stretchable portion is easily set by the difference in the thickness dimension. be able to.

の態様は、第一~第の何れか1つの態様に記載された伸縮検出装置において、前記基材の伸縮変形に対応して前記検出部が出力する検出信号の出力値が、想定される該基材の伸縮変形の範囲において極大値を持たないものである。 In the sixth aspect, in the expansion / contraction detection device described in any one of the first to fifth aspects, the output value of the detection signal output by the detection unit in response to the expansion / contraction deformation of the base material is assumed. It does not have a maximum value in the range of expansion and contraction deformation of the base material.

本態様に従う構造とされた伸縮検出装置によれば、例えば、検出信号の出力値が極大値の両側で同じとなることに起因する伸縮変形の測定誤差が防止され得る。 According to the expansion / contraction detection device having a structure according to this embodiment, for example, it is possible to prevent a measurement error of expansion / contraction deformation caused by the output value of the detection signal being the same on both sides of the maximum value.

の態様は、第一~第の何れか1つの態様に記載された伸縮検出装置において、前記検出部に対する配線の接続部分が、前記低伸縮部に配されているものである。 A seventh aspect is the expansion / contraction detection device according to any one of the first to sixth aspects, in which the connection portion of the wiring to the detection unit is arranged in the low expansion / contraction portion.

本態様に従う構造とされた伸縮検出装置によれば、出力リード線などの配線の接続部分は、はんだ付けされたり、コネクタが設けられるなどして、大きな変形が許容され難い。そこで、伸縮変形が抑えられた低伸縮部に配線の接続部分を設けることにより、基材の伸縮変形時に配線の接続部分に作用する応力が低減されて、信頼性や耐久性の向上が図られる。 According to the expansion / contraction detection device having a structure according to this aspect, it is difficult to allow large deformation of the connection portion of the wiring such as the output lead wire because it is soldered or a connector is provided. Therefore, by providing the connection portion of the wiring in the low expansion / contraction portion where the expansion / contraction deformation is suppressed, the stress acting on the connection portion of the wiring at the time of expansion / contraction deformation of the base material is reduced, and the reliability and durability are improved. ..

の態様は、第の態様に記載された伸縮検出装置において、前記低伸縮部を部分的に厚さ方向で挟み込んで拘束する配線固定部材を含んで前記接続部分が構成されているものである。 The eighth aspect is the expansion / contraction detection device according to the seventh aspect, wherein the connection portion includes a wiring fixing member that partially sandwiches and restrains the low expansion / contraction portion in the thickness direction. Is.

本態様に従う構造とされた伸縮検出装置によれば、低伸縮部が配線固定部材によって拘束されることにより、配線の接続部分において検出部の伸縮変形が更に低減される。それ故、基材の変形時に配線の接続部分に作用する応力が更に低減されて、耐久性の更なる向上が図られる。また、第九の態様は、第一~第八の何れか1つの態様に記載された伸縮検出装置において、前記誘電体層の両面に重ね合わされた前記検出用電極における対向面間の幅寸法が前記高伸縮部において前記低伸縮部よりも小さいものである。更に、第十の態様は、第一~第九の何れか1つの態様に記載された伸縮検出装置において、前記検出用電極に導通される配線が前記低伸縮部に接続されているものである。 According to the expansion / contraction detection device having a structure according to this aspect, the expansion / contraction deformation of the detection unit is further reduced at the connection portion of the wiring by restraining the low expansion / contraction portion by the wiring fixing member. Therefore, the stress acting on the connection portion of the wiring when the base material is deformed is further reduced, and the durability is further improved. Further, in the ninth aspect, in the expansion / contraction detection device according to any one of the first to eighth aspects, the width dimension between the facing surfaces of the detection electrodes superposed on both sides of the dielectric layer is set. The high expansion / contraction portion is smaller than the low expansion / contraction portion. Further, in the tenth aspect, in the expansion / contraction detection device according to any one of the first to ninth aspects, the wiring conducted to the detection electrode is connected to the low expansion / contraction portion. ..

本発明によれば、大きな伸縮変形を正確に検出することができる。 According to the present invention, large expansion and contraction deformation can be accurately detected.

本発明の第一の実施形態としての伸縮センサを示す平面図A plan view showing a telescopic sensor as the first embodiment of the present invention. 図1のII-II断面図II-II sectional view of FIG. 図1のIII-III断面図Section III-III sectional view of FIG. 図1のIV-IV断面図IV-IV sectional view of FIG. 図1のV-V断面図VV cross-sectional view of FIG. 図1に示す伸縮センサの分解斜視図An exploded perspective view of the telescopic sensor shown in FIG. 図1に示す伸縮センサに装着される第一の固定部材の底面図Bottom view of the first fixing member mounted on the telescopic sensor shown in FIG. 図1に示す伸縮センサに装着される第二の固定部材の平面図Top view of the second fixing member mounted on the telescopic sensor shown in FIG. 図1に示す伸縮センサに対する配線固定部材の装着状態を説明する断面図A cross-sectional view illustrating a state in which the wiring fixing member is attached to the expansion / contraction sensor shown in FIG. 図1に示す伸縮センサの出力値と伸縮センサの伸縮変形量の関係を例示するグラフA graph illustrating the relationship between the output value of the expansion / contraction sensor shown in FIG. 1 and the expansion / contraction deformation amount of the expansion / contraction sensor. 本発明の第二の実施形態としての伸縮検出装置を構成するセンサ本体を示す平面図A plan view showing a sensor main body constituting the expansion / contraction detection device as the second embodiment of the present invention. 本発明の第三の実施形態としての伸縮センサを示す縦断面図A vertical sectional view showing a telescopic sensor as a third embodiment of the present invention.

以下、本発明の実施形態について、図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1~5には、本発明に従う構造とされた伸縮検出装置の第一の実施形態として、伸縮センサ10が示されている。伸縮センサ10は、センサ本体12を備えており、センサ本体12は、図2~6に示すように、誘電体層14の両面に検出用電極としての第一の電極16と第二の電極18が設けられた構造を有している。以下の説明において、原則として、上下方向とは厚さ方向である図2中の上下方向を、長さ方向とは伸縮センサ10による伸縮変形の検出方向である図1中の左右方向を、幅方向とは図1中の上下方向を、それぞれ言う。 FIGS. 1 to 5 show a stretch sensor 10 as a first embodiment of a stretch detection device having a structure according to the present invention. The expansion / contraction sensor 10 includes a sensor body 12, and as shown in FIGS. 2 to 6, the sensor body 12 has a first electrode 16 and a second electrode 18 as detection electrodes on both surfaces of the dielectric layer 14. Has a structure provided with. In the following description, as a general rule, the vertical direction is the vertical direction in FIG. 2, which is the thickness direction, and the length direction is the horizontal direction in FIG. 1, which is the detection direction of the expansion / contraction deformation by the expansion / contraction sensor 10. The direction means the vertical direction in FIG. 1, respectively.

誘電体層14は、伸縮性を有するゴムや樹脂エラストマーが採用され、好適には比誘電率が比較的に大きいものが採用される。具体的には、例えば、ウレタンゴム、シリコーンゴム、ニトリルゴム、水素化ニトリルゴム、アクリルゴム、天然ゴム、イソプレンゴム、エチレン-プロピレンゴム、クロロプレンゴム、塩素化ポリエチレン、クロロスルホン化ポリエチレンなどが採用される。 As the dielectric layer 14, elastic rubber or resin elastomer is adopted, and preferably one having a relatively large relative permittivity is adopted. Specifically, for example, urethane rubber, silicone rubber, nitrile rubber, hydride nitrile rubber, acrylic rubber, natural rubber, isoprene rubber, ethylene-propylene rubber, chloroprene rubber, chlorinated polyethylene, chlorosulfonated polyethylene and the like are adopted. Ru.

誘電体層14は、全体として薄肉の帯状とされており、面方向(表面と略平行な方向)の伸縮性を有している。誘電体層14は、長さ方向の中央部分が幅狭の高伸縮部20とされていると共に、長さ方向の両端部分が幅広の低伸縮部22,22とされている。 The dielectric layer 14 has a thin strip shape as a whole, and has elasticity in the plane direction (direction substantially parallel to the surface). In the dielectric layer 14, the central portion in the length direction is a narrow high expansion / contraction portion 20, and both end portions in the length direction are wide low expansion / contraction portions 22, 22.

高伸縮部20は、略矩形シート状とされている。即ち、高伸縮部20は、略一定の幅寸法と厚さ寸法で長さ方向に直線的に延びている。高伸縮部20は、後述する低伸縮部22に比して、幅方向の寸法が小さくされている。 The high expansion / contraction portion 20 has a substantially rectangular sheet shape. That is, the high expansion / contraction portion 20 extends linearly in the length direction with a substantially constant width dimension and thickness dimension. The high expansion / contraction portion 20 has a smaller dimension in the width direction than the low expansion / contraction portion 22 described later.

低伸縮部22は、幅寸法が長さ方向の外側に向かって次第に大きくなるテーパ状の拡幅部24を備えており、高伸縮部20よりも幅方向の寸法が大きくされている。本実施形態の拡幅部24は、幅寸法の変化率が長さ方向で変化して、高伸縮部20に対して滑らかにつながっており、幅寸法の急激な変化による応力集中が生じ難い形状とされている。 The low expansion / contraction portion 22 is provided with a tapered widening portion 24 whose width dimension gradually increases toward the outside in the length direction, and the width direction dimension is larger than that of the high expansion / contraction portion 20. The widening portion 24 of the present embodiment has a shape in which the rate of change in the width dimension changes in the length direction and is smoothly connected to the high expansion / contraction portion 20, so that stress concentration is unlikely to occur due to a sudden change in the width dimension. Has been done.

誘電体層14は、外力の作用によって長さ方向に伸縮する場合に、高伸縮部20と低伸縮部22の伸縮変形量が相互に異なる。即ち、高伸縮部20と低伸縮部22は、同一の材質とされており、厚さ寸法が略同じとされていると共に、幅寸法は低伸縮部22が高伸縮部20よりも大きくされている。それ故、低伸縮部22は、高伸縮部20に比して、長さ方向の伸縮変形量が小さくなる。低伸縮部22は、高伸縮部20よりも、同じ大きさの入力(単位力)に対する長さ方向の伸縮変形率が小さくされている。長さ方向の伸縮変形率は、長さ方向における伸縮変形のしやすさを示す指標であって、長さ方向の単位力を加えて伸縮変形させる場合の元の長さ寸法(力を加えていない初期状態での長さ寸法)に対する伸縮変形後の長さ寸法の比を言う。本実施形態では、伸縮変形率の異なる高伸縮部20と低伸縮部22を長さ方向で直列的に並んで備える誘電体層14に長さ方向の力を加えると、低伸縮部22の伸縮変形量が高伸縮部20の伸縮変形量よりも小さくなるように、高伸縮部20と低伸縮部22の初期状態での長さ寸法と高伸縮部20と低伸縮部22の伸縮変形率が設定されている。 When the dielectric layer 14 expands and contracts in the length direction due to the action of an external force, the amount of expansion and contraction deformation of the high expansion and contraction portion 20 and the low expansion and contraction portion 22 are different from each other. That is, the high expansion / contraction portion 20 and the low expansion / contraction portion 22 are made of the same material, and the thickness dimensions are substantially the same, and the width dimension of the low expansion / contraction portion 22 is larger than that of the high expansion / contraction portion 20. There is. Therefore, the low expansion / contraction portion 22 has a smaller expansion / contraction deformation amount in the length direction than the high expansion / contraction portion 20. The low expansion / contraction portion 22 has a smaller expansion / contraction deformation rate in the length direction with respect to an input (unit force) of the same magnitude than the high expansion / contraction portion 20. The stretch deformation rate in the length direction is an index showing the ease of stretch deformation in the length direction, and is the original length dimension (force is applied) when stretching and deforming by applying a unit force in the length direction. It is the ratio of the length dimension after expansion and contraction to the length dimension in the initial state. In the present embodiment, when a force in the length direction is applied to the dielectric layer 14 having the high expansion / contraction portion 20 and the low expansion / contraction portion 22 having different expansion / contraction deformation rates arranged side by side in the length direction, the low expansion / contraction portion 22 expands and contracts. The length dimension of the high expansion / contraction portion 20 and the low expansion / contraction portion 22 in the initial state and the expansion / contraction deformation rate of the high expansion / contraction portion 20 and the low expansion / contraction portion 22 are set so that the deformation amount is smaller than the expansion / contraction deformation amount of the high expansion / contraction portion 20. It is set.

誘電体層14の長さ方向の一方の端部には、第一,第二の電極16,18が積層状態で設けられている。第一,第二の電極16,18は、面方向の伸縮性を有する薄膜状とされている。第一,第二の電極16,18は、例えば、ゴムや樹脂エラストマーに導電性フィラーを混合して散在させた導電性エラストマーによって形成されている。第一,第二の電極16,18を構成するゴムや樹脂エラストマーとしては、誘電体層14と同様の材料が採用され得る。第一,第二の電極16,18を構成する導電性フィラーとしては、例えば、カーボンブラック、カーボンナノチューブ、導電性金属の粉末などが採用され得る。 The first and second electrodes 16 and 18 are provided in a laminated state at one end of the dielectric layer 14 in the length direction. The first and second electrodes 16 and 18 are in the form of a thin film having elasticity in the plane direction. The first and second electrodes 16 and 18 are formed of, for example, a conductive elastomer in which a conductive filler is mixed with a rubber or a resin elastomer and scattered. As the rubber or resin elastomer constituting the first and second electrodes 16 and 18, the same material as that of the dielectric layer 14 can be adopted. As the conductive filler constituting the first and second electrodes 16 and 18, for example, carbon black, carbon nanotubes, powder of conductive metal and the like can be adopted.

第一,第二の電極16,18は、例えば、上述の如き形成材料を誘電体層14の表裏各一方の面に直接付着させて形成される。第一,第二の電極16,18は、全体として長さ方向に延びる帯状の薄膜とされており、長さ方向の中間部分に幅方向へ傾斜する傾斜部26が設けられている。誘電体層14の長さ方向における傾斜部26よりも外側は、比較的に幅狭とされた導通部28とされている。誘電体層14の長さ方向における傾斜部26よりも内側は、比較的に幅広とされたセンサ構成部30とされている。 The first and second electrodes 16 and 18 are formed by, for example, directly adhering the forming material as described above to one of the front and back surfaces of the dielectric layer 14. The first and second electrodes 16 and 18 are strip-shaped thin films extending in the length direction as a whole, and an inclined portion 26 inclined in the width direction is provided in an intermediate portion in the length direction. The outside of the inclined portion 26 in the length direction of the dielectric layer 14 is a conducting portion 28 having a relatively narrow width. The inside of the dielectric layer 14 above the inclined portion 26 in the length direction is a relatively wide sensor component portion 30.

図1に示すように、第一の電極16の導通部28aと第二の電極18の導通部28bとが、幅方向で相互に離れて位置している。 As shown in FIG. 1, the conductive portion 28a of the first electrode 16 and the conductive portion 28b of the second electrode 18 are located apart from each other in the width direction.

第一の電極16の傾斜部26aと第二の電極18の傾斜部26bは、幅方向で互いに反対側へ傾斜しており、図1~3に示すように、第一の電極16のセンサ構成部30aと第二の電極18のセンサ構成部30bとが、誘電体層14を挟んで相互に重なり合う位置に設けられている。そして、第一の電極16のセンサ構成部30aと第二の電極18のセンサ構成部30bとが誘電体層14を挟んで厚さ方向で対向する部分において、静電容量の変化に基づいて誘電体層14の変形量を電気的に検出する静電容量型のセンサ素子としての検出部32が構成されている。検出部32は、第一の電極16のセンサ構成部30aと、第二の電極18のセンサ構成部30bと、誘電体層14とによって構成されたコンデンサとされており、誘電体層14を含む後述する基材38の伸縮変形に追従して変形可能とされている。 The inclined portion 26a of the first electrode 16 and the inclined portion 26b of the second electrode 18 are inclined to the opposite sides in the width direction, and as shown in FIGS. 1 to 3, the sensor configuration of the first electrode 16 The portion 30a and the sensor component portion 30b of the second electrode 18 are provided at positions where they overlap each other with the dielectric layer 14 interposed therebetween. Then, in a portion where the sensor component 30a of the first electrode 16 and the sensor component 30b of the second electrode 18 face each other in the thickness direction with the dielectric layer 14 interposed therebetween, the dielectric is dielectric based on the change in capacitance. A detection unit 32 as a capacitance type sensor element that electrically detects the amount of deformation of the body layer 14 is configured. The detection unit 32 is a capacitor composed of a sensor component 30a of the first electrode 16, a sensor component 30b of the second electrode 18, and a dielectric layer 14, and includes the dielectric layer 14. It is said that it can be deformed by following the expansion and contraction deformation of the base material 38, which will be described later.

検出部32は、高伸縮部20と低伸縮部22に跨って設けられており、伸縮センサ10における長さ方向の内側部分が誘電体層14の高伸縮部20に設けられていると共に、長さ方向の外側部分が誘電体層14の低伸縮部22に設けられている。検出部32において高伸縮部20に設けられる部分の長さ寸法と低伸縮部22に設けられる部分の長さ寸法は、特に限定されないが、本実施形態では略同じとされている。検出部32の上下方向視の面積は、高伸縮部20に設けられた部分の方が、低伸縮部22に設けられた部分よりも大きくされている。これにより、検出部32における静電容量の検出値において、低伸縮部22に設けられた部分の検出値の影響が、高伸縮部20に設けられた部分の検出値の影響よりも大きくなる。 The detection unit 32 is provided so as to straddle the high expansion / contraction portion 20 and the low expansion / contraction portion 22, and the inner portion in the length direction of the expansion / contraction sensor 10 is provided in the high expansion / contraction portion 20 of the dielectric layer 14 and is long. The outer portion in the radial direction is provided on the low expansion / contraction portion 22 of the dielectric layer 14. In the detection unit 32, the length dimension of the portion provided in the high expansion / contraction portion 20 and the length dimension of the portion provided in the low expansion / contraction portion 22 are not particularly limited, but are substantially the same in the present embodiment. The area of the detection unit 32 in the vertical direction is larger in the portion provided in the high expansion / contraction portion 20 than in the portion provided in the low expansion / contraction portion 22. As a result, in the detection value of the capacitance in the detection unit 32, the influence of the detection value of the portion provided in the low expansion / contraction unit 22 becomes larger than the influence of the detection value of the portion provided in the high expansion / contraction unit 20.

このような構造とされたセンサ本体12は、上面が第一の保護層34によって覆われている。第一の保護層34は、伸縮性と電気絶縁性を備えた材料で形成されている。本実施形態の第一の保護層34は、誘電体層14と同じ材料で形成されている。第一の保護層34は、誘電体層14と略同じ外形を有している。そして、第一の保護層34は、センサ本体12の上面に重ね合わされて固着されている。 The upper surface of the sensor body 12 having such a structure is covered with a first protective layer 34. The first protective layer 34 is made of a material having elasticity and electrical insulation. The first protective layer 34 of the present embodiment is made of the same material as the dielectric layer 14. The first protective layer 34 has substantially the same outer shape as the dielectric layer 14. The first protective layer 34 is overlapped and fixed to the upper surface of the sensor main body 12.

センサ本体12の下面は、第二の保護層36によって覆われている。第二の保護層36は、第一の保護層34と同様に、伸縮性と電気絶縁性を備えた材料で形成されており、本実施形態では誘電体層14及び第一の保護層34と同じ材料で形成されている。第二の保護層36は、誘電体層14及び第一の保護層34と略同じ外形を有している。そして、第二の保護層36は、センサ本体12の下面に重ね合わされて固着されている。 The lower surface of the sensor body 12 is covered with a second protective layer 36. The second protective layer 36 is made of a material having elasticity and electrical insulation like the first protective layer 34, and in the present embodiment, the dielectric layer 14 and the first protective layer 34 are combined with each other. It is made of the same material. The second protective layer 36 has substantially the same outer shape as the dielectric layer 14 and the first protective layer 34. The second protective layer 36 is overlapped and fixed to the lower surface of the sensor main body 12.

第一の保護層34と第二の保護層36は、図2,3などでは誘電体層14と独立して示されているが、例えば、熱溶着によって誘電体層14と重ね合わされた境界部分が溶融して一体化していても良い。本実施形態の基材38は、誘電体層14と第一,第二の保護層34,36とによって構成されている。換言すれば、本実施形態の伸縮センサ10は、第一,第二の電極16,18を除く全体が基材38とされている。従って、高伸縮部20は、誘電体層14だけの長さ方向の中央部分ではなく、第一,第二の保護層34,36を含む基材38の長さ方向の中央部分に設けられる。同様に、低伸縮部22は、誘電体層14だけの長さ方向の両端部分ではなく、第一,第二の保護層34,36を含む基材38の長さ方向の両端部分に設けられている。なお、高伸縮部20と低伸縮部22の伸縮変形率とは、第一,第二の保護層34,36を含む基材38における高伸縮部20と低伸縮部22の伸縮変形率とされる。 The first protective layer 34 and the second protective layer 36 are shown independently of the dielectric layer 14 in FIGS. 2 and 3, but for example, the boundary portion overlapped with the dielectric layer 14 by heat welding. May be melted and integrated. The base material 38 of the present embodiment is composed of a dielectric layer 14 and first and second protective layers 34 and 36. In other words, the expansion / contraction sensor 10 of the present embodiment is entirely made of the base material 38 except for the first and second electrodes 16 and 18. Therefore, the high expansion / contraction portion 20 is provided not in the central portion in the length direction of only the dielectric layer 14 but in the central portion in the length direction of the base material 38 including the first and second protective layers 34 and 36. Similarly, the low expansion / contraction portion 22 is provided not at both ends in the length direction of the dielectric layer 14 alone, but at both ends in the length direction of the base material 38 including the first and second protective layers 34 and 36. ing. The expansion and contraction deformation rate of the high expansion and contraction portion 20 and the low expansion and contraction portion 22 is defined as the expansion and contraction deformation rate of the high expansion and contraction portion 20 and the low expansion and contraction portion 22 in the base material 38 including the first and second protective layers 34 and 36. To.

第一の電極16の導通部28aの端部は、図1,2に示すように、誘電体層14と第二の保護層36とを貫通する第一の導通孔40を通じて下方に露出している。第二の電極18の導通部28bの端部は、第二の保護層36を貫通する第二の導通孔42を通じて下方に露出している。また、第一の電極16の導通部28a及び第二の電極18の導通部28bを幅方向の両側に外れた部分には、誘電体層14と第一,第二の保護層34,36とを厚さ方向に貫通する係止穴44が2つずつ形成されている。 As shown in FIGS. 1 and 2, the end portion of the conductive portion 28a of the first electrode 16 is exposed downward through the first conductive hole 40 penetrating the dielectric layer 14 and the second protective layer 36. There is. The end of the conductive portion 28b of the second electrode 18 is exposed downward through the second conductive hole 42 penetrating the second protective layer 36. Further, in the portions where the conductive portions 28a of the first electrode 16 and the conductive portions 28b of the second electrode 18 are separated from each other on both sides in the width direction, the dielectric layer 14 and the first and second protective layers 34 and 36 are formed. Two locking holes 44 are formed so as to penetrate in the thickness direction.

かくの如き構造とされた伸縮センサ10は、第一の電極16の導通部28aに第一の配線46が接続されていると共に、第二の電極18の導通部28bに第二の配線48が接続されている。第一,第二の配線48は、検出部32に検出用電圧を印加すると共に、検出部32の静電容量を図示しない外部の検出装置に出力する。 In the expansion / contraction sensor 10 having such a structure, the first wiring 46 is connected to the conductive portion 28a of the first electrode 16, and the second wiring 48 is connected to the conductive portion 28b of the second electrode 18. It is connected. The first and second wirings 48 apply a detection voltage to the detection unit 32 and output the capacitance of the detection unit 32 to an external detection device (not shown).

第一,第二の配線46,48は、配線固定部材50によって第一,第二の電極18の導通部28a,28bに接続される。配線固定部材50は、図7に示す第一の固定部材52と、図8に示す第二の固定部材54とによって構成されている。 The first and second wirings 46 and 48 are connected to the conduction portions 28a and 28b of the first and second electrodes 18 by the wiring fixing member 50. The wiring fixing member 50 is composed of a first fixing member 52 shown in FIG. 7 and a second fixing member 54 shown in FIG.

第一の固定部材52は、硬質の合成樹脂などで形成された電気絶縁性の部材とされている。第一の固定部材52の具体的な形状は特に限定されないが、本実施形態の第一の固定部材52は、略矩形平板形状とされている。第一の固定部材52の下面には、押圧部56が設けられている。押圧部56は、例えば、ゴムなどの弾性体で形成されており、第一の固定部材52の下面から下方に突出している。第一の固定部材52の4角には、それぞれ下方へ向かって延び出す四角柱状の第一の嵌合部58が設けられている。 The first fixing member 52 is an electrically insulating member made of a hard synthetic resin or the like. The specific shape of the first fixing member 52 is not particularly limited, but the first fixing member 52 of the present embodiment has a substantially rectangular flat plate shape. A pressing portion 56 is provided on the lower surface of the first fixing member 52. The pressing portion 56 is formed of, for example, an elastic body such as rubber, and projects downward from the lower surface of the first fixing member 52. At each of the four corners of the first fixing member 52, a square columnar first fitting portion 58 extending downward is provided.

第二の固定部材54は、硬質の合成樹脂などで形成された電気絶縁性の部材とされている。第二の固定部材54は、第一の固定部材52と対応する略矩形平板形状とされている。第二の固定部材54の4角には、それぞれ下方へ向かって延び出す四角柱状の第二の嵌合部60が設けられている。 The second fixing member 54 is an electrically insulating member made of a hard synthetic resin or the like. The second fixing member 54 has a substantially rectangular flat plate shape corresponding to the first fixing member 52. At the four corners of the second fixing member 54, a second fitting portion 60 having a square columnar shape extending downward is provided.

第二の固定部材54の上面には、第一の配線46が接続された第一の接続電極62と、第二の配線48が接続された第二の接続電極64が、相互に離隔して設けられている。第一の接続電極62及び第二の接続電極64の幅方向(図8中の左右方向)の両側には、第二の固定部材54から上方へ向けて突出する係止突起66が2つずつ設けられている。 On the upper surface of the second fixing member 54, the first connection electrode 62 to which the first wiring 46 is connected and the second connection electrode 64 to which the second wiring 48 is connected are separated from each other. It is provided. Two locking projections 66 projecting upward from the second fixing member 54 are provided on both sides of the first connection electrode 62 and the second connection electrode 64 in the width direction (left-right direction in FIG. 8). It is provided.

そして、配線固定部材50は、伸縮センサ10における長さ方向の一方の端部に取り付けられている。即ち、第一の固定部材52が伸縮センサ10に対して上方から重ね合わされると共に、第二の固定部材54が伸縮センサ10に対して下方から重ね合わされて、それら第一の固定部材52と第二の固定部材54が相互に固定される。第一の固定部材52と第二の固定部材54は、第一の固定部材52の第一の嵌合部58が第二の固定部材54の第二の嵌合部60に嵌め合わされることにより、相互に固定されている。 The wiring fixing member 50 is attached to one end of the expansion / contraction sensor 10 in the length direction. That is, the first fixing member 52 is overlapped with respect to the expansion / contraction sensor 10 from above, and the second fixing member 54 is overlapped with respect to the expansion / contraction sensor 10 from below, and the first fixing member 52 and the first fixing member 52 are overlapped with each other. The second fixing member 54 is fixed to each other. The first fixing member 52 and the second fixing member 54 are formed by fitting the first fitting portion 58 of the first fixing member 52 to the second fitting portion 60 of the second fixing member 54. , Are fixed to each other.

また、第二の固定部材54の係止突起66が、伸縮センサ10の係止穴44にそれぞれ挿通されて、伸縮センサ10が第二の固定部材54に対して長さ方向で位置決めされる。これにより、配線固定部材50が伸縮センサ10の長さ方向の端部に取り付けられている。配線固定部材50は、伸縮センサ10における低伸縮部22に取り付けられていることから、伸縮センサ10の変形による配線固定部材50に対する位置のずれや、配線固定部材50との係止部分における伸縮センサ10の損傷などが防止される。 Further, the locking projection 66 of the second fixing member 54 is inserted into the locking hole 44 of the expansion / contraction sensor 10, and the expansion / contraction sensor 10 is positioned with respect to the second fixing member 54 in the length direction. As a result, the wiring fixing member 50 is attached to the end portion of the expansion / contraction sensor 10 in the length direction. Since the wiring fixing member 50 is attached to the low expansion / contraction portion 22 of the expansion / contraction sensor 10, the position of the wiring fixing member 50 is displaced with respect to the wiring fixing member 50 due to the deformation of the expansion / contraction sensor 10, and the expansion / contraction sensor at the portion locked with the wiring fixing member 50. 10 damage and the like are prevented.

配線固定部材50の伸縮センサ10への装着状態において、図9に示すように、第二の固定部材54に設けられた第一の接続電極62は、伸縮センサ10の第一の電極16の導通部28aに対して第一の導通孔40を通じて接触状態で重ね合わされる。また、第二の固定部材54に設けられた第二の接続電極64は、伸縮センサ10の第二の電極18の導通部28bに対して第二の導通孔42を通じて接触状態で重ね合わされる。これらによって、第一の配線46が第一の電極16に導通状態で接続されると共に、第二の配線48が第二の電極18に導通状態で接続される。従って、第一の電極16と第一の配線46及び第二の電極18と第二の配線48の各接続部分は、何れも基材38の低伸縮部22に配されており、第一,第二の接続電極62,64を備える配線固定部材50を含んで構成されている。 As shown in FIG. 9, in the state where the wiring fixing member 50 is attached to the expansion / contraction sensor 10, the first connection electrode 62 provided on the second fixing member 54 is a conduction of the first electrode 16 of the expansion / contraction sensor 10. It is superposed on the portion 28a in a contact state through the first conduction hole 40. Further, the second connection electrode 64 provided on the second fixing member 54 is superposed on the conduction portion 28b of the second electrode 18 of the expansion / contraction sensor 10 in a contact state through the second conduction hole 42. As a result, the first wiring 46 is connected to the first electrode 16 in a conductive state, and the second wiring 48 is connected to the second electrode 18 in a conductive state. Therefore, each connection portion of the first electrode 16 and the first wiring 46 and the second electrode 18 and the second wiring 48 is arranged in the low expansion / contraction portion 22 of the base material 38, and the first, first, It is configured to include a wiring fixing member 50 including a second connection electrode 62, 64.

配線固定部材50の第一の固定部材52に設けられた押圧部56は、伸縮センサ10における第一,第二の電極16,18の導通部28a,28bが設けられた部分に押し付けられている。これにより、導通部28a,28bが押圧部56によって第一,第二の接続電極62,64側へ弾性的に押し込まれて、第一,第二の電極16,18と第一,第二の接続電極62,64とが接触状態に保持される。 The pressing portion 56 provided on the first fixing member 52 of the wiring fixing member 50 is pressed against the portions of the expansion / contraction sensor 10 provided with the conductive portions 28a and 28b of the first and second electrodes 16 and 18. .. As a result, the conductive portions 28a and 28b are elastically pushed toward the first and second connection electrodes 62 and 64 by the pressing portion 56, and the first and second electrodes 16 and 18 and the first and second electrodes 16 and 18 are used. The connection electrodes 62 and 64 are kept in contact with each other.

低伸縮部22は、押圧部56と第一,第二の接続電極62,64で挟まれることによって部分的に拘束されており、拘束部分では変形がほとんど生じない。これにより、第一,第二の電極16,18と第一,第二の配線46,48との接続部分において、基材38の変形に起因する断線などの不具合が防止される。 The low expansion / contraction portion 22 is partially constrained by being sandwiched between the pressing portion 56 and the first and second connection electrodes 62 and 64, and almost no deformation occurs in the constrained portion. This prevents problems such as disconnection due to deformation of the base material 38 at the connection portion between the first and second electrodes 16 and 18 and the first and second wirings 46 and 48.

なお、伸縮センサ10における長さ方向の他方の端部には、図1に示すように、取付部材68が装着される。取付部材68の具体的な構造は特に限定されないが、例えば、配線固定部材50の第一の固定部材52と第二の固定部材54に相当する部材によって構成されている。伸縮センサ10の他方の端部には電極がないことから、取付部材68には第一,第二の接続電極62,64や押圧部56に相当する部材は設けられなくて良い。また、取付部材68は、係止突起66もなくて良いが、係止突起66を設けるようにすれば、取付部材68を第一,第二の固定部材52,54と共通の部品で構成することができる。 As shown in FIG. 1, a mounting member 68 is mounted on the other end of the expansion / contraction sensor 10 in the length direction. The specific structure of the mounting member 68 is not particularly limited, but is composed of, for example, a member corresponding to the first fixing member 52 and the second fixing member 54 of the wiring fixing member 50. Since there is no electrode at the other end of the expansion / contraction sensor 10, the mounting member 68 does not have to be provided with members corresponding to the first and second connecting electrodes 62 and 64 and the pressing portion 56. Further, the mounting member 68 may not have the locking projection 66, but if the locking projection 66 is provided, the mounting member 68 is composed of parts common to the first and second fixing members 52 and 54. be able to.

伸縮センサ10は、長さ方向の両端部に装着された配線固定部材50と取付部材68が図示しない検出対象に取り付けられることにより、当該検出対象における配線固定部材50と取付部材68の取付部位間の距離の変化(伸縮変形)を電気的に検出する。本実施形態の伸縮センサ10は、伸縮変形の検出だけでなく、伸縮変形量の計測も可能とされており、検出対象における配線固定部材50と取付部材68の取付部位間の距離の変化量を電気的に計測することができる。なお、伸縮センサ10の両端部分が検出対象に対する取付部とされている。この取付部は、低伸縮部22で構成されていることから、変形量が小さくされている。なお、ここでいう検出対象における配線固定部材50と取付部材68の取付部位間の距離とは、必ずしも2点間の最短距離だけを意味せず、例えば検出対象の湾曲した表面に伸縮センサ10が取り付けられる場合には、該表面に沿った経路の長さを言う。 By attaching the wiring fixing member 50 and the mounting member 68 mounted at both ends in the length direction to a detection target (not shown), the expansion / contraction sensor 10 is located between the wiring fixing member 50 and the mounting portion of the mounting member 68 in the detection target. The change in distance (expansion and contraction deformation) is electrically detected. The expansion / contraction sensor 10 of the present embodiment can not only detect expansion / contraction deformation but also measure the amount of expansion / contraction deformation, and can detect the amount of change in the distance between the wiring fixing member 50 and the attachment portion of the attachment member 68 in the detection target. It can be measured electrically. Both ends of the expansion / contraction sensor 10 are attached to the detection target. Since this mounting portion is composed of the low expansion / contraction portion 22, the amount of deformation is reduced. The distance between the wiring fixing member 50 and the mounting portion of the mounting member 68 in the detection target here does not necessarily mean only the shortest distance between the two points. For example, the expansion / contraction sensor 10 is placed on the curved surface of the detection target. When attached, it refers to the length of the path along the surface.

すなわち、第一の電極16と第二の電極18の間に検出用電圧が印加された状態で、検出対象における配線固定部材50と取付部材68の取付部位間の距離が変化すると、伸縮センサ10には、配線固定部材50と取付部材68の間で面方向の伸縮変形が生じる。これにより、伸縮センサ10の検出部32において、面方向の伸縮変形とそれに伴う厚さ方向の伸縮変形が生じる。その結果、第一,第二の電極16,18の対向部分の面積と、第一,第二の電極16,18の対向間距離とが変化して、検出部32の静電容量が変化する。そして、検出部32の静電容量値の変化に対応する伸縮センサ10の伸縮変形量を、図示しない外部の検出装置によって算出することにより、伸縮センサ10が装着された検出対象の伸縮や曲げなどの変形量を計測することができる。このように、伸縮センサ10は、基材38を構成する誘電体層14の伸縮変形に伴う検出部32の静電容量の変化に基づいて、検出対象の変形量などを検出する。要するに、伸縮センサ10は、検出対象の変形等に追従する基材38の伸縮変形を検出することによって、検出対象の変形等を検出する。 That is, when the detection voltage is applied between the first electrode 16 and the second electrode 18, and the distance between the wiring fixing member 50 and the mounting portion of the mounting member 68 in the detection target changes, the expansion / contraction sensor 10 In, expansion and contraction deformation in the surface direction occurs between the wiring fixing member 50 and the mounting member 68. As a result, in the detection unit 32 of the expansion / contraction sensor 10, expansion / contraction deformation in the surface direction and accompanying expansion / contraction deformation in the thickness direction occur. As a result, the area of the facing portions of the first and second electrodes 16 and 18 and the distance between the facing portions of the first and second electrodes 16 and 18 change, and the capacitance of the detection unit 32 changes. .. Then, by calculating the amount of expansion / contraction deformation of the expansion / contraction sensor 10 corresponding to the change in the capacitance value of the detection unit 32 by an external detection device (not shown), the expansion / contraction or bending of the detection target to which the expansion / contraction sensor 10 is attached, etc. The amount of deformation of can be measured. As described above, the expansion / contraction sensor 10 detects the amount of deformation to be detected based on the change in the capacitance of the detection unit 32 due to the expansion / contraction deformation of the dielectric layer 14 constituting the base material 38. In short, the expansion / contraction sensor 10 detects the deformation of the detection target by detecting the expansion / contraction deformation of the base material 38 that follows the deformation of the detection target.

なお、外部の検出装置による伸縮センサ10の伸縮変形量の算出は、例えば、検出部32の静電容量値の変化に対応する伸縮センサ10の伸縮変形量を、マップデータとして外部の検出装置に予め記憶させて、検出部32から出力された静電容量値に対応する伸縮センサ10の伸縮変形量をマップデータから読み取ることで実現される。 For the calculation of the expansion / contraction deformation amount of the expansion / contraction sensor 10 by the external detection device, for example, the expansion / contraction deformation amount of the expansion / contraction sensor 10 corresponding to the change in the capacitance value of the detection unit 32 is used as map data in the external detection device. It is realized by storing in advance and reading the expansion / contraction deformation amount of the expansion / contraction sensor 10 corresponding to the capacitance value output from the detection unit 32 from the map data.

伸縮センサ10は、例えば、非変形状態で検出対象に装着されて、伸長変形によって検出対象の変形や移動を検出するようにしても良いし、予め伸長変形した状態で検出対象に装着されて、収縮変形によって検出対象の変形や移動を検出するようにしても良い。 The expansion / contraction sensor 10 may be attached to the detection target in a non-deformed state to detect the deformation or movement of the detection target by the extension deformation, or may be attached to the detection target in the extension / deformation state in advance. The deformation or movement of the detection target may be detected by the contraction deformation.

伸縮センサ10の長さ方向の伸長変形量が小さい場合には、検出部32において低伸縮部22に設けられた部分では、低伸縮部22の伸長変形量が特に小さいことから、伸長変形を検出することが難しい場合がある。しかしながら、検出部32において高伸縮部20に設けられた部分は、高伸縮部20の伸長変形量が比較的に大きくなることから、伸長変形を検出することができる。従って、検出部32の一部が高伸縮部20に設けられていることにより、伸縮センサ10の検出感度の向上が図られて、より小さな伸縮変形を精度よく検出することが可能になる。 When the amount of elongation deformation in the length direction of the expansion / contraction sensor 10 is small, the expansion / deformation amount of the low expansion / contraction portion 22 is particularly small in the portion provided in the low expansion / contraction portion 22 in the detection unit 32, so that the expansion deformation is detected. It can be difficult to do. However, in the portion of the detection unit 32 provided in the high expansion / contraction portion 20, the expansion deformation amount of the high expansion / contraction portion 20 is relatively large, so that the expansion deformation can be detected. Therefore, since a part of the detection unit 32 is provided in the high expansion / contraction unit 20, the detection sensitivity of the expansion / contraction sensor 10 is improved, and it becomes possible to accurately detect smaller expansion / contraction deformation.

伸縮センサ10の長さ方向の伸長変形量が大きい場合には、検出部32において高伸縮部20に設けられた部分では、高伸縮部20の伸長変形量が特に大きくなることから、大きく伸長変形した第一,第二の電極16,18の電気抵抗が著しく大きくなって、伸長変形を検出することが難しい場合がある。しかしながら、検出部32において低伸縮部22に設けられた部分では、低伸縮部22の伸長変形量が比較的に小さくなることから、第一,第二の電極16,18の変形が抑えられて、伸長変形を検出することができる。従って、検出部32の一部が低伸縮部22に設けられていることで、より大きな伸長変形を伸縮センサ10によって検出することができる。 When the amount of expansion and deformation of the expansion and contraction sensor 10 in the length direction is large, the amount of expansion and deformation of the high expansion and contraction portion 20 is particularly large in the portion provided in the high expansion and contraction portion 20 in the detection unit 32, so that the expansion and deformation amount is large. The electrical resistance of the first and second electrodes 16 and 18 becomes extremely large, and it may be difficult to detect elongation deformation. However, in the portion of the detection unit 32 provided in the low expansion / contraction portion 22, the amount of elongation deformation of the low expansion / contraction portion 22 is relatively small, so that the deformation of the first and second electrodes 16 and 18 is suppressed. , Stretching deformation can be detected. Therefore, since a part of the detection unit 32 is provided in the low expansion / contraction unit 22, a larger expansion / deformation can be detected by the expansion / contraction sensor 10.

なお、第一,第二の電極16,18の電気抵抗が大きな伸長変形によって著しく高まる理由としては、例えば、第一,第二の電極16,18がエラストマーに導電性フィラーを混合した導電性エラストマー(導電性ゴム)であることが考えられる。即ち、導電性エラストマーの電気抵抗(導電率)には、エラストマーに分散している導電性フィラー間の距離が影響する。従って、第一,第二の電極16,18が通電方向である長さ方向で伸長変形すると、導電性フィラー間の距離が遠くなって、電気抵抗が増大する。電気抵抗の増大幅は、第一,第二の電極16,18の変形量に対応することから、第一,第二の電極16,18が高伸縮部20の変形に追従して大きく変形すると、第一,第二の電極16,18の電気抵抗が著しく大きくなって、実質的に導電性を失う場合もある。 The reason why the electric resistance of the first and second electrodes 16 and 18 is remarkably increased by the large elongation deformation is that, for example, the first and second electrodes 16 and 18 are a conductive elastomer in which a conductive filler is mixed with the elastomer. (Conductive rubber) is considered. That is, the electric resistance (conductivity) of the conductive elastomer is affected by the distance between the conductive fillers dispersed in the elastomer. Therefore, when the first and second electrodes 16 and 18 are elongated and deformed in the length direction which is the energization direction, the distance between the conductive fillers becomes long and the electric resistance increases. Since the increase in electrical resistance corresponds to the amount of deformation of the first and second electrodes 16 and 18, when the first and second electrodes 16 and 18 are greatly deformed following the deformation of the high expansion / contraction portion 20. In some cases, the electrical resistance of the first and second electrodes 16 and 18 becomes significantly large, and the conductivity is substantially lost.

このように、本実施形態の伸縮センサ10は、検出部32が高伸縮部20と低伸縮部22に跨って設けられていることから、より小さな変形からより大きな変形までの広い範囲の伸縮変形を精度よく検出することができる。 As described above, in the expansion / contraction sensor 10 of the present embodiment, since the detection unit 32 is provided so as to straddle the high expansion / contraction portion 20 and the low expansion / contraction portion 22, the expansion / contraction deformation in a wide range from smaller deformation to larger deformation Can be detected accurately.

実施例としての伸縮センサ10の検出部32が出力する検出信号の出力値は、図10(a)のグラフに示すように、想定される伸縮センサ10の伸縮変形量の範囲、換言すれば伸縮センサ10によって検出したい対象物の伸縮変形量の範囲において、極値を持つことなく、伸縮変形量が大きくなるに従って検出信号の出力値が大きくなる。一方、全体が高伸縮部20に相当する構造とされた比較例では、伸縮変形量が大きくなると、第一,第二の電極16,18の抵抗値が大きくなって、見かけ上の出力値が下がる。その結果、図10(b)のグラフに示すように、想定される伸縮センサ10の伸縮変形量の範囲において極大値を持つこととなって、検出信号の出力値から伸縮変形量を一意的に求めることが難しい場合がある。このように、実施例としての伸縮センサ10は、検出部32が低伸縮部22に設けられることで、より大きな伸縮変形量まで有効に検出することが可能とされている。 As shown in the graph of FIG. 10A, the output value of the detection signal output by the detection unit 32 of the expansion / contraction sensor 10 as an embodiment is the range of the expected expansion / contraction deformation amount of the expansion / contraction sensor 10, in other words, expansion / contraction. Within the range of the amount of expansion and contraction deformation of the object to be detected by the sensor 10, the output value of the detection signal increases as the amount of expansion and contraction deformation increases without having an extreme value. On the other hand, in the comparative example in which the entire structure corresponds to the high expansion / contraction portion 20, the resistance values of the first and second electrodes 16 and 18 increase as the amount of expansion / contraction deformation increases, and the apparent output value increases. Go down. As a result, as shown in the graph of FIG. 10B, it has a maximum value in the range of the expected expansion / contraction deformation amount of the expansion / contraction sensor 10, and the expansion / contraction deformation amount is uniquely obtained from the output value of the detection signal. It can be difficult to ask. As described above, the expansion / contraction sensor 10 as an embodiment can effectively detect even a larger expansion / contraction deformation amount by providing the detection unit 32 in the low expansion / contraction unit 22.

第一,第二の電極16,18において、導通部28a,28bは、センサ構成部30a,30bにおける低伸縮部22に設けられた部分につながって設けられている。それ故、伸縮センサ10の伸縮変形量が大きくなって、センサ構成部30a,30bにおける高伸縮部20に設けられた部分の電気抵抗が著しく大きくなったとしても、導通部28a,28bと低伸縮部22に設けられたセンサ構成部30a,30bとの導通が維持される。その結果、低伸縮部22に設けられた検出部32によって、伸縮変形の検出が維持される。 In the first and second electrodes 16 and 18, the conductive portions 28a and 28b are provided so as to be connected to the portions provided in the low expansion / contraction portion 22 in the sensor constituent portions 30a and 30b. Therefore, even if the expansion / contraction deformation amount of the expansion / contraction sensor 10 becomes large and the electric resistance of the portion provided in the high expansion / contraction portion 20 in the sensor constituent portions 30a and 30b becomes remarkably large, the conduction portions 28a and 28b and the expansion / contraction portion are low. Continuity with the sensor components 30a and 30b provided in the unit 22 is maintained. As a result, the detection of expansion and contraction deformation is maintained by the detection unit 32 provided in the low expansion and contraction unit 22.

高伸縮部20と低伸縮部22は、同じ材質で一体的に連続して形成されていることから、製造が容易である。そして、高伸縮部20と低伸縮部22が幅寸法の違いによって設定されていることから、高伸縮部20と低伸縮部22の伸縮変形の違いを容易に設定可能であり、例えば別のシートで補強して低伸縮部22を設けるなどの手間が不要である。 Since the high expansion / contraction portion 20 and the low expansion / contraction portion 22 are integrally and continuously formed of the same material, they are easy to manufacture. Since the high expansion / contraction portion 20 and the low expansion / contraction portion 22 are set according to the difference in width dimension, the difference in expansion / contraction deformation between the high expansion / contraction portion 20 and the low expansion / contraction portion 22 can be easily set, for example, another sheet. There is no need to reinforce with and provide a low expansion / contraction portion 22.

第一,第二の配線46,48が接続される第一,第二の電極16,18の導通部28a,28bの端部が、基材38の低伸縮部22に設けられている。これにより、伸縮センサ10が長さ方向に伸縮変形する際に、第一,第二の配線46,48と第一,第二の電極16,18との接続部分に作用する変形による応力が低減されて、断線等の不具合が防止される。 The ends of the conductive portions 28a and 28b of the first and second electrodes 16 and 18 to which the first and second wirings 46 and 48 are connected are provided in the low expansion and contraction portion 22 of the base material 38. As a result, when the expansion / contraction sensor 10 expands and contracts in the length direction, the stress due to the deformation acting on the connection portion between the first and second wirings 46 and 48 and the first and second electrodes 16 and 18 is reduced. This prevents problems such as disconnection.

しかも、第一,第二の電極16,18と第一,第二の配線46,48の接続部分が、伸縮センサ10に装着される配線固定部材50によって挟み込まれて拘束されている。これにより、伸縮センサ10が長さ方向に伸縮変形する際に、第一,第二の配線46,48の接続部分に作用する応力が更に低減されて、断線等の不具合が回避される。 Moreover, the connecting portions of the first and second electrodes 16 and 18 and the first and second wirings 46 and 48 are sandwiched and restrained by the wiring fixing member 50 mounted on the expansion / contraction sensor 10. As a result, when the expansion / contraction sensor 10 expands and contracts in the length direction, the stress acting on the connecting portions of the first and second wirings 46 and 48 is further reduced, and problems such as disconnection are avoided.

伸縮センサ10は、両端部が図示しない検出対象の相互に離れた2点に取り付けられて、検出対象の2点間の距離変化を検出する。そこにおいて、伸縮センサ10が低伸縮部22だけでなく高伸縮部20を備えることにより、全体が低伸縮部とされる場合に比して、伸縮センサ10全体の伸縮変形が大きく許容されて、伸縮センサ10の伸縮変形を検出対象の2点間の距離変化に追従させることができる。 The expansion / contraction sensor 10 is attached to two points whose both ends are separated from each other of the detection target (not shown), and detects a change in distance between the two points of the detection target. Here, by providing the expansion / contraction sensor 10 not only with the low expansion / contraction portion 22 but also with the high expansion / contraction portion 20, the expansion / contraction deformation of the entire expansion / contraction sensor 10 is greatly allowed as compared with the case where the whole is a low expansion / contraction portion. The expansion / contraction deformation of the expansion / contraction sensor 10 can be made to follow the change in the distance between the two points to be detected.

図11には、本発明の第二の実施形態としての伸縮検出装置を構成するセンサ本体70を示す。センサ本体70は、第一の電極72と第二の電極74が誘電体層14の両面に固着された構造を有している。以下の説明において、第一の実施形態と実質的に同一の部材及び部位については、図中に同一の符号を付して説明を省略する。 FIG. 11 shows the sensor main body 70 constituting the expansion / contraction detection device as the second embodiment of the present invention. The sensor body 70 has a structure in which the first electrode 72 and the second electrode 74 are fixed to both sides of the dielectric layer 14. In the following description, the members and parts substantially the same as those in the first embodiment are designated by the same reference numerals in the drawings, and the description thereof will be omitted.

第一,第二の電極72,74は、何れも、上下方向で対向して配されて検出部32を構成するセンサ構成部76と、センサ構成部76から延び出す導通部28とを備えている。なお、第一の電極72と第二の電極74は、幅方向の中央を通って幅方向と直交する平面に対する面対称形状とされている。 The first and second electrodes 72 and 74 each include a sensor component 76 that is arranged so as to face each other in the vertical direction to form a detection unit 32, and a conduction unit 28 that extends from the sensor component 76. There is. The first electrode 72 and the second electrode 74 have a plane-symmetrical shape with respect to a plane that passes through the center in the width direction and is orthogonal to the width direction.

センサ構成部76は、誘電体層14の高伸縮部20に固着される部分が幅狭部78とされていると共に、誘電体層14の低伸縮部22に固着される部分が幅広部80とされている。幅広部80は、少なくとも一部において幅狭部78よりも幅寸法が大きくされている。好適には、幅広部80の長さ方向の半分以上の範囲において、幅広部80の幅寸法が幅狭部78の幅寸法よりも大きくされる。より好適には、幅広部80の長さ方向の70%以上の範囲において、幅広部80の幅寸法が幅狭部78の幅寸法よりも大きくされる。幅広部80の面積は、幅狭部78の面積よりも大きくされている。 In the sensor component 76, the portion fixed to the high expansion / contraction portion 20 of the dielectric layer 14 is the narrow portion 78, and the portion fixed to the low expansion / contraction portion 22 of the dielectric layer 14 is the wide portion 80. Has been done. The wide portion 80 has a larger width dimension than the narrow portion 78 at least in part. Preferably, the width dimension of the wide portion 80 is made larger than the width dimension of the narrow portion 78 in a range of more than half in the length direction of the wide portion 80. More preferably, the width dimension of the wide portion 80 is made larger than the width dimension of the narrow portion 78 in the range of 70% or more in the length direction of the wide portion 80. The area of the wide portion 80 is larger than the area of the narrow portion 78.

そして、第一,第二の電極72,74は、誘電体層14の両面に重ね合わされている。第一の電極72と第二の電極74は、センサ構成部76において誘電体層14を挟んで上下方向で対向して配置されており、それら第一の電極72と第二の電極74のセンサ構成部76の対向部分に検出部32が構成されている。第一の電極72の導通部28aと第二の電極74の導通部28bは、上下方向で対向することなく、幅方向で相互に離れた位置に配されている。 The first and second electrodes 72 and 74 are superposed on both surfaces of the dielectric layer 14. The first electrode 72 and the second electrode 74 are arranged in the sensor component 76 so as to face each other in the vertical direction with the dielectric layer 14 interposed therebetween, and the sensors of the first electrode 72 and the second electrode 74 are arranged. The detection unit 32 is configured on the opposite portion of the configuration unit 76. The conductive portion 28a of the first electrode 72 and the conductive portion 28b of the second electrode 74 are arranged at positions separated from each other in the width direction without facing each other in the vertical direction.

このような本実施形態に従う構造とされたセンサ本体70によれば、検出部32において高伸縮部20に設けられた部分が、低伸縮部22に設けられた部分よりも小さくされている。検出部32において低伸縮部22に設けられた部分は、高伸縮部20に設けられた部分よりも検出部32の静電容量の検出値に対する寄与度を大きくされている。それ故、センサ本体70が長さ方向で大きく伸長変形する場合に、検出部32における高伸縮部20に設けられた部分が大きく変形して、静電容量の検出ができなくなったとしても、検出部32全体の検出値に対する影響が低減される。その結果、センサ本体70が大きく伸長変形する場合にも、伸縮変形を精度よく検出することができる。 According to the sensor main body 70 having a structure according to the present embodiment, the portion of the detection unit 32 provided in the high expansion / contraction portion 20 is made smaller than the portion provided in the low expansion / contraction portion 22. The portion of the detection unit 32 provided in the low expansion / contraction unit 22 has a greater contribution to the detection value of the capacitance of the detection unit 32 than the portion provided in the high expansion / contraction unit 20. Therefore, when the sensor main body 70 is greatly expanded and deformed in the length direction, even if the portion provided in the high expansion and contraction portion 20 in the detection unit 32 is greatly deformed and the capacitance cannot be detected, it can be detected. The influence on the detected value of the entire unit 32 is reduced. As a result, even when the sensor body 70 is significantly stretched and deformed, the stretch and deform can be detected accurately.

図12には、本発明に従う構造とされた伸縮検出装置の第三の実施形態として、伸縮センサ90を示す。伸縮センサ90は、基材92を構成する第一の保護層94の厚さ寸法が長さ方向で変化している。 FIG. 12 shows a stretch sensor 90 as a third embodiment of a stretch detection device having a structure according to the present invention. In the expansion / contraction sensor 90, the thickness dimension of the first protective layer 94 constituting the base material 92 changes in the length direction.

すなわち、第一の保護層94は、長さ方向の一方の端部が厚肉部96とされており、長さ方向の外力の作用に対して、厚肉部96における長さ方向の伸縮変形量が、厚肉部96を外れた部分における長さ方向の伸縮変形量よりも小さくされている。これにより、基材92において厚肉部96が設けられた長さ方向一方の端部が低伸縮部98とされていると共に、基材92において厚肉部96を長さ方向で外れた部分が高伸縮部100とされている。要するに、本実施形態の伸縮センサ90では、基材92の低伸縮部98と高伸縮部100が、基材92の厚さの違いによって設けられており、低伸縮部98の厚さ寸法が高伸縮部100の厚さ寸法よりも大きくされている。 That is, the first protective layer 94 has a thick portion 96 at one end in the length direction, and the thick portion 96 expands and contracts and deforms in the length direction in response to the action of an external force in the length direction. The amount is smaller than the amount of expansion and contraction deformation in the length direction in the portion outside the thick portion 96. As a result, one end of the base material 92 in which the thick portion 96 is provided is the low expansion / contraction portion 98, and the portion of the base material 92 that is separated from the thick portion 96 in the length direction is formed. It is said to be a high expansion / contraction portion 100. In short, in the expansion / contraction sensor 90 of the present embodiment, the low expansion / contraction portion 98 and the high expansion / contraction portion 100 of the base material 92 are provided according to the difference in the thickness of the base material 92, and the thickness dimension of the low expansion / contraction portion 98 is high. It is made larger than the thickness dimension of the expansion / contraction portion 100.

低伸縮部と高伸縮部を基材の形状の変化によって設ける場合には、前記第一の実施形態のように、基材38の幅寸法を異ならせて低伸縮部22と高伸縮部20を設けることができる一方、本実施形態のように、基材92の厚さ寸法を異ならせて低伸縮部98と高伸縮部100を設けることもできる。 When the low-stretchable portion and the high-stretchable portion are provided by changing the shape of the base material, the low-stretchable portion 22 and the high-stretchable portion 20 are provided with different width dimensions of the base material 38 as in the first embodiment. On the other hand, as in the present embodiment, the low expansion / contraction portion 98 and the high expansion / contraction portion 100 can be provided with different thickness dimensions of the base material 92.

以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、前記実施形態において、基材の低伸縮部と高伸縮部は、基材の形状の違いによって設けられていたが、低伸縮部と高伸縮部は、例えば、材質を相互に異ならせることによって設けることもできる。また、例えば、基材の一部に別体の補強体を重ね合わせるようにして当該補強体を含んで基材を構成することによって、伸縮変形率を調節して低伸縮部を設けることもできる。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited by the specific description thereof. For example, in the above-described embodiment, the low-stretch portion and the high-stretch portion of the base material are provided depending on the shape of the base material, but the low-stretch portion and the high-stretch portion have different materials, for example. It can also be provided by. Further, for example, by forming the base material by including the reinforcing body by superimposing another reinforcing body on a part of the base material, the expansion / contraction deformation rate can be adjusted to provide the low expansion / contraction portion. ..

低伸縮部と高伸縮部は、幅寸法の違い、厚さ寸法の違い、材質の違いなどを組み合わせて設けることもできる。例えば、低伸縮部を幅広且つ厚肉とすると共に、高伸縮部を幅狭且つ薄肉とすることによって、低伸縮部と高伸縮部の伸縮変形率の違いを設定することもできる。 The low expansion / contraction portion and the high expansion / contraction portion can be provided by combining different width dimensions, different thickness dimensions, different materials, and the like. For example, by making the low expansion / contraction portion wide and thick, and making the high expansion / contraction portion narrow and thin, it is possible to set the difference in the expansion / contraction deformation rate between the low expansion / contraction portion and the high expansion / contraction portion.

例えば、拘束部材によって基材を部分的に或いは全体的に挟み込むなどして、基材の伸縮率を低減させることにより、基材の伸縮変形量を制限することもできる。 For example, the amount of expansion and contraction deformation of the base material can be limited by reducing the expansion and contraction rate of the base material by partially or wholly sandwiching the base material with a restraining member.

前記実施形態では、基材38の一方の端部にのみ検出部32が設けられていたが、例えば、基材38の両端部にそれぞれ検出部32を設けても良い。このことからも分かるように、複数の検出部32を設けることも可能であり、それによって検出精度や信頼性の向上が図られ得る。また、基材38の略全長に亘って連続的に検出部32を設けることもできる。 In the above embodiment, the detection unit 32 is provided only at one end of the base material 38, but for example, the detection unit 32 may be provided at both ends of the base material 38. As can be seen from this, it is also possible to provide a plurality of detection units 32, whereby detection accuracy and reliability can be improved. Further, the detection unit 32 can be continuously provided over substantially the entire length of the base material 38.

前記実施形態では、検出部32が低伸縮部22と高伸縮部20に跨って設けられていたが、検出部32は、低伸縮部22だけに設けられて、高伸縮部20には設けられていなくても良い。 In the above embodiment, the detection unit 32 is provided straddling the low expansion / contraction portion 22 and the high expansion / contraction portion 20, but the detection unit 32 is provided only in the low expansion / contraction portion 22 and is provided in the high expansion / contraction portion 20. It doesn't have to be.

基材38における低伸縮部22と高伸縮部20の配置は特に限定されず、例えば、低伸縮部22が基材38の中間部分に設けられると共に、高伸縮部20が基材38の端部に設けられていても良い。 The arrangement of the low expansion / contraction portion 22 and the high expansion / contraction portion 20 in the base material 38 is not particularly limited. It may be provided in.

前記実施形態の基材38は、誘電体層14と第一,第二の保護層34,36とによって構成されていたが、第一,第二の保護層34,36を省略して誘電体層14だけで基材を構成することもできる。また、第二の保護層36を基材として、第二の保護層36上にセンサ本体12を配しても良く、その場合には、センサ本体12が基材の一部を構成する部分(前記実施形態の誘電体層14)を備えていなくても良い。なお、電気的な信号の出力部分となる電極(16,18等)は、それ自体が電気抵抗の変化を制御される対象であることから、前記実施形態に記載のとおり伸縮変形する基材に含めずに把握されることが望ましいが、例えばかかる電極の厚さや幅を部分的に異ならせることで基材の伸縮特性を積極的に且つ部分的にコントロールすることも可能であって、そのような態様においては電極を含めて基材を把握することができる。 The base material 38 of the above-described embodiment is composed of the dielectric layer 14 and the first and second protective layers 34 and 36, but the first and second protective layers 34 and 36 are omitted and the dielectric material is omitted. The substrate can also be composed of only the layer 14. Further, the sensor main body 12 may be arranged on the second protective layer 36 using the second protective layer 36 as a base material, and in that case, the portion where the sensor main body 12 constitutes a part of the base material ( The dielectric layer 14) of the embodiment may not be provided. Since the electrodes (16, 18, etc.) that are the output parts of the electrical signal are the objects for which the change in electrical resistance is controlled, they can be used as a base material that expands and contracts as described in the above embodiment. It is desirable to grasp without including, but for example, it is possible to positively and partially control the expansion and contraction characteristics of the base material by partially differentizing the thickness and width of the electrodes. In any aspect, the base material including the electrodes can be grasped.

基材38は、必ずしも帯状に限定されず、例えば、上下方向視で略正方形の矩形シート状などであっても良い。 The base material 38 is not necessarily limited to a strip shape, and may be, for example, a substantially square rectangular sheet shape when viewed in the vertical direction.

検出部の検出方式は、例示した静電容量方式に限定されない。例えば、圧電体層の変形による起電力に基づいて伸縮変形を検出する圧電方式や、電気絶縁性の弾性体に導電性フィラーを混合して分散させた導電性エラストマーの変形による電気抵抗の変化に基づいて伸縮変形を検出する電気抵抗方式など、各種公知の検出方式が採用され得る。 The detection method of the detection unit is not limited to the exemplified capacitance method. For example, a piezoelectric method that detects expansion and contraction deformation based on the electromotive force due to deformation of the piezoelectric layer, and changes in electrical resistance due to deformation of a conductive elastomer in which a conductive filler is mixed and dispersed in an electrically insulating elastic body. Various known detection methods such as an electric resistance method for detecting expansion and contraction deformation based on the above can be adopted.

基材38を構成する誘電体層14、第一,第二の保護層34,36や、第一,第二の電極16,18の形成方法は、特に限定されない。例えば、第一,第二の電極16,18を設けた誘電体層14と第一,第二の保護層34,36をそれぞれ独立したシートとして形成して、それら誘電体層14と第一,第二の保護層34,36を重ね合わせて固着しても良い。また、例えば、誘電体層14、第一,第二の保護層34,36、第一,第二の電極16,18を各種の印刷法によって適切な順番に積層された状態で形成することもできる。第一,第二の電極16,18は、例えば、誘電体層14の表面に各種印刷法で形成したり、薄膜として別で形成された第一,第二の電極16,18を誘電体層14に貼り合わせるなどして設けることができる。 The method for forming the dielectric layer 14, the first and second protective layers 34 and 36, and the first and second electrodes 16 and 18 constituting the base material 38 is not particularly limited. For example, the dielectric layer 14 provided with the first and second electrodes 16 and 18 and the first and second protective layers 34 and 36 are formed as independent sheets, and the dielectric layers 14 and the first, The second protective layers 34 and 36 may be overlapped and fixed. Further, for example, the dielectric layer 14, the first and second protective layers 34 and 36, and the first and second electrodes 16 and 18 may be formed in a state of being laminated in an appropriate order by various printing methods. can. The first and second electrodes 16 and 18 are formed on the surface of the dielectric layer 14 by various printing methods, or the first and second electrodes 16 and 18 separately formed as a thin film are formed as a dielectric layer. It can be provided by sticking it to 14.

前記実施形態では、長さ方向の伸縮変形を検出する伸縮検出装置について説明したが、例えば、長さ方向と幅方向などの複数方向において伸縮変形を検出可能とすることもできる。伸縮検出装置は、伸縮変形の検出方向で互いに離れた部分(例えば、前記実施形態のように両端部分)にそれぞれ検出対象への取付部が設けられると共に、それら取付部の間には、それら取付部が離れた方向(伸縮変形の検出方向)において互いに異なる部分に、高伸縮部と低伸縮部が各少なくとも1つ設けられる。前記実施形態では、伸縮変形量を測定することも可能であるが、例えば、伸縮変形の有無だけを検出するようにしても良い。 In the above-described embodiment, the expansion / contraction detection device for detecting the expansion / contraction deformation in the length direction has been described, but for example, the expansion / contraction deformation can be detected in a plurality of directions such as the length direction and the width direction. In the expansion / contraction detection device, attachment portions to the detection target are provided at portions separated from each other in the expansion / contraction detection direction (for example, both end portions as in the above embodiment), and the attachment portions are provided between the attachment portions. At least one high-stretchable portion and one low-stretchable portion are provided in portions that are different from each other in a direction in which the portions are separated from each other (direction in which expansion and contraction deformation is detected). In the above embodiment, it is possible to measure the amount of expansion and contraction deformation, but for example, only the presence or absence of expansion and contraction deformation may be detected.

伸縮検出装置としての伸縮センサ10は、配線固定部材50を介して検出対象に装着されていたが、例えば、伸縮センサ10の両端部が検出対象に直接的に取り付けられても良い。要するに、伸縮検出装置の検出対象への装着方法は、特に限定されない。また、配線固定部材50の具体的な構造は、あくまでも例示であって、適宜に変更され得る。また、検出対象は単一部材の2点間距離に限らず、例えば互いに別部材の間に掛け渡すように伸縮センサ10を装着することで当該別部材の相互間距離を検出対象とすることも可能である。 The expansion / contraction sensor 10 as the expansion / contraction detection device is attached to the detection target via the wiring fixing member 50, but for example, both ends of the expansion / contraction sensor 10 may be directly attached to the detection target. In short, the method of attaching the expansion / contraction detection device to the detection target is not particularly limited. Further, the specific structure of the wiring fixing member 50 is merely an example and can be appropriately changed. Further, the detection target is not limited to the distance between two points of a single member, and for example, by mounting the expansion / contraction sensor 10 so as to hang between the different members, the mutual distance between the different members can be detected. It is possible.

また、本発明は、もともと以下(i)~(x)に記載の各発明を何れも含むものであり、その構成および作用効果に関して、付記しておく。Further, the present invention originally includes all of the inventions described in the following (i) to (x), and the configuration and the action and effect thereof will be added.
本発明は、The present invention
(i) 面方向に伸縮変形可能とされた薄肉の基材において、該基材の伸縮変形に追従して伸縮変形して該基材の伸縮変形を電気的に検出する検出部が設けられた伸縮検出装置であって、前記基材が高伸縮部と低伸縮部を備えており、該基材における該低伸縮部の伸縮変形率が該高伸縮部よりも小さくされていると共に、前記検出部が該基材の該低伸縮部に設けられている伸縮検出装置、(I) In a thin-walled base material that can be stretched and deformed in the plane direction, a detection unit is provided that stretches and deforms following the stretch and deformation of the base material and electrically detects the stretch and deformation of the base material. In the expansion / contraction detection device, the base material has a high expansion / contraction portion and a low expansion / contraction portion, and the expansion / contraction deformation rate of the low expansion / contraction portion in the substrate is smaller than that of the high expansion / contraction portion, and the detection is performed. An expansion / contraction detection device whose portion is provided in the low expansion / contraction portion of the substrate,
(ii) 前記検出部は、前記基材の前記高伸縮部と前記低伸縮部に跨って設けられている(i)に記載の伸縮検出装置、(Ii) The expansion / contraction detection device according to (i), wherein the detection unit is provided so as to straddle the high expansion / contraction portion and the low expansion / contraction portion of the base material.
(iii) 前記高伸縮部と前記低伸縮部は同一の材質で形成されている(i)又は(ii)に記載の伸縮検出装置、(Iii) The expansion / contraction detection device according to (i) or (ii), wherein the high expansion / contraction portion and the low expansion / contraction portion are made of the same material.
(iv) 前記低伸縮部の幅寸法が前記高伸縮部の幅寸法よりも大きくされている(i)~(iii)の何れか一項に記載の伸縮検出装置、(Iv) The expansion / contraction detection device according to any one of (i) to (iii), wherein the width dimension of the low expansion / contraction portion is larger than the width dimension of the high expansion / contraction portion.
(v) 前記低伸縮部の厚さ寸法が前記高伸縮部の厚さ寸法よりも大きくされている(i)~(iv)の何れか一項に記載の伸縮検出装置、(V) The expansion / contraction detection device according to any one of (i) to (iv), wherein the thickness dimension of the low expansion / contraction portion is larger than the thickness dimension of the high expansion / contraction portion.
(vi) 前記検出部は、検出用電極が誘電体層の両面に重ね合わされた構造を有しており、前記基材の伸縮に伴う該誘電体層の伸縮を静電容量の変化に基づいて検出する静電容量型センサとされている(i)~(v)の何れか一項に記載の伸縮検出装置、(Vi) The detection unit has a structure in which detection electrodes are superposed on both sides of the dielectric layer, and the expansion and contraction of the dielectric layer accompanying the expansion and contraction of the base material is based on the change in capacitance. The expansion / contraction detection device according to any one of (i) to (v), which is a capacitance type sensor for detection.
(vii) 前記誘電体層が前記基材によって構成されている(vi)に記載の伸縮検出装置、(Vii) The expansion / contraction detection device according to (vi), wherein the dielectric layer is composed of the base material.
(viii) 前記基材の伸縮変形に対応して前記検出部が出力する検出信号の出力値が、想定される該基材の伸縮変形の範囲において極大値を持たない(i)~(vii)の何れか一項に記載の伸縮検出装置、(Viii) The output value of the detection signal output by the detection unit corresponding to the expansion and contraction deformation of the base material does not have a maximum value within the range of the expected expansion and contraction deformation of the base material (i) to (vii). The expansion / contraction detection device according to any one of the above,
(ix) 前記検出部に対する配線の接続部分が、前記低伸縮部に配されている(i)~(viii)の何れか一項に記載の伸縮検出装置、(Ix) The expansion / contraction detection device according to any one of (i) to (viii), wherein the connection portion of the wiring to the detection unit is arranged in the low expansion / contraction unit.
(x) 前記低伸縮部を部分的に厚さ方向で挟み込んで拘束する配線固定部材を含んで前記接続部分が構成されている(ix)に記載の伸縮検出装置、(X) The expansion / contraction detection device according to (ix), wherein the connection portion includes a wiring fixing member that partially sandwiches and restrains the low expansion / contraction portion in the thickness direction.
に関する発明を含む。Including inventions related to.
上記(i)に記載の発明では、基材において伸縮変形率が低い低伸縮部に検出部が設けられることにより、基材全体の変形量が大きい場合にも、検出部が設けられる部分の変形量は抑えられる。それ故、基材が大きく変形する場合にも、検出部において大変形による電気抵抗の過剰な増大などが防止されて、基材の伸縮変形が検出部によって精度良く検出され得る。In the invention described in (i) above, since the detection unit is provided in the low expansion / contraction portion of the base material having a low expansion / contraction deformation rate, even when the deformation amount of the entire base material is large, the deformation of the portion in which the detection unit is provided is deformed. The amount is suppressed. Therefore, even when the base material is significantly deformed, the detection unit can accurately detect the expansion and contraction deformation of the base material by preventing the detection unit from excessively increasing the electric resistance due to the large deformation.
上記(ii)に記載の発明では、基材の伸縮変形量が大きい場合には、検出部が低伸縮部にも位置していることで、検出部全体の伸縮変形量が抑えられて、検出部の過剰な変形による検出性能の低下などが防止される。また、基材の伸縮変形量が小さい場合には、高伸縮部が比較的に大きく変形することから、高伸縮部に位置する検出部によって検出感度の向上が図られる。In the invention described in (ii) above, when the amount of expansion and contraction deformation of the base material is large, the detection unit is also located in the low expansion and contraction portion, so that the amount of expansion and contraction deformation of the entire detection unit is suppressed and detection is performed. Deterioration of detection performance due to excessive deformation of the part is prevented. Further, when the amount of expansion / contraction deformation of the base material is small, the high expansion / contraction portion is deformed relatively large, so that the detection sensitivity can be improved by the detection unit located in the high expansion / contraction portion.
上記(iii)に記載の発明では、例えば、高伸縮部と低伸縮部を備える基材の全体を一体形成することも可能になる。In the invention described in (iii) above, for example, it is possible to integrally form the entire base material provided with the highly stretchable portion and the low stretchable portion.
上記(iv)に記載の発明では、基材において幅寸法の違いによって低伸縮部と高伸縮部を設定することができる。例えば、上記(iii)の態様のように低伸縮部と高伸縮部を同一の材質で形成する場合に、低伸縮部と高伸縮部の伸縮率の違いを幅寸法の違いによって簡単に設定することができる。また、例えば、検出部が電極層や誘電体層などの複数が積層されて構成されている場合に、積層方向と直交する幅方向の寸法によって積層構造に影響することなく、高伸縮部と低伸縮部を設定することができる。In the invention described in (iv) above, the low expansion and contraction portion and the high expansion and contraction portion can be set in the base material depending on the difference in width dimension. For example, when the low expansion / contraction portion and the high expansion / contraction portion are formed of the same material as in the above aspect (iii), the difference in the expansion / contraction ratio between the low expansion / contraction portion and the high expansion / contraction portion is easily set by the difference in the width dimension. be able to. Further, for example, when a plurality of detection portions such as an electrode layer and a dielectric layer are laminated, the high expansion / contraction portion and the low expansion / contraction portion do not affect the laminated structure due to the dimensions in the width direction orthogonal to the stacking direction. The expansion and contraction part can be set.
上記(v)に記載の発明では、基材において厚さ寸法の違いによって低伸縮部と高伸縮部を設定することができる。例えば、前記第三の態様のように低伸縮部と高伸縮部を同一の材質で形成する場合に、低伸縮部と高伸縮部の伸縮率の違いを厚さ寸法の違いによって簡単に設定することができる。In the invention described in (v) above, a low expansion / contraction portion and a high expansion / contraction portion can be set in the base material depending on the difference in thickness and dimension. For example, when the low-stretchable portion and the high-stretchable portion are formed of the same material as in the third aspect, the difference in the stretch ratio between the low-stretchable portion and the high-stretchable portion is easily set by the difference in the thickness dimension. be able to.
上記(vi)に記載の発明では、基材の伸縮変形に伴う検出用電極及び誘電体層の変形によって、誘電体層を挟んで対向する検出用電極間の静電容量が変化する。この静電容量の変化の電気的な出力に基づいて、基材の伸縮変形量を精度よく検出することができる。In the invention described in (vi) above, the capacitance between the detection electrodes facing each other across the dielectric layer changes due to the deformation of the detection electrode and the dielectric layer due to the expansion and contraction deformation of the base material. Based on the electrical output of this change in capacitance, the amount of expansion and contraction deformation of the base material can be accurately detected.
上記(vii)に記載の発明では、基材が誘電体層を兼ねていることによって、部品点数の削減が図られる。In the invention described in (vii) above, the number of parts can be reduced because the base material also serves as a dielectric layer.
上記(viii)に記載の発明では、例えば、検出信号の出力値が極大値の両側で同じとなることに起因する伸縮変形の測定誤差が防止され得る。In the invention described in (viii) above, for example, it is possible to prevent a measurement error of expansion and contraction deformation caused by the output value of the detection signal being the same on both sides of the maximum value.
上記(ix)に記載の発明では、出力リード線などの配線の接続部分は、はんだ付けされたり、コネクタが設けられるなどして、大きな変形が許容され難い。そこで、伸縮変形が抑えられた低伸縮部に配線の接続部分を設けることにより、基材の伸縮変形時に配線の接続部分に作用する応力が低減されて、信頼性や耐久性の向上が図られる。In the invention described in (ix) above, it is difficult to allow large deformation of the connection portion of wiring such as an output lead wire because it is soldered or a connector is provided. Therefore, by providing the connection portion of the wiring in the low expansion / contraction portion where the expansion / contraction deformation is suppressed, the stress acting on the connection portion of the wiring at the time of expansion / contraction deformation of the base material is reduced, and the reliability and durability are improved. ..
上記(x)に記載の発明では、低伸縮部が配線固定部材によって拘束されることにより、配線の接続部分において検出部の伸縮変形が更に低減される。それ故、基材の変形時に配線の接続部分に作用する応力が更に低減されて、耐久性の更なる向上が図られる。In the invention described in (x) above, the low expansion / contraction portion is restrained by the wiring fixing member, so that the expansion / contraction deformation of the detection portion is further reduced at the connection portion of the wiring. Therefore, the stress acting on the connection portion of the wiring when the base material is deformed is further reduced, and the durability is further improved.

10,90 伸縮センサ(伸縮検出装置)
12,70 センサ本体
14 誘電体層
16,72 第一の電極
18,74 第二の電極
20,100 高伸縮部
22,98 低伸縮部
24 拡幅部
26 傾斜部
28 導通部
30,76 センサ構成部
32 検出部
34,94 第一の保護層
36 第二の保護層
38,92 基材
40 第一の導通孔
42 第二の導通孔
44 係止穴
46 第一の配線
48 第二の配線
50 配線固定部材
52 第一の固定部材
54 第二の固定部材
56 押圧部
58 第一の嵌合部
60 第二の嵌合部
62 第一の接続電極
64 第二の接続電極
66 係止突起
68 取付部材
78 幅狭部
80 幅広部
96 厚肉部
10,90 stretch sensor (stretch detection device)
12,70 Sensor body 14 Dielectric layer 16,72 First electrode 18,74 Second electrode 20,100 High expansion / contraction part 22,98 Low expansion / contraction part 24 Widening part 26 Inclined part 28 Conducting part 30,76 Sensor component part 32 Detection unit 34,94 First protective layer 36 Second protective layer 38,92 Base material 40 First conduction hole 42 Second conduction hole 44 Locking hole 46 First wiring 48 Second wiring 50 Wiring Fixing member 52 First fixing member 54 Second fixing member 56 Pressing part 58 First fitting part 60 Second fitting part 62 First connecting electrode 64 Second connecting electrode 66 Locking protrusion 68 Mounting member 78 Narrow part 80 Wide part 96 Thick part

Claims (10)

面方向に伸縮変形可能とされた薄肉の基材において、該基材の伸縮変形に追従して伸縮変形して該基材の伸縮変形を電気的に検出する検出部が設けられた伸縮検出装置であって、
前記検出部は、検出用電極が誘電体層の両面に重ね合わされた構造を有しており、前記基材の伸縮に伴う該誘電体層の伸縮を静電容量の変化に基づいて検出する静電容量型センサとされている一方、
基材が高伸縮部と低伸縮部を備えており、該基材における該低伸縮部の伸縮変形率が該高伸縮部よりも小さくされていると共に、
前記検出用電極が、該基材が略一定の幅寸法で長さ方向に直線的に延びている該高伸縮部と該高伸縮部の長さ方向の端部側に設けられて該高伸縮部よりも大きな断面形状で延びる該低伸縮部に跨って設けられており、且つ、該検出用電極が該低伸縮部から該高伸縮部の長さ方向途中部分までしか延び出していない伸縮検出装置。
A stretch detection device provided with a detection unit that electrically detects the stretch deformation of the base material by stretching and deforming according to the stretch deformation of the base material in a thin-walled base material that can be stretched and deformed in the plane direction. And
The detection unit has a structure in which detection electrodes are superposed on both sides of the dielectric layer, and static electricity detects expansion and contraction of the dielectric layer due to expansion and contraction of the base material based on a change in capacitance. While it is said to be a capacitive sensor,
The base material has a high expansion / contraction portion and a low expansion / contraction portion, and the expansion / contraction deformation rate of the low expansion / contraction portion in the substrate is made smaller than that of the high expansion / contraction portion.
The detection electrode is provided on the highly stretchable portion in which the base material extends linearly in the length direction with a substantially constant width dimension and on the end side in the length direction of the highly stretchable portion. Expansion / contraction detection is provided so as to straddle the low expansion / contraction portion extending in a cross-sectional shape larger than the portion, and the detection electrode extends only from the low expansion / contraction portion to an intermediate portion in the length direction of the high expansion / contraction portion. Device.
前記誘電体層が前記基材によって構成されている請求項に記載の伸縮検出装置。 The expansion / contraction detection device according to claim 1 , wherein the dielectric layer is made of the base material. 前記高伸縮部と前記低伸縮部は同一の材質で形成されている請求項1又は2に記載の伸縮検出装置。 The expansion / contraction detection device according to claim 1 or 2, wherein the high expansion / contraction portion and the low expansion / contraction portion are made of the same material. 前記低伸縮部の幅寸法が前記高伸縮部の幅寸法よりも大きくされている請求項1~3の何れか一項に記載の伸縮検出装置。 The expansion / contraction detection device according to any one of claims 1 to 3, wherein the width dimension of the low expansion / contraction portion is larger than the width dimension of the high expansion / contraction portion. 前記低伸縮部の厚さ寸法が前記高伸縮部の厚さ寸法よりも大きくされている請求項1~4の何れか一項に記載の伸縮検出装置。 The expansion / contraction detection device according to any one of claims 1 to 4, wherein the thickness dimension of the low expansion / contraction portion is larger than the thickness dimension of the high expansion / contraction portion. 前記基材の伸縮変形に対応して前記検出部が出力する検出信号の出力値が、想定される該基材の伸縮変形の範囲において極大値を持たない請求項1~の何れか一項に記載の伸縮検出装置。 Any one of claims 1 to 5 , wherein the output value of the detection signal output by the detection unit in response to the expansion and contraction deformation of the base material does not have a maximum value in the range of the assumed expansion and contraction deformation of the base material. The expansion / contraction detection device described in. 前記検出部に対する配線の接続部分が、前記低伸縮部に配されている請求項1~の何れか一項に記載の伸縮検出装置。 The expansion / contraction detection device according to any one of claims 1 to 6 , wherein the connection portion of the wiring to the detection unit is arranged in the low expansion / contraction unit. 前記低伸縮部を部分的に厚さ方向で挟み込んで拘束する配線固定部材を含んで前記接続部分が構成されている請求項に記載の伸縮検出装置。 The expansion / contraction detection device according to claim 7 , wherein the connection portion includes a wiring fixing member that partially sandwiches and restrains the low expansion / contraction portion in the thickness direction. 前記誘電体層の両面に重ね合わされた前記検出用電極における対向面間の幅寸法が前記高伸縮部において前記低伸縮部よりも小さい請求項1~8の何れか一項に記載の伸縮検出装置。The expansion / contraction detection device according to any one of claims 1 to 8, wherein the width dimension between the facing surfaces of the detection electrodes laminated on both sides of the dielectric layer is smaller than that of the low expansion / contraction portion in the high expansion / contraction portion. .. 前記検出用電極に導通される配線が前記低伸縮部に接続されている請求項1~9の何れか一項に記載の伸縮検出装置。The expansion / contraction detection device according to any one of claims 1 to 9, wherein the wiring conducted to the detection electrode is connected to the low expansion / contraction portion.
JP2021550767A 2019-09-30 2019-09-30 Pending JPWO2021064810A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/038579 WO2021064810A1 (en) 2019-09-30 2019-09-30 Expansion/contraction detecting device

Publications (2)

Publication Number Publication Date
JPWO2021064810A1 JPWO2021064810A1 (en) 2021-04-08
JPWO2021064810A5 true JPWO2021064810A5 (en) 2022-06-09

Family

ID=75337806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021550767A Pending JPWO2021064810A1 (en) 2019-09-30 2019-09-30

Country Status (2)

Country Link
JP (1) JPWO2021064810A1 (en)
WO (1) WO2021064810A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5219889B2 (en) * 2009-03-05 2013-06-26 東海ゴム工業株式会社 Metabolism calculation device
JP5992291B2 (en) * 2012-10-30 2016-09-14 アイシン精機株式会社 Biological information detection device
JP2017152519A (en) * 2016-02-24 2017-08-31 株式会社Adeka Conversion material and conversion element
JP2018091875A (en) * 2018-03-22 2018-06-14 バンドー化学株式会社 Sheet-like material, electrostatic capacity type sensor sheet, and clothing

Similar Documents

Publication Publication Date Title
KR101066672B1 (en) Array type capacitance sensor
US9645028B2 (en) Resistive pressure sensor including piezo-resistive electrode
JP5867688B2 (en) Tactile sensor and multi-axis tactile sensor
JP4882077B2 (en) Two-dimensional distributed load center position detection sensor and two-dimensional distributed load center position detection device
JP5995362B2 (en) Distribution amount sensor and distribution amount measurement system
JP2006523872A (en) Position detection device
JP2006226858A (en) Fluctuation load sensor, and tactile sensor using the same
US9972768B2 (en) Actuator structure and method
KR101449407B1 (en) Highly Sensitive Tactile Sensor using Interlocking of Piezoelectric Element
US7698961B2 (en) Tactile instrument
TWI447366B (en) Pressure sensing component
US11959819B2 (en) Multi-axis strain sensor
JPWO2021064810A5 (en)
WO2021065177A1 (en) Capacitance detection sensor, capacitance detection sensor module and state determination method using capacitance detection sensor
WO2021064810A1 (en) Expansion/contraction detecting device
JP2006205345A (en) Artificial skin
JP6950427B2 (en) Position detector
JP2008197060A (en) Deformation sensor system
TWI382166B (en) Pressure sensor with fixed deformable area
KR102029002B1 (en) Temperature Sensor And Socket For Prosthesis Including The Same
KR101990196B1 (en) Sensor for Measuring Strain and Pressure And Method for Manufacturing the Same
TW201706580A (en) Pressure sensor device, pressure sensor method, and storage medium
JP7331557B2 (en) tactile sensor
JP7125767B2 (en) Bending detection sensor
JP2019086448A (en) Sensor sheet