WO2020189275A1 - 測距装置および測距方法 - Google Patents

測距装置および測距方法 Download PDF

Info

Publication number
WO2020189275A1
WO2020189275A1 PCT/JP2020/009103 JP2020009103W WO2020189275A1 WO 2020189275 A1 WO2020189275 A1 WO 2020189275A1 JP 2020009103 W JP2020009103 W JP 2020009103W WO 2020189275 A1 WO2020189275 A1 WO 2020189275A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
time
signal
distance
light
Prior art date
Application number
PCT/JP2020/009103
Other languages
English (en)
French (fr)
Inventor
上野 雅浩
勇一 赤毛
岡 宗一
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/439,118 priority Critical patent/US20220113416A1/en
Publication of WO2020189275A1 publication Critical patent/WO2020189275A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4915Time delay measurement, e.g. operational details for pixel components; Phase measurement

Definitions

  • the present invention relates to a distance measuring device and a distance measuring method, and more particularly to a flight time type distance measuring technique.
  • the TOF (Time of Flight) method has been known as a technique for measuring the distance to an object.
  • TOF-type distance measurement process ultrasonic waves are transmitted, the flight time until the ultrasonic waves are reflected by an object and returned is measured, and the distance to the object is calculated by multiplying by the speed of sound.
  • the technology to be derived is disclosed.
  • Non-Patent Document 1 there are two signals, a reference signal as a reference for measuring time and a detection signal obtained by converting ultrasonic waves reflected and returned by an object into an electric signal.
  • the time difference is calculated using the cross-correlation function. Therefore, the peak time of the cross-correlation function is the time difference between the two signals.
  • the measured distance L to the object to be measured is v ⁇ t / 2.
  • v is the speed of sound.
  • the distance measurement value L is c ⁇ t / 2.
  • c is the speed of light.
  • Non-Patent Document 2 discloses a technique of measuring a distance by a TOF method while scanning light one-dimensionally with an optical deflector.
  • the angle at which the light is emitted from the photodetector changes with time. Therefore, in order to measure the distance at a certain angle, the reference signal and the object are used as the reference signal centered on the time corresponding to that angle. It is necessary to extract a signal having a short time width from each of the two signals, that is, the detected signal of the reflected light that has been reflected and returned.
  • the time difference between the reference signal and the detection signal at the angle that is, the time is obtained from the cross-correlation of the two extracted signals, and the distance to the object is obtained from the time difference.
  • FIG. 7 shows an example using a conventional window function.
  • the solid line is the reference signal r and the detection signal s
  • the broken line is the time width
  • the alternate long and short dash line is the window function w
  • the dotted line is the reference signal after applying the window function.
  • the peaks of the reference signals r and rw and the peak times of the detection signals s and sw deviate, and as a result, the time differences ⁇ t and ⁇ tw between the two peaks are different.
  • the time difference ⁇ t between the reference signal r and the detection signal s cannot be measured accurately, and accurate distance measurement becomes difficult.
  • the present invention has been made to solve the above-mentioned problems, and provides a distance measuring device and a distance measuring method capable of measuring the distance to an object with high accuracy even when a window function is used. With the goal.
  • the ranging device has a first peak, which is a peak included in a first signal obtained by photoelectrically converting periodically intensity-modulated light output from a light source. From the first acquisition unit that detects the time of each first peak and acquires the time for each first peak, and from the second signal obtained by photoelectric conversion of the reflected light output from the light source and reflected by the object to be measured.
  • a second acquisition unit that acquires a second peak, which is a peak existing in a time range of one cycle of light intensity modulation of the light source centered on the time of the first peak, and a first window function having a peak.
  • the third signal obtained by processing the first signal with the first window function and the peak of the second window function having a peak are the second peak.
  • a first photodetector that detects the light output from one of the optical splitters, and the other of the optical splitters.
  • An optical system having an optical deflector that deflects the output light and emits it toward the object, and a second photodetector that detects the reflected light reflected by the object by the emitted light emitted from the optical deflector.
  • the first photodetector may output the first signal obtained by photoelectrically converting the detected light
  • the second photodetector may output the second signal obtained by photoelectrically converting the detected reflected light. Good.
  • the time information corresponding to the time of the first peak calculated by the distance calculation unit is converted into the information of the deflection angle by the optical deflector, and the deflection angle and the distance are obtained.
  • a time-angle conversion unit for outputting a deflection angle-distance signal associated with and may be further provided.
  • the distance measuring device may further include an interpolation unit that interpolates the distance to the object corresponding to the time of each first peak of the first signal calculated by the distance calculation unit. Good.
  • the distance calculation unit calculates a time difference indicating a time delay of the second signal with respect to the first signal at the time of the first peak by using the cross-correlation.
  • the distance calculation unit may calculate the distance to the object corresponding to the time for each of the first peaks of the first signal based on the calculated time difference.
  • the first window function and the second window function may have the same shape.
  • the first window function and the second window function may be any of a Gaussian window, a Han window, a Humming window, a Blackman window, and a generalized Humming window.
  • the distance measuring method is a first peak which is a peak included in a first signal obtained by photoelectric conversion of periodically intensity-modulated light output from a light source. From the first step of detecting the above and acquiring the time for each of the first peaks, and the second signal obtained by photoelectrically converting the reflected light output from the light source and reflected by the object to be measured. The second step of acquiring the second peak, which is a peak existing in the time range of one cycle of the light intensity modulation of the light source centered on the time of the first peak, and the peak of the first window function having the peak.
  • it includes a third step of calculating the distance to the object based on the mutual correlation with the fourth signal obtained by processing the second signal with the second window function.
  • the first signal is processed by the first window function in which the first peak contained in the first signal obtained by photoelectric conversion of the light from the periodically intensity-modulated light source and the peak are matched. Obtained by processing the second signal with the second window function that matches the second peak and peak of the second signal obtained by photoelectric conversion of the third signal obtained by the above and the reflected light reflected by the object to be measured. The mutual correlation with the 4th signal to be obtained is used. Therefore, even when the window function is used, the distance to the object can be measured with high accuracy.
  • FIG. 1 is a block diagram showing a configuration of a distance measuring device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a distance measuring unit according to the present embodiment.
  • FIG. 3 is a diagram for explaining the distance measuring process according to the present embodiment.
  • FIG. 4 is a block diagram showing an example of a computer configuration that realizes the signal processing device according to the present embodiment.
  • FIG. 5 is a flowchart illustrating a distance measuring method according to the present embodiment.
  • FIG. 6 is a flowchart illustrating the distance measuring process according to the present embodiment.
  • FIG. 7 is a diagram illustrating a distance measuring process according to a conventional example.
  • FIG. 1 is a block diagram showing a configuration of a distance measuring device 1 according to an embodiment of the present invention.
  • the distance measuring device 1 measures the distance from the distance measuring device 1 to the object 104 by the TOF method. More specifically, in the distance measuring device 1, the flight time from when the light is emitted from the coupler 101 until the reflected light reflected on the surface of the object 104 to be measured is received by the photodetectors PDs 106 and from the coupler 101. The difference in flight time from the time when the light is emitted to the time when the light is received by the photodetector PDr105 is measured, and the distance from the distance measuring device 1 to the object 104 is obtained.
  • the distance measuring device 1 includes a light source 100, a coupler 101, a circulator 102, an optical deflector 103, a photodetector (hereinafter referred to as “PDr”) 105, and a photodetector (hereinafter referred to as “PDs”) 106. , Analog-to-digital converter (ADC) 107, and signal processing device 108.
  • the coupler 101 is used as an optical turnout (optical splitter) that splits light.
  • the light source 100, the coupler 101, the circulator 102, the optical deflector 103, the PDr (first photodetector) 105, and the PDs (second photodetector) 106 constitute the optical system included in the distance measuring device 1.
  • the light source 100 emits light whose intensity is periodically modulated toward the object 104. Specifically, the light source 100 generates periodic intensity-modulated light such as a sine wave or a pulse signal. The light emitted from the light source 100 is incident on the light deflector 103 described later.
  • the coupler 101 divides the light emitted from the light source 100 into a reference optical path and an object optical path.
  • One of the lights separated by the coupler 101 is input to the PDr 105 on the reference optical path, and the other light is applied to the object 104 via the circulator 102 and the optical deflector 103 on the object optical path.
  • the PDr105 detects the light output from the light source 100 and converts it into a first reference signal (first signal) r1 which is an analog signal.
  • the obtained first reference signal r1 is input to channel 1 (CH1) of the ADC 107.
  • the circulator 102 separates light traveling in opposite directions on the optical path. More specifically, the circulator 102 separates the light emitted from the coupler 101 and applied to the object 104 and the light reflected from the object 104 and returned.
  • the light deflector 103 deflects the optical axis of the light incident from the light source 100 and emits it. More specifically, the light deflector 103 deflects and emits the light emitted from the light source 100 and incident through the coupler 101 and the circulator 102.
  • the light deflector 103 changing the optical axis of the incident light and emitting the light is referred to as "deflating the light”.
  • the light deflector 103 deflects the light from the light source 100 within a preset deflection angle range.
  • the optical deflector 103 for example, a galvanometer mirror, a polygon mirror, and a deflector using a KTN (potassium niobate tantalate) crystal can be used.
  • the deflection angle by the optical deflector 103 can be set to be within a desired deflection angle range by designing a mirror or controlling by a drive device (not shown) included in the optical deflector 103.
  • the light deflector 103 scans (spatial sweeps, that is, deflects) the space of the object 104 and its surroundings by deflecting and emitting the light from the light source 100, and the surface of the object 104 to be distance-measured. Reflect with. Each time the light deflector 103 scans the light from the light source 100 with the light emitted within the set deflection angle range, the reflected light from the object 104 is detected by PDs 106 described later.
  • PDs106 detects the reflected light from the object 104 via the circulator 102 and converts it into the first detection signal (second signal) s1 of the analog signal.
  • the obtained first detection signal s1 is input to channel 2 (CH2) of the ADC 107.
  • the ADC 107 has three channels, converts an analog input signal into a digital signal, and outputs the signal.
  • the digital signal converted and output by the ADC 107 for each channel is input to the signal processing device 108.
  • the analog first reference signal r1 input to the channel CH1 is converted into a digital second reference signal (first signal) r2 and input to the ranging unit 109 described later.
  • the first detection signal s1 input to the channel CH2 is also converted into a digital second detection signal (second signal) s2 and input to the ranging unit 109.
  • a first angle signal ⁇ 1 which is an analog signal indicating the deflection angle of the optical deflector 103 is input to the channel CH3, converted into a digital second angle signal ⁇ 2, and converted into a digital second angle signal ⁇ 2 to the time-angle conversion unit 110 described later. Entered.
  • the signal processing device 108 uses the digital signal from the ADC 107 as an input signal to calculate the distance from the distance measuring device 1 to the object 104 for each deflection angle. Specifically, the distance from the coupler 101 to the object 104 can be obtained.
  • the distance from the coupler 101 to the object 104 is, more specifically, from the optical path length of the coupler 101-circulator 102-optical deflector 103-object 104-optical deflector 103-circulator 102-PDs106 to the coupler 101-. It means 1/2 of the distance obtained by subtracting the optical path length of PDr105.
  • the signal processing device 108 includes a distance measuring unit 109, a time-angle conversion unit 110, and an interpolation unit 111.
  • the distance measuring unit 109 outputs distance data with respect to time based on the second reference signal r2 and the second detection signal s2 output from the ADC 107.
  • the distance measuring unit 109 acquires the time of the peak (first peak) of the second reference signal r2, and measures the distance from the distance measuring device 1 to the object 104 at that time.
  • the light deflector 103 measures the distance within the range of the angle at which the light is one-dimensionally deflected, it is conceivable to measure the distance at each finer angle.
  • the distance is measured for each peak of the second reference signal r2, and when the distance between the peaks is required, the interpolating unit 111 described later interpolates using the distance of the peak position. The more detailed distance from the distance measuring device 1 to the object 104 is obtained.
  • the distance measuring unit 109 includes a first acquisition unit 191 and a second acquisition unit 192, a time difference calculation unit 193, and a distance calculation unit 194.
  • the first acquisition unit 191 detects all the peaks included in the second reference signal r2 and acquires the time corresponding to those peaks.
  • the light output from the light source 100 is the light whose intensity is periodically modulated.
  • FIG. 3 shows time-series signals of the second reference signal r2 and the second detection signal s2, respectively, with the horizontal axis representing time and the vertical axis representing signal strength.
  • the second acquisition unit 192 acquires the peak (second peak) of the second detection signal s2 existing in the range of one cycle of the intensity modulation of the light source 100, centering on the peak time of the second reference signal r2.
  • the second obtaining section 192 as shown in FIG. 3, and the i-th peak p r of the second reference signal r2, the time t r of i, the i in the center, a range of ⁇ T source / 2 2
  • the peaks ps and i of the detection signal s2 are detected. Let t s and i be the times of the acquired peaks ps and i .
  • the time difference calculating unit 193 in the calculation of the time difference Delta] t i, a second reference signal r2 and the second detection signal s2 and treated with a window function w (t), a portion of the respective signal cut out. That is, when measuring the distance to the object 104 at the desired deflection angle, the window function w is the second reference signal r2 and the second detection signal s2 centered on the time corresponding to the desired deflection angle. A part of each signal is cut out using (t).
  • Time difference calculating unit 193 the cross-correlation function representing the temporal relationship between the second reference signal r2 taken a second detection signal s2 is calculated to the time the maximum value of the cross-correlation function to Delta] t i ..
  • the maximum value of the cross-correlation function is usually the peak.
  • the cross-correlation function R (t) can be obtained by the following equation (1) using the Fourier transform.
  • R (t) F -1 [S Sw ( ⁇ ) S Rw * ( ⁇ )] ⁇ ⁇ ⁇ (1)
  • F -1 [. ] Is the inverse Fourier transform
  • Sw (.) Is the Fourier transform result of the cut second detection signal s2
  • S Rw (.) Is the Fourier transform result of the cut second reference signal r2
  • is the signal frequency
  • * is Shows complex conjugate.
  • the time difference calculation unit 193 uses a window function having a single peak for each signal.
  • the window function is used to match the peak.
  • Figure 3 shows the i-th peak p r of the second reference signal r2, the time t r with i, an example of the distance measuring the distance in i.
  • the solid line in FIG. 3 shows the second reference signal r2 and the second detection signal s2, respectively.
  • the range indicated by the broken line perpendicular to the time axis indicated by the horizontal axis indicates the time range for searching the peak of the second detection signal s2.
  • the one-point chain line is the window function wr (t) and ws (t)
  • the dotted line is the second reference signal rw2 (third signal) and the window function after the window function wr (t) (first window function) is applied.
  • the second detection signal sw2 fourth signal after the application of ws (t) (second window function) is shown.
  • the window function wr (t) having a single peak is matched with the i-th peaks pr and i, and the window function wr (t) is set to the second. over the second reference signal r2, cut signal in the vicinity of the peak p r, i time t r, i of.
  • the window function ws (t) having a single peak is matched with the peaks ps and i existing in the searched time range.
  • the window function ws (t) is subjected to the second detection signal s2, the peak p s of the second detection signal s2, the time t s of i, the second detection signal s2 of the vicinity of the i cut.
  • the peak p r of the first obtaining section 191 obtains the time t r of i, based on i, it is to match the peak of the window function wr (t) peak p r of the second reference signal r2, to i it can.
  • the peak p s of the second detection signal s2 second obtaining section 192 has obtained, i and peak time t s, on the basis of i, the peak p s of the peak of the window function ws (t) second detection signal s2 , I can be matched.
  • the peak positions of the window functions wr (t) and ws (t) having peaks are matched with the peaks of the second reference signal r2 and the second detection signal s2 to perform window processing, and the second reference signal r2 and the second reference signal r2 and the second are used. 2 A part of the detection signal s2 is cut out.
  • the peak times of both the second reference signal r2 and the second detection signal s2 do not deviate before and after applying the window functions wr (t) and ws (t). Therefore, the time difference Delta] t i, can be output as the original time difference before placing a window function w (t). Therefore, the distance to the object 104 can also be calculated accurately.
  • the window function wr (t) used by the time difference calculation unit 193 for the second reference signal r2 and the window function ws (t) used for the second detection signal s2 may be window functions having the same shape.
  • the window functions wr (t) and ws (t) have a single peak, and have a shape in which the amplitude gradually decreases symmetrically around the peak.
  • Specific examples of the window function w (t) include a Gaussian window, a Hanning window (Han window), a Hamming window (Humming window), a Blackman window (Blackman window), and a generalized Hamming window.
  • window functions such as the Hanning window and the Blackman window
  • both ends of the signal after the window function is applied are zero, and the first-order differential coefficient is zero. Therefore, such window functions wr (t), ws ( By adopting a window function in which both ends of the signal multiplied by t) are not discontinuous, high frequency components generated due to the discontinuity at both ends of the signal are not generated, which is considered to be particularly useful.
  • Time - angle converter 110 the time calculated by the distance calculating section 194 - converted to - (Distance data deflection angle) a distance data L i, using the second angle signal .theta.2, the distance data corresponding to the deflection angle To do.
  • the optical deflector 103 outputs a first angle signal ⁇ 1 which is a time-varying signal of a voltage corresponding to an angle.
  • the first angle signal ⁇ 1 is input to the channel CH3 of the ADC 107 and converted into a discretized digital second angle signal ⁇ 2.
  • the intensity of the second angle signal ⁇ 2 corresponds to the deflection angle of the light output from the optical deflector 103. Therefore, for the same time, the intensity and time of the second angle signal .theta.2 - the distance of the distance data L i by the corresponding deflection angle - it is possible to obtain the distance data a.
  • a correspondence table between the intensity and the deflection angle of the second angle signal ⁇ 2 and a function (including an approximation function) showing the relationship between the second angle signal ⁇ 2 and the intensity and the deflection angle are converted in advance from time to angle. It is held in the unit 110. Then, the time-angle conversion unit 110 reads out the correspondence table and the function stored in advance, and associates the intensity of the second angle signal ⁇ 2 with the deflection angle.
  • the time - the distance data L i is the peak time t r of the second reference signal r2, since the distance data for each i, the deflection angle - distance data a the peak time t r of the second reference signal r2, It is the data corresponding to the deflection angle and the distance for each i .
  • the interpolation unit 111 outputs the deflection angle-distance data b obtained by interpolating between the peaks pr and i of the second reference signal r2 with respect to the deflection angle-distance data a output by the time-angle conversion unit 110.
  • the interpolation unit 111 obtains the deflection angle-distance data a in which the deflection angle at the deflection angle (time) included between the peaks of the second reference signal r2 and the time-distance data L are associated with each other by interpolation.
  • the interpolation unit 111 outputs distance data with respect to a more detailed deflection angle (time) included between the peaks of the second reference signal r2 as deflection angle-distance data b after interpolation.
  • the signal processing device 108 includes, for example, a computer including a processor 182, a main storage device 183, a communication interface 184, an auxiliary storage device 185, and an input / output device 186 connected via a bus 181. It can be realized by a program that controls the hardware resources of.
  • the display device 187 may be connected via the bus 181 and display the deflection angle-distance data b after interpolation on the display screen.
  • the optical systems of the ADC 107 and the distance measuring device 1 are connected via the bus 181 and the input / output device 186.
  • the main storage device 183 is realized by, for example, a semiconductor memory such as SRAM, DRAM, and ROM.
  • a program for the processor 182 to perform various controls and calculations is stored in the main storage device 183 in advance.
  • Each function of the signal processing device 108 including the conversion unit 110 and the interpolation unit 111 is realized. Further, the processor 182 and the main storage device 183 can set and control the optical system and the ADC 107.
  • the communication interface 184 is an interface circuit for communicating with various external electronic devices via the communication network NW.
  • the signal processing device 108 may send, for example, the deflection angle-distance data b after interpolation to the outside via the communication interface 184.
  • the communication interface 184 for example, an interface and an antenna compatible with wireless data communication standards such as LTE, 3G, wireless LAN, and Bluetooth (registered trademark) are used.
  • the communication network NW includes, for example, WAN (Wide Area Network), LAN (Local Area Network), the Internet, a dedicated line, a wireless base station, a provider, and the like.
  • the auxiliary storage device 185 is composed of a readable and writable storage medium and a drive device for reading and writing various information such as programs and data to the storage medium.
  • a semiconductor memory such as a hard disk or a flash memory can be used as the storage medium in the auxiliary storage device 185.
  • the auxiliary storage device 185 has a program storage area for storing a program for the signal processing device 108 to perform distance measurement processing, conversion processing, and interpolation processing. Further, the auxiliary storage device 185 may have, for example, a backup area for backing up the above-mentioned data, programs, and the like.
  • the auxiliary storage device 185 stores the correspondence table and the conversion curve used by the time-angle conversion unit 110 for the conversion process.
  • the main storage device 183 may store the correspondence table and the conversion curve used by the time-angle conversion unit 110 for the conversion process.
  • these correspondence tables and conversion curves may be read from the auxiliary storage device 185 to the main storage device 183 when the device is started, or a memory that stores these correspondence tables and conversion curves in the storage address space of the main storage device. May be mapped.
  • the input / output device 186 is composed of an I / O terminal that inputs a signal from an external device such as a display device 187 and outputs a signal to the external device.
  • the signal processing device 108 may be distributed not only by one computer but also by a plurality of computers connected to each other by a communication network NW.
  • the processor 182 may be realized by hardware such as FPGA (Field-Programmable Gate Array), LSI (Large Scale Integration), and ASIC (Application Special Integrated Circuit).
  • the light source 100 outputs periodically intensity-modulated light, for example, intensity-modulated light with a sine wave (step S1).
  • the light emitted from the light source 100 is divided into a reference optical path side and an object optical path side by the coupler 101.
  • the light on the reference optical path side is received by PDr105, photoelectrically converted, and the first reference signal r1 is output.
  • the light on the optical path side of the object is deflected by the optical deflector 103 via the circulator 102, and the object 104 and the space around it are scanned by the light (step S2).
  • Step S3 the first angle signal ⁇ 1 indicating the deflection angle at which the light deflector 103 deflects the light is input to the channel CH3 of the ADC 107.
  • the ADC 107 converts the analog signals input to the channels CH1, CH2, and CH3 into digital signals (step S4). More specifically, an analog first reference signal r1 is input to the channel CH1 of the ADC 107 and converted into a digital second reference signal r2. An analog first detection signal s1 based on the reflected light from the object 104 is input to the channel CH2 of the ADC 107, and is converted into a digital second detection signal s2. Further, the first angle signal ⁇ 1 is input to the channel CH3 of the ADC 107 and converted into a digital second angle signal ⁇ 2.
  • the distance measuring unit 109 obtains the distance to the object 104 based on the time difference between the second reference signal r2 and the second detection signal s2 (step S5). More specifically, the ranging unit 109 sets a part of the second reference signal r2 and the second detection signal s2 around the time corresponding to the deflection angle by the optical deflector 103 with the window function wr (t). Cut out using ws (t) respectively. The distance measuring unit 109 calculates the time difference between these two signals and obtains the distance from the time difference.
  • the first acquisition unit 191 detects all the peaks included in the second reference signal r2 and acquires the time corresponding to those peaks (step S50).
  • Initialize i (i 0) (step S51).
  • the first acquisition unit 191 increments i (adds 1 to i) (step S52). Then, the second obtaining section 192, i-th peak p r of the second reference signal r2, the time t r of i, around a i, the second detection signal is present in the time range of ⁇ T source / 2 s2 The peaks ps and i of (step S53) are acquired.
  • the time difference calculating section 193, i-th peak p r of the second reference signal r2, peak at i time t r, i and a peak p s of the second detection signal s2 is detected, i time t s of .
  • the time difference calculating section 193 calculates the cross-correlation function R (t) of formula (1) described above, R (t) is the time difference Delta] t i the time the maximum value. Further, when the time difference calculation unit 193 cuts out the signals in the vicinity of the peak times tr, i , t s, and i of the second reference signal r2 and the second detection signal s2 , the window such as the Hanning window or the Blackman window.
  • the functions wr (t) and ws (t) can be used, respectively.
  • the time difference calculation unit 193 can use a window function wr (t) designed to have a peak matching the peaks pr and i of the second reference signal r2 based on the peak times tr and i . Further, the time difference calculating section 193, peak time t s, based on the i, be used peak p s of the second detection signal s2, the window function is designed so as to have a peak consistent with i ws (t) it can.
  • the distance calculation unit 194 calculates the distance L i to the object 104 from the time difference Delta] t i calculated in step S54 (step S55). More particularly, multiplied by the speed of light c in the time difference Delta] t i, further i th peak p r of the second reference signal r2 divided by 2, i time t r of the time in the i - calculating the distance data L i.
  • the distance calculation unit 194 all peaks p r included in the second reference signal r2, the time t r of i, until the calculated distance to the object 104 at i (Step S56: NO), the distance measuring section 109 repeats steps S52 to S55.
  • the time - the angle converter 110 a time - converted to distance data a - the distance data L i, the deflection angle with a second angle signal ⁇ 2 indicating the deflection angle of the optical deflector 103 (Step S6).
  • the time-angle conversion unit 110 may use a correspondence table between the intensity of the second angle signal ⁇ 2 and the deflection angle stored in advance in a predetermined area of the auxiliary storage device 185 or the main storage device 183. it can.
  • the time-angle conversion unit 110 reads out a function indicating the relationship between the second angle signal ⁇ 2, the intensity, and the deflection angle stored in the auxiliary storage device 185 or the main storage device 183, and converts the time information into the deflection angle.
  • the converted deflection angle-distance data a can be output.
  • the interpolation unit 111, the peak time t r of the second reference signal r2, the time of each i - distance the deflection angle corresponding to the data L i - the distance data a, the data between the peaks of the second reference signal r2 Interpolate step S7.
  • the interpolated deflection angle-distance data b is output (step S8).
  • the display device 187 can display the interpolated deflection angle-distance data b, or the interpolated deflection angle-distance data b can be transmitted to an external terminal device via the communication network NW.
  • the distance measuring device 1 has a window function having a peak matching the peak of the second reference signal r2 and a peak matching the peak of the second detection signal s2. A part of the two signals is cut out using each of the window functions, and the distance to the object 104 is calculated using the cross-correlation of these two signals. Therefore, even when the window function is applied to two signals, the time difference between the two signals can be calculated accurately, and as a result, the distance to the object can be measured with high accuracy.
  • the distance measuring device 1 since the distance measuring device 1 according to the present embodiment interpolates the distance data between the peaks of the reference signal, the distance to the object can be measured with higher accuracy.
  • the interpolation unit 111 performs the interpolation processing.
  • the interpolation process may be executed before the conversion process by the time-angle conversion unit 110.
  • the interpolation unit 111 the time - Distance performs interpolation between the peaks of the second reference signal r2 based on the data L i, then, the time - the angle conversion unit 110 will convert the time to the deflection angle ..
  • the peak time of the second reference signal r2 acquired by the distance measuring unit 109 cannot be used as it is for the time information required by the time-angle conversion unit 110. This is because the number of distances obtained by the distance measuring unit 109 (equal to the number of peak times obtained by the first acquisition unit 191) is different from the number of distances output from the interpolating unit 111. Therefore, in the interpolation unit 111, the peak time of the second reference signal r2 acquired by the distance measuring unit 109 is used to calculate the time corresponding to the distance information obtained by the interpolation, and the time-angle conversion unit uses that time. At 110, the time is converted into an angle.
  • the second angle signal ⁇ 2 Since the time interval between the peaks of the second reference signal r2 interpolated by the interpolation unit 111 and the time interval of the second angle signal ⁇ 2 do not match, the time of each data of the time-distance data after interpolation and the time of the second If the time of each data of the two-angle signal ⁇ 2 does not match, the second angle signal ⁇ 2 is complemented. Thereby, by obtaining the second angle signal ⁇ 2 at the time of the angle corresponding to the time of the time-distance data after interpolation, the deflection angle of each time of the time-distance data after interpolation can be obtained.
  • the light output from the light source 100 is periodically intensity-modulated light such as a sine wave and not wavelength-swept light
  • the light source 100 may be a wavelength sweep light source having a periodic intensity modulation function.
  • the optical deflector 103 uses a passive optical element such as a transmission type or reflection type diffraction grating or a prism made of a material having a large refractive index dispersion.
  • the light source 100 may be a wavelength sweep light source having a periodic intensity modulation function, or a known spatial light modulator may be used for the light deflector 103.
  • the lattice constant of the diffraction grating is deflected within a desired angle range according to the wavelength of the light of the light source 100, the maximum distance required for measurement, the size of the distance measuring device 1, and the like.
  • a material having the refractive index and its wavelength dispersion can be selected so as to deflect at a desired angle as well.
  • the first angle signal ⁇ 1 is configured to be linked to the wavelength of the light output from the light source 100.
  • the advantage of using the light source 100 as a wavelength sweep light source having a periodic intensity modulation function and the light deflector 103 as a passive optical element such as a diffraction grating or a prism is that the light deflector 103 requires parts that require mechanical operation. It is to disappear. From this, for example, when the optical system included in the distance measuring device 1 is separated into the optical deflector 103 and the other parts, the deflector is used as a probe, the other part is used as a main body, and the probe and the main body are connected by an optical fiber. Since it can be miniaturized, it can be installed in a narrow place or the like, or a person can easily carry the probe part for measurement. In addition, since the probe has no mechanical parts, it has high resistance to vibration of the probe. Therefore, by separating the main body from the probe and retracting the main body to a place where vibration is slow, even in an environment with severe vibration. It can be measured accurately.
  • ranging device 100 ... light source, 101 ... coupler, 102 ... circulator, 103 ... optical deflector, 104 ... object, 105 ... photodetector PDr, 106 ... photodetector PDs, 107 ... ADC, 108 ... signal processor, 109 ... Distance measuring unit, 110 ... time-angle conversion unit, 111 ... interpolation unit, 181 ... bus, 182 ... processor, 183 ... main storage device, 184 ... communication interface, 185 ... auxiliary storage device, 186 ... input / output device, 187 ... Display device, 191 ... 1st acquisition unit, 192 ... 2nd acquisition unit, 193 ... time difference calculation unit, 194 ... distance calculation unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

窓関数を用いた場合でも、物体までの距離を高精度に測定することができる測距装置および測距方法を提供することを目的とする。 測距装置1は、光源100からの周期的に強度変調された光を光電変換して得られる第2参照信号r2に含まれるピークpr,iごとの時刻tr,iを取得する第1取得部191と、光源100からの光が物体104で反射した反射光を光電変換して得られる第2検出信号s2から、時刻tr,iを中心とした±Tsource/2の範囲に存在するピークps,iを取得する第2取得部192と、窓関数のピークをピークpr,iと一致させて第2参照信号r2を処理して得られる信号rw2と、窓関数のピークをピークps,iと一致させて第2検出信号s2を処理して得られる信号sw2との相互相関に基づいて、物体104までの距離を算出する距離算出部194とを備える。

Description

測距装置および測距方法
 本発明は、測距装置および測距方法に関し、特に、飛行時間方式の測距技術に関する。
 従来から、物体との距離を測定する技術としてTOF(Time of Flight:飛行時間)方式が知られている。例えば、非特許文献1は、TOF方式の測距処理として、超音波を送信し、その超音波が物体に反射して戻るまでの飛行時間を測定し、音速を乗じることで物体との距離を導出する技術を開示している。
 非特許文献1に記載のTOF方式の測距技術では、時間を測定する基準となる参照信号と、物体で反射して返ってきた超音波を電気信号に変換した検出信号との2つの信号の時間差を、相互相関関数を用いて求めている。そのため、相互相関関数のピークの時間が2つの信号の時間差となる。
 参照信号および検出信号の2つの信号の時間差をΔtと表すと、測定対象の物体までの距離測定値LはvΔt/2となる。ここで、vは音速である。非特許文献1では超音波を使用しているが、これを光に置き換えても同様である。この場合、距離測定値LはcΔt/2となる。ここで、cは光速である。
 非特許文献2には、光偏向器で光を1次元スキャンしながら、TOF方式で測距する技術が開示されている。この場合、光は時間的に光偏向器から出射される角度が変わるので、ある角度における測距を行うためには、その角度に相当する時刻を中心として、基準とする参照信号と、物体を反射して戻ってきた反射光の検出信号との2つの信号のそれぞれから短時間の時間幅の信号を取り出す必要がある。測距は、それらの取り出された2つの信号の相互相関から、その角度すなわち時刻における参照信号と検出信号との時間差を求め、その時間差から物体までの距離を求めることになる。
 このように、参照信号や検出信号のような時系列信号から短時間の時間幅の信号を取り出すときには、窓関数を使用することが考えられる。従来の技術では、信号を取り出す時間幅の中心をピークとして設計された時間窓を使用するため、窓関数を信号にかける前と後の参照信号および検出信号それぞれのピーク位置が異なる場合があった。
 図7は従来の窓関数を使用した例を示したもので、実線は参照信号rおよび検出信号s、破線は時間幅、一点鎖線は窓関数w、点線は窓関数をかけた後の参照信号rwおよび検出信号swを表す。窓関数をかける前後で参照信号r、rwのピークと検出信号s、swのピーク時刻がずれ、その結果、両ピーク間の時間差Δt、Δtwが異なっている。その結果、参照信号rと検出信号sとの時間差Δtが正確に測定できず、正確な測距が困難となってしまう問題があった。
平田慎之介、黒澤実、片桐崇、1ビット信号処理による相互相関処理を用いた超音波距離計測実験、電子情報通信学会、技術報告US2007-117、pp.49-54、2008年2月 小平徹、八木生剛、藤浦和夫、森治郎、渡邊武士、「波長掃引技術を応用した光掃引方式位置計測システム」、光技術コンタクト、55巻、8号、pp.18-27、2017年08月20日発行
 本発明は、上述した課題を解決するためになされたものであり、窓関数を用いた場合でも、物体までの距離を高精度に測定することができる測距装置および測距方法を提供することを目的とする。
 上述した課題を解決するために、本発明に係る測距装置は、光源から出力された周期的に強度変調された光を光電変換して得られる第1信号に含まれるピークである第1ピークを検出し、前記第1ピークごとの時刻を取得する第1取得部と、前記光源から出力された前記光が測定対象の物体で反射した反射光を光電変換して得られる第2信号から、前記第1ピークの前記時刻を中心とした前記光源の光の強度変調の1周期の時間範囲に存在するピークである第2ピークを取得する第2取得部と、ピークを有する第1窓関数の前記ピークを前記第1ピークと一致させた状態で、前記第1窓関数で前記第1信号を処理して得られる第3信号と、ピークを有する第2窓関数の前記ピークを前記第2ピークと一致させた状態で、第2窓関数で前記第2信号を処理して得られる第4信号との相互相関に基づいて、前記物体までの距離を算出する距離算出部とを備える。
 また、本発明に係る測距装置において、前記光源の光を2つに分岐する光スプリッタと、前記光スプリッタの一方から出力された前記光を検出する第1フォトディテクタと、前記光スプリッタの他方から出力された前記光を偏向して前記物体に向けて出射する光偏向器と、前記光偏向器から出射された出射光が前記物体で反射した反射光を検出する第2フォトディテクタとを有する光学系をさらに備え、前記第1フォトディテクタは、検出した前記光を光電変換した前記第1信号を出力し、前記第2フォトディテクタは、検出した前記反射光を光電変換した前記第2信号を出力してもよい。
 また、本発明に係る測距装置において、前記距離算出部によって算出された前記第1ピークの前記時刻に対応する時間情報を、前記光偏向器による偏向角度の情報に変換し、偏向角度と距離とが対応付けられた偏向角-距離信号を出力する時間-角度変換部をさらに備えていてもよい。
 また、本発明に係る測距装置において、前記距離算出部が算出した前記第1信号の前記第1ピークごとの前記時刻に対応する前記物体までの距離を補間する補間部をさらに備えていてもよい。
 また、本発明に係る測距装置において、前記距離算出部は、前記相互相関を用いて前記第1ピークの前記時刻での前記第1信号に対する前記第2信号の時間の遅れを示す時間差を算出する時間差算出部を備え、前記距離算出部は、算出された前記時間差に基づいて、前記第1信号の前記第1ピークごとの前記時刻に対応する前記物体までの距離を算出してもよい。
 また、本発明に係る測距装置において、前記第1窓関数および前記第2窓関数は同一の形状であってもよい。
 また、本発明に係る測距装置において、第1窓関数および前記第2窓関数は、ガウス窓、ハン窓、ハミング窓、ブラックマン窓、および一般化ハミング窓のいずれかであってもよい。
 上述した課題を解決するために、本発明に係る測距方法は、光源から出力された周期的に強度変調された光を光電変換して得られる第1信号に含まれるピークである第1ピークを検出し、前記第1ピークごとの時刻を取得する第1ステップと、前記光源から出力された前記光が測定対象の物体で反射した反射光を光電変換して得られる第2信号から、前記第1ピークの前記時刻を中心とした前記光源の光の強度変調の1周期の時間範囲に存在するピークである第2ピークを取得する第2ステップと、ピークを有する第1窓関数の前記ピークを前記第1ピークと一致させた状態で、前記第1窓関数で前記第1信号を処理して得られる第3信号と、ピークを有する第2窓関数の前記ピークを前記第2ピークと一致させた状態で、第2窓関数で前記第2信号を処理して得られる第4信号との相互相関に基づいて、前記物体までの距離を算出する第3ステップとを備える。
 本発明によれば、周期的に強度変調された光源からの光が光電変換されて得られる第1信号に含まれる第1ピークとピークを一致させた第1窓関数で第1信号を処理して得られる第3信号と、測定対象の物体で反射した反射光が光電変換されて得られる第2信号の第2ピークとピークを一致させた第2窓関数で第2信号を処理して得られる第4信号との相互相関を用いる。そのため、窓関数を用いた場合でも、物体までの距離を高精度に測定することができる。
図1は、本発明の実施の形態に係る測距装置の構成を示すブロック図である。 図2は、本実施の形態に係る測距部の構成を示すブロック図である。 図3は、本実施の形態に係る測距処理を説明するための図である。 図4は、本実施の形態に係る信号処理装置を実現するコンピュータ構成の一例を示すブロック図である。 図5は、本実施の形態に係る測距方法を説明するフローチャートである。 図6は、本実施の形態に係る測距処理を説明するフローチャートである。 図7は、従来例に係る測距処理を説明する図である。
 以下、本発明の好適な実施の形態について、図1から図6を参照して詳細に説明する。
 図1は、本発明の実施の形態に係る測距装置1の構成を示すブロック図である。本実施の形態に係る測距装置1は、図1に示すように、TOF方式により、測距装置1から物体104までの距離を測定する。より詳細には、測距装置1は、カプラ101から光が出射されてから、測距対象の物体104の表面を反射した反射光がフォトディテクタPDs106で受光されるまでの飛行時間と、カプラ101から出射されてからフォトディテクタPDr105で受光されるまでの飛行時間の差を測定し、測距装置1から物体104までの距離を求める。
 図1に示すように、測距装置1は、光源100、カプラ101、サーキュレータ102、光偏向器103、フォトディテクタ(以下、「PDr」という。)105、フォトディテクタ(以下、「PDs」という。)106、アナログ-ディジタル変換器(ADC)107、および信号処理装置108を備える。カプラ101は光を分岐(スプリット)する光分岐器(光スプリッタ)として使用するものである。
 光源100、カプラ101、サーキュレータ102、光偏向器103、PDr(第1フォトディテクタ)105、およびPDs(第2フォトディテクタ)106は、測距装置1が備える光学系を構成する。
 光源100は、周期的に強度変調された光を物体104に向けて出射する。具体的には、光源100は、正弦波やパルス信号などの周期的に強度変調された光を発生させる。光源100から出射される光は後述の光偏向器103に入射される。
 カプラ101は、光源100から出射された光を参照光路と物体光路とに分ける。カプラ101によって分けられた光の一方は、参照光路上のPDr105に入力され、他方の光は物体光路上のサーキュレータ102および光偏向器103を介して物体104に照射される。
 PDr105は、光源100から出力された光を検出し、アナログ信号である第1参照信号(第1信号)r1に変換する。得られた第1参照信号r1は、ADC107のチャネル1(CH1)に入力される。
 サーキュレータ102は、光路上で互いに反対方向に進む光を分離する。より詳細には、サーキュレータ102は、カプラ101から出射され物体104に照射される光と、物体104を反射して戻ってきた光とを分離する。
 光偏向器103は、光源100から入射される光の光軸を偏向して出射する。より詳細には、光偏向器103は、光源100から出射され、カプラ101およびサーキュレータ102を介して入射される光を偏向して出射する。以下、光偏向器103が入射される光の光軸を変化させて出射することを「光を偏向する」ということとする。
 光偏向器103は、予め設定された偏向角度の範囲で光源100からの光を偏向する。光偏向器103としては、例えば、ガルバノミラー、ポリゴンミラー、KTN(タンタル酸ニオブ酸カリウム)結晶を用いた偏向器を用いることができる。光偏向器103による偏向角度は、ミラーの設計や光偏向器103が備える図示されない駆動装置による制御により所望の偏向角度の範囲となるように設定することができる。
 光偏向器103は、光源100からの光を偏向して出射することによって、物体104およびその周辺の空間をスキャン(空間的に掃引、つまり、偏向)して、測距対象の物体104の表面で反射させる。光偏向器103が、光源100からの光を設定された偏向角度の範囲内で出射した光でスキャンする毎に、物体104からの反射光が後述のPDs106で検出される。
 PDs106は、物体104からの反射光をサーキュレータ102を介して検出し、アナログ信号の第1検出信号(第2信号)s1に変換する。得られた第1検出信号s1は、ADC107のチャネル2(CH2)に入力される。
 ADC107は、3つのチャネルを備え、アナログの入力信号をディジタル信号に変換して出力する。ADC107がチャネルごとに変換して出力するディジタル信号は、信号処理装置108に入力される。チャネルCH1に入力されたアナログの第1参照信号r1は、ディジタルの第2参照信号(第1信号)r2に変換され、後述の測距部109に入力される。チャネルCH2に入力された第1検出信号s1についても、ディジタルの第2検出信号(第2信号)s2に変換され、測距部109に入力される。また、チャネルCH3には、光偏向器103の偏向角度を示すアナログ信号である第1角度信号θ1が入力され、ディジタルの第2角度信号θ2に変換されて、後述の時間-角度変換部110に入力される。
 図1に示すように、信号処理装置108は、ADC107からのディジタル信号を入力信号として、偏向角ごとの測距装置1から物体104までの距離を算出する。具体的には、カプラ101を起点とした物体104までの距離を求めることができる。カプラ101を起点とした物体104までの距離とは、より詳細には、カプラ101-サーキュレータ102-光偏向器103-物体104-光偏向器103-サーキュレータ102-PDs106の光路長から、カプラ101-PDr105の光路長を引いた距離の1/2をいう。
 信号処理装置108は、測距部109、時間-角度変換部110、および補間部111を備える。
 測距部109は、ADC107から出力される第2参照信号r2および第2検出信号s2に基づいて、時間に対する距離データを出力する。測距部109は、第2参照信号r2のピーク(第1ピーク)の時刻を取得すると共に、その時刻における測距装置1から物体104までの距離を測距する。光偏向器103によって、1次元的に光が偏向する角度の範囲で測距する場合には、より細かい角度ごとに測距することが考えられる。本実施の形態では、第2参照信号r2のピークごとに測距を行うこととし、ピーク間の距離が必要な場合には、後述の補間部111にて、ピーク位置の距離を使って補間して測距装置1から物体104までのより詳細な距離を求める。
 測距部109は、図2に示すように、第1取得部191、第2取得部192、時間差算出部193、および距離算出部194を備える。
 第1取得部191は、第2参照信号r2に含まれる全てのピークを検出して、それらのピークに対応する時刻を取得する。前述したように、光源100から出力される光は、周期的に強度変調された光である。光源100における光の強度変調の周期をTsource、周波数をfsource(=1/Tsource)とする。
 例えば、図3の上段に示すように、第1取得部191は、第2参照信号r2に含まれる全てのピークpr,i(i=0,1,・・・)を検出する。図3は、第2参照信号r2および第2検出信号s2それぞれの時系列信号であり、横軸は時間、縦軸は信号の強度を示している。
 第2取得部192は、第2参照信号r2のピークの時刻を中心にして、光源100の強度変調の1周期の範囲に存在する第2検出信号s2のピーク(第2ピーク)を取得する。例えば、第2取得部192は、図3に示すように、第2参照信号r2のi番目のピークpr,iの時刻tr,iを中心にして、±Tsource/2の範囲で第2検出信号s2のピークps,iを検出する。取得されたピークps,iの時刻をts,iとする。
 時間差算出部193は、第2参照信号r2のピーク時刻tr,iにおける第2参照信号r2に対する第2検出信号s2の時間の遅れを算出する。つまり、図3に示すように、第2参照信号r2のピークpr,iの時刻tr,iを基準とした第2検出信号s2のピークps,iの時刻ts,iとの時間差Δt(=ts,i-tr,i)を算出する。
 より詳細には、時間差算出部193は、上記時間差Δtの算出において、第2参照信号r2と第2検出信号s2とを窓関数w(t)で処理して、それぞれの信号の一部を切り取る。すなわち、所望とされる偏向角における物体104までの測距を行うにあたり、その所望とされる偏向角度に相当する時刻を中心にして第2参照信号r2と第2検出信号s2とを窓関数w(t)を用いてそれぞれの信号の一部を切り取る。
 時間差算出部193は、切り取った第2参照信号r2と第2検出信号s2との時間的な関係性を表す相互相関関数を計算して、相互相関関数の最大値となる時間をΔtとする。相互相関関数の最大値は、通常ピークとなる。
 相互相関関数R(t)は、フーリエ変換を用いて次式(1)により求めることができる。
R(t)=F-1[SSw(ν)SRw (ν)]   ・・・(1)
 ただし、F-1[.]は逆フーリエ変換、SSw(.)は切り取った第2検出信号s2のフーリエ変換結果、SRw(.)は切り取った第2参照信号r2のフーリエ変換結果、νは信号の周波数、*は複素共役を示す。
 時間差算出部193は、上式(1)を用いる際に第2参照信号r2と第2検出信号s2のそれぞれから信号の一部を切り取るにあたり、単一のピークを有する窓関数をそれぞれの信号のピークと一致させて窓関数による処理を行う。例えば、図3は、第2参照信号r2のi番目のピークpr,iのある時刻tr,iにおける距離を測距する例を示している。
 図3の実線は、第2参照信号r2、および第2検出信号s2をそれぞれ示している。横軸が示す時間軸に垂直な破線で示される範囲は、第2検出信号s2のピークをサーチする時間範囲を示している。また、一点鎖線は窓関数wr(t)、ws(t)、点線は、窓関数wr(t)(第1窓関数)をかけた後の第2参照信号rw2(第3信号)、窓関数ws(t)(第2窓関数)をかけた後の第2検出信号sw2(第4信号)をそれぞれ示している。
 第2参照信号r2に関しては、図3の上段に示すように、単一のピークを有する窓関数wr(t)をi番目のピークpr,iと一致させて窓関数wr(t)を第2参照信号r2にかけて、ピークpr,iの時刻tr,iの近傍の信号を切り取る。また、第2検出信号s2に関しては、図3の下段に示すように、単一のピークを有する窓関数ws(t)を、サーチした時間範囲に存在するピークps,iと一致させる。そして、その窓関数ws(t)を第2検出信号s2にかけて、第2検出信号s2のピークps,iの時刻ts,iの近傍の第2検出信号s2を切り取る。
 例えば、第1取得部191が取得したピークpr,iの時刻tr,iに基づいて、窓関数wr(t)のピークを第2参照信号r2のピークpr,iに一致させることができる。また、第2取得部192が取得した第2検出信号s2のピークps,iおよびピーク時刻ts,iに基づいて、窓関数ws(t)のピークを第2検出信号s2のピークps,iに一致させることができる。
 このようにピークを有する窓関数wr(t)、ws(t)のピーク位置を第2参照信号r2および第2検出信号s2のピークと一致させて窓処理を行い、第2参照信号r2および第2検出信号s2の一部をそれぞれ切り取る。これにより、第2参照信号r2も第2検出信号s2もピークの時刻が窓関数wr(t)、ws(t)をかける前後でずれないことになる。そのため、時間差Δtを、窓関数w(t)をかける前の本来の時間差として出力することができる。したがって、物体104までの距離も正確に算出することができる。
 時間差算出部193が第2参照信号r2に用いる窓関数wr(t)と第2検出信号s2に用いる窓関数ws(t)とは、同じ形状の窓関数であってもよい。窓関数wr(t)、ws(t)は、単一のピークを有し、そのピークを中心として左右対称になだらかに振幅が小さくなる形状を有する。窓関数w(t)の具体例として、ガウス窓、Hanning窓(ハン窓)、Hamming窓(ハミング窓)、Blackman窓(ブラックマン窓)、一般化Hamming窓などが挙げられる。特に、Hanning窓やBlackman窓などの窓関数は、窓関数をかけた後の信号の両端がゼロ、かつ、1次微分係数がゼロとなるので、そのような窓関数wr(t)、ws(t)をかけた信号の両端が不連続にならない窓関数を採用することで、信号の両端が不連続になることが原因で発生する高周波成分が生じなくなるので、特に有用であると考えられる。
 距離算出部194は、第2参照信号r2のピークpr,iごとの時刻tr,iに対応する物体104までの距離Lを算出する。具体的には、距離算出部194は、時間差算出部193が算出した時間差Δtに基づいて、物体104までの距離Lを算出する。距離算出部194は、L=cΔt/2を用いて時間と対応付けられた距離である時刻-距離データLを算出することができる。
 時間-角度変換部110は、距離算出部194によって算出された時刻-距離データLを、第2角度信号θ2を用いて、偏向角に対応する距離データ(偏向角-距離データ)aに変換する。
 より詳細に説明すると、光偏向器103は、角度に対応する電圧の時間変動信号である第1角度信号θ1を出力する。前述したように、第1角度信号θ1は、ADC107のチャネルCH3に入力され、離散化されたディジタルの第2角度信号θ2に変換される。第2角度信号θ2の強度と光偏向器103から出力される光の偏向角度は対応している。そのため、同じ時刻に対して、第2角度信号θ2の強度と時刻-距離データLの距離を対応させることにより、偏向角-距離データaを求めることができる。
 そのためには、例えば、第2角度信号θ2の強度と偏向角との対応表や、第2角度信号θ2と強度と偏向角との関係を示す関数(近似関数を含む)を予め時間-角度変換部110に保持しておく。そして、時間-角度変換部110は、予め記憶されている対応表や関数などを読み出して、第2角度信号θ2の強度と偏向角とを対応付ける。
 このように、時刻-距離データLは、第2参照信号r2のピーク時刻tr,iごとの距離データであるため、偏向角-距離データaも第2参照信号r2のピーク時刻tr,iごとの偏向角と距離とを対応させたデータである。
 補間部111は、時間-角度変換部110によって出力された偏向角-距離データaに対して、第2参照信号r2のピークpr,i間を補間した偏向角-距離データbを出力する。補間部111は、第2参照信号r2のピーク間に含まれる偏向角度(時刻)における偏向角と時刻-距離データLとが対応付けられた偏向角-距離データaを補間により求める。補間部111は、第2参照信号r2のピークとピークとの間に含まれる、より詳細な偏向角(時刻)に対する距離のデータを補間後の偏向角-距離データbとして出力する。このように、補間部111を設けることにより、時間的(角度的)により密な距離を示すデータを求めることができる。
 [信号処理装置のハードウェア構成]
 次に、上述した機能を有する信号処理装置108のハードウェア構成の一例について図4を参照して説明する。
 図4に示すように、信号処理装置108は、例えば、バス181を介して接続されるプロセッサ182、主記憶装置183、通信インターフェース184、補助記憶装置185、入出力装置186を備えるコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。信号処理装置108は、例えば、表示装置187がバス181を介して接続され、表示画面に補間後の偏向角-距離データbなどを表示してもよい。また、ADC107や測距装置1の光学系が、バス181や入出力装置186を介して接続されている。
 主記憶装置183は、例えば、SRAM、DRAM、およびROMなどの半導体メモリによって実現される。主記憶装置183には、プロセッサ182が各種制御や演算を行うためのプログラムが予め格納されている。プロセッサ182と主記憶装置183とによって、図1および図2に示した第1取得部191、第2取得部192、時間差算出部193、および距離算出部194を含む測距部109、時間-角度変換部110、および補間部111を含む信号処理装置108の各機能が実現される。また、プロセッサ182と主記憶装置183とによって、光学系やADC107の設定や制御を行うことができる。
 通信インターフェース184は、通信ネットワークNWを介して各種外部電子機器との通信を行うためのインターフェース回路である。信号処理装置108は、通信インターフェース184を介して、例えば外部に補間後の偏向角-距離データbなどを送出してもよい。
 通信インターフェース184としては、例えば、LTE、3G、無線LAN、Bluetooth(登録商標)などの無線データ通信規格に対応したインターフェースおよびアンテナが用いられる。通信ネットワークNWは、例えば、WAN(Wide Area Network)やLAN(Local Area Network)、インターネット、専用回線、無線基地局、プロバイダなどを含む。
 補助記憶装置185は、読み書き可能な記憶媒体と、その記憶媒体に対してプログラムやデータなどの各種情報を読み書きするための駆動装置とで構成されている。補助記憶装置185には、記憶媒体としてハードディスクやフラッシュメモリなどの半導体メモリを使用することができる。
 補助記憶装置185は、信号処理装置108が測距処理、変換処理、および補間処理を行うためのプログラムを格納するプログラム格納領域を有する。さらには、補助記憶装置185は、例えば、上述したデータやプログラムなどをバックアップするためのバックアップ領域などを有していてもよい。
 補助記憶装置185は、時間-角度変換部110が変換処理に用いる対応表や変換曲線を記憶している。あるいは、主記憶装置183に時間-角度変換部110が変換処理に用いる対応表や変換曲線を記憶しておいてもよい。この場合、装置の起動時に補助記憶装置185から主記憶装置183にこれらの対応表や変換曲線を読み出しても良いし、主記憶装置の記憶アドレス空間にこれらの対応表や変換曲線を記憶したメモリをマップしても良い。
 入出力装置186は、表示装置187など外部機器からの信号を入力したり、外部機器へ信号を出力したりするI/O端子により構成される。
 なお、信号処理装置108は、1つのコンピュータによって実現される場合だけでなく、互いに通信ネットワークNWで接続された複数のコンピュータによって分散されていてもよい。また、プロセッサ182は、FPGA(Field-Programmable Gate Array)、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)等のハードウェアによって実現されていてもよい。
 [測距装置の動作]
 次に、本実施の形態に係る測距装置1の動作について、図5および図6のフローチャートを参照して説明する。
 まず、光源100から、周期的に強度変調された光、例えば、正弦波で強度変調された光が出力される(ステップS1)。光源100から出射された光は、カプラ101によって参照光路側と物体光路側とに分けられる。参照光路側の光は、PDr105で受光され、光電変換されて第1参照信号r1が出力される。一方、物体光路側の光は、サーキュレータ102を介して、光偏向器103によって偏向され、物体104およびその周辺の空間が光でスキャンされる(ステップS2)。
 次に、光偏向器103によって偏向された光が空間内を1回スキャンするなかで、物体104に光が照射され、反射光が光偏向器103およびサーキュレータ102を介して、PDs106で検出される(ステップS3)。また、光偏向器103が光を偏向する偏向角度を示す第1角度信号θ1は、ADC107のチャネルCH3に入力される。
 その後、ADC107は、チャネルCH1、CH2、およびCH3に入力されるアナログ信号をディジタル信号に変換する(ステップS4)。より詳細には、ADC107のチャネルCH1には、アナログの第1参照信号r1が入力され、ディジタルの第2参照信号r2に変換される。ADC107のチャネルCH2には、物体104からの反射光に基づくアナログの第1検出信号s1が入力され、ディジタルの第2検出信号s2に変換される。また、ADC107のチャネルCH3には第1角度信号θ1が入力され、ディジタルの第2角度信号θ2に変換される。
 次に、信号処理装置108において、測距部109は、第2参照信号r2および第2検出信号s2の時間差に基づいて物体104までの距離を求める(ステップS5)。より詳細には、測距部109は、光偏向器103による偏向角に相当する時刻を中心にして、第2参照信号r2および第2検出信号s2の一部を、窓関数wr(t)、ws(t)をそれぞれ用いて切り取る。測距部109は、これら2つの信号の時間差を算出し、時間差から距離を求める。
 ここで、測距部109による測距処理について、図6のフローチャートを参照して説明する。
 まず、第1取得部191は、第2参照信号r2に含まれる全てのピークを検出し、それらのピークに対応する時刻を取得する(ステップS50)。第1取得部191は、検出した第2参照信号r2に含まれる複数のピークpr,iを互いに区別するための識別情報i(i=0,1,・・・,N)を設定し、iを初期化(i=0)する(ステップS51)。
 次に、第1取得部191は、iをインクリメントする(iに1を足す)(ステップS52)。その後、第2取得部192は、第2参照信号r2のi番目のピークpr,iの時刻tr,iを中心にして、±Tsource/2の時間範囲に存在する第2検出信号s2のピークps,iを取得する(ステップS53)。
 次に、時間差算出部193は、第2参照信号r2のi番目のピークpr,iにおけるピーク時刻tr,iと、検出された第2検出信号s2のピークps,iの時刻ts,iとの時間差Δtを(=ts,i-tr,i)を算出する(ステップS54)。
 より詳細には、時間差算出部193は、上述した式(1)の相互相関関数R(t)を計算して、R(t)が最大値となる時間を時間差Δtとする。また、時間差算出部193は、第2参照信号r2および第2検出信号s2それぞれのピーク時刻tr,i、ts,iの近傍の信号を切り取る際には、Hanning窓やBlackman窓などの窓関数wr(t)、ws(t)をそれぞれ用いることができる。
 時間差算出部193は、ピーク時刻tr,iに基づいて、第2参照信号r2のピークpr,iと一致するピークを有するように設計された窓関数wr(t)を用いることができる。また、時間差算出部193は、ピーク時刻ts,iに基づいて、第2検出信号s2のピークps,iと一致するピークを有するように設計された窓関数ws(t)を用いることができる。
 その後、距離算出部194は、ステップS54で算出された時間差Δtから物体104までの距離Lを算出する(ステップS55)。より詳細には、時間差Δtに光速cをかけ、さらに2で割って第2参照信号r2のi番目のピークpr,iの時刻tr,iにおける時刻-距離データLを算出する。
 次に、距離算出部194は、第2参照信号r2に含まれる全てのピークpr,iの時刻tr,iにおける物体104までの距離を算出するまで(ステップS56:NO)、測距部109は、ステップS52からステップS55を繰り返す。一方、距離算出部194が第2参照信号r2に含まれる全てのピークpr,iの時刻tr,iについての物体104までの距離を算出した(i=N)場合には(ステップS56:YES)、処理は、図5のステップS6に移行する。
 その後、図5に示すように、時間-角度変換部110は、時刻-距離データLを、光偏向器103の偏向角を示す第2角度信号θ2を用いて偏向角-距離データaに変換する(ステップS6)。より詳細には、時間-角度変換部110は、予め補助記憶装置185や主記憶装置183の所定の領域に記憶されている第2角度信号θ2の強度と偏向角との対応表を用いることができる。あるいは、時間-角度変換部110は、補助記憶装置185や主記憶装置183に記憶されている第2角度信号θ2、強度、および偏向角の関係を示す関数を読み出して、時間情報を偏向角に変換した偏向角-距離データaを出力することができる。
 次に、補間部111は、第2参照信号r2のピーク時刻tr,iごとの時刻-距離データLに対応する偏向角-距離データaについて、第2参照信号r2のピーク間のデータを補間する(ステップS7)。その後、補間された偏向角-距離データbは、出力される(ステップS8)。例えば、表示装置187に補間された偏向角-距離データbを表示させたり、通信ネットワークNWを介して外部の端末装置に補間された偏向角-距離データbを送信することができる。
 以上説明したように、本実施の形態に係る測距装置1によれば、第2参照信号r2のピークと一致するピークを有する窓関数、および第2検出信号s2のピークと一致するピークを有する窓関数をそれぞれ用いて2つの信号の一部を切り取り、これら2つの信号の相互相関を用いて物体104までの距離を算出する。そのため、窓関数を2つの信号にかける場合であっても、2つの信号の時間差を正確に算出することができ、結果として物体までの距離を高精度に測定することができる。
 また、本実施の形態に係る測距装置1は、参照信号のピーク間の距離データを補間するので、物体までの距離をより高精度に測定することができる。
 以上、本発明の測距装置および測距方法における実施の形態について説明したが、本発明は説明した実施の形態に限定されるものではなく、請求項に記載した発明の範囲において当業者が想定し得る各種の変形を行うことが可能である。
 例えば、説明した実施の形態では、信号処理装置108において、時間-角度変換部110が時刻-距離データLを偏向角-距離データaに変換した後に、補間部111が補間処理を行う具体例を説明した。しかし、補間処理は時間-角度変換部110による変換処理の前に実行してもよい。この場合、補間部111は、時刻-距離データLに基づいて第2参照信号r2のピーク間の補間を行い、その後、時間-角度変換部110が、時刻を偏向角に変換することになる。
 補間処理を時間-角度変換処理の前に行う場合は、時間-角度変換部110で必要となる時刻情報は、測距部109で取得した第2参照信号r2のピーク時刻をそのまま使用できない。なぜなら、測距部109で得られた距離の数(第1取得部191で得られたピークの時刻の数と等しい)は補間部111から出力される距離の数と異なるからである。そこで、補間部111において、測距部109で取得した第2参照信号r2のピーク時刻を用いて、補間で得た距離情報に対応する時刻を算出し、その時刻を用いて時間-角度変換部110にて時刻を角度に変換する。
 なお、補間部111が補間した第2参照信号r2のピーク間の時間間隔と、第2角度信号θ2の時間間隔が一致しないことにより、補間後の時刻-距離データの各データの時刻と、第2角度信号θ2の各データの時刻とが一致しない場合は、第2角度信号θ2を補完する。これにより、補間後の時刻-距離データの時刻に一致する角度の時刻における第2角度信号θ2を得ることによって、補間後の時刻-距離データの各時刻の偏向角を得ることができる。
 これまで説明した実施の形態では、光源100から出力される光は、正弦波など周期的に強度変調された光であり、波長掃引された光ではない場合について説明した。しかし、光源100は、周期的な強度変調機能を備えた波長掃引光源であってもよい。この場合、光偏向器103には、透過型や反射型の回折格子や屈折率分散の大きい材料からなるプリズムなどの受動光学素子が用いられる。また、光源100は、周期的な強度変調機能を備えた波長掃引光源であっても、公知の空間光変調器を光偏向器103に用いてもよい。
 この場合、回折格子の格子定数などは、光源100の光の波長や、測定が要求される最大距離、および測距装置1の大きさなどに応じて、所望の角度の範囲で偏向するように設計することができる。また、プリズムの屈折率やその波長分散についても、同様に所望の角度で偏向するように、屈折率やその波長分散を持つ材料を選ぶことができる。また、光源100として周期的な強度変調機能を備えた波長掃引光源を用いる場合、第1角度信号θ1は、光源100から出力される光の波長に連動する構成となる。
 光源100を周期的な強度変調機能を備えた波長掃引光源として、光偏向器103を回折格子やプリズム等の受動光学素子とする利点は、光偏向器103に機械動作を必要とする部品が必要なくなることである。このことから、たとえば、測距装置1が備える光学系を光偏向器103とそれ以外に分離して、偏向器をプローブ、それ以外を本体として、プローブと本体を光ファイバで接続した場合、プローブを小型化できるので、狭い場所等に設置したり、あるいは、人が簡単にプローブ部を持ち運ぶなどして、測定ができる。また、プローブには機械動作をする部品がないため、プローブの振動に対する耐性が高くなるので、本体とプローブを離して、本体を振動の緩慢な場所に退避することにより、振動の激しい環境においても正確に測定ができる。
 1…測距装置、100…光源、101…カプラ、102…サーキュレータ、103…光偏向器、104…物体、105…フォトディテクタPDr、106…フォトディテクタPDs、107…ADC、108…信号処理装置、109…測距部、110…時間-角度変換部、111…補間部、181…バス、182…プロセッサ、183…主記憶装置、184…通信インターフェース、185…補助記憶装置、186…入出力装置、187…表示装置、191…第1取得部、192…第2取得部、193…時間差算出部、194…距離算出部。

Claims (8)

  1.  光源から出力された周期的に強度変調された光を光電変換して得られる第1信号に含まれるピークである第1ピークを検出し、前記第1ピークごとの時刻を取得する第1取得部と、
     前記光源から出力された前記光が測定対象の物体で反射した反射光を光電変換して得られる第2信号から、前記第1ピークの前記時刻を中心とした前記光源の光の強度変調の1周期の時間範囲に存在するピークである第2ピークを取得する第2取得部と、
     ピークを有する第1窓関数の前記ピークを前記第1ピークと一致させた状態で、前記第1窓関数で前記第1信号を処理して得られる第3信号と、ピークを有する第2窓関数の前記ピークを前記第2ピークと一致させた状態で、第2窓関数で前記第2信号を処理して得られる第4信号との相互相関に基づいて、前記物体までの距離を算出する距離算出部と
     を備える測距装置。
  2.  請求項1に記載の測距装置において、
     前記光源の光を2つに分岐する光スプリッタと、
     前記光スプリッタの一方から出力された前記光を検出する第1フォトディテクタと、
     前記光スプリッタの他方から出力された前記光を偏向して前記物体に向けて出射する光偏向器と、
     前記光偏向器から出射された出射光が前記物体で反射した反射光を検出する第2フォトディテクタと
     を有する光学系をさらに備え、
     前記第1フォトディテクタは、検出した前記光を光電変換した前記第1信号を出力し、
     前記第2フォトディテクタは、検出した前記反射光を光電変換した前記第2信号を出力する
     ことを特徴とする測距装置。
  3.  請求項2に記載の測距装置において、
     前記距離算出部によって算出された前記第1ピークの前記時刻に対応する時間情報を、前記光偏向器による偏向角度の情報に変換し、偏向角度と距離とが対応付けられた偏向角-距離信号を出力する時間-角度変換部をさらに備える
     ことを特徴とする測距装置。
  4.  請求項1から3のいずれか1項に記載の測距装置において、
     前記距離算出部が算出した前記第1信号の前記第1ピークごとの前記時刻に対応する前記物体までの距離を補間する補間部をさらに備える
     ことを特徴とする測距装置。
  5.  請求項1から4のいずれか1項に記載の測距装置において、
     前記距離算出部は、前記相互相関を用いて前記第1ピークの前記時刻での前記第1信号に対する前記第2信号の時間の遅れを示す時間差を算出する時間差算出部を備え、
     前記距離算出部は、算出された前記時間差に基づいて、前記第1信号の前記第1ピークごとの前記時刻に対応する前記物体までの距離を算出する
     ことを特徴とする測距装置。
  6.  請求項1から5のいずれか1項に記載の測距装置において、
     前記第1窓関数および前記第2窓関数は同一の形状であることを特徴とする測距装置。
  7.  請求項1から6のいずれか1項に記載の測距装置において、
     前記第1窓関数および前記第2窓関数は、ガウス窓、ハン窓、ハミング窓、ブラックマン窓、および一般化ハミング窓のいずれかであることを特徴とする測距装置。
  8.  光源から出力された周期的に強度変調された光を光電変換して得られる第1信号に含まれるピークである第1ピークを検出し、前記第1ピークごとの時刻を取得する第1ステップと、
     前記光源から出力された前記光が測定対象の物体で反射した反射光を光電変換して得られる第2信号から、前記第1ピークの前記時刻を中心とした前記光源の光の強度変調の1周期の時間範囲に存在するピークである第2ピークを取得する第2ステップと、
     ピークを有する第1窓関数の前記ピークを前記第1ピークと一致させた状態で、前記第1窓関数で前記第1信号を処理して得られる第3信号と、ピークを有する第2窓関数の前記ピークを前記第2ピークと一致させた状態で、第2窓関数で前記第2信号を処理して得られる第4信号との相互相関に基づいて、前記物体までの距離を算出する第3ステップと
     を備える測距方法。
PCT/JP2020/009103 2019-03-18 2020-03-04 測距装置および測距方法 WO2020189275A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/439,118 US20220113416A1 (en) 2019-03-18 2020-03-04 Range Finder and Range Finding Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019049515A JP7115375B2 (ja) 2019-03-18 2019-03-18 測距装置および測距方法
JP2019-049515 2019-03-18

Publications (1)

Publication Number Publication Date
WO2020189275A1 true WO2020189275A1 (ja) 2020-09-24

Family

ID=72520276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009103 WO2020189275A1 (ja) 2019-03-18 2020-03-04 測距装置および測距方法

Country Status (3)

Country Link
US (1) US20220113416A1 (ja)
JP (1) JP7115375B2 (ja)
WO (1) WO2020189275A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186337A (ja) * 1992-12-21 1994-07-08 Mitsubishi Heavy Ind Ltd レーザ測距装置
JPH1020036A (ja) * 1996-06-28 1998-01-23 Toyota Central Res & Dev Lab Inc 距離測定方法および装置
JPH1123215A (ja) * 1997-06-30 1999-01-29 Mitsubishi Heavy Ind Ltd 光周波数領域反射測定法の検出信号処理装置
US20180017672A1 (en) * 2016-07-13 2018-01-18 Texas Instruments Incorporated Methods and apparatus for narrowband ranging systems using coarse and fine delay estimation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186337A (ja) * 1992-12-21 1994-07-08 Mitsubishi Heavy Ind Ltd レーザ測距装置
JPH1020036A (ja) * 1996-06-28 1998-01-23 Toyota Central Res & Dev Lab Inc 距離測定方法および装置
JPH1123215A (ja) * 1997-06-30 1999-01-29 Mitsubishi Heavy Ind Ltd 光周波数領域反射測定法の検出信号処理装置
US20180017672A1 (en) * 2016-07-13 2018-01-18 Texas Instruments Incorporated Methods and apparatus for narrowband ranging systems using coarse and fine delay estimation

Also Published As

Publication number Publication date
US20220113416A1 (en) 2022-04-14
JP7115375B2 (ja) 2022-08-09
JP2020153671A (ja) 2020-09-24

Similar Documents

Publication Publication Date Title
EP2198323B9 (en) Time delay estimation
US9347773B2 (en) Highly accurate distance measurement device
JP7074311B2 (ja) 光学的距離測定装置および測定方法
JP3935897B2 (ja) 光波測距装置
KR20220124191A (ko) 주파수 변조 연속파 라이다를 위한 온 칩 모니터링 및 캘리브레이션 회로
US11520023B2 (en) High-speed time-of-interference light detection and ranging apparatus
JP2018169265A (ja) 距離測定装置及び距離測定方法
WO2020189275A1 (ja) 測距装置および測距方法
CN112654894B (zh) 一种雷达探测方法及相关装置
WO2020170796A1 (ja) 測距装置および測距方法
EP4336209A1 (en) Detection device, radar, and terminal
CN109633672A (zh) 脉冲式激光测距系统及其测距方法
US10386466B2 (en) Distance measuring device and distance measuring method
CN111527419A (zh) 一种采样电路、采用方法及测距装置、移动平台
JP6653052B2 (ja) レーザー測距装置およびレーザー測距方法
JP7201088B2 (ja) 測距装置
CN209590275U (zh) 脉冲式激光测距系统
US20240004044A1 (en) Apparatus and method for measuring distant to and/or velocity of physical object
US20240004072A1 (en) Distance measuring device, distance measuring method, and program
KR101670474B1 (ko) 광학 장치 및 이의 동작 방법
US20230417884A1 (en) Apparatus and method for measuring distant to and/or velocity of physical object
CN116755099A (zh) 测速测距系统及方法
CN117031497A (zh) 基于平衡探测的大动态范围高精度脉冲激光雷达系统
CN116826510A (zh) 一种调频连续波激光雷达光源的非线性校准系统和方法
CN115825975A (zh) 基于脉冲调制型激光调频连续波的超分辨测距方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20774134

Country of ref document: EP

Kind code of ref document: A1