JP6258010B2 - Elastic wave velocity measuring method and elastic wave velocity measuring system - Google Patents

Elastic wave velocity measuring method and elastic wave velocity measuring system Download PDF

Info

Publication number
JP6258010B2
JP6258010B2 JP2013235627A JP2013235627A JP6258010B2 JP 6258010 B2 JP6258010 B2 JP 6258010B2 JP 2013235627 A JP2013235627 A JP 2013235627A JP 2013235627 A JP2013235627 A JP 2013235627A JP 6258010 B2 JP6258010 B2 JP 6258010B2
Authority
JP
Japan
Prior art keywords
vibration
noise
elastic wave
wave velocity
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013235627A
Other languages
Japanese (ja)
Other versions
JP2015094731A (en
Inventor
野間 達也
達也 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2013235627A priority Critical patent/JP6258010B2/en
Publication of JP2015094731A publication Critical patent/JP2015094731A/en
Application granted granted Critical
Publication of JP6258010B2 publication Critical patent/JP6258010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、地中の弾性波速度を測定する弾性波速度測定方法および弾性波速度測定システムに関する。   The present invention relates to an elastic wave velocity measuring method and an elastic wave velocity measuring system for measuring an elastic wave velocity in the ground.

従来、トンネルやダムなどの構造物を建設する際に、建設地の地中の弾性波速度を測定し、地中の地質を調査している。このような弾性波速度の測定は、構造物の建設前におこなわれ測定結果が設計強度等に反映される他、構造物の建設中にも逐次おこなわれ、測定結果を用いて設計データの見直しなどがおこなわれる。   Conventionally, when constructing structures such as tunnels and dams, the underground geology is investigated by measuring the elastic wave velocity in the ground of the construction site. This measurement of elastic wave velocity is performed before construction of the structure and the measurement results are reflected in the design strength, etc., and are also performed sequentially during the construction of the structure, and the design data is reviewed using the measurement results. Etc. are performed.

弾性波速度の測定方法としては、たとえば図7に示すように、発振地点700でダイナマイト等の火薬による発破をおこない、複数の測定地点702A〜702Jで発破による振動が到達した時刻を測定することによって発破地点700と測定地点702A〜702Jとの間の弾性波速度を推定する方法が一般におこなわれている(たとえば、下記特許文献1参照)。   As a method for measuring the elastic wave velocity, for example, as shown in FIG. 7, blasting with an explosive such as dynamite is performed at an oscillation point 700, and the times at which vibrations due to blasting arrive at a plurality of measurement points 702A to 702J are measured. A method of estimating the elastic wave velocity between the blasting point 700 and the measurement points 702A to 702J is generally performed (for example, see Patent Document 1 below).

また、より簡易的に弾性波速度を測定する方法として、たとえば図8Bに示すように、ハンマー800により地表Gを叩いて振動を発生させ、振動発生箇所から所定距離離れた位置に設置された振動測定装置802で振動の到達時刻を測定することによって振動発生箇所と測定地点との間の弾性波速度を推定する方法が知られている。この方法では、図8Aに示すように振動測定装置802からの距離Lを変えて複数箇所で振動を発生させて、振動到達時刻T(ΔT)と距離L(ΔL)とからなる走時曲線を作成して弾性波速度Vを求める。   Further, as a more simple method of measuring the elastic wave velocity, for example, as shown in FIG. 8B, vibration is generated by hitting the ground surface G with a hammer 800 and is installed at a predetermined distance from the vibration occurrence location. There is known a method of estimating an elastic wave velocity between a vibration generation point and a measurement point by measuring the arrival time of vibration with the measuring device 802. In this method, as shown in FIG. 8A, the distance L from the vibration measuring device 802 is changed to generate vibrations at a plurality of locations, and a travel time curve composed of the vibration arrival time T (ΔT) and the distance L (ΔL) is obtained. The elastic wave velocity V is obtained by creating the elastic wave velocity.

特開平07−259472号公報JP 07-259472 A

上述した火薬による発破を用いる方法およびハンマーを用いる方法では、弾性波速度測定用の発破による振動と他の振動との混同を防ぐため、構造物の建設中に測定をおこなう際には建設作業を中断する必要があるという課題がある。また、上述した火薬による発破を用いる方法では、複数の振動測定装置を設置する必要があり、測定が煩雑であるという課題がある。また、上述したハンマーを用いた方法では、人力により振動を発生させるので測定範囲が最大でも40〜50m程度の範囲となり、広範囲での測定をおこなうことができないという課題がある。   In the method using explosive blasting and the method using a hammer as described above, in order to prevent confusion between vibration caused by blasting for elastic wave velocity measurement and other vibrations, construction work should be performed when making measurements during construction of the structure. There is a problem that it needs to be interrupted. Moreover, in the method using blasting with the above-mentioned explosive, it is necessary to install a plurality of vibration measuring devices, and there is a problem that the measurement is complicated. Further, in the method using the hammer described above, since vibration is generated by human power, the measurement range is at most about 40 to 50 m, and there is a problem that measurement in a wide range cannot be performed.

本発明は、上述した従来技術の問題点に鑑みてなされたものであり、簡易な方法で地中の弾性波速度を測定することができる弾性波速度測定方法および弾性波速度測定システムを提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and provides an elastic wave velocity measuring method and an elastic wave velocity measuring system capable of measuring an elastic wave velocity in the ground by a simple method. For the purpose.

上述した問題を解決し、目的を達成するため、本発明にかかる弾性波速度測定方法は、地中の弾性波速度を測定する弾性波速度測定方法であって、任意の発振地点において騒音と振動とを同時に発生させる発振工程と、前記発振工程で発生された前記騒音の到達時刻および前記振動の到達時刻を、前記発振地点から所定距離離れた測定地点で測定する測定工程と、前記測定工程で測定された前記騒音の到達時刻と前記所定距離とに基づいて、前記騒音および前記振動の発生時刻を推定する発生時刻推定工程と、前記発生時刻推定工程で推定された前記騒音および前記振動の発生時刻と前記振動の到達時刻とに基づいて、前記発振地点と前記測定地点との間の地中における弾性波速度を算出する弾性波速度算出工程とを含み、前記発生時刻推定工程では、前記測定地点の近傍または前記発振地点の近傍の気温に基づいて音速値を補正すると共に、前記所定距離を前記音速値で除して前記騒音の到達所要時間を算出し、前記騒音の到達時刻から前記騒音の到達所要時間を差し引いて前記騒音および前記振動の発生時刻を推定し、前記弾性波速度算出工程では、前記騒音および前記振動の発生時刻と前記振動の到達時刻とから前記振動の到達所要時間を算出し、前記所定距離を前記振動の到達所要時間で除して前記弾性波速度を算出することを特徴とする。
また、本発明にかかる弾性波速度測定システムは、地中の弾性波速度を測定する弾性波速度測定システムであって、任意の発振地点において騒音と振動とを同時に発生させる発振装置と、前記発振装置によって発生された前記騒音の到達時刻を前記発振地点から所定距離離れた測定地点で測定する騒音測定装置と、前記発振装置によって発生された前記振動の到達時刻を前記測定地点で測定する振動測定装置と、前記騒音の到達時刻と前記所定距離とに基づいて、前記騒音および前記振動の発生時刻を推定し、推定した前記騒音および前記振動の発生時刻と前記振動の到達時刻とに基づいて、前記発振地点と前記測定地点との間の地中における弾性波速度を算出する弾性波速度算出装置とを備え、前記弾性波速度算出装置による前記騒音および前記振動の発生時刻の推定は、前記測定地点の近傍または前記発振地点の近傍の気温に基づいて音速値を補正すると共に、前記所定距離を前記音速値で除して前記騒音の到達所要時間を算出し、前記騒音の到達時刻から前記騒音の到達所要時間を差し引くことでなされ、
前記弾性波速度算出装置による前記弾性波速度の算出は、前記騒音および前記振動の発生時刻と前記振動の到達時刻とから前記振動の到達所要時間を算出し、前記所定距離を前記振動の到達所要時間で除することでなされることを特徴とする。
In order to solve the above-described problems and achieve the object, an elastic wave velocity measuring method according to the present invention is an elastic wave velocity measuring method for measuring an elastic wave velocity in the ground, and includes noise and vibration at an arbitrary oscillation point. At the same time, a measurement step of measuring the arrival time of the noise and the arrival time of the vibration generated in the oscillation step at a measurement point that is a predetermined distance away from the oscillation point, and the measurement step Based on the measured arrival time of the noise and the predetermined distance, a generation time estimation step for estimating the generation time of the noise and the vibration, and the generation of the noise and the vibration estimated in the generation time estimation step time on the basis on the arrival time of the vibration, and a seismic velocity calculating step of calculating the elastic wave velocity in the ground between the measuring point and the oscillation point, the generation time estimation The sound velocity value is corrected based on the temperature near the measurement point or the oscillation point, and the time required to reach the noise is calculated by dividing the predetermined distance by the sound velocity value. The generation time of the noise and the vibration is estimated by subtracting the time required for the arrival of the noise from the arrival time, and in the elastic wave velocity calculation step, the vibration is calculated from the generation time of the noise and the vibration and the arrival time of the vibration. And the elastic wave velocity is calculated by dividing the predetermined distance by the arrival time of the vibration .
An elastic wave velocity measurement system according to the present invention is an elastic wave velocity measurement system for measuring an elastic wave velocity in the ground, and an oscillation device that simultaneously generates noise and vibration at an arbitrary oscillation point, and the oscillation A noise measurement device that measures the arrival time of the noise generated by the device at a measurement point that is a predetermined distance away from the oscillation point, and a vibration measurement that measures the arrival time of the vibration generated by the oscillation device at the measurement point Based on the apparatus, the arrival time of the noise and the predetermined distance, the generation time of the noise and the vibration is estimated, and based on the estimated generation time of the noise and the vibration and the arrival time of the vibration, and an elastic wave velocity calculating unit for calculating a seismic velocity in the ground between the measuring point and the oscillation point, Oyo the noise caused by the acoustic wave velocity calculating device The generation time of the vibration is corrected by correcting the sound speed value based on the temperature in the vicinity of the measurement point or in the vicinity of the oscillation point, and dividing the predetermined distance by the sound speed value to obtain the time required to reach the noise. Is calculated by subtracting the time required to reach the noise from the arrival time of the noise,
The elastic wave velocity is calculated by the elastic wave velocity calculating device by calculating the time required to reach the vibration from the generation time of the noise and vibration and the arrival time of the vibration, and determining the arrival time of the vibration by the predetermined distance. It is made by dividing by time .

本発明によれば、発振地点で騒音と振動とを同時に発生させ、測定地点への騒音の到達時刻および振動の到達時刻をそれぞれ測定し、測定結果に基づいて発振地点と測定地点との間の地中における弾性波速度を算出する。これにより、測定に用いる振動と他の振動とを区別することができ、構造物の建設中にも建設作業を中断することなく弾性波速度の測定をおこなうことができる。   According to the present invention, noise and vibration are simultaneously generated at the oscillation point, the arrival time of the noise and the arrival time of the vibration at the measurement point are respectively measured, and between the oscillation point and the measurement point based on the measurement result Calculate the elastic wave velocity in the ground. Thereby, the vibration used for the measurement can be distinguished from other vibrations, and the elastic wave velocity can be measured without interrupting the construction work even during the construction of the structure.

実施の形態にかかる弾性波速度測定システム10の構成を示す説明図である。It is explanatory drawing which shows the structure of the elastic wave velocity measurement system 10 concerning embodiment. 騒音測定装置104により測定した波形の一例を示すグラフである。3 is a graph showing an example of a waveform measured by a noise measurement device 104. 振動測定装置106により測定した波形の一例を示すグラフである。3 is a graph showing an example of a waveform measured by a vibration measuring device 106. 弾性波速度算出装置108による弾性波速度算出方法を説明する説明図である。It is explanatory drawing explaining the elastic wave velocity calculation method by the elastic wave velocity calculation apparatus. 弾性波速度測定システム10による弾性波速度測定方法の手順を示すフローチャートである。3 is a flowchart showing a procedure of an elastic wave velocity measuring method by the elastic wave velocity measuring system 10. トンネルTの設計時における弾性波速度分布を示す説明図である。FIG. 5 is an explanatory diagram showing elastic wave velocity distribution at the time of designing a tunnel T. 従来技術にかかる弾性波速度測定方法を示す説明図である。It is explanatory drawing which shows the elastic wave velocity measuring method concerning a prior art. 従来技術にかかる弾性波速度測定方法を示す説明図である。It is explanatory drawing which shows the elastic wave velocity measuring method concerning a prior art.

以下に添付図面を参照して、本発明にかかる弾性波速度測定方法および弾性波速度測定システムの好適な実施の形態を詳細に説明する。本実施の形態では、トンネルの掘削地における弾性波速度の測定を例にして説明する。   Exemplary embodiments of an elastic wave velocity measuring method and an elastic wave velocity measuring system according to the present invention will be described below in detail with reference to the accompanying drawings. In the present embodiment, measurement of elastic wave velocity at a tunnel excavation site will be described as an example.

(実施の形態)
図1は、実施の形態にかかる弾性波速度測定システム10の構成を示す説明図である。上述のように、本実施の形態では、掘削中のトンネルT周辺の地中の弾性波速度を測定する。図1に示すトンネルTは、坑口Eから掘削がおこなわれ、切羽Pまで坑道が形成されている。切羽Pには、騒音と振動とを同時に発生させる発振装置102が設けられている。本実施の形態において、発振装置102はダイナマイト等のトンネルTの掘削における火薬による発破をおこなう装置であり、発破によって騒音および振動を発生させる。以下、発振装置102が設置されている地点を「発振地点」という。
(Embodiment)
FIG. 1 is an explanatory diagram illustrating a configuration of an elastic wave velocity measurement system 10 according to an embodiment. As described above, in this embodiment, the elastic wave velocity in the ground around the tunnel T being excavated is measured. The tunnel T shown in FIG. 1 is excavated from the wellhead E, and a tunnel is formed up to the face P. The face P is provided with an oscillation device 102 that simultaneously generates noise and vibration. In the present embodiment, the oscillation device 102 is a device that blasts with explosives in excavation of the tunnel T such as dynamite, and generates noise and vibration by blasting. Hereinafter, a point where the oscillation device 102 is installed is referred to as an “oscillation point”.

また、坑口Eには、発振装置102によって発生された騒音の到達時刻を発振地点から所定距離(図1では距離L)離れた測定地点(坑口E)で測定する騒音測定装置104と、発振装置102によって発生された振動の到達時刻を測定地点で測定する振動測定装置106とが設けられている。騒音測定装置104および振動測定装置106は、略同位置に設置し、その点を測定地点とする。測定地点と発振地点との距離Lは、あらかじめ正確に測定しておく。また、騒音測定装置104および振動測定装置106を同一の筐体に収納したり、両装置の機能を備えた単一の測定装置を測定地点に設置したりしてもよい。   Also, at the wellhead E, a noise measuring device 104 that measures the arrival time of the noise generated by the oscillator 102 at a measurement point (wellhead E) that is a predetermined distance (distance L in FIG. 1) from the oscillation point, and the oscillator A vibration measuring device 106 is provided that measures the arrival time of vibration generated by 102 at a measurement point. The noise measurement device 104 and the vibration measurement device 106 are installed at substantially the same position, and the point is set as a measurement point. The distance L between the measurement point and the oscillation point is accurately measured in advance. Further, the noise measurement device 104 and the vibration measurement device 106 may be housed in the same housing, or a single measurement device having the functions of both devices may be installed at the measurement point.

騒音測定装置104および振動測定装置106は、従来公知のさまざまな形態のものを採用できるが、測定の便宜上、小型軽量で乾電池駆動型のものが好ましい。また、騒音測定装置104および振動測定装置106によるデータ測定は、測定精度を高めるために高周波数でおこなうことが好ましい。   The noise measuring device 104 and the vibration measuring device 106 can employ various types of conventionally known ones, but for the convenience of measurement, a small, light and dry cell drive type is preferable. The data measurement by the noise measurement device 104 and the vibration measurement device 106 is preferably performed at a high frequency in order to increase measurement accuracy.

図2は、騒音測定装置104により測定した波形の一例を示すグラフである。また、図3は、振動測定装置106により測定した波形の一例を示すグラフである。図2および図3のグラフにおいて、縦軸は騒音または振動の強度、横軸は時刻である。また、図2および図3では、同時刻に測定をおこない、発振地点−測定地点間の距離(所定距離L)は300mであるものとする。図3のグラフでは、時刻T1に心抜きの発破による振動(波形31)が測定地点に到達している。以降、時刻T2に2段目の発破による振動(波形32)、時刻T3に3段目の発破による振動(波形33)、時刻T4に4段目の発破による振動(波形34)が、それぞれ測定地点に到達している。また、4段目の発破による振動(波形34)以降は、低周波騒音による影響で発破振動は不明となっている。なお、発破は必ずしも複数回おこなう必要はなく、少なくとも1回おこなえばよい。   FIG. 2 is a graph showing an example of a waveform measured by the noise measurement device 104. FIG. 3 is a graph showing an example of a waveform measured by the vibration measuring device 106. 2 and 3, the vertical axis represents noise or vibration intensity, and the horizontal axis represents time. 2 and 3, the measurement is performed at the same time, and the distance between the oscillation point and the measurement point (predetermined distance L) is 300 m. In the graph of FIG. 3, the vibration (waveform 31) due to the blasting without reaching the time point reaches the measurement point at time T1. Thereafter, the vibration due to the second stage blasting (waveform 32) at time T2, the vibration due to the third stage blasting (waveform 33) at time T3, and the vibration due to the fourth stage blasting (waveform 34) at time T4, respectively. The point has been reached. In addition, after the vibration (waveform 34) due to the fourth blast, the blast vibration is unknown due to the influence of low frequency noise. Note that blasting is not necessarily performed a plurality of times, and may be performed at least once.

また、図2のグラフでは時刻T5に測定地点に心抜の発破による騒音が到達している。時刻T5は図3の時刻T4(4段目の発破による振動の到達時刻)とほぼ同時刻であり、振動と比較して騒音は到達までの所要時間が長いことがわかる。なお、図2のグラフでは、2段目より後の発破による騒音は明瞭には識別することができない。   Moreover, in the graph of FIG. 2, the noise by the blast of the heart reaches the measurement point at time T5. Time T5 is substantially the same as time T4 in FIG. 3 (vibration arrival time due to the fourth blast), and it can be seen that the time required for the noise to reach is longer than vibration. In the graph of FIG. 2, noise due to blasting after the second stage cannot be clearly identified.

図1の説明に戻り、騒音測定装置104および振動測定装置106は、弾性波速度算出装置108と接続されている。弾性波速度算出装置108は、騒音の到達時刻と発振地点−測定地点間の距離(所定距離L)とに基づいて、騒音および振動の発生時刻を推定し、推定した騒音および振動の発生時刻と振動の到達時刻とに基づいて、発振地点と測定地点との間の地中における弾性波速度を算出する。弾性波速度算出装置108は、CPU、演算プログラムなどを格納・記憶するROM、演算プログラムの作動領域としてのRAM、各種データを書き換え可能に保持するEEPROM、周辺装置等とのインターフェースをとるインターフェース部、演算結果を出力する出力部などを含んで構成される。   Returning to the description of FIG. 1, the noise measuring device 104 and the vibration measuring device 106 are connected to an elastic wave velocity calculating device 108. The elastic wave velocity calculation device 108 estimates the generation time of noise and vibration based on the arrival time of noise and the distance between the oscillation point and the measurement point (predetermined distance L), and the estimated generation time of the noise and vibration Based on the arrival time of vibration, the elastic wave velocity in the ground between the oscillation point and the measurement point is calculated. The elastic wave velocity calculation device 108 includes a CPU, a ROM that stores and stores a calculation program, a RAM as an operation area of the calculation program, an EEPROM that holds various data in a rewritable manner, an interface unit that interfaces with peripheral devices, An output unit for outputting a calculation result is included.

図4は、弾性波速度算出装置108による弾性波速度算出方法を説明する説明図である。図4のグラフは、図2および図3のグラフを重ねたものである。弾性波速度算出装置108は、まず、騒音の到達時刻と所定距離Lとに基づいて、騒音および振動の発生時刻を推定する。このとき、弾性波速度算出装置108は、所定距離Lを音速値で除して騒音の到達所要時間を算出する。そして、騒音の到達時刻から騒音の到達所要時間を差し引いて騒音および振動の発生時刻を推定する。   FIG. 4 is an explanatory diagram for explaining an elastic wave velocity calculation method by the elastic wave velocity calculator 108. The graph of FIG. 4 is a superposition of the graphs of FIG. 2 and FIG. The elastic wave velocity calculation device 108 first estimates the generation time of noise and vibration based on the arrival time of noise and the predetermined distance L. At this time, the elastic wave velocity calculation device 108 divides the predetermined distance L by the sound velocity value to calculate the required time for noise arrival. Then, the noise occurrence time is estimated by subtracting the noise arrival time from the noise arrival time.

図4を用いて具体的に説明すると、図4における所定距離Lは図2および図3と同様に300mであり、音速値を340m/secとすると、所定距離Lにおける騒音の到達所要時間Tαは、300/340=0.882(sec)となる。測定地点に騒音が到達した時刻T5から騒音の到達所要時間Tαを差し引くことによって、騒音および振動の発生時刻Tβを推定することができる。なお、音速値は温度によって変化するため、測定地点の近傍または発振地点の近傍の気温に基づいて、音速値を補正して騒音および振動の発生時刻を推定するようにすれば、弾性波速度の算出精度をより向上させることができる。   Specifically, using FIG. 4, the predetermined distance L in FIG. 4 is 300 m as in FIGS. 2 and 3, and when the sound velocity value is 340 m / sec, the required time Tα of noise at the predetermined distance L is 300/340 = 0.882 (sec). The noise and vibration occurrence time Tβ can be estimated by subtracting the noise required time Tα from the time T5 when the noise reaches the measurement point. Since the sound speed value changes depending on the temperature, if the sound speed value is corrected and the generation time of noise and vibration is estimated based on the temperature near the measurement point or the oscillation point, the acoustic wave velocity The calculation accuracy can be further improved.

つづいて、弾性波速度算出装置108は、騒音および振動の発生時刻と振動の到達時刻とに基づいて、発振地点と測定地点との間の地中における弾性波速度を推定する。より詳細には、弾性波速度算出装置108は、騒音および振動の発生時刻と振動の到達時刻とから振動の到達所要時間を算出し、所定距離Lを振動の到達所要時間で除して弾性波速度を推定する。   Subsequently, the elastic wave velocity calculation device 108 estimates the elastic wave velocity in the ground between the oscillation point and the measurement point based on the generation time of the noise and vibration and the arrival time of the vibration. More specifically, the elastic wave velocity calculation device 108 calculates the required time for vibration from the generation time of noise and vibration and the arrival time of vibration, and divides the predetermined distance L by the required time for arrival of vibration to generate the elastic wave. Estimate speed.

図4を用いて具体的に説明すると、弾性波速度算出装置108は、騒音および振動の発生時刻Tβと心抜の発破による振動の到達時刻T1との差分を振動の到達所要時間Tγとする。図4の例では、振動の到達所要時間Tγは約0.0988secである。そして、所定距離Lを振動の到達所要時間Tγで除すことによって地中の弾性波速度を算出する。図4の例では、弾性波速度は300/0.0988=3040m/sec(およそ3.0km/sec)となる。   More specifically, the elastic wave velocity calculation device 108 uses the difference between the noise and vibration generation time Tβ and the vibration arrival time T1 due to the blasting of the center as the vibration required time Tγ. In the example of FIG. 4, the required time Tγ of vibration is about 0.0988 sec. Then, the elastic wave velocity in the ground is calculated by dividing the predetermined distance L by the required arrival time Tγ of vibration. In the example of FIG. 4, the elastic wave velocity is 300 / 0.0988 = 3040 m / sec (approximately 3.0 km / sec).

図6は、トンネルTの設計時における弾性波速度分布を示す説明図である。図6では発振地点600と測定地点602との間の弾性波速度が3.6〜4.4km/sec(下線部参照)と推定されている。これに対して、弾性波速度測定システム10で測定した弾性波速度は3.0km/secであり、設計の予測と比較して実際の弾性波速度は遅くなっている。すなわち、測定領域周辺の地盤は予測よりもやわらかい可能性があり、設計時における支保パターンを見直す必要がある可能性がある。   FIG. 6 is an explanatory diagram showing the elastic wave velocity distribution when the tunnel T is designed. In FIG. 6, the elastic wave velocity between the oscillation point 600 and the measurement point 602 is estimated to be 3.6 to 4.4 km / sec (see the underlined portion). On the other hand, the elastic wave velocity measured by the elastic wave velocity measuring system 10 is 3.0 km / sec, and the actual elastic wave velocity is slower than the design prediction. That is, the ground around the measurement area may be softer than predicted, and the support pattern at the time of design may need to be reviewed.

図5は、弾性波速度測定システム10による弾性波速度測定方法の手順を示すフローチャートである。図5のフローチャートにおいて、測定者は、まず発振装置102を発破地点に、騒音測定装置104および振動測定装置106を測定地点に、それぞれ設置する(ステップS501)。このとき、発破地点‐測定地点間の距離(所定距離L)を正確に測定しておく。   FIG. 5 is a flowchart showing the procedure of the elastic wave velocity measuring method by the elastic wave velocity measuring system 10. In the flowchart of FIG. 5, the measurer first installs the oscillation device 102 at the blasting point, and the noise measurement device 104 and the vibration measurement device 106 at the measurement point (step S501). At this time, the distance (predetermined distance L) between the blasting point and the measuring point is accurately measured.

つぎに、発振装置102により発破をおこない、騒音と振動とを同時に発生させる(ステップS502)。また、ステップS502と同時に騒音測定装置104および振動測定装置106により発破により生じた騒音および振動を測定する(ステップS503)。測定が終了すると、弾性波速度算出装置108は、発破地点‐測定地点間の距離と騒音の到達時刻とから発破時刻(騒音および振動の発生時刻)を推定する(ステップS504)。そして、発破時刻と振動の到達時刻とから振動の到達所要時間を推定し、さらに弾性波速度を算出する(ステップS505)。弾性波速度算出装置108は、算出した弾性波速度を表示等により出力して(ステップS506)、本フローチャートによる処理を終了する。   Next, blasting is performed by the oscillation device 102, and noise and vibration are generated simultaneously (step S502). Simultaneously with step S502, noise and vibration generated by blasting are measured by the noise measuring device 104 and the vibration measuring device 106 (step S503). When the measurement is completed, the elastic wave velocity calculation device 108 estimates the blast time (noise and vibration occurrence time) from the distance between the blast point and the measurement point and the arrival time of the noise (step S504). Then, the arrival time of vibration is estimated from the blast time and the arrival time of vibration, and the elastic wave velocity is further calculated (step S505). The elastic wave velocity calculation device 108 outputs the calculated elastic wave velocity by display or the like (step S506), and ends the processing according to this flowchart.

以上説明したように、実施の形態にかかる弾性波速度測定システム10は、発振地点で騒音と振動とを同時に発生させ、測定地点への騒音の到達時刻および振動の到達時刻をそれぞれ測定し、測定結果に基づいて発振地点と測定地点との間の地中における弾性波速度を算出する。これにより、弾性波速度の測定に用いる振動と他の振動とを区別することができ、構造物の建設中にも建設作業を中断することなく弾性波速度の測定をおこなうことができる。   As described above, the elastic wave velocity measuring system 10 according to the embodiment generates noise and vibration at the oscillation point at the same time, measures the arrival time of the noise and the arrival time of the vibration at the measurement point, and measures them. Based on the result, the elastic wave velocity in the ground between the oscillation point and the measurement point is calculated. Thereby, the vibration used for the measurement of elastic wave velocity can be distinguished from other vibrations, and the elastic wave velocity can be measured even during construction of the structure without interrupting the construction work.

また、弾性波速度測定システム10は、所定距離L、音速値、および騒音の到達時刻から騒音および振動の発生時刻を推定するので、振動の発生時刻を厳密に記録する必要がなく、たとえば構造物の建設作業における振動を測定に用いることができる。また、音速値を用いて演算をおこなう際に、測定地点の近傍または発振地点の近傍の気温に基づいて、音速値を補正するようにすれば、弾性波速度の測定精度をより向上させることができる。   Further, the elastic wave velocity measuring system 10 estimates the generation time of noise and vibration from the predetermined distance L, the sound velocity value, and the arrival time of the noise, so it is not necessary to record the generation time of the vibration strictly. Vibrations in construction work can be used for measurement. In addition, when calculating using the sound velocity value, if the sound velocity value is corrected based on the temperature near the measurement point or the oscillation point, the measurement accuracy of the elastic wave velocity can be further improved. it can.

また、弾性波速度測定システム10は、掘削中のトンネルT内の任意の箇所を発振地点および測定地点とするので、トンネルTの掘削作業を進めながら周囲の地質が設計時の予測と整合しているかを確認することができる。また、弾性波速度測定システム10において、発振地点をトンネルTの切羽とすれば、トンネルの掘削を進めるための発破を用いて弾性波速度を測定することができ、弾性波速度測定のために別途発破をおこなう必要がなく、費用的コストおよび人的コストを低減させることができる。   In addition, since the elastic wave velocity measurement system 10 uses an arbitrary point in the tunnel T during excavation as an oscillation point and a measurement point, the surrounding geology is consistent with the prediction at the time of design while the excavation work of the tunnel T is advanced. Can be confirmed. In the elastic wave velocity measurement system 10, if the oscillation point is the face of the tunnel T, the elastic wave velocity can be measured using blasting for advancing tunnel excavation. There is no need to perform blasting, and cost and human costs can be reduced.

なお、図1では切羽Pに発振装置102が、坑口Eに騒音測定装置104および振動測定装置106が設けられているが、発振装置102の設置場所(発振地点)や騒音測定装置104および振動測定装置106の設置場所(測定地点)はトンネルT周辺の任意の箇所とすることができる。また、発破により生じる騒音が周囲に漏れないように坑口Eに防音扉等を設けてもよい。   In FIG. 1, the oscillation device 102 is provided at the face P, and the noise measurement device 104 and the vibration measurement device 106 are provided at the wellhead E. However, the installation location (oscillation point) of the oscillation device 102, the noise measurement device 104, and the vibration measurement The installation location (measurement point) of the device 106 can be an arbitrary location around the tunnel T. Further, a soundproof door or the like may be provided at the wellhead E so that noise generated by blasting does not leak to the surroundings.

また、本実施の形態では、掘削中のトンネル周辺の弾性波速度を測定する場合について説明したが、これに限らず、建設予定のトンネルの設計調査段階における弾性波速度の測定に本発明を適用してもよい。また、トンネルに限らず、ダム等の他の構造物の建設時に本発明を適用してもよい。   Further, in the present embodiment, the case where the elastic wave velocity around the tunnel being excavated is described, but the present invention is not limited to this, and the present invention is applied to the measurement of elastic wave velocity at the design investigation stage of the tunnel to be constructed. May be. Further, the present invention may be applied not only to tunnels but also to construction of other structures such as dams.

また、本実施の形態では、発振装置102として火薬を用いた発振装置を例にしたが、これに限らず、たとえばコンパクタなどトンネル掘削に用いられる他の工事用機材によって騒音および振動を同時に発生させてもよい。また、本実施の形態では、騒音測定装置104および振動測定装置106をそれぞれ1台ずつ設置するようにしたが、これに限らず、騒音測定装置104および振動測定装置106を複数台ずつ用意して複数個所で測定をおこなってもよい。   In this embodiment, an oscillation device using explosives is used as an example of the oscillation device 102. However, the present invention is not limited to this, and noise and vibration are simultaneously generated by other construction equipment used for tunnel excavation such as a compactor. May be. In this embodiment, one noise measurement device 104 and one vibration measurement device 106 are installed. However, the present invention is not limited to this, and a plurality of noise measurement devices 104 and vibration measurement devices 106 are prepared. Measurements may be made at multiple locations.

10……弾性波速度測定システム、102……発振装置、104……騒音測定装置、106……振動測定装置、108……弾性波速度算出装置   DESCRIPTION OF SYMBOLS 10 ... Elastic wave velocity measuring system, 102 ... Oscillator, 104 ... Noise measuring device, 106 ... Vibration measuring device, 108 ... Elastic wave velocity calculating device

Claims (6)

地中の弾性波速度を測定する弾性波速度測定方法であって、
任意の発振地点において騒音と振動とを同時に発生させる発振工程と、
前記発振工程で発生された前記騒音の到達時刻および前記振動の到達時刻を、前記発振地点から所定距離離れた測定地点で測定する測定工程と、
前記測定工程で測定された前記騒音の到達時刻と前記所定距離とに基づいて、前記騒音および前記振動の発生時刻を推定する発生時刻推定工程と、
前記発生時刻推定工程で推定された前記騒音および前記振動の発生時刻と前記振動の到達時刻とに基づいて、前記発振地点と前記測定地点との間の地中における弾性波速度を算出する弾性波速度算出工程とを含み、
前記発生時刻推定工程では、前記測定地点の近傍または前記発振地点の近傍の気温に基づいて音速値を補正すると共に、前記所定距離を前記音速値で除して前記騒音の到達所要時間を算出し、前記騒音の到達時刻から前記騒音の到達所要時間を差し引いて前記騒音および前記振動の発生時刻を推定し、
前記弾性波速度算出工程では、前記騒音および前記振動の発生時刻と前記振動の到達時刻とから前記振動の到達所要時間を算出し、前記所定距離を前記振動の到達所要時間で除して前記弾性波速度を算出する、
ことを特徴とする弾性波速度測定方法。
An elastic wave velocity measuring method for measuring an elastic wave velocity in the ground,
An oscillation process for simultaneously generating noise and vibration at an arbitrary oscillation point;
A measurement step of measuring the arrival time of the noise generated in the oscillation step and the arrival time of the vibration at a measurement point that is a predetermined distance away from the oscillation point;
A generation time estimation step of estimating the generation time of the noise and the vibration based on the arrival time of the noise measured in the measurement step and the predetermined distance;
An elastic wave that calculates an elastic wave velocity in the ground between the oscillation point and the measurement point based on the noise and the vibration generation time and the vibration arrival time estimated in the generation time estimation step. Including a speed calculation step ,
In the generation time estimation step, the sound speed value is corrected based on the temperature in the vicinity of the measurement point or the oscillation point, and the time required for reaching the noise is calculated by dividing the predetermined distance by the sound speed value. , Subtracting the time required to reach the noise from the arrival time of the noise to estimate the generation time of the noise and the vibration,
In the elastic wave velocity calculating step, the time required to reach the vibration is calculated from the generation time of the noise and the vibration and the arrival time of the vibration, and the predetermined distance is divided by the required time to reach the vibration. Calculate wave velocity,
The elastic wave velocity measuring method characterized by the above-mentioned.
前記発振地点および前記測定地点は、掘削中のトンネル内の任意の箇所である、
ことを特徴とする請求項記載の弾性波速度測定方法。
The oscillation point and the measurement point are arbitrary points in the tunnel being excavated,
The elastic wave velocity measuring method according to claim 1 .
前記発振地点は前記トンネルの切羽であり、前記測定地点は前記トンネルの抗口または前記トンネル抗内の任意の箇所である、
ことを特徴とする請求項に記載の弾性波速度測定方法。
The oscillation point is the face of the tunnel, and the measurement point is a tunnel entrance or an arbitrary location within the tunnel anti-node,
The elastic wave velocity measuring method according to claim 2 .
前記発振工程では、前記トンネルの掘削における火薬による発破により、前記騒音および前記振動を発生させる、
ことを特徴とする請求項またはに記載の弾性波速度測定方法。
In the oscillation step, the noise and the vibration are generated by blasting with explosives in excavation of the tunnel.
Elastic wave velocity measurement method according to claim 2 or 3, characterized in that.
地中の弾性波速度を測定する弾性波速度測定システムであって、
任意の発振地点において騒音と振動とを同時に発生させる発振装置と、
前記発振装置によって発生された前記騒音の到達時刻を前記発振地点から所定距離離れた測定地点で測定する騒音測定装置と、
前記発振装置によって発生された前記振動の到達時刻を前記測定地点で測定する振動測定装置と、
前記騒音の到達時刻と前記所定距離とに基づいて、前記騒音および前記振動の発生時刻を推定し、推定した前記騒音および前記振動の発生時刻と前記振動の到達時刻とに基づいて、前記発振地点と前記測定地点との間の地中における弾性波速度を算出する弾性波速度算出装置とを備え、
前記弾性波速度算出装置による前記騒音および前記振動の発生時刻の推定は、前記測定地点の近傍または前記発振地点の近傍の気温に基づいて音速値を補正すると共に、前記所定距離を前記音速値で除して前記騒音の到達所要時間を算出し、前記騒音の到達時刻から前記騒音の到達所要時間を差し引くことでなされ、
前記弾性波速度算出装置による前記弾性波速度の算出は、前記騒音および前記振動の発生時刻と前記振動の到達時刻とから前記振動の到達所要時間を算出し、前記所定距離を前記振動の到達所要時間で除することでなされる、
ことを特徴とする弾性波速度測定システム。
An elastic wave velocity measurement system for measuring elastic wave velocity in the ground,
An oscillation device that simultaneously generates noise and vibration at an arbitrary oscillation point;
A noise measurement device that measures the arrival time of the noise generated by the oscillation device at a measurement point that is a predetermined distance away from the oscillation point;
A vibration measurement device for measuring the arrival time of the vibration generated by the oscillation device at the measurement point;
Based on the arrival time of the noise and the predetermined distance, the generation time of the noise and the vibration is estimated, and based on the estimated generation time of the noise and the vibration and the arrival time of the vibration, the oscillation point And an elastic wave velocity calculating device for calculating an elastic wave velocity in the ground between the measurement point and the measurement point ,
The estimation of the generation time of the noise and the vibration by the elastic wave velocity calculation device corrects the sound speed value based on the temperature in the vicinity of the measurement point or in the vicinity of the oscillation point, and sets the predetermined distance to the sound speed value. Divided by calculating the required time for reaching the noise, and subtracting the required time for reaching the noise from the time the noise reaches,
The elastic wave velocity is calculated by the elastic wave velocity calculating device by calculating the time required to reach the vibration from the generation time of the noise and vibration and the arrival time of the vibration, and determining the arrival time of the vibration by the predetermined distance. Made by dividing by time,
An elastic wave velocity measuring system characterized by that.
前記発振地点および前記測定地点は、掘削中のトンネル内の任意の箇所であり、  The oscillation point and the measurement point are arbitrary points in the tunnel being excavated,
前記発振装置は、前記トンネルの掘削における火薬による発破により、前記騒音および前記振動を発生させる、  The oscillation device generates the noise and the vibration by blasting with explosive in excavation of the tunnel,
ことを特徴とする請求項5に記載の弾性波速度測定システム。  The elastic wave velocity measuring system according to claim 5.
JP2013235627A 2013-11-14 2013-11-14 Elastic wave velocity measuring method and elastic wave velocity measuring system Active JP6258010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013235627A JP6258010B2 (en) 2013-11-14 2013-11-14 Elastic wave velocity measuring method and elastic wave velocity measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013235627A JP6258010B2 (en) 2013-11-14 2013-11-14 Elastic wave velocity measuring method and elastic wave velocity measuring system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017145302A Division JP6379261B2 (en) 2017-07-27 2017-07-27 Elastic wave velocity measuring method and elastic wave velocity measuring system

Publications (2)

Publication Number Publication Date
JP2015094731A JP2015094731A (en) 2015-05-18
JP6258010B2 true JP6258010B2 (en) 2018-01-10

Family

ID=53197213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013235627A Active JP6258010B2 (en) 2013-11-14 2013-11-14 Elastic wave velocity measuring method and elastic wave velocity measuring system

Country Status (1)

Country Link
JP (1) JP6258010B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7125767B2 (en) 2017-12-20 2022-08-25 国立大学法人 筑波大学 Bending detection sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6420054B2 (en) * 2014-03-25 2018-11-07 株式会社安藤・間 Elastic wave velocity measurement method
CN105719433B (en) * 2016-03-25 2018-12-04 中国铁路设计集团有限公司 A kind of advanced prediction method based on seismic wave in hole

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9406836A (en) * 1993-06-25 1996-04-16 Peter O Paulson Structure monitoring process and apparatus for checking reinforcement failure in the structure and apparatus for detecting the source of reinforcement failure in a structure
JP3443714B2 (en) * 1995-05-12 2003-09-08 財団法人先端建設技術センター Tunnel front exploration device and exploration method
JP2003014863A (en) * 2001-07-03 2003-01-15 Fujita Corp Method for investigating natural ground
JP2011043409A (en) * 2009-08-21 2011-03-03 Fujita Corp Method for geological exploration during tunnel excavation and tunnel geological exploration apparatus
JP6131027B2 (en) * 2012-11-28 2017-05-17 株式会社安藤・間 Measurement method of natural ground elastic wave velocity
JP6111107B2 (en) * 2013-03-22 2017-04-05 株式会社安藤・間 Elastic wave exploration method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7125767B2 (en) 2017-12-20 2022-08-25 国立大学法人 筑波大学 Bending detection sensor

Also Published As

Publication number Publication date
JP2015094731A (en) 2015-05-18

Similar Documents

Publication Publication Date Title
JP6131027B2 (en) Measurement method of natural ground elastic wave velocity
CN103697999B (en) A kind of heavily stressed hard rock TBM construction tunnel microseism velocity of wave real time acquiring method
JP6171214B2 (en) Nondestructive inspection system for structures using tomographic analysis
JP6393100B2 (en) Tunnel face forward exploration method
JP5839271B2 (en) Tunnel face forward exploration method
JP2017156106A (en) Tunnel face front survey method
Lato et al. Mapping shotcrete thickness using LiDAR and photogrammetry data: Correcting for over-calculation due to rockmass convergence
JP6258010B2 (en) Elastic wave velocity measuring method and elastic wave velocity measuring system
JP6420054B2 (en) Elastic wave velocity measurement method
JP2011038257A (en) Soil evaluation device and soil evaluation method
JP5280407B2 (en) Damage detection method, damage detection apparatus and program for columnar structure
JP6484089B2 (en) Vibration prediction method
JP6522918B2 (en) Elastic wave velocity measurement method
JP2015184144A5 (en)
JP6379261B2 (en) Elastic wave velocity measuring method and elastic wave velocity measuring system
KR102036305B1 (en) Backfill grouting condition evaluation method of shield tbm tunnel segment and backfill grouting condition evaluation device
JP5997521B2 (en) Face investigation method using shield machine
JP5940303B2 (en) Tunnel face forward exploration method
JP5258734B2 (en) Tunnel front face exploration method and exploration system
JP2005105651A (en) Method of evaluating natural ground in front of ground excavation part
JP6111107B2 (en) Elastic wave exploration method
KR20150052975A (en) Firing vibration predicting method
KR102016592B1 (en) Method and apparatus for geologic structure analysis
JP7017732B2 (en) Geological exploration method and geological exploration system
KR101415359B1 (en) System and method for estimating circumferential thickness of pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171206

R150 Certificate of patent or registration of utility model

Ref document number: 6258010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250