JP7108417B2 - 異常検知システム - Google Patents

異常検知システム Download PDF

Info

Publication number
JP7108417B2
JP7108417B2 JP2018012202A JP2018012202A JP7108417B2 JP 7108417 B2 JP7108417 B2 JP 7108417B2 JP 2018012202 A JP2018012202 A JP 2018012202A JP 2018012202 A JP2018012202 A JP 2018012202A JP 7108417 B2 JP7108417 B2 JP 7108417B2
Authority
JP
Japan
Prior art keywords
data
learning
abnormality
model
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018012202A
Other languages
English (en)
Other versions
JP2019133212A (ja
Inventor
章裕 小升
智昭 蛭田
貴之 内田
英明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018012202A priority Critical patent/JP7108417B2/ja
Priority to PCT/JP2018/046460 priority patent/WO2019146315A1/ja
Publication of JP2019133212A publication Critical patent/JP2019133212A/ja
Application granted granted Critical
Publication of JP7108417B2 publication Critical patent/JP7108417B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Description

本発明は、機械学習装置が生成した、設備機器の正常、異常の識別モデルの評価に適した環境を整備できる異常検知システム、及び、同システムで用いられる異常検知方法、プログラムに関する。
風車のように常時稼動が予定された設備機器では、稼動率を向上させるために、或いは、深刻な事故の発生を防止するために、構成部品の異常を事前に検知することが求められている。そのために、設備機器の稼動時間に合わせて定期的に保守するという、時間基準の従来の予防保全から、設備機器の状態に合わせて随時に保守するという、状態基準の新たな予防保全への移行が進みつつある。
状態基準の予防保全を実現するには、設備機器に取り付けた各種センサを介して得られる実稼動データを基に、所定の異常検知方法によって設備機器の異常や異常予兆を検知することが重要である。
異常検知方法には機械学習を利用した方法がある。この方法では、まず正常時のデータを学習し、正常の識別モデルを作成する。そして、設備機器から得られる実稼動データが識別モデルの定義する正常範囲から閾値以上外れているかどうかで、設備機器が正常か異常かを判定する。
但し、この異常検知方法の実行前には、用意した識別モデルで設備機器の異常を正確に検知可能か確認しておく必要があり、そのためには、各故障で観測される多種多様な異常時の標本データを用いて識別モデルの適否を検査する必要がある。
このように、識別モデルの適否の判断には十分な数の標本データが必要となり、標本データが不足する場合には、識別モデルが用意した標本データに過剰適合する可能性もある。このため、特許文献1には、段落0033で「分類対象の難しさと事前に仮定している識別モデルの複雑さとによって適切なデータ数のおよその数を知り、現状のデータ数で足りているか不足しているかを判定することができる。特に、訓練データの数が足りている場合には問題無いが、不足している場合には正しい判定を行えない可能性が高い。そのため、訓練データの数が不足している場合には、データを補充する必要があるメッセージを出して現状の訓練データだけでは過剰適合が発生する可能性があり、良好な性能が得られないことを知らせる必要がある。」と説明されるように、識別モデルの学習時に実稼動データやその他の情報が不足しているか否かを判定し、判定結果に応じてユーザにデータの追加を促すメッセージを通知する手法が開示されている。
特開2016-133895号公報
上述したように、特許文献1の技術は、識別モデルの学習に必要なデータやその他の情報の不足を検知し、必要とされるデータ等の追加をユーザに促すことで学習の過剰適合を避けている。
しかしながら、発生頻度の低い異常時のデータの追加が求められても、そのようなデータは標本数が少なく、データの追加が難しいことが多い。そのため、データ不足の状態で識別モデルの検知性能を確認せざるを得ず、その評価結果の信頼性は低いものとなり、結果的に、異常検知の性能も低いものとなっていた。
そこで、本発明は、データ標本の不足分を補完する検証用データを生成し、これを用いて補完した異常時のデータを基に、識別モデルを適正に評価できる異常検知システム等を提供することを目的とする。
本発明に係る異常検知システムは、学習データを入力する学習データ入力部と、前記学習データから識別モデルを作成する識別モデル学習部と、前記識別モデルの検知性能を評価する識別モデルチェック部と、評価に必要な異常模擬データを生成するデータ生成部と、前記識別モデルの評価結果を通知する通知部と、を有するものとした。
本発明によれば、識別モデルの適否の評価に利用する異常データの標本が不足する場合であっても、その不足を異常模擬データで補完することで、識別モデルを適正に評価することができる。そして、適切な識別モデルを用いて設備機器の異常を検知することで、設備機器の異常を高精度に検知することができる。
実施例1の異常検知システムの主要部を例示した図。 実施例1の異常検知システムと保守員、監視員、ユーザの関係を示した図。 図1の学習データ入力部から入力される、実稼動データの構成例を示した図。 図1の識別モデル学習部に記憶される、識別モデルの学習情報の構成例を示した図。 図1の識別モデルチェック部に記憶される、識別モデルのチェック情報の構成例を示した図。 識別モデルの検知性能を評価する情報の構成例を示した図。 図1のデータ生成部で生成される、異常模擬データの構成例を示した図。 図1のデータ生成部に記憶される、異常模擬データを生成するための情報の構成例を示した図。 図1の通知部で表示される学習データ設定画面の構成例を示した図。 図1の通知部で表示される生成データ設定画面の構成例を示した図。 図1の通知部で表示される評価データ設定画面の構成例を示した図。 図1の通知部で表示される検知性能評価画面の構成例を示した図。 実施例1での処理動作例を示すフローチャート。 実施例2での処理動作例を示すフローチャート。 図1の通知部で表示される評価結果重み付け画面の例を示した図。
以下、本発明の実施形態を図面に基づいて説明する。
図1から図13を用いて、本発明の実施例1について説明する。
図1は、本実施例の異常検知システムの主要部を例示した図である。ここに示すように、本実施例の異常検知システムは、学習データ入力部1、識別モデル学習部2、識別モデルチェック部3、データ生成部4、通知部5から構成される。これらは実際には演算処理装置(CPU(Central Processing Unit)、MPU(Micro Processing Unit)など)、記憶装置(半導体メモリ、ハードディスクなど)、入出力装置(キーボード、マウス、表示装置、通信装置など)等を備えた、いわゆるコンピュータによって構成されており、演算処理装置が記憶装置に記憶されたプログラムを実行することで各機能が実現される。
学習データ入力部1には、正常か異常かを識別したい設備機器に関する学習データが記憶されており、その学習データは識別モデル学習部2に送られる。
識別モデル学習部2は、学習データ入力部1から送られた学習データを用いて機械学習を行い、設備機器が正常か異常かを識別するための識別モデルを作成する。
識別モデルチェック部3は、識別モデル学習部2で作成された識別モデルの検知性能を評価し、評価結果を通知部5に送る。また、検知性能の評価に用いる異常データが不足している場合には、データ生成部4に不足している異常データ等に相当する補完データの生成を要求する。
データ生成部4は、識別モデルチェック部3の要求に従い、必要な補完データを生成する。生成された補完データは識別モデルチェック部3に送られる。
通知部5は、識別モデルチェック部3による識別モデルの評価結果をユーザに通知する。
図2は、本実施例の異常検知システムと保守員、監視員、ユーザの関係の概略を示した図である。ここに示すように、本実施例の異常検知システムは、設備機器10、状態監視装置11、異常検知性能評価装置12から構成されており、保守員13が設備機器10を保守・点検し、監視員14が状態監視装置11から診断結果を受け、ユーザ15が異常検知性能評価装置12から受けた評価結果を基に追加・修正・選択などの作業を実行することを示している。なお、図1に示した異常検知システムの主要部は、図2では異常検知性能評価装置12に内蔵されるものであるが、設備機器10、状態監視装置11、異常検知性能評価装置12の三者は分離独立した構成である必要はなく、三者が一体となった構成としても良いし、状態監視装置11、異常検知性能評価装置12が一体となった構成としても良い。
設備機器10は、機械的な動作をすることで所定の機能や動作を実現する、風車や鉱山機器などの機器であり、状態監視装置11によって監視される。設備機器10には、不足センサ、電流センサ、温度センサなどの各種センサが取り付けられており、各種センサから計測されたセンサデータは有線や無線の通信システムを通じて、または記憶装置や記憶媒体に書き込まれて、実稼動データ20として状態監視装置11に送られる。
状態監視装置11は、表示装置、操作盤、制御コンピュータなどによって構成され、設備機器10から収集した実稼動データ20を基に、所定の異常検知技術(識別モデル)によって設備機器10の異常の有無を診断し、その診断結果を監視員14(設備機器設置場所に駐在する管理者等)に発報する。監視員14は定期的に、または診断結果に基づき設備機器10の異常、異常予兆が検知されたときに、保守員13(設備機器を製造したメーカーの技術者等)に指示を出す。保守員13は監視員14の指示に従い、設備機器10の保守・点検を行う。
異常検知性能評価装置12は、パーソナルコンピュータやワークステーションによって構成され、ユーザ15(状態監視装置のプログラムを開発するシステムエンジニア等)が設備機器10の異常検知技術を開発するのを支援する。すなわち、ユーザ15は状態監視装置11から取得した学習用の実稼動データ20や、ドメイン知識を用いて設備機器10の異常検知技術を開発し、提供する。ここで、異常検知性能評価装置12はユーザ15が開発した異常検知技術の検知性能を評価する機能を有しており、評価結果をユーザ15に通知する。
以上のようにして、ユーザ15が開発し、異常検知性能評価装置12が適切と評価した設備機器10の異常検知技術は状態監視装置11に登録されるため、状態監視装置11では、適切な識別モデルを用いて設備機器10を監視することができる。
以下では、図3から図13を用いて、実施例1の異常検知システムをより具体的に説明する。実施例1の異常検知システムは、識別モデルの評価データを必要に応じて生成し、評価結果をユーザに通知することによって最適な識別モデルの決定を促すものである。
一例として、状態監視装置11から実稼動データ20が入力され、入力された実稼動データ20から識別モデルを作成し、作成した識別モデルで評価用のデータが正常か異常かを識別するという異常検知性能評価装置12を考える。
図3は、図1の学習データ入力部1から学習データとして入力される、実稼動データ20の構成例を示した図である。ここに示すように、実稼動データ20は、マシンデータ21、センサデータ22、アラームデータ23から構成される。
マシンデータ21は、「カテゴリ」、「機種」、「ID」、「稼動データID」からなるテーブルであり、設備機器10の種別(例えば、風車、鉱山機器)、型式(例えば、A、B、C)、製造番号(例えば、001、002)などを表すデータが含まれている。
センサデータ22は、設備機器10に取り付けられた各種センサから所定周期で取得された値が、その取得時刻と関連付けて記録されたテーブルである。図3のセンサデータ22は、稼動データID「WA001」に対応する、「A」機種、ID「001」の「風車」で取得されたデータであり、1秒周期で取得された風速、電流、温度の各データを示している。なお、センサデータ22の項目は設備機器10の種別毎に異なっても良く、例えば、設備機器10がショベルカーやダンプカー等の鉱山機器である場合は、センサで測定した移動速度、位置、積載量などを記録した構成としても良い。
アラームデータ23は、設備機器10に起きた異常やモード変化を、その発生時刻と対応付けて記録したテーブルである。図3の例は、2018年2月1日の0時10分00秒にアラームID「1000」が発生し、0時20分00秒にアラームID「1001」が発生した後、0時20分30秒にアラームID「1000」が解除されたことを示している。なお、各々のアラームIDは、後述する故障モード(例えば、「部品故障1」、「部品故障2」など)や運転モードの組合せに対応する値であり、一つのアラームIDで複数の故障やモード変化の発生を示すことができる。
学習データ入力部1は、図3の実稼動データ20の情報を保持しており、識別モデルを生成する際に利用する学習データとして、実稼動データ20を識別モデル学習部2へ送信する。
図4は、図1の識別モデル学習部2に記憶される、識別モデル学習情報30の構成例を示した図である。ここに示すように、識別モデル学習情報30は、ヘッダ情報31、学習情報32を含んで構成される。
ヘッダ情報31は「データ種類」、「カテゴリ」、「機種」、「ID」、「稼動データID」、「故障モード」などの情報を含んで構成される。なお、「カテゴリ」、「機種」、「ID」、「稼動データID」は、実稼動データ20のマシンデータ21から得られるデータである。「データ種類」はそのデータの出自を表すものであり、「実稼動データ」の他、後述する「加工データ」、「シミュレーションデータ」といった区分が設定される。「故障モード」には、検知対象となる設備機器10の故障の名称または故障部位の名称が設定され、故障がない場合には「正常」と設定され、故障がある場合には「部品故障1」のように設定される。
また、学習情報32は「センサ選択」、「運転モード選択」、「前処理」、「診断アルゴリズム」、「パラメータ」、「学習期間」などの、識別モデルの生成に必要な情報を含んで構成される。なお、学習情報32は、設備機器10の「機種」、「ID」または「故障モード」毎にそれぞれ作成される。
学習情報32の「センサ選択」には、設備機器10に取り付けられた各種センサのうち、本実施例の異常検知に用いるセンサ、またはそのセンサから得られるデータの名称が設定される。図4の例では、風速、電流、温度が設定されている。
学習情報32の「運転モード選択」には、設備機器10の運転モードが設定される。運転モードの名称は監視員によって予め定義付けられており、その中から現在の運転モードを示すものが選択される。図4の例では、正常運転が設定されている。
学習情報32の「前処理」には、センサデータの変換処理及び運転モードの分離条件などが設定される。変換処理にはノイズ除去のためのフィルタリング処理や移動平均処理などがあり、運転モードの分離条件とは設備機器10の正常状態や異常状態を定義するための条件のことである。
一般的に設備機器10の状態は、所定の機能や動作の形態が時間的に変化しない定常状態と、定常状態に到達するまでの過渡的な過程である非定常状態がある。また、定常状態は一つとは限らず、条件毎に別の状態に遷移するため、設備機器10の全ての実稼動データ20を用いて異常を診断した場合、診断結果に誤報が頻繁に現れる。そのため、設備機器10の実稼動データ20を運転モード毎に分離して診断することで、誤報を低減させることができる。本実施例では運転モードの分離条件にセンサデータ22、アラームデータ23及びそれらのデータから得られる情報を用いる。例えば、風車の定常状態を抽出するための分離条件として風速5m/s以上かつ20m/s以下というような条件が設定される。
また、学習情報32の「診断アルゴリズム」の情報としては設備機器10の異常を検知するための診断アルゴリズムの名称が設定される。図4の例ではK平均法としているが、それに限定されず、主成分分析、サポートベクターマシン、局所部分空間などであってもよい。なお、「パラメータ」には「診断アルゴリズム」で用いられるパラメータ情報が設定される。また、「学習期間」には実稼動データ20のセンサデータ22から任意の期間を抽出し、識別モデルを作成するための機械学習が実施された範囲を設定する。
識別モデル学習部2では、図4の識別モデル学習情報30を用いて機械学習が行われ、作成された識別モデルは識別モデルチェック部3へ送られる。
図5は、図1の識別モデルチェック部3に記憶される、識別モデルチェック情報40の構成例を示した図である。ここに示すように、識別モデルチェック情報40は、ヘッダ情報41、学習情報42、評価情報43を含んで構成される。ヘッダ情報41と学習情報42は、図4のヘッダ情報31と学習情報32と同様であり、評価情報43は「学習期間」、「診断期間」、「異常発生期間」、「異常検知期間」、「後処理」などの情報を含んで構成される。
評価情報43の「学習期間」には、図5の学習情報42と同じ期間が設定される。図5の例では、2018年1月1日の0時00分00秒から23時59分59秒が設定されている。
評価情報43の「診断期間」には、異常検知期間、検知率、誤報率、失報率を評価した期間が設定される。図5の例では、2018年1月1日の0時00分00秒から同年2月1日の23時59分59秒が設定されている。
評価情報43の「異常発生期間」には、設定された「診断期間」内に異常が観測された期間が記録される。図5の例では、2018年1月10日の23時00分00秒から59秒、2018年1月15日の23時00分00秒から59秒、2018年2月1日の23時00分00秒から59秒の三度に亘り、設備機器10の異常が発生している。
評価情報43の「異常検知期間」には、「診断期間」で設定された期間内に識別モデルによって設備機器10の異常を検知した期間が記録される。図5の例では、2018年1月10日の23時00分00秒から59秒、2018年1月20日の23時00分00秒から59秒、2018年1月25日の23時00分00秒から59秒、2018年1月30日の23時00分00秒から59秒の四度に亘り、識別モデルによって設備機器10の異常が検知されている。
なお、図5の例では、評価情報43の「異常発生期間」と「異常検知期間」で重複するのは、2018年1月10日の1回のみであり、他は重複していない。このことから、異常の未検出が2回(1月15日、2月1日)発生しており、異常の誤報が3回(1月20日、25日、30日)発生していることが分かる。
また、図3のセンサデータ22のような多変量のデータ(風速、電流、温度など)がある場合には、それぞれのデータを用いてクラスタリングをすることができる。一般的なクラスタリングにおいて、n個のセンサデータから構成される実稼動データ20では、そのn個のセンサデータを成分としたn次元のベクトル空間を想定することができる。各時刻におけるセンサデータはn次元のベクトル空間の中で各クラスタに分けられ、いずれのクラスタにも属さないセンサデータがあった場合にはそのセンサデータを異常とみなし、設備機器10において異常または異常の予兆が現れたと判定する。ここで、n次元のセンサデータがどのクラスタに属しているか否かを判定するために異常度の概念が導入される。例えば異常度はセンサデータが示す位置とその位置に最も近いクラスタの中心とのユークリッド距離に基づいて定義することができる。そして、その異常度が任意に定められた閾値を越えた場合に、そのセンサデータを異常とみなすことで、識別モデルを用いた異常検知を実施することができる。
評価情報43の「後処理」には、設備機器10の異常を検知する際に用いられる異常判定の条件が設定される。図5の例では、5以上の異常度が10秒以上継続したときに、異常と判定している。また、図5の例では異常判定の条件は異常度であったが、図3のアラームデータ23の「アラームID」の値を基に異常判定を行ってもよい。
図6は、識別モデルの検知性能を評価するための、検知性能評価情報50の構成例を示した図である。ここに示すように、検知性能評価情報50は、異常発生リスト51、閾値評価表52、ROC(Receiver Operating Characteristic)曲線53などの情報を含んで構成される。
検知性能評価情報50の異常発生リスト51には、識別モデルによって評価された評価データの「異常度」とその「異常度」が観測された期間に実際に異常があったか否か(「正常/異常」)を登録する。なお、評価データとは、図5の評価情報43の「診断期間」内のデータのことであり、「正常/異常」の設定は「異常発生期間」内のデータか否かで設定する。図6の例では、正常が5件、異常が10件、発生している。なお、ここでは、異常発生しているのに異常度が低い場合(異常度「2」で「異常」)や、異常発生していないのに異常度が高い場合(異常度「10」で「正常」)もあるが、これらは、診断モデルが最適化されていないことや、センサ出力に異常があること等が原因で、求めた異常度が正確でなかったと考えられる。
閾値評価表52には、「異常度の閾値」と、これを変化させた場合の、異常発生リスト51の異常の「検知率」、「誤報率」、「失報率」、「BER(Balanced Error Rate)」を格納させる。
検知性能評価情報50の閾値評価表52の「検知率」には、評価データの異常度が「異常度の閾値」以上となり、異常と判定された確率が格納され、「誤報率」及び「失報率」にはそれぞれ正常なのに異常と誤判定された確率及び異常なのに検知されなかった確率が格納される。また、「BER」には誤分類に相当する「誤報率」と「失報率」の平均が格納される。
例えば、「異常度の閾値」を10とした場合、異常発生リスト51の異常度10以上のデータを異常と判定する。この閾値10を用いると、異常10件のうち2件を異常と判定するため「検知率」は0.2となり、8件を正常と判定するため「失報率」は0.8となり、正常5件のうち1件を異常と判定するため「誤報率」は0.2となる。これらの値が閾値評価表52に格納され、「BER」には「誤報率」と「失報率」の平均である0.5が格納される。
図6の例では、異常度を異常判定のパラメータとしているが、異常の継続時間などをパラメータとしてもよい。なお、一般的にはこれらのパラメータの値を大きくしていくと、異常を捉えにくくなるため、検知率、誤報率は低下し、失報率は増加する傾向にある。一方、パラメータの値を小さくしていくと、異常をとらえやすくなるため、検知率、誤報率は増加し、失報率は低下する傾向にある。
検知性能評価情報50のROC曲線53には、閾値評価表52の「異常度の閾値」を変化させ、横軸に「誤報率」、縦軸に「検知率」をプロットしたものが表示される。ここで、ROC曲線下の面積はAUC(Area Under the Curve)値と呼ばれ、識別モデルの検知性能の良さを表す。完全な識別が可能な場合には面積は1となり、ランダムな識別である場合には0.5になる。図6の例のROC曲線53は、閾値評価表52の「誤報率」と「検知率」をプロットしたROC曲線であり、そのAUC値は0.75となっている。
識別モデルチェック部3は、図5の識別モデルチェック情報40と、図6の検知性能評価情報50の情報を保持しており、両情報に基づく評価結果を通知部5へ送信するが、識別モデルの検知性能を評価するための実稼動データ20が不足している場合には、データ生成部4に実稼動データ20を補完あるいは代替させる異常模擬データ60の生成を要請する。
データ生成部4で異常模擬データ60を生成する方法の一例としては、物理モデルによるシミュレーションを利用する方法がある。物理モデルとは対象とする設備機器の動作原理から計算機上で物理現象を表現するモデルのことである。
図7は、図1のデータ生成部4で生成される異常模擬データ60の構成例を示した図である。ここに示すように、異常模擬データ60は、マシンデータ61、シミュレーションデータ62、異常情報63から構成される。
マシンデータ61には、図3のマシンデータ21と同様に、「カテゴリ」、「機種」、「ID」、「稼動データID」など設備機器10の種別、型式、製造番号などを表す情報が含まれている。
シミュレーションデータ62には、設備機器10を模擬した物理モデルのシミュレーションによって生成された値が、そのシミュレーション時刻に対応付けられて登録される。また、シミュレーションデータ62は予め定められた周期で生成される。図7の例では、設備機器10が風車である場合のシミュレーションデータ62として、1秒周期の風速、電流、温度の各データが生成されているが、これらの項目はそれぞれの設備機器10を模擬した物理モデルによって項目構成が異なっていてもよい。
異常情報63には、物理モデル上で設定した故障モードの内容が、その発生時刻に対応付けられて登録される。
図7では、物理モデルに基づく、シミュレーションデータ62、異常情報63を異常模擬データ60に登録しているが、実稼動データにオフセット値やノイズを入れた加工データや、設備機器10の構成部品を意図的に劣化・故障をさせた実験データなどを、シミュレーションデータ62に代えて異常模擬データ60に登録してもよい。加工データを用いる場合は、ユーザが適当な数値を生成するだけで簡易に用意できるという利点がある反面、物理モデルを利用する場合に比べ異常模擬データ60としての品質が低くなり、また、実験データを用いる場合は、物理モデルを利用する場合に比べ異常模擬データ60としての品質が高い反面、それを取得するまでの作業が煩雑となる。このような特性を踏まえ、データ生成部4に適切な異常模擬データ60を生成させることができる。
図8は、図1のデータ生成部4に予め記憶されている、異常模擬データ60を生成するためのデータ生成情報70の構成例を示した図である。ここに示すように、データ生成情報70は、ヘッダ情報71、部品仕様72、構成図73、生成条件74などの情報を含んで構成される。
ヘッダ情報71には、「データ種類」「カテゴリ」、「機種」、「ID」、「異常模擬データID」などの情報を含んで構成される。「カテゴリ」、「機種」、「ID」は、図3のマシンデータ21から得られるデータである。また、「データ種類」は、異常模擬データ60の根拠を示す情報が登録される。図8の例では、物理モデルを利用して異常模擬データ60を生成する状況であるため、「データ種別」には「物理モデルシミュレーションデータ」が登録されているが、加工データや実験データを基に異常模擬データ60を生成する場合は、「データ種別」にその旨を登録すればよい。
部品仕様72には、異常を模擬する対象あるいは対象に係わる部品の仕様や性能が設定される。図8の例では、風車の「電磁ブレーキ」の重量、長さ、高さ、径、電圧、電流が設定されている。この部品仕様72には部品の仕様書そのものを含んで構成されていてもよい。
構成図73には、部品仕様72の部品の外観や構成などの情報が設定される。図8の例では、風車の電磁ブレーキの模式図が表示されている。
生成条件74には、「データ生成項目」、「故障条件」、「データ周期」、「データ生成時間」などの情報を含んで構成される。
「データ生成項目」には、本実施例の異常検知技術に用いられる1つ以上のセンサまたはセンサから得られるデータの名称が設定される。図8の例では、風速、電流、温度が設定されている。
「故障条件」には、故障モードの内容と故障モードが発生する条件が設定される。図8の例では、風速が20m/s以上の場合に部品故障1が発生することを示している。また、故障条件には故障モードが発生する時間などを設定してもよい。
「データ周期」、「データ生成時間」には、それぞれデータを生成する周期と時間が設定される。図8の例では、風速、電流、温度のデータが1秒周期で24時間分生成されることを示している。
データ生成部4では、図8のデータ生成情報70に従い、図7のシミュレーションデータ62、異常情報63が生成され、これらを含む異常模擬データ60が評価データとして識別モデルチェック部3へ送られる。
図9は、識別モデル学習部2での学習開始前に、図1の通知部5に表示される、学習データ設定画面80の構成例を示した図である。ここに示すように、学習データ設定画面80は、学習データ選択画面80a、学習データ80a1、データ参照ボタン80a2、学習ボタン80a3、学習データ参照画面80b、ヘッダ情報80b1、学習情報80b2、データ設定ボタン80b3、データ出力ボタン80b4、データ生成ボタン80b5などを含んで構成される。
ユーザ15は、学習データ選択画面80aを介して、学習データ80a1の中から任意の学習データを選択できる。図9の例では、学習データをラジオボタンで選択できるようになっているが、チェックボックスなどで選択できるようにしてもよい。また、データ参照ボタン80a2を押すことで、選択した学習データ80a1の学習データ参照画面80bを操作することができる。ここで、学習データ参照画面80bのヘッダ情報80b1、学習情報80b2は図4の識別モデル学習情報30から得られる情報である。ユーザ15は学習ボタン80a3を押すことで、選択した学習データ80a1を学習情報80b2の条件で機械学習を実行し、識別モデルを生成することができる。
また、ユーザ15は、学習データ参照画面80bを介して、データ設定ボタン80b3を押すことで、学習情報80b2の「センサ選択」、「運転モード選択」、「前処理」、「診断アルゴリズム」、「パラメータ」、「学習期間」の内容を自由に編集できる。編集した内容は新たな学習データの設定として図4の識別モデル学習情報30が作成され、保持される。データ出力ボタン80b4を押すことで、学習データである図3の実稼動データ20あるいは図7の異常模擬データ60を出力することができる。ただし、データが無い場合には空白もしくはエラー画面などを表示する。さらに、データ生成ボタン80b5を押すことで、図10の生成データ設定画面81を表示することができる。
図10は、識別モデル学習部2での学習実行後に、図1の通知部5で表示される、生成データ設定画面81の構成例を示した図である。ここに示すように、生成データ設定画面81は、生成データ選択画面81a、生成データ81a1、データ情報ボタン81a2、生成ボタン81a3、生成データ情報画面81b、ヘッダ情報81b1、部品仕様81b2、構成図81b3、生成条件81b4、データ設定ボタン81b5などを含んで構成される。
ユーザ15は、生成データ選択画面81aを介して、生成データ81a1の中から任意の生成データを選択できる。図10の例では、生成データをラジオボタンで選択できるようになっているが、チェックボックスなどで選択できるようにしてもよい。また、データ情報ボタン81a2を押すことで、選択した生成データ81a1の生成データ情報画面81bを操作することができる。ここで、生成データ情報画面81bのヘッダ情報81b1、部品仕様81b2、構成図81b3は図8のデータ生成情報70から得られる情報である。ユーザ15は生成ボタン81a3を押すことで、選択した生成データ81a1を生成条件81b4の条件で生成することができる。
また、ユーザ15は生成データ情報画面81bを介して、データ設定ボタン81b5を押すことで、生成条件81b4の「データ生成項目」、「故障条件」、「データ周期」、「データ生成時間」の内容を自由に編集できる。編集した内容は新たな生成データの設定として図8のデータ生成情報70が作成され、保持される。
図11は、識別モデルチェック部3での識別モデル評価前に、図1の通知部5で表示される、評価データ設定画面82の構成例を示した図である。ここに示すように、評価データ設定画面82は、評価データ選択画面82a、評価データ82a1、データ参照ボタン82a2、評価ボタン82a3、評価データ参照画面82b、ヘッダ情報82b1、評価情報82b2、データ設定ボタン82b3、データ出力ボタン82b4、データ生成ボタン82b5などを含んで構成される。
ユーザ15は、評価データ選択画面82aを介して、評価データ82a1の中から任意の評価データを選択できる。図11の例では評価データをラジオボタンで選択できるようになっているが、チェックボックスなどで選択できるようにしてもよい。また、データ参照ボタン82a2を押すことで、選択した評価データ82a1の評価データ参照画面82bを操作することができる。ここで、評価データ参照画面82bのヘッダ情報82b1、評価情報82b2は図5の識別モデルチェック情報40から得られる情報である。ユーザ15は評価ボタン82a3を押すことで、選択した評価データ82a1を評価情報82b2の条件で評価することができる。
また、ユーザ15は評価データ参照画面82bを介して、データ設定ボタン82b3を押すことで、評価情報82b2の「診断期間」、「後処理」の内容を自由に編集できる。編集した内容は新たな評価データの設定として図5の識別モデルチェック情報40が作成され、保持される。データ出力ボタン82b4を押すことで、評価データである図3の実稼動データ20あるいは図7の異常模擬データ60を出力することができる。ただし、データが無い場合には空白もしくはエラー画面などを表示する。さらに、データ生成ボタン82b5を押すことで、図10の生成データ設定画面81を表示することができる。ただし、この生成データ設定画面81は図9の学習データ設定画面80から呼び出した生成データ設定画面81とは区別する。
図12は、識別モデルチェック部3での識別モデル評価後に、図1の通知部5で表示される、検知性能評価画面83の構成例を示した図である。ここに示すように、検知性能評価画面83は、評価結果設定画面83a、識別モデル名称入力欄83a1、評価データID入力欄83a2、後処理範囲入力欄83a3、追加ボタン83a4、表示ボタン83a5、評価結果表示画面83b、異常発生リスト83b1、評価結果83b2、グラフ表示ボタン83b3、ROC曲線表示ボタン83b4、AUC値表示ボタン83b5などを含んで構成される。
ユーザ15は、評価結果設定画面83aを介して、識別モデル名称入力欄83a1、評価データID入力欄83a2に規定の名称を入力でき、後処理範囲入力欄83a3に任意の値を設定できる。また、追加ボタン83a4を押すことで、後処理範囲入力欄83a3のパラメータを追加することができる。ユーザ15は表示ボタン83a5を押すことで評価結果表示画面83bを操作することができる。
また、ユーザ15は評価結果表示画面83bを介して、異常発生リスト83b1、評価結果83b2を確認することができる。ここで、異常発生リスト83b1と評価結果83b2は図6の検知性能評価情報50から得られる情報である。さらに、グラフ表示ボタン83b3を押すことで、異常発生リスト83b1の情報をもとに、縦軸を異常度、横軸を日時としたグラフを表示できる。また、ROC曲線表示ボタン83b4を押すことで、評価結果83b2に基づくROC曲線を表示することができ(図6参照)、AUC値表示ボタン83b5を押すことで、ROC曲線のAUC値を表示することができる。そして、表示された評価結果83b2やROC曲線53を参照することで、ユーザ15は、採用する識別モデルや異常度の閾値を決定することができる。
図13は、実施例1の異常検知システムでの処理動作例を示すフローチャートである。まず、ステップS1にて、学習データ入力部1は、学習データを識別モデル学習部2へ入力する。続いて、ステップS2にて、識別モデル学習部2は、学習データを用いて機械学習を行い、識別モデルを作成し、識別モデルチェック部3へ入力する。次に、ステップS3にて、識別モデルチェック部3は、実稼動データ20を用いて識別モデルの検知性能を評価する。ステップS4にて、識別モデルチェック部3またはユーザ15は、実稼動データ20が不足しているかを判断する。不足している場合には、ステップS5に移行し、不足していない場合にはステップS7に移行する。ステップS5では、データ生成部4は、異常模擬データ60を作成し、識別モデルチェック部3へ入力する。その後、ステップS6にて、識別モデルチェック部3は、異常模擬データ60を用いて識別モデルの検知性能を評価する。最後に、ステップS7にて、通知部5は、検知性能の評価結果をユーザ15に通知する。
このように、実稼動データの不足を異常模擬データで補完できるようにすることで、ユーザ15は、識別モデルの検知性能のより正確な評価結果を知得できるため、設備機器10の異常を検知する上で最適な識別モデルを選択し、状態監視装置11に登録することができる。
以上、本実施例によれば、異常検知性能評価装置12を操作するシステムエンジニア等のユーザ15は、設備機器10の異常検知技術の主要部である識別モデルを開発することが容易になる。とくに、識別モデルの検知性能の確認が容易になるため、より信頼性の高い識別モデルの選択が可能になる。そして、このようにして選択された識別モデルを利用することで、設備機器10の構成部品等の異常をより早く、より正確に検知できるため、結果的に、常時稼働が求められる風車のような設備機器10の稼動の停止時間を大きく抑制することができるようになる。
次に、本発明の実施例2について説明する。実施例2の異常検知システムは、設備機器10の実稼動データ20と異常模擬データ60のそれぞれを用いて識別モデルの検知性能を評価し、両方の評価結果を重み付けした最終評価結果をユーザに通知することによって、最適な識別モデルの選択を促すものである。以下では、実施例1との共通点の重複説明は省略し、異なる点について説明することとする。
本実施例の異常検知システムも、基本的には実施例1の図2と同様の構成であり、状態監視装置11から実稼動データ20が入力され、入力された実稼動データ20から識別モデルを作成し、作成した識別モデルで評価用の学習データが適正かを識別するものである。
図14は、実施例2での処理動作例を示すフローチャートである。まず、ステップS10にて、学習データ入力部1は、学習データを識別モデル学習部2へ入力する。続いて、ステップS20にて、識別モデル学習部2は、学習データを用いて機械学習を行い、識別モデルを作成し、識別モデルチェック部3へ入力する。次に、ステップS30にて、識別モデルチェック部3は、実稼動データ20と異常模擬データ60それぞれを用いて識別モデルの検知性能を評価する。ステップS40にて、識別モデルチェック部3またはユーザ15は、異常模擬データ60が不足しているかを判断する。不足している場合には、ステップS50に移行し、不足していない場合にはステップS70に移行する。ステップS50では、データ生成部4は、異常模擬データ60を更に作成し、識別モデルチェック部3へ入力する。その後、ステップS60にて、識別モデルチェック部3は、追加した異常模擬データ60を用いて識別モデルの検知性能を評価する。次に、ステップS70にて二種類の評価結果を重み付けして最終評価を行う。最後に、ステップS80にて、通知部5は、検知性能の最終評価をユーザ15に通知する。
実施例2は、ステップS30に示すように、識別モデルの検知性能の評価を実稼動データ20と異常模擬データ60それぞれを用いて行い、ステップS70、S80に示すように、二種類の評価結果を重み付けした最終評価をユーザに通知することによって、最適な識別モデルの選択を促すものである。実施例1では、実稼動データ20の代わりに異常模擬データ60を用いて評価データとしていたが、同じ異常、故障を想定した評価データであっても、環境や条件の違いにより異なる評価データが必要とされる場合がある。実施例2では、同じ異常、故障に対し、環境や条件の違いを踏まえた適切な異常模擬データ60を提供することができるため、当初用意した異常模擬データ60が想定しない環境下や条件下においても、本発明の効果を発揮することができる。
図15は、ステップS70で評価結果を重み付けする際に、図1の通知部5で表示される、評価結果重み付け画面84の例を示した図である。ここに示すように、評価結果重み付け画面84は、出力値設定画面84a、識別モデル名称入力欄84a1、評価データ入力欄84a2、出力値入力欄84a3、追加ボタン84a4、出力ボタン84a5、出力結果表示画面84b、データ種類84b1、出力値84b2、重み付けボタン84b3、重み付け設定画面84c、重み84c1、評価値84c2、データ種類数84c3、計算式表示画面84c4、評価ボタン84c5などを含んで構成される。
ユーザ15は、出力値設定画面84aを介して、識別モデル名称入力欄84a1、評価データ入力欄84a2、出力値入力欄84a3に任意の値を設定できる。図15の例では、出力値入力欄84a3の値はAUC分散としたが、データ数、サンプル数、SN比などでもよい。また、追加ボタン84a4を押すことで、出力値入力欄84a3の項目を追加することができる。出力値を決定した後、ユーザ15は、出力ボタン84a5を押すことで出力結果表示画面84bを起動する。
そして、ユーザ15は、出力結果表示画面84bを介して、データ種類84b1、出力値84b2を確認できる。ここで、データ種類84b1と出力値84b2は、評価データ入力欄84a2と出力値入力欄84a3の入力に基づいて演算された情報であり、図15の例では、実稼動データに基づくAUC分散σ 、物理モデルシミュレーションデータに基づくAUC分散σ 、実験データに基づくAUC分散σ 、加工データに基づくAUC分散σ の四種類の出力値84b2が表示されている。そして、重み付けボタン84b3を押すことで、出力値84b2の値をもとに評価値の重み付けをすることができる。図15の重み付け設定画面84cでは、重み84c1を「AUC分散」、評価値84c2を「AUC値」、データ種類数84c3を「4」としており、その場合の計算式が計算式表示画面84c4に出力されている。
ユーザ15は、評価ボタン84c5を押すことで、計算式表示画面84c4に出力される計算式で評価値84c2の重み付けを行い、その重み付け平均を最終評価としてユーザ15に通知する。
このようにして、ユーザ15は、通知部5を介して、複数の検知性能の評価結果を重み付けした最終評価を知得でき、設備機器10の異常を検知する上で最適な識別モデルを選択することができる。
以上、本実施例によれば、異常検知性能評価装置12を操作するシステムエンジニア等のユーザ15は、実施例1と同様に、設備機器10の異常検知技術の主要部である識別モデルを開発することが容易になる。とくに、本実施例では、各識別モデルの検知性能を評価する際に、複数の評価結果を重み付けして利用するため、このような処理を行わない実施例1に比べ、より信頼性の高い識別モデルの選択が可能になる。
なお、前記の実施例1、実施例2は本発明を実施するにあたっての具体化の一例であり、本発明の技術的範囲が限定されるものではない。すなわち、本発明はその技術、思想、特徴から逸脱することなく、様々な形態で実施することができる。
1 学習データ入力部
2 識別モデル学習部
3 識別モデルチェック部
4 データ生成部
5 通知部
10 設備機器
11 状態監視装置
12 異常検知性能評価装置
13 保守員
14 監視員
15 ユーザ
20 実稼動データ
21 マシンデータ
22 センサデータ
23 アラームデータ
30 識別モデル学習情報
31 ヘッダ情報
32 学習情報
40 識別モデルチェック情報
41 ヘッダ情報
42 学習情報
43 評価情報
50 検知性能評価情報
51 異常発生リスト
52 閾値評価表
53 ROC曲線
60 異常模擬データ
61 マシンデータ
62 シミュレーションデータ
63 異常情報
70 データ生成情報
71 ヘッダ情報
72 部品仕様
73 構成図
74 生成条件
80 学習データ設定画面
80a 学習データ選択画面
80a1 学習データ
80a2 データ参照ボタン
80a3 学習ボタン
80b 学習データ参照画面
80b1 ヘッダ情報
80b2 学習情報
80b3 データ設定ボタン
80b4 データ出力ボタン
80b5 データ生成ボタン
81 生成データ設定画面
81a 生成データ選択画面
81a1 生成データ
81a2 データ情報ボタン
81a3 生成ボタン
81b 生成データ情報画面
81b1 ヘッダ情報
81b2 部品仕様
81b3 構成図
81b4 生成条件
81b5 データ設定ボタン
82 評価データ設定画面
82a 評価データ選択画面
82a1 評価データ
82a2 データ参照ボタン
82a3 評価ボタン
82b 評価データ参照画面
82b1 ヘッダ情報
82b2 評価情報
82b3 データ設定ボタン
82b4 データ出力ボタン
82b5 データ生成ボタン
83 検知性能評価画面
83a 評価結果設定画面
83a1 識別モデル名称入力欄
83a2 評価データID入力欄
83a3 後処理範囲入力欄
83a4 追加ボタン
83a5 表示ボタン
83b 評価結果表示画面
83b1 異常発生リスト
83b2 評価結果
83b3 グラフ表示ボタン
83b4 ROC曲線表示ボタン
83b5 AUC値表示ボタン
84 評価結果重み付け画面
84a 出力値設定画面
84a1 識別モデル名称入力欄
84a2 評価データ入力欄
84a3 出力値入力欄
84a4 追加ボタン
84a5 出力ボタン
84b 出力結果表示画面
84b1 データ種類
84b2 出力値
84b3 重み付けボタン
84c 重み付け設定画面
84c1 重み
84c2 評価値
84c3 データ種類数
84c4 計算式表示画面
84c5 評価ボタン

Claims (6)

  1. 設備機器の異常を検知する異常検知システムであって、
    学習データを入力する学習データ入力部と、
    前記学習データから識別モデルを作成する識別モデル学習部と、
    前記識別モデルの検知性能を評価する識別モデルチェック部と、
    評価に必要な異常模擬データを生成するデータ生成部と、
    前記識別モデルの評価結果を通知する通知部と、を有し、
    前記通知部は、前記設備機器、故障モード及び生成データの種類、ならびに、前記異常模擬データの生成に用いられる部品仕様、構成図、生成条件に係わる情報を含んでいる生成データ情報を設定するための、生成データ設定画面を表示することを特徴とする異常検知システム。
  2. 設備機器の異常を検知する異常検知システムであって、
    学習データを入力する学習データ入力部と、
    前記学習データから識別モデルを作成する識別モデル学習部と、
    前記識別モデルの検知性能を評価する識別モデルチェック部と、
    評価に必要な異常模擬データを生成するデータ生成部と、
    前記識別モデルの評価結果を通知する通知部と、を有し、
    前記通知部は、異常検知性能の評価結果を、データ毎にユーザの入力値に基づいて重み付けするための、評価結果重み付け画面を表示することを特徴とする異常検知システム。
  3. 前記データ生成部は、
    前記異常模擬データを生成する異常模擬データ生成手段と、
    生成した前記異常模擬データを保存する異常模擬データ保存手段と、
    を有することを特徴とする請求項1または2に記載の異常検知システム。
  4. 前記データ生成部で生成される前記異常模擬データは、
    前記設備機器の物理モデルを基にしたシミュレーションデータ、
    前記設備機器の構成部品を意図的に劣化・故障をさせて採取した実験データ、又は、
    前記設備機器の実稼動データにオフセット値やノイズを入れた加工データ、
    の何れかであることを特徴とする請求項1または2に記載の異常検知システム
  5. 前記識別モデル学習部は、
    前記学習データ入力部から入力される学習データ及び学習データ関連情報を保存する学習データ保存手段と、
    前記学習データに基づいて機械学習を行う機械学習手段と、
    前記機械学習により作成された識別モデルを保存する識別モデル保存手段と、
    を有することを特徴とする請求項1または2に記載の異常検知システム。
  6. 前記識別モデルチェック部が、前記識別モデルの検知性能の評価に用いる異常データは、前記設備機器の実稼動データ、または、前記データ生成部で生成された前記異常模擬データの少なくとも一方であることを特徴とする請求項1または2に記載の異常検知システム。
JP2018012202A 2018-01-29 2018-01-29 異常検知システム Active JP7108417B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018012202A JP7108417B2 (ja) 2018-01-29 2018-01-29 異常検知システム
PCT/JP2018/046460 WO2019146315A1 (ja) 2018-01-29 2018-12-18 異常検知システム、異常検知方法、および、プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018012202A JP7108417B2 (ja) 2018-01-29 2018-01-29 異常検知システム

Publications (2)

Publication Number Publication Date
JP2019133212A JP2019133212A (ja) 2019-08-08
JP7108417B2 true JP7108417B2 (ja) 2022-07-28

Family

ID=67394573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018012202A Active JP7108417B2 (ja) 2018-01-29 2018-01-29 異常検知システム

Country Status (2)

Country Link
JP (1) JP7108417B2 (ja)
WO (1) WO2019146315A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021060633A (ja) * 2019-10-02 2021-04-15 ファナック株式会社 診断装置
JP7358257B2 (ja) 2020-01-28 2023-10-10 住友重機械工業株式会社 制御プログラム生成装置、制御プログラム生成方法、ロール・ツー・ロール搬送システム
JP2022056746A (ja) * 2020-09-30 2022-04-11 アズビル株式会社 異常検知モデルの評価システムおよび評価方法
CN112261045A (zh) * 2020-10-22 2021-01-22 广州大学 一种基于攻击原理的网络攻击数据自动生成方法及系统
WO2023026879A1 (ja) * 2021-08-25 2023-03-02 パナソニックIpマネジメント株式会社 診断装置、診断システムおよび診断方法
JP7452509B2 (ja) * 2021-09-30 2024-03-19 横河電機株式会社 監視装置、監視方法、および監視プログラム
CN116596336B (zh) * 2023-05-16 2023-10-31 合肥联宝信息技术有限公司 电子设备的状态评估方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114967A (ja) 2013-12-13 2015-06-22 株式会社日立ハイテクノロジーズ 異常検知方法およびその装置
JP2016062258A (ja) 2014-09-17 2016-04-25 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 検出装置、検出方法、およびプログラム
JP2016133895A (ja) 2015-01-16 2016-07-25 キヤノン株式会社 情報処理装置、情報処理方法、及びプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3321487B2 (ja) * 1993-10-20 2002-09-03 株式会社日立製作所 機器/設備診断方法およびシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114967A (ja) 2013-12-13 2015-06-22 株式会社日立ハイテクノロジーズ 異常検知方法およびその装置
JP2016062258A (ja) 2014-09-17 2016-04-25 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 検出装置、検出方法、およびプログラム
JP2016133895A (ja) 2015-01-16 2016-07-25 キヤノン株式会社 情報処理装置、情報処理方法、及びプログラム

Also Published As

Publication number Publication date
WO2019146315A1 (ja) 2019-08-01
JP2019133212A (ja) 2019-08-08

Similar Documents

Publication Publication Date Title
JP7108417B2 (ja) 異常検知システム
JP2019016209A (ja) 診断装置、診断方法およびコンピュータプログラム
JP4832609B1 (ja) 異常予兆診断装置および異常予兆診断方法
JP5484591B2 (ja) プラントの診断装置及びプラントの診断方法
JP5081998B1 (ja) 異常予兆診断装置及び異常予兆診断方法
CN102999038B (zh) 发电设备的诊断装置、以及发电设备的诊断方法
CN102870057B (zh) 机械设备的诊断装置、诊断方法及诊断程序
US20130060524A1 (en) Machine Anomaly Detection and Diagnosis Incorporating Operational Data
JP6200833B2 (ja) プラントと制御装置の診断装置
JP5101396B2 (ja) 健全性診断方法及びプログラム並びに風車の健全性診断装置
JP5097739B2 (ja) プラントの異常診断装置及び異常診断方法
CN102713777B (zh) 诊断装置及诊断方法
CN109791401A (zh) 生成用于嵌入式分析和诊断/预测推理的故障模型
JP2009243428A (ja) 風車の監視装置及び方法並びにプログラム
JP2013008098A (ja) 異常予兆診断結果の表示方法
JP6523815B2 (ja) プラント診断装置及びプラント診断方法
JPWO2011039823A1 (ja) プラント診断装置
US11740592B2 (en) Control method, control apparatus, mechanical equipment, and recording medium
JP2017102765A (ja) 異常予兆検出システムおよび異常予兆検出方法
CN109416023A (zh) 风力涡轮机监视装置、风力涡轮机监视方法、风力涡轮机监视程序以及存储介质
JP6989398B2 (ja) 故障診断装置、故障診断方法、および故障診断プログラム
WO2014031291A2 (en) Fleet anomaly detection system and method
JPWO2018051568A1 (ja) プラント異常診断装置及びプラント異常診断システム
US11645794B2 (en) Monitoring apparatus, monitoring method, and computer-readable medium having recorded thereon monitoring program
CN116204825A (zh) 一种基于数据驱动的生产线设备故障检测方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220715

R150 Certificate of patent or registration of utility model

Ref document number: 7108417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150