JP7121500B2 - 装置制御システム及び装置制御方法 - Google Patents

装置制御システム及び装置制御方法 Download PDF

Info

Publication number
JP7121500B2
JP7121500B2 JP2018029148A JP2018029148A JP7121500B2 JP 7121500 B2 JP7121500 B2 JP 7121500B2 JP 2018029148 A JP2018029148 A JP 2018029148A JP 2018029148 A JP2018029148 A JP 2018029148A JP 7121500 B2 JP7121500 B2 JP 7121500B2
Authority
JP
Japan
Prior art keywords
control
data
machine learning
learning model
monitoring item
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018029148A
Other languages
English (en)
Other versions
JP2019144898A (ja
Inventor
健介 和田
剛二郎 野澤
博一 杉山
利之 穂刈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2018029148A priority Critical patent/JP7121500B2/ja
Publication of JP2019144898A publication Critical patent/JP2019144898A/ja
Application granted granted Critical
Publication of JP7121500B2 publication Critical patent/JP7121500B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Complex Calculations (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は、装置制御システム及び装置制御方法に関する。
従来から、シールド工法によりトンネルなどを築造する際、シールド掘削機が掘削する現場の施工環境(土質、水圧などの地山の状態)は、現場の位置により刻々変化する。そのため、施工環境の変化に対応させて、シールド掘削機の掘削における進行速度及び進行方向などの制御を、オペレータが行なう必要がある。
すなわち、施工環境の異なる現場の各々に対応して、オペレータがシールド掘削機の制御を適切に行なわなければ、掘削されたトンネルの設計に対する精度や安全性が低下する。
また、オペレータは、様々な現場においてトンネルの施工を行なうことで、施工環境の変化に対応したシールド掘削機の制御の経験を養い、熟練度を向上させている。
熟練したオペレータは、掘削中の現場におけるシールド掘削機の制御を行なう際、現在の現場の施工環境に対応した制御を、過去の似たような施工環境における制御の知識を応用して行なっている。しかし、施工した現場の数の少ないオペレータの場合、経験したことのない施工環境においては、乏しい経験と基礎的な操作知識では、その施工環境おける適切なシールド掘削機の制御を行なうことができない。
このため、オペレータの各々のシールド掘削機の制御の熟練度によって、掘削されるトンネルの設計に対する精度や安全性がばらついてしまう。
この問題を解決するため、掘削の際におけるシールド掘削機のカッターの回転状態及び推進ジャッキの推進状態を示す計測値データにより、シールド掘削機を自動運転させる構成がある(例えば、特許文献1参照)。
特開平07-71189号公報
しかしながら、特許文献1においては、計測値データの各々がそれぞれに対して予め設定された設定値を超えたか否かにより、掘削の制御が行なわれている。
このため、特許文献1の制御では、熟練したオペレータによるシールド掘削機の操作を十分に再現することができない。すなわち、測定した計測値データと設定値とを比較することで制御が行なわれるため、熟練したオペレータの経験に基づいた制御と異なり、時々刻々と変化する現場の施工環境に対応した制御が適切に行なわれているとは限らず、掘削されたトンネルの設計に対する精度や安全性が向上するとは言えない。
また、人間の感情解析や装置の操作などを、予め教師データにより学習させた機械学習モデルを用いて、教師データと同様の計測値データを入力して、解析結果や操作の設定値を推定することが一般的に行われている。
そのため、熟練したオペレータの操作を教師データとして、機械学習によりシールド掘削機の操作を学習させた機械学習モデルを用いることで、より熟練したオペレータに近い操作を行う設定値を推定することが考えられる。
上述した機械学習モデルにおいては、計測値データから制御データを推定する際、相反する制御データが出力される複数の制御対象を有する装置の場合、入力される測定値による制御データの推定値の導出過程において干渉が生じる。すなわち、異なる制御対象間における制御データが相反するため推定処理に干渉が生じ、上記装置に対する正確な制御データを推定することができない。
例えば、装置がシールド掘削機であり、制御対象が掘削方向の制御(方向制御)と制御土圧の制御(土圧制御)とであり、方向制御及び土圧制御の各々を一括して制御する制御データを推定させる場合、ジャッキのストロークなどの制御データの導出過程において干渉が発生する。
このため、干渉関係にある制御の制御対象の各々の制御データを導出する場合、制御データの導出過程における干渉を防止するため、それぞれ制御対象毎に機械学習モデルを設け、それぞれの制御対象の制御データを独立に生成する必要がある。
上述したシールド掘削機の場合には、方向制御の制御データを推定する機械学習モデルと、制御土圧の制御データを推定する機械学習モデルとの各々を、独立して設けることになる。
これにより、それぞれの機械学習モデルが推定する制御データにより、装置の制御対象の制御を行おうとした場合、別々の機械学習モデルがそれぞれ独立に、機械学習モデル自身の制御対象に対する制御データを推定することができる。
しかしながら、制御データの導出過程における干渉が無くなる一方で、独立した制御データであるため、制御対象間の制御に調和が無く、制御対象間の制御データが相反している場合、それぞれの制御データによる装置の制御を行う制御過程における干渉が発生する。
例えば、シールド掘削機の場合、方向制御において、掘削方向を大きく変えようとする場合と、制御土圧が高いため低下するようにしようとする場合との各々において、ジャッキのストロークを例に取ると、方向制御で増加させようとする制御データと、制御土圧を低下させようとする制御データとが干渉してしまう。このように、干渉する制御データによりシールド掘削機の制御を行った場合、掘削する工事の安全性や掘削結果の品質に悪影響を及ぼす虞がある。
本発明は、上記の事情を考慮してなされたものであり、一つの装置における複数の異なる制御対象に対して、制御対象に対応する機械学習モデルの推定した制御データを生成した際、制御対象間の制御データが相反して制御過程において干渉した場合でも、上記装置の各制御対象間において調和の取れた制御を行うことができる装置制御システム及び装置制御方法を提供することを目的とする。
上記課題を解決するため、本発明の装置制御システムは、推定する制御データが干渉する、一つの装置における複数の異なる制御対象の制御データを機械学習モデルにより推定し、当該制御データにより前記装置の制御を行う装置制御システムであり、前記装置の前記制御対象の監視項目データを入力データとして当該制御対象の制御データを推定する、前記制御対象の各々に対応した複数の機械学習モデルが備えられた機械学習モデル部と、前記機械学習モデルによる前記制御データの推定を、前記機械学習モデルに推定を行わせる所定の順番で時系列に実行し、前記制御対象毎の制御データを前記機械学習モデルに推定させる推定処理部と、前記時系列に推定された前記制御データにより、前記装置における前記制御対象を前記所定の順番に制御する制御部とを備え、前記制御部が、前記時系列に制御を行う際、前記装置の制御状態を示す監視項目データを取得する一つの制御周期毎に一つの前記機械学習モデルを選択し、時系列に所定の順番で前記制御周期毎に一つの前記機械学習モデルを用いて、前記制御対象それぞれの前記制御データを順次推定させることを特徴とすることを特徴とする。
本発明の装置制御方法は、推定する制御データが干渉する、一つの装置における複数の異なる制御対象の制御データを機械学習モデルにより推定し、当該制御データにより前記装置の制御を行う装置制御方法であり、制御部が、前記装置の前記制御対象の監視項目データを入力データとして当該制御対象の制御データを推定する、前記制御対象の各々に対応した複数の機械学習モデルが備えられた機械学習モデル部から、所定の順番で時系列に前記機械学習モデルを選択し、前記制御対象毎の制御データを前記機械学習モデルに推定させる推定処理過程と、前記制御部が、前記時系列に推定された前記制御データにより、前記装置における前記制御対象を前記所定の順番に制御する制御過程とを含み、前記制御部が、前記時系列に制御を行う際、前記装置の制御状態を示す監視項目データを取得する一つの制御周期毎に一つの前記機械学習モデルを選択し、時系列に所定の順番で前記制御周期毎に一つの前記機械学習モデルを用いて、前記制御対象それぞれの前記制御データを順次推定させることを特徴とする。
本発明によれば、一つの装置における複数の異なる制御対象に対して、制御対象に対応する機械学習モデルの推定した制御データを生成した際、制御対象間の制御データが相反して制御過程において干渉した場合でも、上記装置の各制御対象間において調和の取れた制御を行うことができる。
本実施形態のシールド掘削機制御システムが制御を行なう対象のシールド掘削機を説明する図である。 本実施形態による装置制御システムであるシールド掘削機制御システムの構成例を示す図である。 記憶部15に記憶されているシールド掘削機の制御に用いられるテーブルの例を示す図である。 本実施形態によるシールド掘削機制御システムの制御の動作例を示すフローチャートである。
以下、本発明による装置制御システムの一例として、シールド掘削機を制御するシールド掘削機制御システムの実施形態について、図1を用いて説明する。
図1は、本実施形態のシールド掘削機制御システムが制御を行なう対象のシールド掘削機を説明する図である。
図1(a)は、本実施形態のシールド掘削機制御システムが制御を行なう対象のシールド掘削機の概念図を示している。
掘削機構50は、円筒形のスキンプレート2の矢印D1方向後部でエレクタ(図示略)によりセグメントを組み立てることにより、一次覆工Sを施工しつつ、シールド掘削機20を掘削させるための機構である。掘削機構50においては、切羽23を備えた環状且つ面板型のカッター10の矢印D1方向後方に作泥土室7が設けられている。作泥土室7には作泥土材注入管8から作泥土材9が注入され、図示しない練混ぜ翼によって強力に練混ぜることによって掘削された土砂を泥土に変換し、泥土圧を土圧・水圧とバランスさせることにより切羽23を安定させ、掘削を行う。ここで、掘削機構50の作泥土室7に堆積した掘削残土は、スクリューコンベア60に導入され、コンベア62及び63を介して、掘削しているトンネルの外部に排土される。架台Mは、スクリューコンベア60、コンベア62及び63各々を支持している。また、図示していないが、掘削機構50は、推進ジャッキ(後述)が設けられており、この推進ジャッキにより掘削方向及び推進速度の制御が行なわれる。
本実施形態においては、推進ジャッキの油圧制御により、スキンプレート2の推進方向及び推進速度を制御(以下、単に方向制御と示す場合もある)し、また、スクリューコンベア60のスクリューの回転速度(後述するスクリュー速度)を制御することにより、泥土圧を制御(以下、単に土圧制御と示す場合もある)している。後述するシールド掘削機制御システムは、これらの制御対象の状態を示す監視項目データの各々を取得し、シールド掘削機を制御する制御データを、機械学習モデルにより推定する(後述)。
本実施形態においては、推進ジャッキの制御データとして油圧制御などにより、スキンプレート2の推進方向及び推進速度を制御(方向制御)し、また、スクリューコンベア60の制御データとしてスクリューの回転速度(スクリュー回転速度)などを制御することにより、泥土圧を制御(土圧制御)する制御データを取得するものとする。また、本実施形態において、監視項目データとしては、掘削している施工環境及びシールド掘削機30の稼働状態を監視するデータ(監視項目データ)として、例えば、カッタートルク、カッター速度、推進圧力、推進速度、切羽土圧、アジテータトルク、スクリュー速度、1次スクリュー圧力、2次スクリュー圧力、NO.1コピーストローク、NO.1コピーストローク指示値差、NO.1コピー位置、NO.1コピー位置指示書逸脱値、ピッチング、ピッチング指示値差、ローリング、ローリング指示値差、上下中折れ角度、上下中折れ角度指示値差、左右中折れ角度、左右中折れ角度指示値差、S/M前胴方位、S/M前胴方位指示値差、S/M後胴方位、S/M後胴方位指示値差、計画路線水平偏差(管理点)、計画路線垂直偏差(管理点)、方位(管理点)、方位指示値差(管理点)、計画路線方位(管理点)、ピッチ(管理点)、計画路線ピッチ(管理点)などがある。
図1(b)は、掘削機構50を推進させる推進ジャッキを説明する概念図を示している。図1(b)に示すように、いずれの位置の推進ジャッキを駆動するかにより、スキンプレート2の面を推進させる力点を設定する。図1(b)においては、22個の推進ジャッキが示されているが、この数は限定されない。各推進ジャッキのジャッキ圧の配分を行なうことにより、x軸における推進ジャッキ力点位置Fxと、y軸における推進ジャッキ力点位置Fyとが設定され、マークPが力点の位置となる。スキンプレート2の面の力点に対応した位置に、推進する圧力がかかることで、掘削機構50が推進する方向が設定される。この方向の制御は、推進ジャッキのいずれを駆動するかを示す推進ジャッキパターンにより行なわれる。そして、ジャッキ圧を上げるために単位時間あたりに供給する油の量(油量)により、推進速度が設定される。
図2は、本実施形態による装置制御システムであるシールド掘削機制御システムの構成例を示す図である。図2において、シールド掘削機制御システム1は、監視項目データ入力部11、制御部12、機械学習モデル部13、入力データ形成部14及び記憶部15の各々を備えている。
監視項目データ入力部11は、図示しない計時手段(タイマーなど)からの所定の周期の時間(例えば、1秒間)の経過を示す計時信号が供給されたタイミングにおいて、上述した監視項目の各々のデータを計測値データとして、各部位に備えられた検出手段(センサ及び測定器など)それぞれから、上記監視項目データの各々の計測値データを取得する。また、監視項目データ入力部11は、記憶部15における監視項目データテーブルに対して、取得を行なった監視項目データの各々の計測値データを順次、書き込んで記憶させる。
図3は、記憶部15に記憶されているシールド掘削機の制御に用いられるテーブルの例を示す図である。図3(a)は、機械学習モデルの選択及び使用に関する情報が示された機械学習モデルテーブルの構成例を示している。この機械学習モデルテーブルには、レコード毎に機械学習モデル制御番号及び入力データ群の欄が設けられている。
この機械学習モデルテーブルにおいて、機械学習モデル制御番号は、機械学習モデルの各々を時系列に動作させて順次制御データの設定値を推定させる際の順番を示す番号であり、機械学習モデルの各々を識別する識別情報でもある。入力データ群は、機械学習モデルの各々に対して入力データとなる監視項目データの各々の計測値データが記載されている。
図3(b)は、監視項目データ毎の計測値データが書き込まれた計測値テーブルの構成例を示している。この計測値テーブルには、レコード毎に監視項目データ種類、取得データ及びデータ範囲の欄が設けられている。監視項目データ種類は、監視項目データの種類を示す情報(名称あるいは識別情報など)が記載されている。取得データは、監視項目データ入力部11が入力した計測値のデータ(すなわち、計測値データ)である。データ範囲は、各機械学習モデルに対応して、監視項目データ毎に設けられており、監視項目データの各々の計測値データがこの範囲に含まれている場合に正常と判定するために設けられている。
また、監視項目データ入力部11は、各監視項目データの計測値データが上記データ範囲に含まれている場合、正常としてその計測値データの補正を行わない。一方、監視項目データ入力部11は、各監視項目データの計測値データが上記データ範囲に含まれていない場合、計測値データの補正を行う。このとき、監視項目データ入力部11は、監視項目データの計測値データがデータ範囲の下限値未満である場合、計測値データをこの下限値とし、監視項目データの計測値データがデータ範囲の上限値を超えている場合、計測値データをこの上限値とする補正処理を行う。また、監視項目データ入力部11は、監視項目データの計測値データが欠損している場合、所定の時間範囲の過去の計測値データの平均値を求めて、この平均値を計測値データとする補完処理を行う。監視項目データ入力部11は、計測値テーブルに対して、計測値データが異常であった場合、計測値データの補正を行った後に、補正後の計測値データを補正前の計測値データに上書きし、計測値データが欠損であった場合、計測値データの補完を行った後に、補完前の計測値データに上書きする。
図2に戻り、制御部12は、記憶部15に記憶されている機械学習モデルテーブルを参照し、所定の順番に機械学習モデルを選択する。例えば、制御部12は、機械学習モデルテーブルに記載された順番に、所定の制御周期毎に機械学習モデルを選択し、選択した機械学習モデルに対して制御データの設定値の推定を行わせる。また、制御部12は、機械学習モデルテーブルにおける最後の機械学習モデルを選択した後、また機械学習モデルテーブルにおける最初の機械学習モデルに戻らせ、機械学習モデル部13が備える機械学習モデルをリング上の配列として、機械学習モデルの選択処理を循環させる。
機械学習モデル部13は、制御対象の異なる複数の機械学習モデルが備えられており、制御部12により選択された機械学習モデルを稼働させる。
機械学習モデルは、例えば、機械学習アルゴリズムを用いてシールド掘削機の操作のための制御データの設定値を、入力される計測値データに対応して推定するための機械学習モデルを教師データにより生成し、生成した機械学習モデルを用いて計測値データに対応するシールド掘削機の操作の制御データの設定値を推定する。例えば、本実施形態における機械学習モデル部13は、制御対象として土圧制御に対応する第1機械学習モデルと、制御対象として方向制御に対応する第2機械学習モデルとの2つの機械学習モデルを備えている。第1機械学習モデルは、所定の監視項目データ(特徴量ベクトル)の設定値が入力データとして入力された場合、制御データとしてスクリューコンベア60のスクリュー回転速度などの設定値を推定して出力する。また、第2機械学習モデルは、所定の監視項目データの設定値が入力データとして入力された場合、制御データとして推進ジャッキの油圧の制御データなどの設定値を推定して出力する。
このため、機械学習モデルは、まず、正解の制御データが分かっている特徴量ベクトルである監視項目データの計測値データを教師データとして機械学習アルゴリズムに入力し、制御データの設定値を推定する機械学習モデルを生成する。そして、機械学習モデル部13は、学習済みの機械学習モデルに対して、センサからなどから供給される監視項目データの計測値データを入力し、入力した計測値に適合すると推測される制御データの設定値を推定する。
ここで、機械学習は、監視項目データの計測値データを説明変数とし、制御データの設定値を被説明変数としたモデルを作成する。すなわち、入力される説明変数と出力される被説明変数との間のモデルを機械学習により作成し、このモデルを用いることにより、説明変数の組合わせに対応して、関連性の高い被説明変数が得られるようにする。このモデルを用いることにより、説明変数である監視項目データの計測値データ変化に対応して、被説明変数である制御データのいずれを制御する必要があるかが明確に得られる。ここで、モデルを作成する機械学習の技法としては、決定木学習、ニューラルネットワーク、遺伝的プログラミング、サポートベクタマシン、ディープラーニングなどの一般的に用いられている技法のいずれを用いても良い。
入力データ形成部14は、記憶部15に記憶されている機械学習モデルテーブルにおける入力データ群を参照し、制御部12が選択した機械学習モデルに供給する入力データとして用いる監視項目データの情報を読み込む。そして、入力データ形成部14は、機械学習モデルの入力データとして用いる監視項目データの各々の計測値データを、記憶部15における監視項目データテーブルから読み込み、機械学習モデルに入力する入力データを形成する。
記憶部15には、上述したように、機械学習モデルテーブルと監視項目データテーブルとが書き込まれて記憶されている。
図4は、本実施形態によるシールド掘削機制御システムの制御の動作例を示すフローチャートである。
ステップS1: 監視項目データ入力部11は、制御周期としての時間をカウントしており、カウントした時間が制御周期を超えたか否かの判定を行う。このとき、監視項目データ入力部11は、カウントした時間が一制御周期の時間を超えていない場合、ステップS1の処理を繰り返す。一方、監視項目データ入力部11は、カウントした時間が制御周期を超えた場合、処理をステップS2へ進める。
ステップS2: 監視項目データ入力部11は、シールド掘削機に設けられている監視項目データの計測値データを計測するセンサの各々から、監視項目データそれぞれの計測値データを入力し、この計測値データを記憶部15の監視項目データテーブルに書き込んで記憶させる。
ステップS3: 監視項目データ入力部11は、記憶部15の監視項目データテーブルを参照し、監視項目データの各々の計測値データに欠損が有るか否かの判定を行う。また、監視項目データ入力部11は、監視項目データテーブルにおけるデータ範囲を参照し、監視項目データの各々の計測値データが異常か否かの判定を行う。
そして、監視項目データ入力部11は、監視項目データの各々のいずれかの計測値データに欠損あるいは異常な数値があると判定した場合、処理をステップS4へ進める。一方、監視項目データ入力部11は、監視項目データの全ての計測値データに欠損あるいは異常な数値が無いと判定した場合、処理をステップS5へ進める。
ステップS4: 監視項目データ入力部11は、監視項目データの計測値データがデータ範囲に含まれていない場合、計測値データの補正を行う。このとき、監視項目データ入力部11は、監視項目データの計測値データがデータ範囲の下限値未満である場合、計測値データをこの下限値とし、監視項目データの計測値データがデータ範囲の上限値を超えている場合、計測値データをこの上限値とする補正処理を行う。そして、監視項目データ入力部11は、計測値データの補正を行った後に補正処理を行った計測値データを、監視項目データテーブルに書き込んで記憶させる。
また、監視項目データ入力部11は、監視項目データの計測値データが欠損している場合、所定の時間範囲の過去の計測値データの平均値を求めて、この平均値を計測値データとする補完処理を行う。そして、監視項目データ入力部11は、計測値データの補完を行った後に、補完処理を行った計測値データを、監視項目データテーブルに書き込んで記憶させる。
ステップS5: 制御部12は、記憶部15における機械学習モデルテーブルを参照し、例えば、機械学習テーブルに記載された順番に、一つの制御周期につき一つの機械学習モデルを選択する。例えば、制御部12は、機械学習テーブルに第1機械学習モデル及び第2機械学習モデルの2個が記載されている場合、第1機械学習モデル→第2機械学習モデル→第1機械学習モデル→…の順番で、制御周期毎に交互に第1機械学習モデル及び第2機械学習モデルのいずれかを選択する。
そして、制御部12は、選択した機械学習モデルの機械学習モデル制御番号を、推定を実行させることを示す制御信号に付加して、この制御信号を機械学習モデル部13及び入力データ形成部14の各々に対して出力する。
ステップS6: 入力データ形成部14は、記憶部15における機械学習モデルテーブルを参照し、制御部12から供給された機械学習モデル制御番号に対応する入力データ群に記載されている監視項目データを読み込む。
そして、入力データ形成部14は、読み込んだ監視項目データの各々の計測値データを、記憶部15における監視項目データテーブルからそれぞれ読み出し、読み出した監視項目データの各々の計測値データにより機械学習モデルに入力する入力データを形成する。
ステップS7: 入力データ形成部14は、形成した入力データを、機械学習モデル部13に対して出力する。
そして、機械学習モデル部13は、入力データ形成部14から入力データが供給された場合、制御部12から供給された機械学習モデル制御番号の示す機械学習モデルに対し、供給された入力データを入力する。これにより、機械学習モデル部13において、機械学習モデル制御番号の示す機械学習モデルは、入力された入力データに基づき、制御対象の制御データの各々の設定値を推定する。また、機械学習モデル部13は、得られた制御データの設定値のそれぞれを、制御部12に対して出力する。
ステップS8: 制御部12は、機械学習モデル部13から供給される制御データの設定値により、シールド掘削機の稼働制御を行う。また、制御部12は、稼働制御の後、処理をステップS1へ進める。
上述したように、本実施形態によれば、相反する制御データが出力される異なる制御対象の機械学習モデルを、所定の制御周期毎に時系列に稼働させ、異なる制御対象を同時に制御することを行わないため、制御データの導出過程、及び装置の制御データによる制御対象の制御を行う制御過程の各々における干渉を抑制し、装置の制御対象間において調和の取れた制御を行うことができる。
すなわち、本実施形態によれば、推定する制御データが干渉する、一つの装置における複数の異なる制御対象に対して、制御対象に対応する機械学習モデルの推定した制御データを独立して用いることにより、上記装置の各制御対象間において調和の取れた制御を行うことができる。
また、本実施形態によれば、干渉する制御データにより、同時にシールド掘削機の複数の制御対象間で制御を行わず、ある制御対象を行った後、その制御対象の制御結果に基づいて、監視項目データの各々から他の制御対象の制御データを生成して制御を行うことができる。このため、制御過程において一方が他方に干渉することが無く、装置であるシールド掘削機の制御対象間において調和の取れた制御を行うことができ、掘削する工事の安全性や掘削結果の品質に悪影響を及ぼすことを防止することができる。
例えば、本実施形態において、シールド掘削機における土圧制御及び方向制御の各々を制御対象とする場合、土圧制御の制御データの設定値を得て制御を行った後に、その結果の監視項目データに対応して方向制御の制御データの設定値を得て方向制御を行う。これにより、土圧制御と方向制御との制御データの設定値は各々独立に行われ、かつ制御対象の制御が同時ではなく交互に行わることで、それぞれの制御対象に対して独立した制御が行え、互いの制御に対して干渉を与えることがない。
また、本実施形態によれば、それぞれの機械学習モデルが他の機械学習モデルと関連していないため、ある制御対象の機械学習モデルを新たなものと交換する場合、あるいは新たな制御対象の機械学習モデルを追加する場合など、他の機械学習モデルに対して影響を与えることなく容易に、機械学習モデル部13における機械学習モデルの構成を容易に変更することができる。
なお、本発明における図1のシールド掘削機(装置)制御システムの機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、シールド掘削機(装置)の制御処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OS(Operating System)や周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWW(World Wide Web)システムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、CD-ROM(Compact Disc - Read Only Memory)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM(Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。
また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
1…シールド掘削機制御システム
11…監視項目データ入力部
12…制御部
13…機械学習モデル部
14…入力データ形成部
15…記憶部

Claims (4)

  1. 一つの装置における複数の異なる制御対象の制御データを機械学習モデルにより推定し、当該制御データにより前記装置の制御を行う装置制御システムであり、
    前記装置の前記制御対象の監視項目データを入力データとして当該制御対象の制御データを推定する、前記制御対象の各々に対応した複数の機械学習モデルが備えられた機械学習モデル部と、
    前記機械学習モデルによる前記制御データの推定を、前記機械学習モデルに推定を行わせる所定の順番で時系列に実行し、前記制御対象毎の制御データを前記機械学習モデルに推定させ、前記時系列に推定された前記制御データにより、前記装置における前記制御対象を前記所定の順番に制御する制御部と
    を備え
    前記制御部が、前記時系列に制御を行う際、前記装置の制御状態を示す監視項目データを取得する一つの制御周期毎に一つの前記機械学習モデルを選択し、時系列に所定の順番で前記制御周期毎に一つの前記機械学習モデルを用いて、前記制御対象それぞれの前記制御データを順次推定させることを特徴とする装置制御システム。
  2. 前記監視項目データの計測値データが欠損している或いは異常である場合、前記計測値データの補完、補正を行う監視項目データ入力部をさらに有する
    ことを特徴とする請求項1に記載の装置制御システム。
  3. 前記装置がシールド掘削機であり、前記制御対象が少なくとも方向制御と土圧制御との各々を含む
    ことを特徴とする請求項1または請求項2に記載の装置制御システム。
  4. 一つの装置における複数の異なる制御対象の制御データを機械学習モデルにより推定し、当該制御データにより前記装置の制御を行う装置制御方法であり、
    制御部が、前記装置の前記制御対象の監視項目データを入力データとして当該制御対象の制御データを推定する、前記制御対象の各々に対応した複数の機械学習モデルが備えられた機械学習モデル部から、所定の順番で時系列に前記機械学習モデルを選択し、前記制御対象毎の制御データを前記機械学習モデルに推定させる推定処理過程と、
    前記制御部が、前記時系列に推定された前記制御データにより、前記装置における前記制御対象を前記所定の順番に制御する制御過程と
    を含み、
    前記制御部が、前記時系列に制御を行う際、前記装置の制御状態を示す監視項目データを取得する一つの制御周期毎に一つの前記機械学習モデルを選択し、時系列に所定の順番で前記制御周期毎に一つの前記機械学習モデルを用いて、前記制御対象それぞれの前記制御データを順次推定させることを特徴とする装置制御方法。
JP2018029148A 2018-02-21 2018-02-21 装置制御システム及び装置制御方法 Active JP7121500B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018029148A JP7121500B2 (ja) 2018-02-21 2018-02-21 装置制御システム及び装置制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018029148A JP7121500B2 (ja) 2018-02-21 2018-02-21 装置制御システム及び装置制御方法

Publications (2)

Publication Number Publication Date
JP2019144898A JP2019144898A (ja) 2019-08-29
JP7121500B2 true JP7121500B2 (ja) 2022-08-18

Family

ID=67773827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018029148A Active JP7121500B2 (ja) 2018-02-21 2018-02-21 装置制御システム及び装置制御方法

Country Status (1)

Country Link
JP (1) JP7121500B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112540835B (zh) * 2020-12-10 2023-09-08 北京奇艺世纪科技有限公司 一种混合机器学习模型的运行方法、装置及相关设备
JP7016195B1 (ja) 2021-09-06 2022-02-18 Wota株式会社 プログラム、方法、情報処理装置、システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005096068A (ja) 2003-08-25 2005-04-14 Sony Corp ロボット装置及びロボットの姿勢制御方法
JP2005222444A (ja) 2004-02-09 2005-08-18 Toshiba Corp 統計的予測値演算方法および装置
JP2018021402A (ja) 2016-08-05 2018-02-08 清水建設株式会社 シールド掘削機操作分析システム、シールド掘削機操作分析方法およびプログラム
JP2018194932A (ja) 2017-05-15 2018-12-06 オムロン株式会社 制御装置、制御プログラム、学習データ作成方法、及び学習方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3708180B2 (ja) * 1995-09-14 2005-10-19 富士重工業株式会社 自動ブレーキ制御装置
JPH10184298A (ja) * 1996-12-25 1998-07-14 Toshiba Corp 集中排気式道路トンネル換気制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005096068A (ja) 2003-08-25 2005-04-14 Sony Corp ロボット装置及びロボットの姿勢制御方法
JP2005222444A (ja) 2004-02-09 2005-08-18 Toshiba Corp 統計的予測値演算方法および装置
JP2018021402A (ja) 2016-08-05 2018-02-08 清水建設株式会社 シールド掘削機操作分析システム、シールド掘削機操作分析方法およびプログラム
JP2018194932A (ja) 2017-05-15 2018-12-06 オムロン株式会社 制御装置、制御プログラム、学習データ作成方法、及び学習方法

Also Published As

Publication number Publication date
JP2019144898A (ja) 2019-08-29

Similar Documents

Publication Publication Date Title
JP7061893B2 (ja) シールド掘削機制御システム及びシールド掘削機制御方法
JP6796822B2 (ja) シールド掘削機操作分析システム、シールド掘削機操作分析方法およびプログラム
JP7286457B2 (ja) シールド掘削機制御システム及びシールド掘削機制御方法
JP7219180B2 (ja) シールド掘進工法における掘進予測モデルの作成方法
JP7219181B2 (ja) シールド掘進機の施工管理方法
JP7061892B2 (ja) 操作推定装置、及び操作推定方法
JP6949623B2 (ja) 操作設定提示装置、及びプログラム
JP7121500B2 (ja) 装置制御システム及び装置制御方法
GB2587119A (en) Model-based parameter estimation for directional drilling in wellbore operations
EP2915950A1 (en) Apparatus and method for designing and modifying drilling pattern for bench drilling
JP7097191B2 (ja) 推定装置、及び推定方法
JP2019082003A (ja) シールド掘進機の方向制御システム
JP7104534B2 (ja) 曲がり削孔方法及び曲がり削孔システム
CN113361824A (zh) 土压平衡盾构机及其推进速度预测方法、装置、存储介质
JP7544633B2 (ja) シールド掘進機の施工管理方法
JP7492482B2 (ja) シールド掘進機の掘進予測モデル
JP7061894B2 (ja) 判定装置、及び判定方法
JP2023013715A (ja) 制御システム、制御方法およびプログラム
JP2648436B2 (ja) シールド掘進機の方向制御装置
JP2022143627A (ja) シールド掘進機の掘進予測モデル
JP2020169465A (ja) 制御情報出力装置、及び制御情報出力方法
JP7544635B2 (ja) シールド掘進機の操作シミュレーション方法
JP7544634B2 (ja) 掘進予測モデルの重み付け探索方法
JP2019143383A (ja) 操作推定装置
JP2829671B2 (ja) 掘進機等の自動方向制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220805

R150 Certificate of patent or registration of utility model

Ref document number: 7121500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150