WO2017187510A1 - 距離計測装置、距離計測方法、及び形状計測装置 - Google Patents

距離計測装置、距離計測方法、及び形状計測装置 Download PDF

Info

Publication number
WO2017187510A1
WO2017187510A1 PCT/JP2016/063054 JP2016063054W WO2017187510A1 WO 2017187510 A1 WO2017187510 A1 WO 2017187510A1 JP 2016063054 W JP2016063054 W JP 2016063054W WO 2017187510 A1 WO2017187510 A1 WO 2017187510A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
distance
measuring device
measurement
distance measuring
Prior art date
Application number
PCT/JP2016/063054
Other languages
English (en)
French (fr)
Inventor
達雄 針山
渡辺 正浩
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2016/063054 priority Critical patent/WO2017187510A1/ja
Priority to JP2018513983A priority patent/JPWO2017187510A1/ja
Priority to US15/751,318 priority patent/US20180224548A1/en
Publication of WO2017187510A1 publication Critical patent/WO2017187510A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02007Two or more frequencies or sources used for interferometric measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4917Receivers superposing optical signals in a photodetector, e.g. optical heterodyne detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the present disclosure relates to a distance measurement device, a distance measurement method, and a shape measurement device, for example, a technique for measuring a distance from a light source to a measurement object in a non-contact manner.
  • F FMCW (Frequency-Modulated-Continuous-Waves) method is known as a method for measuring the distance to the measurement object in a non-contact manner.
  • the technique described in Patent Document 1 or 2 can be given.
  • Patent Document 1 divides light emitted from a light source for measurement into two parts, irradiates the object with the optical frequency sweep period shifted from each other by a half period, and reduces the distance error due to Doppler shift caused by the vibration of the measurement object. It is disclosed.
  • Patent Document 2 provides two light sources whose polarizations are orthogonal to each other, irradiates the object with the optical frequency sweep period shifted by half a period, and reduces the distance error due to Doppler shift caused by the vibration of the measurement object. It is disclosed.
  • FIG. 1 is a diagram illustrating a configuration example of the FMCW system.
  • a triangular wave current is injected into the semiconductor laser 101 from the oscillator (signal generator) 102 and the drive current is modulated, FM light that is temporally frequency swept at a constant modulation speed is generated.
  • the FM light is divided by the beam splitter 202, a part of the output light is irradiated onto the measurement object 110, and a part is reflected by the reference mirror 201.
  • the interference light of the return light and the reference light from the measurement target is detected by the light receiver 203, and the detected beat signal is analyzed by the PC 114 and displayed on the monitor (screen) 115.
  • FIG. 2 is a diagram illustrating an example of the beat signal 301 observed by the light receiver. In FIG. 2, the horizontal axis of the graph is the observed beat frequency, and the vertical axis is the signal intensity.
  • FIG. 3 is a diagram illustrating the principle of distance measurement.
  • the time change of the optical frequency in the light receiver of the reference light 401 and the measurement light 402 is shown, the horizontal axis of the graph is time, and the vertical axis is the optical frequency.
  • the beat frequency f b , the difference ⁇ t in the arrival time of the reference light 401 and the measuring light 402 at the light receiver ⁇ t, the frequency sweep width ⁇ , and the modulation period T have the relationship of Equation (1).
  • the distance L to the measurement object can be expressed as shown in Expression (2) using the light velocity c in the atmosphere.
  • represents the frequency of the irradiation laser
  • V represents the vibration speed of the object
  • c represents the speed of light
  • represents the angle between the irradiation laser and the vibration direction of the object.
  • Equation (4) a distance error proportional to the target speed is obtained.
  • FIG. 4 is a diagram illustrating a conventional method for reducing the distance error due to the Doppler shift.
  • the direction of receiving the Doppler shift is reversed between the upstream region (time 0 to T) and the downstream region (time T to 2T) of the frequency sweep. For this reason, as shown in Expression (5), it is possible to obtain an accurate distance by eliminating the influence of the Doppler shift from the beat frequency obtained in the upstream region and the beat frequency obtained in the downstream region.
  • the Doppler shift amount is not equal between the upstream region and the downstream region, and an error remains.
  • the light emitted from the measurement light source is branched into two, and the target is simultaneously irradiated with two lights whose frequency sweep period is shifted by a half period. .
  • the light of the up and down regions of the frequency sweep is irradiated simultaneously, and the distance error due to the Doppler shift is reduced regardless of the vibration frequency of the object.
  • the normal frequency sweep cycle is about 1 kHz.
  • it is necessary to set the optical path difference of the branched light to about 100 km. That is, if an optical path difference is provided by an optical fiber, an optical fiber having a length of 100 km is required. In this case, the scale of the apparatus is too large and the usability is not good.
  • Patent Document 2 two orthogonally polarized light sources whose phase of the frequency sweep period is shifted by a half period are provided, combined by a polarization beam splitter, irradiated to a measurement object, and scattered light from the measurement object is polarized again.
  • the beam is separated and detected by the beam splitter, and the distance error due to the Doppler shift is reduced from each beat frequency by the equation (5).
  • the present disclosure has been made in view of such a situation, and provides a technique capable of measuring the distance of a target object with high accuracy.
  • the present disclosure includes a plurality of means for solving the above-described problems.
  • the present disclosure is a distance measuring device that measures a distance from a light source to a measurement target, and emits a plurality of lights having different wavelengths.
  • the processor calculates a frequency calculation process for calculating a peak frequency corresponding to each wavelength from the signal detected by the light receiving unit, and a Doppler shift error caused by the measurement target vibrating from the peak frequency corresponding to each wavelength.
  • a distance calculation process for reducing and calculating the distance.
  • the distance of the target object can be measured with high accuracy.
  • FIG. 902. It is a figure which shows the schematic structural example of the distance measuring device 4 by 4th Embodiment. It is a figure which shows the example of the beat frequency detected with the light receiver. It is a flowchart for demonstrating the process (distance calculation process) which calculates distance from a detection signal. It is a figure which shows the schematic structural example of the distance measuring device 5 by 5th Embodiment. It is a figure which shows the schematic structural example of the distance measuring device 6 by 6th Embodiment.
  • Embodiment of this indication discloses the technique which makes it possible to reduce the scale of a distance measuring device and to measure the distance of a target object with high precision.
  • the distance measuring apparatus measures the frequency calculation processing for calculating the peak frequency corresponding to the light of each wavelength emitted from the light source unit from the signal detected by the light receiving unit, and the peak frequency corresponding to the light of each wavelength. And a distance calculation process for reducing a Doppler shift error caused by the vibration of the object and calculating a distance.
  • the light source unit of the distance measuring device is configured to sweep and output a plurality of lights so that the frequency sweep periods of the plurality of lights having different wavelengths are shifted by a predetermined period.
  • the distance L can be calculated by reducing the Doppler shift error based on the following equation.
  • T is a modulation period
  • is a frequency sweep width
  • ⁇ 1 and ⁇ 2 are wavelengths (when two lights are used).
  • ⁇ t represents a time difference between the reference light and the light reflected from the measurement target
  • ⁇ f1 and ⁇ f2 represent Doppler shift amounts of the respective lights
  • f beat represents a beat frequency.
  • FIG. 5 is a diagram illustrating a schematic configuration of the distance measuring device 1 according to the first embodiment of the present disclosure.
  • the distance measuring apparatus 1 includes semiconductor lasers 101 and 103, arbitrary signal generators 102 and 104, a fiber coupler 105, a circulator 106, a fiber coupler 107, a reference mirror 108, and a collimator lens (for example, a fiber collimator). 109, a fiber coupler 111, light receivers 112 and 113, a computer (PC) 114, and a monitor 115.
  • PC computer
  • the PC 114 transmits the sweep waveform signal to the arbitrary signal generator 102.
  • the optical frequency is swept by modulating the drive current of the semiconductor laser 101 by the arbitrary signal generator 102.
  • the PC 114 transmits a sweep waveform signal to the arbitrary signal generator 104.
  • the optical signal is swept by modulating the drive current of the semiconductor laser 103 by the arbitrary signal generator 104.
  • the frequency of the semiconductor laser 101 and [nu 1 the frequency of the semiconductor laser 103 and [nu 2, [nu 1 and [nu 2 are different frequencies (i.e., the laser wavelength is different).
  • the light emitted from the semiconductor lasers 101 and 103 is multiplexed by the fiber coupler 105.
  • the combined light passes through the circulator 106 and is branched by the fiber coupler 107.
  • a part of the branched light is reflected by the reference mirror 108 and becomes reference light.
  • Most of the remaining branched light is applied to the space by the collimator lens 109 and is applied to a measurement object 110 (also referred to as a measurement object).
  • the light reflected from the measurement object 110 passes through the collimator lens 109 again and merges with the reference light from the reference mirror 108 at the fiber coupler 107 portion, and is then guided to the fiber coupler 111 by the circulator 106, and the wavelength by the fiber coupler 111. To be separated.
  • the light subjected to wavelength separation is detected by a light receiver 112 for the semiconductor laser 101 and a light receiver 113 for the semiconductor laser 103, respectively.
  • Each of the light receivers 112 and 113 generates a beat signal due to interference between the reference light and the measurement light.
  • FIG. 6 is a diagram illustrating an example of a signal (detection signal) detected by the distance measuring apparatus according to the first embodiment.
  • FIG. 7 is a flowchart for explaining a process of calculating a distance from the detection signal (distance calculation process).
  • the distance calculation process is executed by a processor (CPU or MPU) included in the computer 114. More specifically, a program (distance calculation program) for executing the distance calculation processing according to FIG. 7 is stored in a memory (not shown) of the computer 114, and the processor reads the distance calculation program from the memory. Will be executed.
  • the processor of the computer 114 hereinafter simply referred to as “processor” will be described as an operation subject.
  • Step 701 The processor A / D converts the signal detected by the light receiver 112 to obtain a digital signal.
  • Step 702 The processor cuts out the upstream signal of the frequency sweep from the digital detection signal.
  • Step 703 The processor performs FFT processing on the signal cut out in step 702.
  • Step 704 The processor detects the peak frequency from the signal subjected to the FFT processing in step 703.
  • Step 705 the processor A / D converts the signal detected by the light receiver 113 to obtain a digital signal.
  • Step 706 The processor cuts out the upstream signal of the frequency sweep from the digital detection signal.
  • Step 707 The processor performs FFT processing on the signal cut out in step 706.
  • Step 708 The processor detects the peak frequency from the signal subjected to the FFT processing in Step 707.
  • Step 709 The processor removes the Doppler shift from the peak frequency obtained in steps 704 and 708 and calculates an accurate distance. Details of the processing in step 709 are as follows. When the measurement target vibrates, the Doppler shift amount received by the semiconductor laser 101 is expressed by Expression (6).
  • Equation (8) makes it possible to obtain an accurate distance without error.
  • the distance to the measurement target from which the distance error due to the Doppler shift is removed can be calculated.
  • steps 701 to 704 and the processing of steps 705 to 708 are shown to be performed in parallel, but the execution order of each step can be arbitrarily set.
  • the beat frequency f b needs to be constant during the modulation period T.
  • the change amount of the optical frequency is nonlinear with respect to the change amount of the injection current as a characteristic of the semiconductor laser, there is a problem that the measurement accuracy is deteriorated. Therefore, in the second embodiment, a distance measuring apparatus that performs correction using a reference interferometer having a certain optical path difference is proposed.
  • FIG. 8 is a diagram illustrating a schematic configuration example of the distance measuring device 2 according to the second embodiment.
  • the distance measuring device 2 shown in FIG. 8 has the same configuration as that of the distance measuring device 1 shown in FIG. The difference is that the light emitted from the semiconductor laser is branched by a fiber coupler and partially guided to a reference interferometer.
  • the light irradiated from the semiconductor laser 101 is branched by the fiber coupler 801.
  • One of the branched lights is guided to the fiber coupler 802.
  • the light is further branched into two by the fiber coupler 802, provided with a certain optical path difference by the optical fiber 803, and then multiplexed by the fiber coupler 804 and received by the light receiver 805.
  • This has the structure of a Mach-Zehnder interferometer, and the light receiver 805 generates a constant beat signal proportional to the optical path difference.
  • the light emitted from the semiconductor laser 103 is branched by the fiber coupler 806.
  • One of the branched lights is guided to the fiber coupler 807.
  • the light is further branched into two by a fiber coupler 807, provided with a certain optical path difference by an optical fiber 808, and then multiplexed by a fiber coupler 809 and received by a light receiver 810.
  • This has the structure of a Mach-Zehnder interferometer, and the light receiver 810 generates a constant beat signal proportional to the optical path difference.
  • the beat frequency fb needs to be constant during the modulation period T.
  • the change amount of the optical frequency is nonlinear with respect to the change amount of the injection current as a characteristic of the semiconductor laser, there is a problem that the measurement accuracy is deteriorated. Therefore, in the third embodiment, a distance measuring device that controls the injection current of the semiconductor laser to make the beat frequency constant is proposed.
  • FIG. 9 is a diagram illustrating a schematic configuration example of the distance measuring device 3 according to the third embodiment.
  • the distance measuring device 3 in FIG. 9 has the same configuration as that of the distance measuring device 1 in FIG. The difference is that the light emitted from the semiconductor laser is branched by the fiber coupler 901 and part of the light is guided to a feedback mechanism that controls the injection current of the semiconductor laser 101.
  • the light emitted from the semiconductor laser 101 is branched by the fiber coupler 901.
  • One of the branched lights is guided to a feedback mechanism (feedback circuit) 902.
  • FIG. 10 is a diagram illustrating an internal configuration example of the feedback mechanism 902.
  • the light from the fiber coupler 901 is further branched into two by the fiber coupler 1001, and after a certain optical path difference is provided by the optical fiber 1002, the light is again combined by the fiber coupler 1003 and received by the light receiver 1004.
  • This is a structure of a Mach-Zehnder interferometer, and a constant beat signal proportional to the optical path difference is generated in the light receiver 1004.
  • the beat signal and the signal from the signal oscillator 1005 are mixed by the mixer 1006, and the current signal corresponding to the difference frequency or the difference phase is added to the current signal from the arbitrary signal generator 102 by the combiner 903, thereby making the beat signal constant. It is controlled to become.
  • the light irradiated from the semiconductor laser 103 is branched by the fiber coupler 904.
  • One of the branched lights is guided to the feedback mechanism 905.
  • the feedback mechanism 905 has the same configuration as the feedback mechanism 902 (see FIG. 10), and the beat signal is generated by adding the output current signal to the current signal from the arbitrary signal generator 104 by the combiner 906. Control to be constant.
  • the distance can be measured with high accuracy by using the two light sources linearly swept in frequency and performing the same process as the process described in the first embodiment.
  • FIG. 11 is a diagram illustrating a schematic configuration example of the distance measuring device 4 according to the fourth embodiment.
  • the distance measuring device 4 is different from the distance measuring device 1 (see FIG. 5) having two light receivers in that there is one light receiver.
  • the computer (PC) 114 transmits a sweep waveform signal to the arbitrary signal generator 102.
  • the arbitrary signal generator 102 sweeps the optical frequency by modulating the drive current of the semiconductor laser 101.
  • the light emitted from the laser passes through the circulator 1101 and is branched by the fiber coupler 1102. A part of the light is reflected by the reference mirror 1103 and becomes the reference light, and most of the remaining light is guided to the WDM coupler 1104.
  • the computer (PC) 114 transmits a sweep waveform signal to the arbitrary signal generator 104.
  • the arbitrary signal generator 104 sweeps the optical frequency by modulating the drive current of the semiconductor laser 103.
  • the light emitted from the laser passes through the circulator 1105, is branched by the fiber coupler 1106, a part of the light is reflected by the reference mirror 1107, and most of the remaining light is guided to the WDM coupler 1104.
  • the light combined by the WDM coupler 1104 is applied to the space by the collimator lens (fiber collimator) 109 and is applied to the measurement object 110.
  • the light reflected from the measurement object 110 passes through the collimator lens 109 again, is guided to the WDM coupler 1104, and is wavelength-separated by the WDM coupler 1104.
  • One light obtained by wavelength separation by the WDM coupler 1104 again passes through the fiber coupler 1102 and the circulator 1101 and is guided to the WDM coupler 1108.
  • the other light obtained by wavelength separation by the WDM coupler 1104 again passes through the fiber coupler 1106 and the circulator 1105 and is guided to the WDM coupler 1108.
  • the light combined by the WDM coupler 1108 is detected by the light receiver 1109, and a beat signal is generated by the interference between the reference light and the measurement light.
  • a beat signal is generated by the interference between the reference light and the measurement light.
  • FIG. 12 is a diagram illustrating an example of the beat frequency detected by the light receiver 1109.
  • a peak frequency (beat signal detected by the light receiver) 1201 having a low beat frequency indicates a beat frequency corresponding to the semiconductor laser 101 having a small distance difference between the measurement target and the reference mirror.
  • a peak frequency (beat signal detected by the light receiver) 1202 having a high frequency indicates a beat frequency corresponding to the semiconductor laser 103 having a large distance difference between the measurement target and the reference mirror.
  • FIG. 13 is a flowchart for explaining a process of calculating a distance from a detection signal (distance calculation process).
  • the distance calculation process is executed by a processor (CPU or MPU) included in the computer 114. More specifically, a program (distance calculation program) for executing the distance calculation processing according to FIG. 7 is stored in a memory (not shown) of the computer 114, and the processor reads the distance calculation program from the memory. Will be executed.
  • the processor of the computer 114 hereinafter simply referred to as “processor” will be described as an operation subject.
  • Step 1301 The processor A / D converts the signal detected by the light receiver 1109 to obtain a digital signal.
  • Step 1302 The processor cuts out a signal in a region corresponding to a half cycle of the frequency sweep cycle from the digital detection signal obtained in step 1301.
  • Step 1303 The processor performs FFT processing on the signal cut out in step 1302.
  • Step 1304 The processor detects a lower peak frequency from the signal subjected to the FFT processing in step 1303.
  • Step 1305 The processor detects the peak frequency having the higher frequency from the signal subjected to the FFT processing in step 1303. Note that the execution order of step 1304 and step 1305 may be reversed.
  • Step 1306 The processor can calculate an accurate distance by removing the Doppler shift based on Equation (8) from the two peak frequencies detected in Step 1304 and Step 1305.
  • FIG. 14 is a diagram illustrating a schematic configuration example of the distance measuring device 5 according to the fifth embodiment. Similar to the distance measuring device 4, the distance measuring device 5 includes one light receiver.
  • the computer (PC) 114 transmits a sweep waveform signal to the arbitrary signal generator 102.
  • the arbitrary signal generator 102 sweeps the optical frequency by modulating the drive current of the semiconductor laser 101.
  • the computer (PC) 114 transmits a sweep waveform signal to the arbitrary signal generator 104.
  • the arbitrary signal generator 104 sweeps the optical frequency by modulating the drive current of the semiconductor laser 103.
  • the light output from the semiconductor laser 101 and the semiconductor laser 103 is multiplexed by the WDM coupler 1401.
  • the light combined by the WDM coupler 1401 passes through the circulator 1402 and is branched by the fiber coupler 1403.
  • One of the lights obtained by branching is further branched by the WDM coupler 1404 and reflected by the reference mirror 1405 for the semiconductor laser 101 and the reference mirror 1406 for the semiconductor laser 103 to become reference light.
  • the other light (most of the light) obtained by branching is irradiated to the space by the collimator lens 109 and irradiated to the measurement object 110.
  • the light reflected from the measurement object 110 passes through the collimator lens 109 again, is combined with the reference light from the reference mirrors 1405 and 1406 by the fiber coupler 1403, and then passes through the circulator 1402.
  • the light that has passed through the circulator 1402 is detected by the light receiver 1407, and a beat signal is generated due to interference between the reference light and the measurement light.
  • a beat signal is generated due to interference between the reference light and the measurement light.
  • the distance to the reference mirror is different even if the same measurement target is measured.
  • Beat signals can be generated at different positions.
  • the subsequent processing contents are the same as those in the fourth embodiment.
  • the beat frequency fb needs to be constant during the modulation period T.
  • the change amount of the optical frequency is nonlinear with respect to the change amount of the injection current as a characteristic of the semiconductor laser, there is a problem that the measurement accuracy is deteriorated. Therefore, in the sixth embodiment, a distance measuring apparatus that performs correction using a reference interferometer having a certain optical path difference is proposed.
  • FIG. 15 is a diagram illustrating a schematic configuration example of the distance measuring device 6 according to the sixth embodiment.
  • the distance measuring device 6 in FIG. 15 has the same configuration as the distance measuring device 4 in FIG. The difference is that the light emitted from the semiconductor laser is branched by a fiber coupler and partially guided to a reference interferometer.
  • the light output from the semiconductor laser 101 is branched by the fiber coupler 1501.
  • One light obtained by the branching is guided to the fiber coupler 1502 and further split into two by the fiber coupler 1502.
  • One of the lights further branched by the fiber coupler 1502 is guided to the optical fiber 1505.
  • the other of the light further branched by the fiber coupler 1502 passes through the WDM coupler 1503, is guided to the optical fiber 1506, and a certain optical path difference is provided.
  • the light that has passed through the optical fiber 1505 passes through the WDM coupler 1508, is combined by the fiber coupler 1509, and is received by the light receiver 1510.
  • This is a structure of a Mach-Zehnder interferometer, and the light receiver 1510 generates a constant beat signal proportional to the optical path difference between the optical fiber 1505 and the optical fiber 1506.
  • the light output from the semiconductor laser 103 is branched by the fiber coupler 1500.
  • One light obtained by branching is guided to the fiber coupler 1504 and further branched into two by the fiber coupler 1504.
  • One of the lights further branched by the fiber coupler 1504 is guided to the optical fiber 1507.
  • the other of the light further branched by the fiber coupler 1504 passes through the WDM coupler 1503, is guided to the optical fiber 1506, and a certain optical path difference is provided.
  • the light that has passed through the optical fiber 1507 passes through the WDM coupler 1508, is combined by the fiber coupler 1509, and is received by the light receiver 1510.
  • This is a configuration of a Mach-Zehnder interferometer, and the light receiver 1510 generates a constant beat signal proportional to the optical path difference between the optical fiber 1506 and the optical fiber 1507.
  • the seventh embodiment relates to a shape measuring device for measuring the shape of a measurement object using any one of the distance measuring devices 1 to 6 according to the first to sixth embodiments. It is.
  • FIG. 16 is a diagram illustrating a schematic configuration example of the shape measuring device 7 according to the seventh embodiment, which includes any one of the distance measuring devices according to the first to sixth embodiments.
  • the shape measuring device 7 includes a 3D shape measuring unit 1601, a computer (PC) 114, and a monitor 115.
  • PC computer
  • the 3D shape measurement unit 1601 measures the 3D shape of the measurement object 110, and includes a distance measurement unit (distance measurement device) 1602 according to any one of the first to sixth embodiments, a one-axis stage 1603, A focus lens 1604 and galvanometer mirrors 1605 and 1606 are provided.
  • a distance measurement unit distance measurement device 1602 according to any one of the first to sixth embodiments
  • a one-axis stage 1603 A focus lens 1604 and galvanometer mirrors 1605 and 1606 are provided.
  • the laser light emitted from the collimator lens 109 of the distance measurement unit 1602 is focus-adjusted on the measurement object 110. Further, by shaking the galvanometer mirrors 1605 and 1606, the measurement surface of the measurement object 110 is scanned two-dimensionally with laser light, and the shape of the measurement object 110 is measured.
  • FIG. 17 is a flowchart for explaining shape measurement processing according to the seventh embodiment.
  • the shape measurement process is executed by a processor (CPU or MPU) included in the computer 114. More specifically, a program (shape measurement program) for executing the shape measurement process according to FIG. 17 is stored in a memory (not shown) of the computer 114, and the processor reads the distance calculation program from the memory. Will be executed.
  • the processor of the computer 114 hereinafter simply referred to as “processor” will be described as an operation subject.
  • Step 1701 The processor scans the laser scanning angle output from the distance measuring unit 1602 based on information on one coordinate point within the input specified range (for example, the user inputs referring to the size of the measurement target 110). Adjust.
  • Step 1702 The processor moves the one-axis stage 1603 in the axial direction to focus on the measurement object 110 (focus adjustment).
  • Step 1703 The processor executes the processing described in the distance measurement device according to the first to sixth embodiments, and measures the distance to the measurement object 110.
  • Step 1704 The processor calculates 3D coordinates of the measurement target 110 from the laser scanning angle determined in step 1701 and the distance measured in step 1703.
  • Step 1705 The processor determines whether all of the input designated range has been measured. If all designated ranges (all coordinate points) have been measured (YES in step 1705), the process proceeds to step 1706. If all the specified ranges have not been measured yet (NO in step 1705), the process proceeds to step 1701.
  • Step 1706 The processor outputs 3D shape measurement results of all coordinate points in the specified range.
  • FIG. 18 is a diagram illustrating a schematic configuration example of an inner diameter measuring device 8 according to the eighth embodiment, which includes any one of the first to sixth embodiments. It is.
  • the inner diameter measuring device 8 is a device that measures the inner diameter of the inner diameter measuring object 116, and is a distance measuring unit (distance measuring device) 1802, a single axis stage 1803, and a focus according to any of the first to sixth embodiments.
  • a lens 1804, a reflecting prism 1805, a rotary stage 1806, a computer (PC) 114, and a monitor 115 are provided.
  • the laser light emitted from the collimator lens 109 of the distance measuring unit 1802 is focused on the inner side surface of the inner diameter measurement target 116.
  • each embodiment two light sources are provided to emit light having different wavelengths, but light having different wavelengths may be emitted from one light source. . Therefore, a configuration including the semiconductor lasers 101 and 103 and the arbitrary signal generators 102 and 104 can be referred to as a “light source unit”. Further, although two lights having different wavelengths are used, three or more lights having different wavelengths may be used. In this case, three or more light sources may be used, or three or more lights may be emitted from the light source unit.
  • the distance measuring device includes a frequency calculation process for calculating a peak frequency corresponding to light of each wavelength emitted from the light source unit from a signal detected by the light receiving unit, and a peak corresponding to light of each wavelength. And a distance calculation process for calculating a distance by reducing a Doppler shift error caused by the vibration of the measurement target from the frequency. By doing in this way, it becomes possible to measure highly accurate distance (distance from a light source to a measuring object).
  • the light source unit of the distance measuring device is configured to sweep and output a plurality of lights so that the frequency sweep periods of the plurality of lights having different wavelengths are shifted by a predetermined period. By doing so, it is not necessary to provide a very long optical fiber (for example, a length of 100 km) in order to provide an optical path difference, and the scale of the distance measuring device can be reduced.
  • the emitted light has different optical axes immediately after the emission.
  • a multiplexing optical element that combines a plurality of lights into a plurality of coaxial lights is provided so that the measurement target is irradiated with the plurality of coaxial lights.
  • a plurality of lights having different wavelengths can be irradiated to the same location to be measured in one measurement, the measurement throughput can be improved, and measurement errors can be reduced.
  • the multiplexing optical element for example, a WDM coupler or a dichroic mirror can be used.
  • a branching optical element that branches a plurality of coaxial lights is provided in the middle of the optical path from the multiplexing optical element to the measurement target. A part of the light branched by the branching optical element is guided to the reference mirror. Light other than the light guided to the reference mirror is guided to the irradiation optical element and irradiated to the measurement target.
  • a fiber coupler can be used as the branching optical element, and a collimator lens can be used as the irradiation optical element.
  • the light receiving unit is configured to receive the light reflected by the measurement target according to the wavelength of the emitted light. By doing so, it becomes possible to generate a beat signal due to interference between the reference light and the measurement light (reflected light from the measurement target) for each light having a different wavelength.
  • the distance measurement device of the present disclosure may include a calibration interferometer that reduces errors due to nonlinearity of optical frequency sweeping in the light source unit. By doing so, it becomes possible to measure the distance with higher accuracy.
  • the distance measuring device includes a feedback mechanism that generates a signal for controlling the injection current of the light source unit from a part of the light emitted from the light source unit and feeds back the signal to the light source unit. May be. By doing so, it becomes possible to measure the distance with higher accuracy.
  • the distance L can be calculated by reducing the Doppler shift error based on the following equation.
  • T is a modulation period
  • is a frequency sweep width
  • ⁇ 1 and ⁇ 2 are wavelengths (when two lights are used).
  • ⁇ t represents a time difference between the reference light and the light reflected from the measurement target
  • ⁇ f1 and ⁇ f2 represent Doppler shift amounts of the respective lights
  • f beat represents a beat frequency.
  • the present embodiment also provides a shape measuring device and an inner diameter measuring device including the above-described distance measuring device.
  • the shape measuring device includes a focus lens that focuses the light from the distance measuring device on the shape measurement target, and a mirror that scans the light whose focus is adjusted on the shape measurement target. Then, the shape measuring device measures the three-dimensional shape of the shape measuring object using the distance from the light source unit measured by the distance measuring device to the shape measuring object and the scanning angle of the light whose focus is adjusted, Outputs 3D shape measurement results.
  • the inner diameter measuring device includes a focus lens that adjusts the focus of light from the distance measuring device to a shape measurement target, a rotary stage, and a reflecting prism mounted thereon. While the reflecting prism is rotated by the rotating stage, the light whose focus is adjusted is reflected by the reflecting prism at a right angle. By doing in this way, it becomes possible to measure the internal diameter of an internal diameter measurement object.
  • the function executed by the processor can also be realized by a program code of software.
  • a storage medium in which the program code is recorded is provided to the system or apparatus, and the computer (or CPU or MPU) of the system or apparatus reads the program code stored in the storage medium.
  • the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the program code itself and the storage medium storing the program code constitute the present disclosure.
  • a storage medium for supplying such program code for example, a flexible disk, CD-ROM, DVD-ROM, hard disk, optical disk, magneto-optical disk, CD-R, magnetic tape, nonvolatile memory card, ROM Etc. are used.
  • an OS operating system
  • the computer CPU or the like performs part or all of the actual processing based on the instruction of the program code.
  • the program code is stored in a storage means such as a hard disk or a memory of a system or apparatus, or a storage medium such as a CD-RW or CD-R
  • the computer (or CPU or MPU) of the system or apparatus may read and execute the program code stored in the storage means or the storage medium when used.
  • control lines and information lines are those that are considered necessary for the explanation, and not all control lines and information lines on the product are necessarily shown. All the components may be connected to each other.

Abstract

本開示は、高精度に対象物体の距離を計測することを可能とするによる距離計測装置について開示する。当該距離計測装置は、波長が異なる複数の光を出射する光源部と、出射された光を計測対象に照射する照射光学素子と、計測対象で反射した光を受光する受光部と、受光素子が検出した信号から光源から計測対象までの距離を算出するプロセッサと、を備える。そして、当該プロセッサは、受光部が検出した信号からそれぞれの波長に対応したピーク周波数を算出する周波数算出処理と、それぞれの波長に対応したピーク周波数から計測対象が振動することで生じるドップラーシフト誤差を低減し、距離を算出する距離算出処理と、を実行する。

Description

距離計測装置、距離計測方法、及び形状計測装置
 本開示は、距離計測装置、距離計測方法、及び形状計測装置に関し、例えば、光源から計測対象までの距離を非接触に測定するための技術に関するものである。
 計測対象までの距離を非接触に計測する方法としてFMCW(Frequency Modulated Continuous Waves)方式が知られている。FMCW方式を使った距離測定の例として特許文献1或いは2に記載の技術が挙げられる。特許文献1は、測定用の光源から射出された光を2分岐し、光周波数掃引周期を互いに半周期ずらして対象に照射し、計測対象が振動することで生じるドップラーシフトによる距離誤差を低減することを開示している。また、特許文献2は、偏光が互いに直交する光源を2つ設けて、光周波数掃引周期を互いに半周期ずらして対象に照射し、計測対象が振動することで生じるドップラーシフトによる距離誤差を低減することを開示している。
特開平9-257415号公報 特表2008-531993号公報
 図1は、FMCW方式の一構成例を示す図である。図1によれば、半導体レーザ101に対して発振機(信号発生器)102から三角波電流を注入し、駆動電流を変調すると、一定の変調速度で時間的に周波数掃引されたFM光が発生する。そのFM光をビームスプリッター202で分割し、出力光の一部を計測対象110に照射し、一部を参照ミラー201で反射させる。計測対象からの戻り光と参照光の干渉光を受光器203にて検出し、検出されるビート信号をPC114にて解析し、モニター(画面)115に表示させる。
 図2は、受光器で観測されるビート信号301の例を示す図である。図2において、グラフ横軸は観測されるビート周波数であり、縦軸が信号強度である。
 図3は、距離計測原理を示す図である。参照光401と測定光402の受光器における光周波数の時間変化を示しており、グラフ横軸は時間であり、縦軸は光周波数である。ビート周波数f、参照光401と測定光402の受光器への到着時間の差Δt、周波数掃引幅Δν、変調周期Tには式(1)の関係があることがわかる。
Figure JPOXMLDOC01-appb-M000002
 よって、計測対象までの距離Lは、大気中の光速度cを用いると、式(2)のように表すことができる。
Figure JPOXMLDOC01-appb-M000003
 しかしながら、FMCW方式を用いる場合、計測対象が振動し、式(3)で示されるようなドップラーシフトが生じる。
Figure JPOXMLDOC01-appb-M000004
 ここで、νは照射レーザの周波数、Vは対象の振動速度、cは光速、θは照射レーザと対象の振動方向のなす角をそれぞれ示している。対象の振動方向が照射レーザと同一方向のとき、つまりθ=0のとき、ドップラーシフトによる距離誤差は、式(1)および式(2)から式(4)のようになる。
Figure JPOXMLDOC01-appb-M000005
 式(4)によれば、対象の速度に比例した距離誤差が得られる。
 これに対し、従来からドップラーシフトによる距離誤差を低減する方法が考えられている。図4は、ドップラーシフトによる距離誤差を低減する従来の方法を示す図である。図4に示されるように、周波数掃引の上り領域(時間0~T)と下り領域(時間T~2T)でドップラーシフトを受ける向きが逆になる。このため、式(5)のように、上り領域で求めたビート周波数と下り領域で求めたビート周波数からドップラーシフトの影響を排除して正確な距離を求めることが可能となる。
Figure JPOXMLDOC01-appb-M000006
 しかしながら、対象の振動周波数がレーザの周波数掃引周期と同等である場合、上り領域と下り領域でドップラーシフト量が等しくならないため、誤差が残ってしまう。このような課題に対して、特許文献1では、測定用の光源から照射された光を2分岐し、周波数掃引周期の位相を半周期ずらした2つの光を同時に対象に照射するようにしている。これにより、周波数掃引の上り領域と下り領域の光が同時に照射され、対象の振動周波数によらずドップラーシフトによる距離誤差を低減している。ところが、通常周波数掃引周期は1kHz程度であり、位相を半周期ずらすためには2分岐した光の光路差を100km程度とる必要がある。つまり、光ファイバで光路差を設けるならば、100kmの長さの光ファイバが必要となる。これでは装置規模が大き過ぎて使い勝手が良くない。
 また、特許文献2では、周波数掃引周期の位相を半周期ずらした偏光の直交する2つの光源を設け、偏光ビームスプリッターで合波し、計測対象に照射し、計測対象からの散乱光を再び偏光ビームスプリッターで分離して検出し、それぞれのビート周波数から式(5)によりドップラーシフトによる距離誤差を低減する。ところが、対象により偏光が乱された場合、散乱光を検出できない可能性がある。
 本開示はこのような状況に鑑みてなされたものであり、高精度に対象物体の距離を計測することを可能とする技術を提供するものである。
 上記課題を解決するために、例えば請求の範囲に記載の構成を採用する。本開示は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、光源から計測対象までの距離を計測する距離計測装置であって、波長が異なる複数の光を出射する光源部と、出射された光を計測対象に照射する照射光学素子と、計測対象で反射した光を受光する受光部と、受光素子が検出した信号から光源から計測対象までの距離を算出するプロセッサと、を備える。そして、当該プロセッサは、受光部が検出した信号からそれぞれの波長に対応したピーク周波数を算出する周波数算出処理と、それぞれの波長に対応したピーク周波数から計測対象が振動することで生じるドップラーシフト誤差を低減し、距離を算出する距離算出処理と、を実行する。
 本開示に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本開示の態様は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される請求の範囲の様態により達成され実現される。
 本明細書の記述は典型的な例示に過ぎず、本開示の請求の範囲又は適用例を如何なる意味に於いても限定するものではないことを理解する必要がある。
 本開示の距離計測装置によれば、高精度に対象物体の距離を計測することが可能になる。
FMCW方式の一構成例を示す図である。 受光器で観測されるビート信号301の例を示す図である。 距離計測原理を示す図である。 ドップラーシフトによる距離誤差を低減する従来の方法を示す図である。 本開示の第1の実施形態による距離計測装置1の概略構成を示す図である。 第1の実施形態による距離計測装置において検出される信号(検出信号)の例を示す図である。 検出信号から距離を算出する処理(距離算出処理)を説明するためのフローチャートである。 第2の実施形態による距離計測装置2の概略構成例を示す図である。 第3の実施形態による距離計測装置3の概略構成例を示す図である。 フィードバック機構902の内部構成例を示す図である。 第4の実施形態による距離計測装置4の概略構成例を示す図である。 受光器1109で検出されたビート周波数の例を示す図である。 検出信号から距離を算出する処理(距離算出処理)を説明するためのフローチャートである。 第5の実施形態による距離計測装置5の概略構成例を示す図である。 第6の実施形態による距離計測装置6の概略構成例を示す図である。 第7の実施形態による形状測定装置7であって、第1乃至第6の実施形態の何れか距離計測装置を備える装置の概略構成例を示す図である。 第7の実施形態による形状計測処理を説明するためのフローチャートである。 第8の実施形態による内径計測装置8であって、第1乃至第6の実施形態の何れか距離計測装置を備える装置の概略構成例を示す図である。
 本開示の実施形態は、距離計測装置の規模を小さくし、高精度に対象物体の距離を計測することを可能にする技術について開示する。
 本実施形態による距離計測装置は、受光部が検出した信号から光源部が発するそれぞれの波長の光に対応したピーク周波数を算出する周波数算出処理と、それぞれの波長の光に対応したピーク周波数から計測対象が振動することで生じるドップラーシフト誤差を低減し、距離を算出する距離算出処理と、を実行する。
 また、距離計測装置の光源部は、波長が異なる複数の光の周波数掃引周期が所定周期ずれるように複数の光を光周波数掃引して出力するように構成されている。
 本実施形態では、さらに具体的に、下記式に基づいてドップラーシフト誤差を低減し、距離Lを算出することができる。
Figure JPOXMLDOC01-appb-I000007
 ここで、Tは変調周期、Δνは周波数掃引幅、ν1及びν2は波長(2つの光を用いる場合)を表している。また、Δtは参照光と計測対象で反射した光との時間差、Δf1及びΔf2は、それぞれの光のドップラーシフト量、fbeatはビート周波数を表している。
 以下、添付図面を参照して本開示の実施形態について説明する。添付図面では、機能的に同じ要素は同じ番号で表示される場合もある。なお、添付図面は本開示の原理に則った具体的な実施形態と実装例を示しているが、これらは本開示の理解のためのものであり、決して本開示を限定的に解釈するために用いられるものではない。
 本実施形態では、当業者が本開示を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本開示の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。
(1)第1の実施形態
 <距離計測装置の構成>
 図5は、本開示の第1の実施形態による距離計測装置1の概略構成を示す図である。距離計測装置1は、半導体レーザ101及び103と、任意信号発生器102及び104と、ファイバカップラ105と、サーキュレータ106と、ファイバカップラ107と、参照用ミラー108と、コリメータレンズ(例えば、ファイバコリメータ)109と、ファイバカップラ111と、受光器112及び113と、コンピュータ(PC)114と、モニター115と、を備えている。
 PC114は、任意信号発生器102に掃引波形信号を送信する。任意信号発生器102によって半導体レーザ101の駆動電流に変調を掛けることによって、光周波数の掃引を行う。同様に、PC114は、任意信号発生器104に掃引波形信号を送信する。任意信号発生器104によって半導体レーザ103の駆動電流に変調を掛けることによって、光周波数の掃引を行う。ここで、半導体レーザ101の周波数をνとし、半導体レーザ103の周波数をνとし、νとνは周波数が異なる(つまり、レーザ波長が異なる)。
 半導体レーザ101及び103から照射された光は、ファイバカップラ105によって合波される。合波された光は、サーキュレータ106を通過し、ファイバカップラ107によって分岐される。分岐された光の一部は、参照用ミラー108によって反射され参照光となる。分岐された光の残りの大部分は、コリメータレンズ109により空間に照射され、計測対象(測定対象ともいう)110に照射される。計測対象110から反射した光は再びコリメータレンズ109を通過して、参照用ミラー108からの参照光とファイバカップラ107部分で合流した後、サーキュレータ106によりファイバカップラ111まで導かれ、ファイバカップラ111により波長分離される。
 波長分離された光は、それぞれ半導体レーザ101用の受光器112と半導体レーザ103用の受光器113で検出される。受光器112及び113はそれぞれ、参照光と測定光の干渉によりビート信号を発生する。
 <検出信号例及び距離算出処理>
 図6は、第1の実施形態による距離計測装置において検出される信号(検出信号)の例を示す図である。
 図6に示されるように、半導体レーザ101の光周波数掃引の位相と半導体レーザ103の光周波数掃引の位相とは半周期ずれているため、ドップラーシフトの影響は逆に受ける。そこで、掃引の上り領域と下り領域の信号をそれぞれ用いることでドップラーシフトの影響をキャンセルする。
 図7は、検出信号から距離を算出する処理(距離算出処理)を説明するためのフローチャートである。当該距離算出処理は、コンピュータ114が備えるプロセッサ(CPUやMPU)によって実行される。より具体的には、図7による距離算出処理を実行するためのプログラム(距離算出プログラム)がコンピュータ114のメモリ(図示せず)に格納されており、プロセッサが当該メモリから距離算出プログラムを読み込んで実行することになる。以下では、コンピュータ114のプロセッサ(以下、単に「プロセッサ」と称する)を動作主体として説明する。
(i)ステップ701
 プロセッサは、受光器112で検出した信号をA/D変換してデジタル信号を取得する。
(ii)ステップ702
 プロセッサは、デジタル検出信号において、周波数掃引の上り領域の信号の切り出しを行う。
(iii)ステップ703
 プロセッサは、ステップ702で切り出した信号をFFT処理する。
(iv)ステップ704
 プロセッサは、ステップ703でFFT処理された信号からピーク周波数を検出する。
(v)ステップ705
 同様に、プロセッサは、受光器113で検出した信号をA/D変換してデジタル信号を取得する。
(vi)ステップ706
 プロセッサは、デジタル検出信号において、周波数掃引の上り領域の信号の切り出しを行う。
(vii)ステップ707
 プロセッサは、ステップ706で切り出した信号をFFT処理する。
(ix)ステップ708
 プロセッサは、ステップ707でFFT処理された信号からピーク周波数を検出する。
(x)ステップ709
 プロセッサは、ステップ704及び708で得られたピーク周波数からドップラーシフトを除去し、正確な距離を算出する。
 ステップ709の処理詳細は次のようになる。計測対象が振動した場合、半導体レーザ101が受けるドップラーシフト量は式(6)で表される。
Figure JPOXMLDOC01-appb-M000008
 また、半導体レーザ103が受けるドップラーシフト量は式(7)で表される。
Figure JPOXMLDOC01-appb-M000009
 式(6)と式(7)を比較すると、レーザの波長νとνが異なるため、ドップラーシフト量ΔfとΔfも異なる。よって、式(5)をそのまま用いて距離を算出しようとした場合、誤差が生じる。
 そこで、式(8)を用いることで誤差なく正確な距離を求めることが可能となる。
Figure JPOXMLDOC01-appb-M000010
 以上のようにして、ドップラーシフトによる距離誤差が除去された、計測対象までの距離を算出することができるようになる。
 なお、図7では、ステップ701~704の処理とステップ705~708の処理は並列で行われているように示されているが、各ステップの実行順序は任意に設定することが可能である。
(2)第2の実施形態
 上述の式(2)から距離Lを精度良く測定するためには、ビート周波数fが変調周期Tの間、一定である必要がある。しかし、半導体レーザの特性として注入電流の変化量に対して光周波数の変化量は非線形であるため、計測精度が劣化するという課題がある。そこで、第2の実施形態では、一定の光路差を有する参照用の干渉計を用いて補正を行う、距離計測装置について提案する。
 <距離計測装置の構成>
 図8は、第2の実施形態による距離計測装置2の概略構成例を示す図である。図8の距離計測装置2は、図5の距離計測装置1と大部分において同じ構成を有している。相違点は、半導体レーザから照射した光をファイバカップラによって分岐して一部を参照用の干渉計に導光するところである。
 半導体レーザ101から照射した光は、ファイバカップラ801によって分岐される。分岐された光の一方は、ファイバカップラ802に導光される。当該光は、ファイバカップラ802によって更に2分岐され、光ファイバ803によって一定の光路差を設けた後、再びファイバカップラ804によって合波され、受光器805に受光されるように構成されている。これはマッハツェンダー干渉計の構成となっており、受光器805では光路差に比例した一定のビート信号が発生する。このビート信号をサンプリングクロックとして、受光器112で検出した光をサンプリングすることで、非線形な影響を抑制することが可能となる。
 同様に、半導体レーザ103から照射した光は、ファイバカップラ806によって分岐される。分岐された光の一方は、ファイバカップラ807に導光される。当該光は、ファイバカップラ807によって更に2分岐され、光ファイバ808によって一定の光路差を設けた後、再びファイバカップラ809によって合波され、受光器810に受光されるように構成されている。これはマッハツェンダー干渉計の構成となっており、受光器810では光路差に比例した一定のビート信号が発生する。このビート信号をサンプリングクロックとして、受光器113で検出した光をサンプリングすることで、非線形な影響を抑制することが可能となる。
 そして、第1の実施形態で説明した処理と同様の処理をすることにより、高精度に距離を計測することが可能となる。
(3)第3の実施形態
 上述の式(2)から距離Lを精度良く測定するためには、ビート周波数fbが変調周期Tの間、一定である必要がある。しかし、半導体レーザの特性として注入電流の変化量に対して光周波数の変化量は非線形であるため、計測精度が劣化するという課題がある。そこで、第3の実施形態では、半導体レーザの注入電流を制御してビート周波数を一定にする、距離計測装置について提案する。
 <距離計測装置の構成>
 図9は、第3の実施形態による距離計測装置3の概略構成例を示す図である。図9の距離計測装置3は、図5の距離計測装置1と大部分において同じ構成を有している。相違点は、半導体レーザから照射した光をファイバカップラ901によって分岐して、一部を半導体レーザ101の注入電流を制御するフィードバック機構に導光することである。
 半導体レーザ101から照射した光は、ファイバカップラ901によって分岐される。分岐された光の一方は、フィードバック機構(フィードバック回路)902に導光される。
 図10は、フィードバック機構902の内部構成例を示す図である。図10において、ファイバカップラ901からの光は、さらにファイバカップラ1001によって2分岐され、光ファイバ1002によって一定の光路差を設けた後、再びファイバカップラ1003によって合波され、受光器1004に受光されるように構成されている。これは、マッハツェンダー干渉計の構成となっており、受光器1004では光路差に比例した一定のビート信号が発生する。このビート信号と信号発振器1005からの信号をミキサー1006でミキシングし、差周波数or差位相に応じた電流信号をコンバイナー903によって任意信号発生器102からの電流信号に足されることでビート信号が一定となるように制御される。
 同様に、半導体レーザ103から照射した光は、ファイバカップラ904によって分岐される。分岐された光の一方は、フィードバック機構905に導光される。フィードバック機構905は、フィードバック機構902(図10参照)と同一の構成を有しており、出力される電流信号をコンバイナー906によって任意信号発生器104からの電流信号に足されることでビート信号が一定となるように制御する。
 このように、線形に周波数掃引された2つの光源を用い、さらに第1の実施形態で説明した処理と同様の処理をすることにより、高精度に距離を計測することが可能となる。
(4)第4の実施形態
 <距離計測装置4の構成>
 図11は、第4の実施形態による距離計測装置4の概略構成例を示す図である。距離計測装置4においては受光器が1つである点で、受光器を2つ備える距離計測装置1(図5参照)と異なる。
 コンピュータ(PC)114は、任意信号発生器102に掃引波形信号を送信する。任意信号発生器102は、半導体レーザ101の駆動電流に変調を掛けることによって、光周波数の掃引を行う。レーザから射出された光は、サーキュレータ1101を通過し、ファイバカップラ1102によって分岐され、その一部が参照用ミラー1103によって反射され参照光となり、残りの大部分がWDMカップラ1104に導光される。
 同様に、コンピュータ(PC)114は、任意信号発生器104に掃引波形信号を送信する。任意信号発生器104は、半導体レーザ103の駆動電流に変調をかけることによって、光周波数の掃引を行う。レーザから射出された光は、サーキュレータ1105を通過し、ファイバカップラ1106によって分岐され、その一部が参照用ミラー1107によって反射され参照光となり、残りの大部分がWDMカップラ1104に導光される。
 WDMカップラ1104で合波された光は、コリメータレンズ(ファイバコリメータ)109により空間に照射され、計測対象110に照射される。計測対象110から反射した光は、再びコリメータレンズ109を通過して、WDMカップラ1104まで導かれ、WDMカップラ1104により波長分離される。WDMカップラ1104で波長分離されて得られた一方の光は、再びファイバカップラ1102およびサーキュレータ1101を通過してWDMカップラ1108に導光される。同様に、WDMカップラ1104で波長分離されて得られた他方の光は、再びファイバカップラ1106およびサーキュレータ1105を通過してWDMカップラ1108に導光される。
 WDMカップラ1108で合波された光は、受光器1109で検出され、参照光と測定光の干渉によりビート信号を発生する。このときファイバカップラ1102から参照用ミラー1103までの距離とファイバカップラ1106から参照用ミラー1107までの距離に差を与えることにより、同じ計測対象を測定しても、参照ミラーまでの距離が異なるため、異なる位置にビート信号を発生させることができる。
<検出信号例及び距離算出処理>
 図12は、受光器1109で検出されたビート周波数の例を示す図である。図12において、ビート周波数が低いピーク周波数(受光器で検出されるビート信号)1201は、計測対象と参照ミラーまでの距離差が小さい半導体レーザ101に対応したビート周波数を示す。一方、周波数が高いピーク周波数(受光器で検出されるビート信号)1202は、計測対象と参照ミラーまでの距離差が大きい半導体レーザ103に対応したビート周波数を示す。これら2つのビート周波数を検出し、上述の式(8)に基づいて計測対象までの距離を正確に求めることができるようになる。
 図13は、検出信号から距離を算出する処理(距離算出処理)を説明するためのフローチャートである。当該距離算出処理は、コンピュータ114が備えるプロセッサ(CPUやMPU)によって実行される。より具体的には、図7による距離算出処理を実行するためのプログラム(距離算出プログラム)がコンピュータ114のメモリ(図示せず)に格納されており、プロセッサが当該メモリから距離算出プログラムを読み込んで実行することになる。以下では、コンピュータ114のプロセッサ(以下、単に「プロセッサ」と称する)を動作主体として説明する。
(i)ステップ1301
 プロセッサは、受光器1109で検出した信号をA/D変換してデジタル信号を取得する。
(ii)ステップ1302
 プロセッサは、ステップ1301で得られたデジタル検出信号のうち周波数掃引周期の半周期分の領域の信号の切り出しを行う。
(iii)ステップ1303
 プロセッサは、ステップ1302で切り出した信号をFFT処理する。
(iv)ステップ1304
 プロセッサは、ステップ1303でFFT処理された信号から周波数の低い方のピーク周波数を検出する。
(v)ステップ1305
 プロセッサは、ステップ1303でFFT処理された信号から周波数の高い方のピーク周波数を検出する。なお、ステップ1304とステップ1305の実行順序は逆であっても良い。
(vi)ステップ1306
 プロセッサは、ステップ1304及びステップ1305で検出された2つのピーク周波数から式(8)に基づき、ドップラーシフトを除去することにより、正確な距離を算出することができる。
(5)第5の実施形態
 <距離計測装置の構成>
 図14は、第5の実施形態による距離計測装置5の概略構成例を示す図である。距離計測装置5では、距離計測装置4と同様に、受光器を1つ備える構成となっている。
 コンピュータ(PC)114は、任意信号発生器102に掃引波形信号を送信する。任意信号発生器102は、半導体レーザ101の駆動電流に変調を掛けることによって、光周波数の掃引を行う。
 同様に、コンピュータ(PC)114は、任意信号発生器104に掃引波形信号を送信する。任意信号発生器104は、半導体レーザ103の駆動電流に変調を掛けることによって、光周波数の掃引を行う。
 半導体レーザ101と半導体レーザ103から出力された光は、WDMカップラ1401によって合波される。WDMカップラ1401で合波された光は、サーキュレータ1402を通過し、ファイバカップラ1403によって分岐される。分岐して得られた光の一方は、WDMカップラ1404によってさらに分岐され、半導体レーザ101用の参照用ミラー1405と半導体レーザ103用の参照ミラー1406によって反射され参照光となる。
 分岐して得られた他方の光(大部分の光)は、コリメータレンズ109により空間に照射され、計測対象110に照射される。計測対象110から反射した光は、再びコリメータレンズ109を通過して、参照用ミラー1405及び1406からの参照光とファイバカップラ1403で合波された後、サーキュレータ1402を通過する。
 サーキュレータ1402を通過した光は、受光器1407で検出され、参照光と測定光の干渉によりビート信号が発生する。このときWDMカップラ1404から参照用ミラー1405までの距離とWDMカップラ1404から参照用ミラー1406までの距離に差を与えることにより、同じ計測対象を測定しても、参照ミラーまでの距離が異なるため、異なる位置にビート信号を発生させることができる。
 この後の処理内容は第4の実施形態と同様である。
(6)第6の実施形態
 上述の式(2)から距離Lを精度良く測定するためには、ビート周波数fbが変調周期Tの間、一定である必要がある。しかし、半導体レーザの特性として注入電流の変化量に対して光周波数の変化量は非線形であるため、計測精度が劣化するという課題がある。そこで、第6の実施形態では、一定の光路差を有する参照用の干渉計を用いて補正を行う、距離計測装置について提案する。
 <距離計測装置の構成>
 図15は、第6の実施形態による距離計測装置6の概略構成例を示す図である。図15の距離計測装置6は、図11の距離計測装置4と大部分において同じ構成を有している。相違点は、半導体レーザから照射した光をファイバカップラによって分岐して一部を参照用の干渉計に導光することである。
 半導体レーザ101から出力された光は、ファイバカップラ1501によって分岐される。分岐して得られた一方の光は、ファイバカップファイバラ1502に導光され、ファイバカップラ1502によって更に2分岐される。ファイバカップラ1502でさらに分岐された光の一方は、光ファイバ1505に導光される。ファイバカップラ1502でさらに分岐された光の他方は、WDMカップラ1503を通過し、光ファイバ1506に導光され、一定の光路差が設けられる。その後、光ファイバ1505を通過した光は、WDMカップラ1508を通過し、ファイバカップラ1509によって合波され、受光器1510に受光されるように構成されている。これはマッハツェンダー干渉計の構成となっており、受光器1510では光ファイバ1505と光ファイバ1506の光路差に比例した一定のビート信号が発生する。
 同様に、半導体レーザ103から出力された光は、ファイバカップラ1500によって分岐される。分岐して得られた一方の光は、ファイバカップラ1504に導光され、ファイバカップラ1504によって更に2分岐される。ファイバカップラ1504でさらに分岐された光の一方は、光ファイバ1507に導光される。ファイバカップラ1504でさらに分岐された光の他方は、WDMカップラ1503を通過し、光ファイバ1506に導光され、一定の光路差が設けられる。その後、光ファイバ1507を通過した光は、WDMカップラ1508を通過し、ファイバカップラ1509によって合波され、受光器1510に受光されるように構成されている。これはマッハツェンダー干渉計の構成となっており、受光器1510では光ファイバ1506と光ファイバ1507の光路差に比例した一定のビート信号が発生する。
 図15においては、光ファイバ1505と光ファイバ1507との長さが異なるため、2つのビート信号が発生する。このビート信号のうち周波数の低いビート信号をフィルタによって切り出してサンプリングクロックとして、受光器1109で検出した光をサンプリングすることで、非線形な影響を抑制することが可能となる。同様に、受光器1510で検出されたビート信号のうち周波数の高いビート信号をフィルタによって切り出してサンプリングクロックとして、受光器1109で検出した光をサンプリングすることで、非線形な影響を抑制することが可能となる。
 その他の処理内容については第4の実施形態と同様である。
(7)第7の実施形態
 第7の実施形態は、第1乃至第6の実施形態による距離計測装置1乃至6の何れかを用いて計測対象の形状を測定するための形状測定装置に関するものである。
 <形状測定装置の構成>
 図16は、第7の実施形態による形状測定装置7であって、第1乃至第6の実施形態の何れか距離計測装置を備える装置の概略構成例を示す図である。
 形状測定装置7は、3D形状計測部1601と、コンピュータ(PC)114と、モニター115と、を備えている。
 3D形状計測部1601は、計測対象110の3D形状を測定するものであって、第1乃至第6の実施形態の何れかによる距離計測部(距離計測装置)1602と、1軸ステージ1603と、フォーカスレンズ1604と、ガルバノミラー1605及び1606と、を備える。
 フォーカスレンズ1604を搭載した1軸ステージ1603を駆動することにより、距離計測部1602のコリメータレンズ109から照射されるレーザ光が計測対象110にフォーカス調整される。また、ガルバノミラー1605及び1606を振ることで、計測対象110の測定面をレーザ光で2次元に走査し、当該計測対象110の形状が計測される。
 <形状計測処理>
 図17は、第7の実施形態による形状計測処理を説明するためのフローチャートである。当該形状計測処理は、コンピュータ114が備えるプロセッサ(CPUやMPU)によって実行される。より具体的には、図17による形状計測処理を実行するためのプログラム(形状計測プログラム)がコンピュータ114のメモリ(図示せず)に格納されており、プロセッサが当該メモリから距離算出プログラムを読み込んで実行することになる。以下では、コンピュータ114のプロセッサ(以下、単に「プロセッサ」と称する)を動作主体として説明する。
(i)ステップ1701
 プロセッサは、入力された指定範囲(例えば、ユーザが計測対象110の大きさを参考に入力する)内のある1つの座標点の情報に基づいて、距離計測部1602から出力されるレーザの走査角度を調整する。
(ii)ステップ1702
 プロセッサは、1軸ステージ1603を軸方向に動かして計測対象110にフォーカスを合わせる(フォーカス調整)。
(iii)ステップ1703
 プロセッサは、第1乃至第6の実施形態による距離計測装置で説明した処理を実行し、計測対象110までの距離を計測する。
(iv)ステップ1704
 プロセッサは、ステップ1701で決定したレーザの走査角度とステップ1703で計測された距離とから、計測対象110の3D座標を算出する。
(v)ステップ1705
 プロセッサは、入力された指定範囲を全て測定したか判定する。全ての指定範囲(全ての座標点)が測定された場合(ステップ1705でYESの場合)、処理はステップ1706に移行する。まだ全ての指定範囲が測定されていない場合(ステップ1705でNOの場合)、処理はステップ1701に移行する。
(vi)ステップ1706
 プロセッサは、指定範囲の全座標点の3D形状計測結果を出力する。
(8)第8の実施形態
 図18は、第8の実施形態による内径計測装置8であって、第1乃至第6の実施形態の何れか距離計測置を備える装置の概略構成例を示す図である。
 内径計測装置8は、内径計測対象116の内径を計測する装置であって、第1乃至第6の実施形態の何れかによる距離計測部(距離計測装置)1802と、1軸ステージ1803と、フォーカスレンズ1804と、反射プリズム1805と、回転ステージ1806と、コンピュータ(PC)114と、モニター115と、を備えている。
 フォーカスレンズ1804を搭載した1軸ステージ1803を駆動することにより、距離計測部1802のコリメータレンズ109から照射されるレーザ光が内径計測対象116の内側側面にフォーカス調整される。また、回転ステージ1806に搭載した反射プリズム1805を回転させながら、レーザ光を反射プリズム1805で直角に反射させることにより、内径計測対象116の内径を計測することが可能となる。
(9)まとめ
(i)各実施形態では、2つの光源を設けて波長が異なる光を出射するように構成しているが、1つの光源からは波長が異なる光を出射するようにしても良い。従って、半導体レーザ101及び103と、任意信号発生器102及び104とを含む構成を「光源部」と称することが可能である。また、波長が異なる光を2つ用いているが、波長が異なる光を3つ以上用いても良い。この場合、光源を3つ以上用いても良いし、光源部から3つ以上の光を発するようにしても良い。
(ii)本実施形態による距離計測装置は、受光部が検出した信号から光源部が発するそれぞれの波長の光に対応したピーク周波数を算出する周波数算出処理と、それぞれの波長の光に対応したピーク周波数から計測対象が振動することで生じるドップラーシフト誤差を低減し、距離を算出する距離算出処理と、を実行する。このようにすることにより、高精度の距離(光源から計測対象までの距離)を計測することが可能となる。
 また、距離計測装置の光源部は、波長が異なる複数の光の周波数掃引周期が所定周期ずれるように複数の光を光周波数掃引して出力するように構成されている。このようにすることにより、光路差を設けるために非常に長い(例えば100kmの長さ)光ファイバを設ける必要がなくなり、距離計測装置の規模を小さくすることが可能となる。
 光源部において複数の光源を用いる場合、出射された複数の光は、出射直後は光軸が異なっている。このため、複数の光を合波して同軸の複数の光とする合波光学素子を設け、同軸の複数の光が計測対象に照射されるようにしている。計測対象の同一箇所に対して波長の異なる複数の光を1回の計測で照射することができ、測定のスループットを向上させることができ、さらに、測定誤差を少なくすることが可能となる。なお、合波光学素子としては、例えば、WDMカップラ或いはダイクロイックミラーを用いることが可能である。
 また、合波光学素子から計測対象に至る光路の途中に、同軸の複数の光を分岐させる分岐光学素子を設けている。そして、分岐光学素子によって分岐された光の一部が参照ミラーに導光される。参照ミラーに導光される光以外の光が、照射光学素子に導光され、計測対象に照射される。なお、ここで、分岐光学素子として例えばファイバカップラ、照射光学素子として例えばコリメータレンズをもちいることができる。
 また、受光部は、計測対象で反射した光を、出射された光の波長に応じて受光するように構成される。このようにすることにより、波長が異なる光ごとに、参照光と測定光(計測対象からの反射光)との干渉によるビート信号を発生することができるようになる。
 また、本開示の距離計測装置は、光源部における光周波数掃引の非線形性に起因する誤差を低減する校正用干渉計を備えるようにしても良い。このようにすることにより、さらに高精度に距離を計測することが可能となる。
 さらに、本開示の距離計測装置は、光源部から出射された光の一部から光源部の注入電流を制御するための信号を生成し、当該信号を光源部にフィードバックするフィードバック機構を備えるようにしても良い。このようにすることにより、さらに高精度に距離を計測することが可能となる。
 本実施形態では、さらに具体的に、下記式に基づいてドップラーシフト誤差を低減し、距離Lを算出することができる。
 ここで、Tは変調周期、Δνは周波数掃引幅、ν1及びν2は波長(2つの光を用いる場合)を表している。また、Δtは参照光と計測対象で反射した光との時間差、Δf1及びΔf2は、それぞれの光のドップラーシフト量、fbeatはビート周波数を表している。
(iii)本実施形態は、上述の距離計測装置を備える形状計測装置や内径計測装置も提供する。形状計測装置は、距離計測装置からの光のフォーカスを形状計測対象に合わせるフォーカスレンズと、フォーカスが調整された光を形状計測対象の上で走査するためのミラーと、を備える。そして、形状計測装置は、距離計測装置によって計測された光源部から形状計測対象までの距離と、フォーカスが調整された光の走査角度とを用いて、形状計測対象の3次元形状を計測し、3次元形状計測結果を出力する。
 内径計測装置は、距離計測装置からの光のフォーカスを形状計測対象に合わせるフォーカスレンズと、回転ステージと、それに搭載した反射プリズムと、を備える。反射プリズムを回転ステージによって回転させながら、フォーカス調整された光を反射プリズムで直角に反射させる。このようにすることにより、内径計測対象の内径を計測することが可能となる。
(iv)本開示において、プロセッサが実行する機能は、ソフトウェアのプログラムコードによっても実現できる。この場合、プログラムコードを記録した記憶媒体をシステム或は装置に提供し、そのシステム或は装置のコンピュータ(又はCPUやMPU)が記憶媒体に格納されたプログラムコードを読み出す。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコード自体、及びそれを記憶した記憶媒体は本開示を構成することになる。このようなプログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、CD-ROM、DVD-ROM、ハードディスク、光ディスク、光磁気ディスク、CD-R、磁気テープ、不揮発性のメモリカード、ROMなどが用いられる。
 また、プログラムコードの指示に基づき、コンピュータ上で稼動しているOS(オペレーティングシステム)などが実際の処理の一部又は全部を行い、その処理によって前述した実施の形態の機能が実現されるようにしてもよい。さらに、記憶媒体から読み出されたプログラムコードが、コンピュータ上のメモリに書きこまれた後、そのプログラムコードの指示に基づき、コンピュータのCPUなどが実際の処理の一部又は全部を行い、その処理によって前述した実施の形態の機能が実現されるようにしてもよい。
 さらに、実施の形態の機能を実現するソフトウェアのプログラムコードを、ネットワークを介して配信することにより、それをシステム又は装置のハードディスクやメモリ等の記憶手段又はCD-RW、CD-R等の記憶媒体に格納し、使用時にそのシステム又は装置のコンピュータ(又はCPUやMPU)が当該記憶手段や当該記憶媒体に格納されたプログラムコードを読み出して実行するようにしても良い。
 最後に、ここで述べたプロセス及び技術は本質的に如何なる特定の装置に関連することはなく、コンポーネントの如何なる相応しい組み合わせによってでも実装できることを理解する必要がある。更に、汎用目的の多様なタイプのデバイスがここで記述した教授に従って使用可能である。ここで述べた方法のステップを実行するのに、専用の装置を構築するのが有益であることが判るかもしれない。また、実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。本開示は、具体例に関連して記述したが、これらは、すべての観点に於いて限定の為ではなく説明の為である。本分野にスキルのある者には、本開示を実施するのに相応しいハードウェア、ソフトウェア、及びファームウエアの多数の組み合わせがあることが解るであろう。例えば、記述したソフトウェアは、アセンブラ、C/C++、perl、Shell、PHP、Java(登録商標)等の広範囲のプログラム又はスクリプト言語で実装できる。
 さらに、上述の実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。全ての構成が相互に接続されていても良い。
 加えて、本技術分野の通常の知識を有する者とっては、本開示のその他の実装については、ここに開示された本開示の明細書及び実施形態の考察から自明である。記述された実施形態の多様な態様及び/又はコンポーネントは、単独又は如何なる組み合わせでも使用することが出来る。明細書と具体例は典型的なものに過ぎず、本開示の範囲と精神は後続する請求範囲で示される。
101、103 半導体レーザ
102、104 信号発生器
105、107、111、801、802、804、806、807、809、901、904、1001、1003、1102、1106、1403、1500、1501、1502、1504、1509 ファイバカップラ
106、1101、1105、1402 サーキュレータ
108、1103、1107 参照用ミラー
109 コリメータレンズ(ファイバコリメータ)
110 計測対象
112、113、203、805、810、1004、1109、1407、1510 受光器
114 コンピュータ(PC)
115 モニター
116 内径計測対象
201、1405、1406 参照用ミラー
202 ビームスプリッター
301 ビート信号
803、808、1002、1505、1506、1507 光ファイバ、
902、905 フィードバック機構(フィードバック回路)、
903、906 コンバイナー、
1005 信号発振器、
1006 ミキサー、
1104、1108、1401、1404、1503、1508 WDMカップラ、
1201、1202 受光器で検出されるビート信号
1601 3D形状計測部
1602、1802 距離計測部、
1603、1803 1軸ステージ、
1604、1804 フォーカスレンズ、
1605、1605 ガルバノミラー、
1805 反射プリズム、
1806 回転ステージ。

Claims (12)

  1.  光源から計測対象までの距離を計測する距離計測装置であって、
     波長が異なる複数の出射光を出射する光源部と、
     前記出射光を前記計測対象に照射する照射光学素子と、
     前記出射光が前記計測対象で反射した反射光を受光する受光部と、
     前記受光部が検出した信号を用いて前記光源から前記計測対象までの距離を算出するプロセッサと、を備え、
     前記プロセッサは、
      前記信号に基づいてそれぞれの波長に対応したピーク周波数を算出する周波数算出処理と、
      それぞれの前記ピーク周波数に基づいて前記計測対象が振動することで生じるドップラーシフト誤差を低減し、前記距離を算出する距離算出処理と、
    を実行する、距離計測装置。
  2.  請求項1において、
     前記光源部から出射された前記複数の出射光は、出射直後は光軸が異なり、
     さらに、前記複数の出射光を合波して同軸光とする合波光学素子を備え、
     前記同軸光が前記計測対象に照射される、距離計測装置。
  3.  請求項2において、
     前記合波光学素子は、WDMカップラ或いはダイクロイックミラーによって構成される、距離計測装置。
  4.  請求項2において、
     前記同軸光を分岐させる分岐光学素子と、
     参照ミラーと、をさらに備え、
     前記分岐光学素子によって分岐された光の一部が、前記参照ミラーに導光され、
     前記参照ミラーに導光される光以外の光が、前記照射光学素子に導光される、距離計測装置。
  5.  請求項4において、
     前記分岐光学素子は、ファイバカップラであり、
     前記照射光学素子は、コリメータレンズである、距離計測装置。
  6.  請求項1において、
     前記受光部は、前記計測対象で反射した光を、前記出射光の波長に応じて受光する、距離計測装置。
  7.  請求項1において、
     前記光源部は、前記波長が異なる複数の出射光の周波数掃引周期が所定周期ずれるように前記複数の出射光を光周波数掃引して出力する、距離計測装置。
  8.  請求項1において、さらに、
     前記光源部における光周波数掃引の非線形性に起因する誤差を低減する校正用干渉計を備える、距離計測装置。
  9.  請求項1において、さらに、
     前記光源部から出射された出射光の一部から前記光源部の注入電流を制御するための信号を生成し、当該信号を前記光源部にフィードバックするフィードバック機構を備える、距離計測装置。
  10.  請求項4において、
     前記光源部は、変調周期Tで変調され、かつ周波数掃引幅Δνで送信された、波長ν1の第1光と波長ν2の第2光を出射し、
     前記参照ミラーは前記第1光と前記第2光のそれぞれについて参照光を生成し、
     前記参照光と前記計測対象で反射した光との時間差をΔt、前記第1光のドップラーシフト量をΔf1、前記第2光のドップラーシフト量をΔf2、ビート周波数をfbeatとすると、
     前記プロセッサは、下記式に基づいて、前記ドップラーシフト誤差を低減し、距離Lを算出する、距離計測装置。
    Figure JPOXMLDOC01-appb-I000001
  11.  請求項1に記載の距離計測装置と、
     前記距離計測装置からの光のフォーカスを形状計測対象に合わせるフォーカスレンズと、
     前記フォーカスが調整された光を前記形状計測対象の上で走査するためのミラーと、を備え、
     前記プロセッサは、前記距離計測装置によって計測された前記光源部から前記形状計測対象までの距離と、前記フォーカスが調整された光の走査角度とを用いて、前記形状計測対象の3次元形状を計測し、3次元形状計測結果を出力する、形状計測装置。
  12.  光源から計測対象までの距離を計測する距離計測方法であって、
     波長の異なる複数の出射光を出射することと、
     前記出射光を前記計測対象に照射することと、
     前記計測対象で反射した反射光を受光することと、
     前記反射光を受光することにより得られる信号に基づいてそれぞれの波長に対応したピーク周波数を算出することと、
     それぞれの前記ピーク周波数に基づいて、前記計測対象が振動することで生じるドップラーシフト誤差を低減し、前記距離を算出することと、
    を含む距離計測方法。
PCT/JP2016/063054 2016-04-26 2016-04-26 距離計測装置、距離計測方法、及び形状計測装置 WO2017187510A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/063054 WO2017187510A1 (ja) 2016-04-26 2016-04-26 距離計測装置、距離計測方法、及び形状計測装置
JP2018513983A JPWO2017187510A1 (ja) 2016-04-26 2016-04-26 距離計測装置、距離計測方法、及び形状計測装置
US15/751,318 US20180224548A1 (en) 2016-04-26 2016-04-26 Distance Measuring Apparatus, Distance Measuring Method, and Shape Measuring Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063054 WO2017187510A1 (ja) 2016-04-26 2016-04-26 距離計測装置、距離計測方法、及び形状計測装置

Publications (1)

Publication Number Publication Date
WO2017187510A1 true WO2017187510A1 (ja) 2017-11-02

Family

ID=60160386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063054 WO2017187510A1 (ja) 2016-04-26 2016-04-26 距離計測装置、距離計測方法、及び形状計測装置

Country Status (3)

Country Link
US (1) US20180224548A1 (ja)
JP (1) JPWO2017187510A1 (ja)
WO (1) WO2017187510A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019186914A1 (ja) * 2018-03-29 2019-10-03 三菱電機株式会社 レーザレーダ装置
US10527412B2 (en) 2015-10-06 2020-01-07 Bridger Photonics, Inc. Gas-mapping 3D imager measurement techniques and method of data processing
WO2020018805A1 (en) * 2018-07-18 2020-01-23 Bridger Photonics, Inc. Methods and apparatuses for range peak pairing and high-accuracy target tracking using fmcw ladar measurements
CN110864621A (zh) * 2019-11-01 2020-03-06 西安工业大学 一种空分式多波长调频连续波激光干涉仪
JP2020046368A (ja) * 2018-09-20 2020-03-26 日本製鉄株式会社 距離測定方法及び距離測定装置
CN111679284A (zh) * 2020-06-16 2020-09-18 中国计量大学 一种用于运动目标测量的双激光测距装置及方法
JPWO2019239491A1 (ja) * 2018-06-12 2020-10-01 三菱電機株式会社 光測距装置及び加工装置
WO2021020242A1 (ja) * 2019-07-26 2021-02-04 株式会社SteraVision 距離及び速度測定装置
JP2021523387A (ja) * 2018-05-10 2021-09-02 アワーズ・テクノロジー・インコーポレイテッド 同時の測距距離および速度測定のための、複数個のレーザおよびコヒーレント受信器の相補的変調に基づくlidarシステム
US11112308B2 (en) 2017-11-14 2021-09-07 Bridger Photonics, Inc. Apparatuses and methods for anomalous gas concentration detection
EP3879222A1 (en) 2020-03-13 2021-09-15 OMRON Corporation Optical interference measurement apparatus
US11422244B2 (en) 2017-09-25 2022-08-23 Bridger Photonics, Inc. Digitization systems and techniques and examples of use in FMCW LiDAR methods and apparatuses
US11592563B2 (en) 2017-10-17 2023-02-28 Bridger Photonics, Inc. Apparatuses and methods for a rotating optical reflector
US11604280B2 (en) 2017-10-02 2023-03-14 Bridger Photonics, Inc. Processing temporal segments of laser chirps and examples of use in FMCW LiDAR methods and apparatuses
WO2023171483A1 (ja) * 2022-03-08 2023-09-14 株式会社東京精密 形状測定装置及び形状測定方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11119193B2 (en) * 2018-03-28 2021-09-14 Northwestern University Micro resolution imaging range sensor system
EP3581962A1 (de) * 2018-06-11 2019-12-18 Hexagon Technology Center GmbH Dual-beam fmcw distanzmessverfahren mit kompensation eines geschwindigkeitsabhängigen distanzmessfehlers
DE102019211832A1 (de) * 2018-08-23 2020-02-27 Mitutoyo Corporation Messvorrichtung und messverfahren
US11215701B2 (en) * 2019-09-27 2022-01-04 Aeva, Inc. Coherent LIDAR
DE102019135648A1 (de) * 2019-12-21 2021-06-24 Carl Zeiss Ag Vorrichtung und Verfahren zur Abstandsermittlung eines Objekts
CN115396027B (zh) * 2022-10-31 2023-04-11 长春理工大学 一种飞机间测距通信一体化装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257415A (ja) * 1996-03-25 1997-10-03 Senshin Zairyo Riyou Gas Jienereeta Kenkyusho:Kk 光ファイバセンサ
JPH10111361A (ja) * 1996-10-02 1998-04-28 Tamagawa Seiki Co Ltd リニア型光位置・速度センサの信号出力方法
JP2000111312A (ja) * 1998-08-04 2000-04-18 Mitsubishi Heavy Ind Ltd 光周波数線形掃引装置及び光周波数線形掃引装置のための変調補正デ―タ記録装置
JP2002372580A (ja) * 2001-06-13 2002-12-26 Mitsubishi Electric Corp Fm−cwレーダ装置
JP2008531993A (ja) * 2005-02-17 2008-08-14 メトリス ユーエスエー インク. 逆チャープfmcwコヒーレントレーザレーダのためのコンパクト光ファイバジオメトリ
JP2008275594A (ja) * 2007-04-03 2008-11-13 Yamatake Corp 距離・速度計および距離・速度計測方法
JP2012502301A (ja) * 2008-09-11 2012-01-26 ニコン・メトロロジー・エヌヴェ 対チャープfmcwコヒーレントレーザレーダー用の小型の光ファイバ配置
JP2014202716A (ja) * 2013-04-09 2014-10-27 株式会社日立ハイテクノロジーズ 距離測定装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5715044A (en) * 1987-08-14 1998-02-03 Boeing North American, Inc. Laser radar
US6153886A (en) * 1993-02-19 2000-11-28 Nikon Corporation Alignment apparatus in projection exposure apparatus
EP1953567A3 (en) * 2007-01-25 2010-09-22 Yamatake Corporation Counting device, distance meter, counting method, and distance measuring method
US9025160B2 (en) * 2011-01-28 2015-05-05 The Regents Of The University Of Colorado, A Body Corporate Spectral phase analysis for precision ranging

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257415A (ja) * 1996-03-25 1997-10-03 Senshin Zairyo Riyou Gas Jienereeta Kenkyusho:Kk 光ファイバセンサ
JPH10111361A (ja) * 1996-10-02 1998-04-28 Tamagawa Seiki Co Ltd リニア型光位置・速度センサの信号出力方法
JP2000111312A (ja) * 1998-08-04 2000-04-18 Mitsubishi Heavy Ind Ltd 光周波数線形掃引装置及び光周波数線形掃引装置のための変調補正デ―タ記録装置
JP2002372580A (ja) * 2001-06-13 2002-12-26 Mitsubishi Electric Corp Fm−cwレーダ装置
JP2008531993A (ja) * 2005-02-17 2008-08-14 メトリス ユーエスエー インク. 逆チャープfmcwコヒーレントレーザレーダのためのコンパクト光ファイバジオメトリ
JP2008275594A (ja) * 2007-04-03 2008-11-13 Yamatake Corp 距離・速度計および距離・速度計測方法
JP2012502301A (ja) * 2008-09-11 2012-01-26 ニコン・メトロロジー・エヌヴェ 対チャープfmcwコヒーレントレーザレーダー用の小型の光ファイバ配置
JP2014202716A (ja) * 2013-04-09 2014-10-27 株式会社日立ハイテクノロジーズ 距離測定装置

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10527412B2 (en) 2015-10-06 2020-01-07 Bridger Photonics, Inc. Gas-mapping 3D imager measurement techniques and method of data processing
US11391567B2 (en) 2015-10-06 2022-07-19 Bridger Photonics, Inc. Gas-mapping 3D imager measurement techniques and method of data processing
US11422244B2 (en) 2017-09-25 2022-08-23 Bridger Photonics, Inc. Digitization systems and techniques and examples of use in FMCW LiDAR methods and apparatuses
US11604280B2 (en) 2017-10-02 2023-03-14 Bridger Photonics, Inc. Processing temporal segments of laser chirps and examples of use in FMCW LiDAR methods and apparatuses
US11921211B2 (en) 2017-10-17 2024-03-05 Bridger Photonics, Inc. Apparatuses and methods for a rotating optical reflector
US11592563B2 (en) 2017-10-17 2023-02-28 Bridger Photonics, Inc. Apparatuses and methods for a rotating optical reflector
US11112308B2 (en) 2017-11-14 2021-09-07 Bridger Photonics, Inc. Apparatuses and methods for anomalous gas concentration detection
US11692900B2 (en) 2017-11-14 2023-07-04 Bridger Photonics, Inc. Apparatuses and methods for anomalous gas concentration detection
JPWO2019186914A1 (ja) * 2018-03-29 2020-06-18 三菱電機株式会社 レーザレーダ装置
WO2019186914A1 (ja) * 2018-03-29 2019-10-03 三菱電機株式会社 レーザレーダ装置
JP2021531475A (ja) * 2018-05-10 2021-11-18 アワーズ テクノロジー リミテッド ライアビリティー カンパニー 同時の測距距離および速度測定のための、光変調器およびコヒーレント受信器に基づくlidarシステム
JP7169436B2 (ja) 2018-05-10 2022-11-10 アワーズ テクノロジー リミテッド ライアビリティー カンパニー 同時の測距距離および速度測定のための、光変調器およびコヒーレント受信器に基づくlidarシステム
JP2021526650A (ja) * 2018-05-10 2021-10-07 アワーズ テクノロジー リミテッド ライアビリティー カンパニー 標的環境の同時のビーム走査のための多チャネルレーザモジュールに基づくlidarシステム
JP7284808B2 (ja) 2018-05-10 2023-05-31 アワーズ テクノロジー リミテッド ライアビリティー カンパニー 標的環境の同時のビーム走査のための多チャネルレーザモジュールに基づくlidarシステム
JP2021523387A (ja) * 2018-05-10 2021-09-02 アワーズ・テクノロジー・インコーポレイテッド 同時の測距距離および速度測定のための、複数個のレーザおよびコヒーレント受信器の相補的変調に基づくlidarシステム
JP7274571B2 (ja) 2018-05-10 2023-05-16 アワーズ テクノロジー リミテッド ライアビリティー カンパニー 同時の測距距離および速度測定のための、複数個のレーザおよびコヒーレント受信器の相補的変調に基づくlidarシステム
JPWO2019239491A1 (ja) * 2018-06-12 2020-10-01 三菱電機株式会社 光測距装置及び加工装置
WO2020018805A1 (en) * 2018-07-18 2020-01-23 Bridger Photonics, Inc. Methods and apparatuses for range peak pairing and high-accuracy target tracking using fmcw ladar measurements
JP7070281B2 (ja) 2018-09-20 2022-05-18 日本製鉄株式会社 距離測定方法及び距離測定装置
JP2020046368A (ja) * 2018-09-20 2020-03-26 日本製鉄株式会社 距離測定方法及び距離測定装置
WO2021020242A1 (ja) * 2019-07-26 2021-02-04 株式会社SteraVision 距離及び速度測定装置
JPWO2021020242A1 (ja) * 2019-07-26 2021-02-04
JP7315154B2 (ja) 2019-07-26 2023-07-26 株式会社SteraVision 距離及び速度測定装置
CN110864621A (zh) * 2019-11-01 2020-03-06 西安工业大学 一种空分式多波长调频连续波激光干涉仪
US11578963B2 (en) 2020-03-13 2023-02-14 Omron Corporation Optical interference measurement apparatus
EP3879222A1 (en) 2020-03-13 2021-09-15 OMRON Corporation Optical interference measurement apparatus
CN111679284A (zh) * 2020-06-16 2020-09-18 中国计量大学 一种用于运动目标测量的双激光测距装置及方法
CN111679284B (zh) * 2020-06-16 2024-02-09 中国计量大学 一种用于运动目标测量的双激光测距装置及方法
WO2023171483A1 (ja) * 2022-03-08 2023-09-14 株式会社東京精密 形状測定装置及び形状測定方法

Also Published As

Publication number Publication date
JPWO2017187510A1 (ja) 2018-07-19
US20180224548A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2017187510A1 (ja) 距離計測装置、距離計測方法、及び形状計測装置
US11467282B2 (en) Chirped coherent laser radar system and method
EP2871493B1 (en) Position determination using synthetic wave laser ranging
US6493091B2 (en) Interference detecting apparatus and tomography apparatus
WO2017210000A1 (en) Coherent lidar system using tunable carrier-suppressed single-sideband modulation
JP5336921B2 (ja) 振動計測装置及び振動計測方法
JP2011522216A (ja) 対物距離計測方法及び装置
EP2871492B1 (en) Synthetic wave laser ranging sensors and methods
JP6303026B2 (ja) 計測方法および装置
JP2015094760A5 (ja)
US9798004B2 (en) Laser ranging sensors and methods that use a ladder of synthetic waves having increasing wavelengths to calculate a distance measurement
JP5412209B2 (ja) 光周波数領域反射測定方法及び光周波数領域反射測定装置
JP2018059789A (ja) 距離測定装置及び距離測定方法
JP7272327B2 (ja) 光ファイバ特性測定装置、光ファイバ特性測定プログラム、及び光ファイバ特性測定方法
JP2020008496A (ja) 距離測定装置、距離測定方法、及び立体形状測定装置
US11105926B2 (en) Phase difference frequency generating method, phase difference frequency generating device and electronic distance meter
WO2014045655A1 (ja) 距離計測方法および装置
JP6653052B2 (ja) レーザー測距装置およびレーザー測距方法
US20240004044A1 (en) Apparatus and method for measuring distant to and/or velocity of physical object
JP6554755B2 (ja) 振動計測装置及び振動計測方法
JP2006078446A (ja) 干渉測定方法および干渉測定装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018513983

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15751318

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900383

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16900383

Country of ref document: EP

Kind code of ref document: A1