JP7115375B2 - 測距装置および測距方法 - Google Patents

測距装置および測距方法 Download PDF

Info

Publication number
JP7115375B2
JP7115375B2 JP2019049515A JP2019049515A JP7115375B2 JP 7115375 B2 JP7115375 B2 JP 7115375B2 JP 2019049515 A JP2019049515 A JP 2019049515A JP 2019049515 A JP2019049515 A JP 2019049515A JP 7115375 B2 JP7115375 B2 JP 7115375B2
Authority
JP
Japan
Prior art keywords
peak
time
signal
distance
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019049515A
Other languages
English (en)
Other versions
JP2020153671A (ja
Inventor
雅浩 上野
勇一 赤毛
宗一 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2019049515A priority Critical patent/JP7115375B2/ja
Priority to US17/439,118 priority patent/US20220113416A1/en
Priority to PCT/JP2020/009103 priority patent/WO2020189275A1/ja
Publication of JP2020153671A publication Critical patent/JP2020153671A/ja
Application granted granted Critical
Publication of JP7115375B2 publication Critical patent/JP7115375B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4915Time delay measurement, e.g. operational details for pixel components; Phase measurement

Description

本発明は、測距装置および測距方法に関し、特に、飛行時間方式の測距技術に関する。
従来から、物体との距離を測定する技術としてTOF(Time of Flight:飛行時間)方式が知られている。例えば、非特許文献1は、TOF方式の測距処理として、超音波を送信し、その超音波が物体に反射して戻るまでの飛行時間を測定し、音速を乗じることで物体との距離を導出する技術を開示している。
非特許文献1に記載のTOF方式の測距技術では、時間を測定する基準となる参照信号と、物体で反射して返ってきた超音波を電気信号に変換した検出信号との2つの信号の時間差を、相互相関関数を用いて求めている。そのため、相互相関関数のピークの時間が2つの信号の時間差となる。
参照信号および検出信号の2つの信号の時間差をΔtと表すと、測定対象の物体までの距離測定値LはvΔt/2となる。ここで、vは音速である。非特許文献1では超音波を使用しているが、これを光に置き換えても同様である。この場合、距離測定値LはcΔt/2となる。ここで、cは光速である。
非特許文献2には、光偏向器で光を1次元スキャンしながら、TOF方式で測距する技術が開示されている。この場合、光は時間的に光偏向器から出射される角度が変わるので、ある角度における測距を行うためには、その角度に相当する時刻を中心として、基準とする参照信号と、物体を反射して戻ってきた反射光の検出信号との2つの信号のそれぞれから短時間の時間幅の信号を取り出す必要がある。測距は、それらの取り出された2つの信号の相互相関から、その角度すなわち時刻における参照信号と検出信号との時間差を求め、その時間差から物体までの距離を求めることになる。
このように、参照信号や検出信号のような時系列信号から短時間の時間幅の信号を取り出すときには、窓関数を使用することが考えられる。従来の技術では、信号を取り出す時間幅の中心をピークとして設計された時間窓を使用するため、窓関数を信号にかける前と後の参照信号および検出信号それぞれのピーク位置が異なる場合があった。
図7は従来の窓関数を使用した例を示したもので、実線は参照信号rおよび検出信号s、破線は時間幅、一点鎖線は窓関数w、点線は窓関数をかけた後の参照信号rwおよび検出信号swを表す。窓関数をかける前後で参照信号r、rwのピークと検出信号s、swのピーク時刻がずれ、その結果、両ピーク間の時間差Δt、Δtwが異なっている。その結果、参照信号rと検出信号sとの時間差Δtが正確に測定できず、正確な測距が困難となってしまう問題があった。
平田慎之介、黒澤実、片桐崇、1ビット信号処理による相互相関処理を用いた超音波距離計測実験、電子情報通信学会、技術報告US2007-117、pp.49-54、2008年2月 小平徹、八木生剛、藤浦和夫、森治郎、渡邊武士、「波長掃引技術を応用した光掃引方式位置計測システム」、光技術コンタクト、55巻、8号、pp.18-27、2017年08月20日発行
本発明は、上述した課題を解決するためになされたものであり、窓関数を用いた場合でも、物体までの距離を高精度に測定することができる測距装置および測距方法を提供することを目的とする。
上述した課題を解決するために、本発明に係る測距装置は、光源から出力された周期的に強度変調された光を光電変換して得られる第1信号に含まれるピークである第1ピークを検出し、前記第1ピークごとの時刻を取得する第1取得部と、前記光源から出力された前記光が測定対象の物体で反射した反射光を光電変換して得られる第2信号から、前記第1ピークの前記時刻を中心とした前記光源の光の強度変調の1周期の時間範囲に存在するピークである第2ピークを取得する第2取得部と、ピークを有する第1窓関数の前記ピークを前記第1ピークと一致させた状態で、前記第1窓関数で前記第1信号を処理して得られる第3信号と、ピークを有する第2窓関数の前記ピークを前記第2ピークと一致させた状態で、第2窓関数で前記第2信号を処理して得られる第4信号との相互相関に基づいて、前記物体までの距離を算出する距離算出部とを備える。
また、本発明に係る測距装置において、前記光源の光を2つに分岐する光スプリッタと、前記光スプリッタの一方から出力された前記光を検出する第1フォトディテクタと、前記光スプリッタの他方から出力された前記光を偏向して前記物体に向けて出射する光偏向器と、前記光偏向器から出射された出射光が前記物体で反射した反射光を検出する第2フォトディテクタとを有する光学系をさらに備え、前記第1フォトディテクタは、検出した前記光を光電変換した前記第1信号を出力し、前記第2フォトディテクタは、検出した前記反射光を光電変換した前記第2信号を出力してもよい。
また、本発明に係る測距装置において、前記距離算出部によって算出された前記第1ピークの前記時刻に対応する時間情報を、前記光偏向器による偏向角度の情報に変換し、偏向角度と距離とが対応付けられた偏向角-距離信号を出力する時間-角度変換部をさらに備えていてもよい。
また、本発明に係る測距装置において、前記距離算出部が算出した前記第1信号の前記第1ピークごとの前記時刻に対応する前記物体までの距離を補間する補間部をさらに備えていてもよい。
また、本発明に係る測距装置において、前記距離算出部は、前記相互相関を用いて前記第1ピークの前記時刻での前記第1信号に対する前記第2信号の時間の遅れを示す時間差を算出する時間差算出部を備え、前記距離算出部は、算出された前記時間差に基づいて、前記第1信号の前記第1ピークごとの前記時刻に対応する前記物体までの距離を算出してもよい。
また、本発明に係る測距装置において、前記第1窓関数および前記第2窓関数は同一の形状であってもよい。
また、本発明に係る測距装置において、第1窓関数および前記第2窓関数は、ガウス窓、ハン窓、ハミング窓、ブラックマン窓、および一般化ハミング窓のいずれかであってもよい。
上述した課題を解決するために、本発明に係る測距方法は、光源から出力された周期的に強度変調された光を光電変換して得られる第1信号に含まれるピークである第1ピークを検出し、前記第1ピークごとの時刻を取得する第1ステップと、前記光源から出力された前記光が測定対象の物体で反射した反射光を光電変換して得られる第2信号から、前記第1ピークの前記時刻を中心とした前記光源の光の強度変調の1周期の時間範囲に存在するピークである第2ピークを取得する第2ステップと、ピークを有する第1窓関数の前記ピークを前記第1ピークと一致させた状態で、前記第1窓関数で前記第1信号を処理して得られる第3信号と、ピークを有する第2窓関数の前記ピークを前記第2ピークと一致させた状態で、第2窓関数で前記第2信号を処理して得られる第4信号との相互相関に基づいて、前記物体までの距離を算出する第3ステップとを備える。
本発明によれば、周期的に強度変調された光源からの光が光電変換されて得られる第1信号に含まれる第1ピークとピークを一致させた第1窓関数で第1信号を処理して得られる第3信号と、測定対象の物体で反射した反射光が光電変換されて得られる第2信号の第2ピークとピークを一致させた第2窓関数で第2信号を処理して得られる第4信号との相互相関を用いる。そのため、窓関数を用いた場合でも、物体までの距離を高精度に測定することができる。
図1は、本発明の実施の形態に係る測距装置の構成を示すブロック図である。 図2は、本実施の形態に係る測距部の構成を示すブロック図である。 図3は、本実施の形態に係る測距処理を説明するための図である。 図4は、本実施の形態に係る信号処理装置を実現するコンピュータ構成の一例を示すブロック図である。 図5は、本実施の形態に係る測距方法を説明するフローチャートである。 図6は、本実施の形態に係る測距処理を説明するフローチャートである。 図7は、従来例に係る測距処理を説明する図である。
以下、本発明の好適な実施の形態について、図1から図6を参照して詳細に説明する。
図1は、本発明の実施の形態に係る測距装置1の構成を示すブロック図である。本実施の形態に係る測距装置1は、図1に示すように、TOF方式により、測距装置1から物体104までの距離を測定する。より詳細には、測距装置1は、カプラ101から光が出射されてから、測距対象の物体104の表面を反射した反射光がフォトディテクタPDs106で受光されるまでの飛行時間と、カプラ101から出射されてからフォトディテクタPDr105で受光されるまでの飛行時間の差を測定し、測距装置1から物体104までの距離を求める。
図1に示すように、測距装置1は、光源100、カプラ101、サーキュレータ102、光偏向器103、フォトディテクタ(以下、「PDr」という。)105、フォトディテクタ(以下、「PDs」という。)106、アナログ-ディジタル変換器(ADC)107、および信号処理装置108を備える。カプラ101は光を分岐(スプリット)する光分岐器(光スプリッタ)として使用するものである。
光源100、カプラ101、サーキュレータ102、光偏向器103、PDr(第1フォトディテクタ)105、およびPDs(第2フォトディテクタ)106は、測距装置1が備える光学系を構成する。
光源100は、周期的に強度変調された光を物体104に向けて出射する。具体的には、光源100は、正弦波やパルス信号などの周期的に強度変調された光を発生させる。光源100から出射される光は後述の光偏向器103に入射される。
カプラ101は、光源100から出射された光を参照光路と物体光路とに分ける。カプラ101によって分けられた光の一方は、参照光路上のPDr105に入力され、他方の光は物体光路上のサーキュレータ102および光偏向器103を介して物体104に照射される。
PDr105は、光源100から出力された光を検出し、アナログ信号である第1参照信号(第1信号)r1に変換する。得られた第1参照信号r1は、ADC107のチャネル1(CH1)に入力される。
サーキュレータ102は、光路上で互いに反対方向に進む光を分離する。より詳細には、サーキュレータ102は、カプラ101から出射され物体104に照射される光と、物体104を反射して戻ってきた光とを分離する。
光偏向器103は、光源100から入射される光の光軸を偏向して出射する。より詳細には、光偏向器103は、光源100から出射され、カプラ101およびサーキュレータ102を介して入射される光を偏向して出射する。以下、光偏向器103が入射される光の光軸を変化させて出射することを「光を偏向する」ということとする。
光偏向器103は、予め設定された偏向角度の範囲で光源100からの光を偏向する。光偏向器103としては、例えば、ガルバノミラー、ポリゴンミラー、KTN(タンタル酸ニオブ酸カリウム)結晶を用いた偏向器を用いることができる。光偏向器103による偏向角度は、ミラーの設計や光偏向器103が備える図示されない駆動装置による制御により所望の偏向角度の範囲となるように設定することができる。
光偏向器103は、光源100からの光を偏向して出射することによって、物体104およびその周辺の空間をスキャン(空間的に掃引、つまり、偏向)して、測距対象の物体104の表面で反射させる。光偏向器103が、光源100からの光を設定された偏向角度の範囲内で出射した光でスキャンする毎に、物体104からの反射光が後述のPDs106で検出される。
PDs106は、物体104からの反射光をサーキュレータ102を介して検出し、アナログ信号の第1検出信号(第2信号)s1に変換する。得られた第1検出信号s1は、ADC107のチャネル2(CH2)に入力される。
ADC107は、3つのチャネルを備え、アナログの入力信号をディジタル信号に変換して出力する。ADC107がチャネルごとに変換して出力するディジタル信号は、信号処理装置108に入力される。チャネルCH1に入力されたアナログの第1参照信号r1は、ディジタルの第2参照信号(第1信号)r2に変換され、後述の測距部109に入力される。チャネルCH2に入力された第1検出信号s1についても、ディジタルの第2検出信号(第2信号)s2に変換され、測距部109に入力される。また、チャネルCH3には、光偏向器103の偏向角度を示すアナログ信号である第1角度信号θ1が入力され、ディジタルの第2角度信号θ2に変換されて、後述の時間-角度変換部110に入力される。
図1に示すように、信号処理装置108は、ADC107からのディジタル信号を入力信号として、偏向角ごとの測距装置1から物体104までの距離を算出する。具体的には、カプラ101を起点とした物体104までの距離を求めることができる。カプラ101を起点とした物体104までの距離とは、より詳細には、カプラ101-サーキュレータ102-光偏向器103-物体104-光偏向器103-サーキュレータ102-PDs106の光路長から、カプラ101-PDr105の光路長を引いた距離の1/2をいう。
信号処理装置108は、測距部109、時間-角度変換部110、および補間部111を備える。
測距部109は、ADC107から出力される第2参照信号r2および第2検出信号s2に基づいて、時間に対する距離データを出力する。測距部109は、第2参照信号r2のピーク(第1ピーク)の時刻を取得すると共に、その時刻における測距装置1から物体104までの距離を測距する。光偏向器103によって、1次元的に光が偏向する角度の範囲で測距する場合には、より細かい角度ごとに測距することが考えられる。本実施の形態では、第2参照信号r2のピークごとに測距を行うこととし、ピーク間の距離が必要な場合には、後述の補間部111にて、ピーク位置の距離を使って補間して測距装置1から物体104までのより詳細な距離を求める。
測距部109は、図2に示すように、第1取得部191、第2取得部192、時間差算出部193、および距離算出部194を備える。
第1取得部191は、第2参照信号r2に含まれる全てのピークを検出して、それらのピークに対応する時刻を取得する。前述したように、光源100から出力される光は、周期的に強度変調された光である。光源100における光の強度変調の周期をTsource、周波数をfsource(=1/Tsource)とする。
例えば、図3の上段に示すように、第1取得部191は、第2参照信号r2に含まれる全てのピークpr,i(i=0,1,・・・)を検出する。図3は、第2参照信号r2および第2検出信号s2それぞれの時系列信号であり、横軸は時間、縦軸は信号の強度を示している。
第2取得部192は、第2参照信号r2のピークの時刻を中心にして、光源100の強度変調の1周期の範囲に存在する第2検出信号s2のピーク(第2ピーク)を取得する。例えば、第2取得部192は、図3に示すように、第2参照信号r2のi番目のピークpr,iの時刻tr,iを中心にして、±Tsource/2の範囲で第2検出信号s2のピークps,iを検出する。取得されたピークps,iの時刻をts,iとする。
時間差算出部193は、第2参照信号r2のピーク時刻tr,iにおける第2参照信号r2に対する第2検出信号s2の時間の遅れを算出する。つまり、図3に示すように、第2参照信号r2のピークpr,iの時刻tr,iを基準とした第2検出信号s2のピークps,iの時刻ts,iとの時間差Δti(=ts,i-tr,i)を算出する。
より詳細には、時間差算出部193は、上記時間差Δtiの算出において、第2参照信号r2と第2検出信号s2とを窓関数w(t)で処理して、それぞれの信号の一部を切り取る。すなわち、所望とされる偏向角における物体104までの測距を行うにあたり、その所望とされる偏向角度に相当する時刻を中心にして第2参照信号r2と第2検出信号s2とを窓関数w(t)を用いてそれぞれの信号の一部を切り取る。
時間差算出部193は、切り取った第2参照信号r2と第2検出信号s2との時間的な関係性を表す相互相関関数を計算して、相互相関関数の最大値となる時間をΔtiとする。相互相関関数の最大値は、通常ピークとなる。
相互相関関数R(t)は、フーリエ変換を用いて次式(1)により求めることができる。
R(t)=F-1[SSw(ν)SRw *(ν)] ・・・(1)
ただし、F-1[.]は逆フーリエ変換、SSw(.)は切り取った第2検出信号s2のフーリエ変換結果、SRw(.)は切り取った第2参照信号r2のフーリエ変換結果、νは信号の周波数、*は複素共役を示す。
時間差算出部193は、上式(1)を用いる際に第2参照信号r2と第2検出信号s2のそれぞれから信号の一部を切り取るにあたり、単一のピークを有する窓関数をそれぞれの信号のピークと一致させて窓関数による処理を行う。例えば、図3は、第2参照信号r2のi番目のピークpr,iのある時刻tr,iにおける距離を測距する例を示している。
図3の実線は、第2参照信号r2、および第2検出信号s2をそれぞれ示している。横軸が示す時間軸に垂直な破線で示される範囲は、第2検出信号s2のピークをサーチする時間範囲を示している。また、一点鎖線は窓関数wr(t)、ws(t)、点線は、窓関数wr(t)(第1窓関数)をかけた後の第2参照信号rw2(第3信号)、窓関数ws(t)(第2窓関数)をかけた後の第2検出信号sw2(第4信号)をそれぞれ示している。
第2参照信号r2に関しては、図3の上段に示すように、単一のピークを有する窓関数wr(t)をi番目のピークpr,iと一致させて窓関数wr(t)を第2参照信号r2にかけて、ピークpr,iの時刻tr,iの近傍の信号を切り取る。また、第2検出信号s2に関しては、図3の下段に示すように、単一のピークを有する窓関数ws(t)を、サーチした時間範囲に存在するピークps,iと一致させる。そして、その窓関数ws(t)を第2検出信号s2にかけて、第2検出信号s2のピークps,iの時刻ts,iの近傍の第2検出信号s2を切り取る。
例えば、第1取得部191が取得したピークpr,iの時刻tr,iに基づいて、窓関数wr(t)のピークを第2参照信号r2のピークpr,iに一致させることができる。また、第2取得部192が取得した第2検出信号s2のピークps,iおよびピーク時刻ts,iに基づいて、窓関数ws(t)のピークを第2検出信号s2のピークps,iに一致させることができる。
このようにピークを有する窓関数wr(t)、ws(t)のピーク位置を第2参照信号r2および第2検出信号s2のピークと一致させて窓処理を行い、第2参照信号r2および第2検出信号s2の一部をそれぞれ切り取る。これにより、第2参照信号r2も第2検出信号s2もピークの時刻が窓関数wr(t)、ws(t)をかける前後でずれないことになる。そのため、時間差Δtiを、窓関数w(t)をかける前の本来の時間差として出力することができる。したがって、物体104までの距離も正確に算出することができる。
時間差算出部193が第2参照信号r2に用いる窓関数wr(t)と第2検出信号s2に用いる窓関数ws(t)とは、同じ形状の窓関数であってもよい。窓関数wr(t)、ws(t)は、単一のピークを有し、そのピークを中心として左右対称になだらかに振幅が小さくなる形状を有する。窓関数w(t)の具体例として、ガウス窓、Hanning窓(ハン窓)、Hamming窓(ハミング窓)、Blackman窓(ブラックマン窓)、一般化Hamming窓などが挙げられる。特に、Hanning窓やBlackman窓などの窓関数は、窓関数をかけた後の信号の両端がゼロ、かつ、1次微分係数がゼロとなるので、そのような窓関数wr(t)、ws(t)をかけた信号の両端が不連続にならない窓関数を採用することで、信号の両端が不連続になることが原因で発生する高周波成分が生じなくなるので、特に有用であると考えられる。
距離算出部194は、第2参照信号r2のピークpr,iごとの時刻tr,iに対応する物体104までの距離Liを算出する。具体的には、距離算出部194は、時間差算出部193が算出した時間差Δtiに基づいて、物体104までの距離Liを算出する。距離算出部194は、Li=cΔti/2を用いて時間と対応付けられた距離である時刻-距離データLiを算出することができる。
時間-角度変換部110は、距離算出部194によって算出された時刻-距離データLiを、第2角度信号θ2を用いて、偏向角に対応する距離データ(偏向角-距離データ)aに変換する。
より詳細に説明すると、光偏向器103は、角度に対応する電圧の時間変動信号である第1角度信号θ1を出力する。前述したように、第1角度信号θ1は、ADC107のチャネルCH3に入力され、離散化されたディジタルの第2角度信号θ2に変換される。第2角度信号θ2の強度と光偏向器103から出力される光の偏向角度は対応している。そのため、同じ時刻に対して、第2角度信号θ2の強度と時刻-距離データLiの距離を対応させることにより、偏向角-距離データaを求めることができる。
そのためには、例えば、第2角度信号θ2の強度と偏向角との対応表や、第2角度信号θ2と強度と偏向角との関係を示す関数(近似関数を含む)を予め時間-角度変換部110に保持しておく。そして、時間-角度変換部110は、予め記憶されている対応表や関数などを読み出して、第2角度信号θ2の強度と偏向角とを対応付ける。
このように、時刻-距離データLiは、第2参照信号r2のピーク時刻tr,iごとの距離データであるため、偏向角-距離データaも第2参照信号r2のピーク時刻tr,iごとの偏向角と距離とを対応させたデータである。
補間部111は、時間-角度変換部110によって出力された偏向角-距離データaに対して、第2参照信号r2のピークpr,i間を補間した偏向角-距離データbを出力する。補間部111は、第2参照信号r2のピーク間に含まれる偏向角度(時刻)における偏向角と時刻-距離データLとが対応付けられた偏向角-距離データaを補間により求める。補間部111は、第2参照信号r2のピークとピークとの間に含まれる、より詳細な偏向角(時刻)に対する距離のデータを補間後の偏向角-距離データbとして出力する。このように、補間部111を設けることにより、時間的(角度的)により密な距離を示すデータを求めることができる。
[信号処理装置のハードウェア構成]
次に、上述した機能を有する信号処理装置108のハードウェア構成の一例について図4を参照して説明する。
図4に示すように、信号処理装置108は、例えば、バス181を介して接続されるプロセッサ182、主記憶装置183、通信インターフェース184、補助記憶装置185、入出力装置186を備えるコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。信号処理装置108は、例えば、表示装置187がバス181を介して接続され、表示画面に補間後の偏向角-距離データbなどを表示してもよい。また、ADC107や測距装置1の光学系が、バス181や入出力装置186を介して接続されている。
主記憶装置183は、例えば、SRAM、DRAM、およびROMなどの半導体メモリによって実現される。主記憶装置183には、プロセッサ182が各種制御や演算を行うためのプログラムが予め格納されている。プロセッサ182と主記憶装置183とによって、図1および図2に示した第1取得部191、第2取得部192、時間差算出部193、および距離算出部194を含む測距部109、時間-角度変換部110、および補間部111を含む信号処理装置108の各機能が実現される。また、プロセッサ182と主記憶装置183とによって、光学系やADC107の設定や制御を行うことができる。
通信インターフェース184は、通信ネットワークNWを介して各種外部電子機器との通信を行うためのインターフェース回路である。信号処理装置108は、通信インターフェース184を介して、例えば外部に補間後の偏向角-距離データbなどを送出してもよい。
通信インターフェース184としては、例えば、LTE、3G、無線LAN、Bluetooth(登録商標)などの無線データ通信規格に対応したインターフェースおよびアンテナが用いられる。通信ネットワークNWは、例えば、WAN(Wide Area Network)やLAN(Local Area Network)、インターネット、専用回線、無線基地局、プロバイダなどを含む。
補助記憶装置185は、読み書き可能な記憶媒体と、その記憶媒体に対してプログラムやデータなどの各種情報を読み書きするための駆動装置とで構成されている。補助記憶装置185には、記憶媒体としてハードディスクやフラッシュメモリなどの半導体メモリを使用することができる。
補助記憶装置185は、信号処理装置108が測距処理、変換処理、および補間処理を行うためのプログラムを格納するプログラム格納領域を有する。さらには、補助記憶装置185は、例えば、上述したデータやプログラムなどをバックアップするためのバックアップ領域などを有していてもよい。
補助記憶装置185は、時間-角度変換部110が変換処理に用いる対応表や変換曲線を記憶している。あるいは、主記憶装置183に時間-角度変換部110が変換処理に用いる対応表や変換曲線を記憶しておいてもよい。この場合、装置の起動時に補助記憶装置185から主記憶装置183にこれらの対応表や変換曲線を読み出しても良いし、主記憶装置の記憶アドレス空間にこれらの対応表や変換曲線を記憶したメモリをマップしても良い。
入出力装置186は、表示装置187など外部機器からの信号を入力したり、外部機器へ信号を出力したりするI/O端子により構成される。
なお、信号処理装置108は、1つのコンピュータによって実現される場合だけでなく、互いに通信ネットワークNWで接続された複数のコンピュータによって分散されていてもよい。また、プロセッサ182は、FPGA(Field-Programmable Gate Array)、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)等のハードウェアによって実現されていてもよい。
[測距装置の動作]
次に、本実施の形態に係る測距装置1の動作について、図5および図6のフローチャートを参照して説明する。
まず、光源100から、周期的に強度変調された光、例えば、正弦波で強度変調された光が出力される(ステップS1)。光源100から出射された光は、カプラ101によって参照光路側と物体光路側とに分けられる。参照光路側の光は、PDr105で受光され、光電変換されて第1参照信号r1が出力される。一方、物体光路側の光は、サーキュレータ102を介して、光偏向器103によって偏向され、物体104およびその周辺の空間が光でスキャンされる(ステップS2)。
次に、光偏向器103によって偏向された光が空間内を1回スキャンするなかで、物体104に光が照射され、反射光が光偏向器103およびサーキュレータ102を介して、PDs106で検出される(ステップS3)。また、光偏向器103が光を偏向する偏向角度を示す第1角度信号θ1は、ADC107のチャネルCH3に入力される。
その後、ADC107は、チャネルCH1、CH2、およびCH3に入力されるアナログ信号をディジタル信号に変換する(ステップS4)。より詳細には、ADC107のチャネルCH1には、アナログの第1参照信号r1が入力され、ディジタルの第2参照信号r2に変換される。ADC107のチャネルCH2には、物体104からの反射光に基づくアナログの第1検出信号s1が入力され、ディジタルの第2検出信号s2に変換される。また、ADC107のチャネルCH3には第1角度信号θ1が入力され、ディジタルの第2角度信号θ2に変換される。
次に、信号処理装置108において、測距部109は、第2参照信号r2および第2検出信号s2の時間差に基づいて物体104までの距離を求める(ステップS5)。より詳細には、測距部109は、光偏向器103による偏向角に相当する時刻を中心にして、第2参照信号r2および第2検出信号s2の一部を、窓関数wr(t)、ws(t)をそれぞれ用いて切り取る。測距部109は、これら2つの信号の時間差を算出し、時間差から距離を求める。
ここで、測距部109による測距処理について、図6のフローチャートを参照して説明する。
まず、第1取得部191は、第2参照信号r2に含まれる全てのピークを検出し、それらのピークに対応する時刻を取得する(ステップS50)。第1取得部191は、検出した第2参照信号r2に含まれる複数のピークpr,iを互いに区別するための識別情報i(i=0,1,・・・,N)を設定し、iを初期化(i=0)する(ステップS51)。
次に、第1取得部191は、iをインクリメントする(iに1を足す)(ステップS52)。その後、第2取得部192は、第2参照信号r2のi番目のピークpr,iの時刻tr,iを中心にして、±Tsource/2の時間範囲に存在する第2検出信号s2のピークps,iを取得する(ステップS53)。
次に、時間差算出部193は、第2参照信号r2のi番目のピークpr,iにおけるピーク時刻tr,iと、検出された第2検出信号s2のピークps,iの時刻ts,iとの時間差Δtiを(=ts,i-tr,i)を算出する(ステップS54)。
より詳細には、時間差算出部193は、上述した式(1)の相互相関関数R(t)を計算して、R(t)が最大値となる時間を時間差Δtiとする。また、時間差算出部193は、第2参照信号r2および第2検出信号s2それぞれのピーク時刻tr,i、ts,iの近傍の信号を切り取る際には、Hanning窓やBlackman窓などの窓関数wr(t)、ws(t)をそれぞれ用いることができる。
時間差算出部193は、ピーク時刻tr,iに基づいて、第2参照信号r2のピークpr,iと一致するピークを有するように設計された窓関数wr(t)を用いることができる。また、時間差算出部193は、ピーク時刻ts,iに基づいて、第2検出信号s2のピークps,iと一致するピークを有するように設計された窓関数ws(t)を用いることができる。
その後、距離算出部194は、ステップS54で算出された時間差Δtiから物体104までの距離Liを算出する(ステップS55)。より詳細には、時間差Δtiに光速cをかけ、さらに2で割って第2参照信号r2のi番目のピークpr,iの時刻tr,iにおける時刻-距離データLiを算出する。
次に、距離算出部194は、第2参照信号r2に含まれる全てのピークpr,iの時刻tr,iにおける物体104までの距離を算出するまで(ステップS56:NO)、測距部109は、ステップS52からステップS55を繰り返す。一方、距離算出部194が第2参照信号r2に含まれる全てのピークpr,iの時刻tr,iについての物体104までの距離を算出した(i=N)場合には(ステップS56:YES)、処理は、図5のステップS6に移行する。
その後、図5に示すように、時間-角度変換部110は、時刻-距離データLiを、光偏向器103の偏向角を示す第2角度信号θ2を用いて偏向角-距離データaに変換する(ステップS6)。より詳細には、時間-角度変換部110は、予め補助記憶装置185や主記憶装置183の所定の領域に記憶されている第2角度信号θ2の強度と偏向角との対応表を用いることができる。あるいは、時間-角度変換部110は、補助記憶装置185や主記憶装置183に記憶されている第2角度信号θ2、強度、および偏向角の関係を示す関数を読み出して、時間情報を偏向角に変換した偏向角-距離データaを出力することができる。
次に、補間部111は、第2参照信号r2のピーク時刻tr,iごとの時刻-距離データLiに対応する偏向角-距離データaについて、第2参照信号r2のピーク間のデータを補間する(ステップS7)。その後、補間された偏向角-距離データbは、出力される(ステップS8)。例えば、表示装置187に補間された偏向角-距離データbを表示させたり、通信ネットワークNWを介して外部の端末装置に補間された偏向角-距離データbを送信することができる。
以上説明したように、本実施の形態に係る測距装置1によれば、第2参照信号r2のピークと一致するピークを有する窓関数、および第2検出信号s2のピークと一致するピークを有する窓関数をそれぞれ用いて2つの信号の一部を切り取り、これら2つの信号の相互相関を用いて物体104までの距離を算出する。そのため、窓関数を2つの信号にかける場合であっても、2つの信号の時間差を正確に算出することができ、結果として物体までの距離を高精度に測定することができる。
また、本実施の形態に係る測距装置1は、参照信号のピーク間の距離データを補間するので、物体までの距離をより高精度に測定することができる。
以上、本発明の測距装置および測距方法における実施の形態について説明したが、本発明は説明した実施の形態に限定されるものではなく、請求項に記載した発明の範囲において当業者が想定し得る各種の変形を行うことが可能である。
例えば、説明した実施の形態では、信号処理装置108において、時間-角度変換部110が時刻-距離データLiを偏向角-距離データaに変換した後に、補間部111が補間処理を行う具体例を説明した。しかし、補間処理は時間-角度変換部110による変換処理の前に実行してもよい。この場合、補間部111は、時刻-距離データLiに基づいて第2参照信号r2のピーク間の補間を行い、その後、時間-角度変換部110が、時刻を偏向角に変換することになる。
補間処理を時間-角度変換処理の前に行う場合は、時間-角度変換部110で必要となる時刻情報は、測距部109で取得した第2参照信号r2のピーク時刻をそのまま使用できない。なぜなら、測距部109で得られた距離の数(第1取得部191で得られたピークの時刻の数と等しい)は補間部111から出力される距離の数と異なるからである。そこで、補間部111において、測距部109で取得した第2参照信号r2のピーク時刻を用いて、補間で得た距離情報に対応する時刻を算出し、その時刻を用いて時間-角度変換部110にて時刻を角度に変換する。
なお、補間部111が補間した第2参照信号r2のピーク間の時間間隔と、第2角度信号θ2の時間間隔が一致しないことにより、補間後の時刻-距離データの各データの時刻と、第2角度信号θ2の各データの時刻とが一致しない場合は、第2角度信号θ2を補完する。これにより、補間後の時刻-距離データの時刻に一致する角度の時刻における第2角度信号θ2を得ることによって、補間後の時刻-距離データの各時刻の偏向角を得ることができる。
これまで説明した実施の形態では、光源100から出力される光は、正弦波など周期的に強度変調された光であり、波長掃引された光ではない場合について説明した。しかし、光源100は、周期的な強度変調機能を備えた波長掃引光源であってもよい。この場合、光偏向器103には、透過型や反射型の回折格子や屈折率分散の大きい材料からなるプリズムなどの受動光学素子が用いられる。また、光源100は、周期的な強度変調機能を備えた波長掃引光源であっても、公知の空間光変調器を光偏向器103に用いてもよい。
この場合、回折格子の格子定数などは、光源100の光の波長や、測定が要求される最大距離、および測距装置1の大きさなどに応じて、所望の角度の範囲で偏向するように設計することができる。また、プリズムの屈折率やその波長分散についても、同様に所望の角度で偏向するように、屈折率やその波長分散を持つ材料を選ぶことができる。また、光源100として周期的な強度変調機能を備えた波長掃引光源を用いる場合、第1角度信号θ1は、光源100から出力される光の波長に連動する構成となる。
光源100を周期的な強度変調機能を備えた波長掃引光源として、光偏向器103を回折格子やプリズム等の受動光学素子とする利点は、光偏向器103に機械動作を必要とする部品が必要なくなることである。このことから、たとえば、測距装置1が備える光学系を光偏向器103とそれ以外に分離して、偏向器をプローブ、それ以外を本体として、プローブと本体を光ファイバで接続した場合、プローブを小型化できるので、狭い場所等に設置したり、あるいは、人が簡単にプローブ部を持ち運ぶなどして、測定ができる。また、プローブには機械動作をする部品がないため、プローブの振動に対する耐性が高くなるので、本体とプローブを離して、本体を振動の緩慢な場所に退避することにより、振動の激しい環境においても正確に測定ができる。
1…測距装置、100…光源、101…カプラ、102…サーキュレータ、103…光偏向器、104…物体、105…フォトディテクタPDr、106…フォトディテクタPDs、107…ADC、108…信号処理装置、109…測距部、110…時間-角度変換部、111…補間部、181…バス、182…プロセッサ、183…主記憶装置、184…通信インターフェース、185…補助記憶装置、186…入出力装置、187…表示装置、191…第1取得部、192…第2取得部、193…時間差算出部、194…距離算出部。

Claims (8)

  1. 光源から出力された周期的に強度変調された光を光電変換して得られる第1信号に含まれるピークである第1ピークを検出し、前記第1ピークごとの時刻を取得する第1取得部と、
    前記光源から出力された前記光が測定対象の物体で反射した反射光を光電変換して得られる第2信号から、前記第1ピークの前記時刻を中心とした前記光源の光の強度変調の1周期の時間範囲に存在するピークである第2ピークを取得する第2取得部と、
    ピークを有する第1窓関数の前記ピークを前記第1ピークと一致させた状態で、前記第1窓関数で前記第1信号を処理して得られる第3信号と、ピークを有する第2窓関数の前記ピークを前記第2ピークと一致させた状態で、第2窓関数で前記第2信号を処理して得られる第4信号との相互相関に基づいて、前記物体までの距離を算出する距離算出部と
    を備える測距装置。
  2. 請求項1に記載の測距装置において、
    前記光源の光を2つに分岐する光スプリッタと、
    前記光スプリッタの一方から出力された前記光を検出する第1フォトディテクタと、
    前記光スプリッタの他方から出力された前記光を偏向して前記物体に向けて出射する光偏向器と、
    前記光偏向器から出射された出射光が前記物体で反射した反射光を検出する第2フォトディテクタと
    を有する光学系をさらに備え、
    前記第1フォトディテクタは、検出した前記光を光電変換した前記第1信号を出力し、
    前記第2フォトディテクタは、検出した前記反射光を光電変換した前記第2信号を出力する
    ことを特徴とする測距装置。
  3. 請求項2に記載の測距装置において、
    前記距離算出部によって算出された前記第1ピークの前記時刻に対応する時間情報を、前記光偏向器による偏向角度の情報に変換し、偏向角度と距離とが対応付けられた偏向角-距離信号を出力する時間-角度変換部をさらに備える
    ことを特徴とする測距装置。
  4. 請求項1から3のいずれか1項に記載の測距装置において、
    前記距離算出部が算出した前記第1信号の前記第1ピークごとの前記時刻に対応する前記物体までの距離を補間する補間部をさらに備える
    ことを特徴とする測距装置。
  5. 請求項1から4のいずれか1項に記載の測距装置において、
    前記距離算出部は、前記相互相関を用いて前記第1ピークの前記時刻での前記第1信号に対する前記第2信号の時間の遅れを示す時間差を算出する時間差算出部を備え、
    前記距離算出部は、算出された前記時間差に基づいて、前記第1信号の前記第1ピークごとの前記時刻に対応する前記物体までの距離を算出する
    ことを特徴とする測距装置。
  6. 請求項1から5のいずれか1項に記載の測距装置において、
    前記第1窓関数および前記第2窓関数は同一の形状であることを特徴とする測距装置。
  7. 請求項1から6のいずれか1項に記載の測距装置において、
    前記第1窓関数および前記第2窓関数は、ガウス窓、ハン窓、ハミング窓、ブラックマン窓、および一般化ハミング窓のいずれかであることを特徴とする測距装置。
  8. 光源から出力された周期的に強度変調された光を光電変換して得られる第1信号に含まれるピークである第1ピークを検出し、前記第1ピークごとの時刻を取得する第1ステップと、
    前記光源から出力された前記光が測定対象の物体で反射した反射光を光電変換して得られる第2信号から、前記第1ピークの前記時刻を中心とした前記光源の光の強度変調の1周期の時間範囲に存在するピークである第2ピークを取得する第2ステップと、
    ピークを有する第1窓関数の前記ピークを前記第1ピークと一致させた状態で、前記第1窓関数で前記第1信号を処理して得られる第3信号と、ピークを有する第2窓関数の前記ピークを前記第2ピークと一致させた状態で、第2窓関数で前記第2信号を処理して得られる第4信号との相互相関に基づいて、前記物体までの距離を算出する第3ステップと
    を備える測距方法。
JP2019049515A 2019-03-18 2019-03-18 測距装置および測距方法 Active JP7115375B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019049515A JP7115375B2 (ja) 2019-03-18 2019-03-18 測距装置および測距方法
US17/439,118 US20220113416A1 (en) 2019-03-18 2020-03-04 Range Finder and Range Finding Method
PCT/JP2020/009103 WO2020189275A1 (ja) 2019-03-18 2020-03-04 測距装置および測距方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019049515A JP7115375B2 (ja) 2019-03-18 2019-03-18 測距装置および測距方法

Publications (2)

Publication Number Publication Date
JP2020153671A JP2020153671A (ja) 2020-09-24
JP7115375B2 true JP7115375B2 (ja) 2022-08-09

Family

ID=72520276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019049515A Active JP7115375B2 (ja) 2019-03-18 2019-03-18 測距装置および測距方法

Country Status (3)

Country Link
US (1) US20220113416A1 (ja)
JP (1) JP7115375B2 (ja)
WO (1) WO2020189275A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180017672A1 (en) 2016-07-13 2018-01-18 Texas Instruments Incorporated Methods and apparatus for narrowband ranging systems using coarse and fine delay estimation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186337A (ja) * 1992-12-21 1994-07-08 Mitsubishi Heavy Ind Ltd レーザ測距装置
JPH1020036A (ja) * 1996-06-28 1998-01-23 Toyota Central Res & Dev Lab Inc 距離測定方法および装置
JPH1123215A (ja) * 1997-06-30 1999-01-29 Mitsubishi Heavy Ind Ltd 光周波数領域反射測定法の検出信号処理装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180017672A1 (en) 2016-07-13 2018-01-18 Texas Instruments Incorporated Methods and apparatus for narrowband ranging systems using coarse and fine delay estimation

Also Published As

Publication number Publication date
US20220113416A1 (en) 2022-04-14
WO2020189275A1 (ja) 2020-09-24
JP2020153671A (ja) 2020-09-24

Similar Documents

Publication Publication Date Title
US10330780B2 (en) LIDAR based 3-D imaging with structured light and integrated illumination and detection
EP2198323B9 (en) Time delay estimation
US20160377721A1 (en) Beat signal bandwidth compression method, apparatus, and applications
WO2017187510A1 (ja) 距離計測装置、距離計測方法、及び形状計測装置
US11054524B2 (en) Optimizing a lidar system using sub-sweep sampling
US11327158B1 (en) Techniques to compensate for mirror Doppler spreading in coherent LiDAR systems using matched filtering
CN112114326B (zh) Fmcw距离测量的扫频信号拼接方法及装置
US20230168381A1 (en) Radar Detection Method and Related Apparatus
CN110018491B (zh) 激光扫描方法、装置及激光雷达
JP7115375B2 (ja) 測距装置および測距方法
JP2018169265A (ja) 距離測定装置及び距離測定方法
JP7143780B2 (ja) 測距装置および測距方法
CN109633672A (zh) 脉冲式激光测距系统及其测距方法
CN109946707A (zh) 激光雷达接收装置、发射装置、系统及距离的测量方法
CN113534103B (zh) 激光频率自适应调制方法、系统、探测设备和存储介质
JP2023547877A (ja) コヒーレントlidarシステムにおける複数ターゲットのピーク関連付け技術
CN209590275U (zh) 脉冲式激光测距系统
JP6653052B2 (ja) レーザー測距装置およびレーザー測距方法
JP7201088B2 (ja) 測距装置
US20230417884A1 (en) Apparatus and method for measuring distant to and/or velocity of physical object
US20240004044A1 (en) Apparatus and method for measuring distant to and/or velocity of physical object
US11892566B1 (en) Multiplexed light detection and ranging apparatus
KR101670474B1 (ko) 광학 장치 및 이의 동작 방법
JP6554755B2 (ja) 振動計測装置及び振動計測方法
CN116755099A (zh) 测速测距系统及方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220711

R150 Certificate of patent or registration of utility model

Ref document number: 7115375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150