JP2015114967A - 異常検知方法およびその装置 - Google Patents

異常検知方法およびその装置 Download PDF

Info

Publication number
JP2015114967A
JP2015114967A JP2013258215A JP2013258215A JP2015114967A JP 2015114967 A JP2015114967 A JP 2015114967A JP 2013258215 A JP2013258215 A JP 2013258215A JP 2013258215 A JP2013258215 A JP 2013258215A JP 2015114967 A JP2015114967 A JP 2015114967A
Authority
JP
Japan
Prior art keywords
abnormality
sensor signal
measure
feature vector
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013258215A
Other languages
English (en)
Other versions
JP2015114967A5 (ja
JP6216242B2 (ja
Inventor
渋谷 久恵
Hisae Shibuya
久恵 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Power Solutions Co Ltd
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi Power Solutions Co Ltd
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi Power Solutions Co Ltd, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2013258215A priority Critical patent/JP6216242B2/ja
Priority to EP14197018.6A priority patent/EP2884363B1/en
Priority to US14/568,268 priority patent/US9940184B2/en
Publication of JP2015114967A publication Critical patent/JP2015114967A/ja
Publication of JP2015114967A5 publication Critical patent/JP2015114967A5/ja
Application granted granted Critical
Publication of JP6216242B2 publication Critical patent/JP6216242B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0235Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0275Fault isolation and identification, e.g. classify fault; estimate cause or root of failure
    • G05B23/0281Quantitative, e.g. mathematical distance; Clustering; Neural networks; Statistical analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Algebra (AREA)
  • Mathematical Optimization (AREA)
  • Probability & Statistics with Applications (AREA)
  • Pure & Applied Mathematics (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

【課題】多次元時系列センサ信号を用いて異常検知を行う場合に、学習データへの異常データの混入を防止して異常検知感度の低下を防ぐ。【解決手段】指定された学習期間のデータを複数区間に分け、各区間についてその区間および除外候補区間を含まない学習期間のデータを用いて正常モデルを作成するステップと、正常モデルからの距離に基づいて異常測度を算出するステップと、除外候補区間を除く異常測度最大値を含む区間を除外候補区間とするステップとを複数回逐次的に繰り返し、各回で得られる結果に基づいて学習除外区間と異常判定しきい値を決定し、新しく取得されたデータまたは指定された評価期間のデータについて、学習除外区間を除く学習期間のデータを学習データとして正常モデルを作成し、正常モデルからの距離に基づいて各時刻のデータの異常測度を算出し、異常測度を異常判定しきい値と比較することにより各時刻のデータが異常か正常かを判定する。【選択図】図3

Description

本発明は、プラントや設備などの出力する多次元時系列データをもとに異常を早期に検知する異常検知方法およびその装置に関する。
電力会社では、ガスタービンの廃熱などを利用して地域暖房用温水を供給したり、工場向けに高圧蒸気や低圧蒸気を供給したりしている。石油化学会社では、ガスタービンなどを電源設備として運転している。このようにガスタービンなどを用いた各種プラントや設備において、設備の不具合あるいはその兆候を検知する異常検知は、社会へのダメージを最小限に抑えるためにも極めて重要である。
ガスタービンや蒸気タービンのみならず、水力発電所での水車、原子力発電所の原子炉、風力発電所の風車、航空機や重機のエンジン、鉄道車両や軌道、エスカレータ、エレベータ、MRI,X線CTなどの医用診断装置、機器・部品レベルでも、搭載電池の劣化・寿命など、上記のような予防保全を必要とする設備は枚挙に暇がない。
このため、対象設備やプラントに複数のセンサを取り付け、センサ毎の監視基準に従って正常か異常かを判断することが行われている。特開2011―70635号公報(特許文献1)には、過去の正常データから作成されたモデルとの比較によって算出される異常測度に基づいて異常の有無を検知する異常検知方法において、正常モデルを局所部分空間法によって作成することが開示されている。正常モデルに基づく異常検知では、感度が学習データの質に影響されるため、網羅的かつ正確に正常データを収集する必要がある。網羅性については学習期間を長くすることで対応可能である。正確性については、異常が混入していると、適正なしきい値を設定できずに感度が低下するため、学習データから自動的に異常データを除外する必要がある。
このようなニーズに対応するため、特開2011―70635号公報(特許文献1)には、特徴毎、周期毎の平均と分散に基づいて、他から外れる周期の学習データを除外する方法、特徴毎の1周期の波形モデルからの外れ回数に基づいて学習データを除外する方法が開示されている。また、正常データを周期単位にランダムにサンプリングして複数個の正常モデルを作成し、これを用いて算出した異常測度の上位数個の平均によって異常かどうかを識別し、異常を含む周期の学習データを除外する方法が開示されている。
特開2011―70635号公報
特許文献1に記載の特徴毎、周期毎の平均と分散に基づいて異常の有無を検知する異常検知方法や、特徴毎の1周期の波形モデルからの外れ回数に基づいて異常の有無を検知する異常検知方法では、規則正しいオペレーションの設備以外には適用困難であるという問題がある。また、ランダムにサンプリングして作成した複数の正常モデルに基づく方法は、計算時間が長いという問題がある。
そこで、本発明の目的は、上記課題を解決し、多次元時系列センサ信号を用いた正常モデルに基づく異常検知において適正なしきい値を設定するため、学習データに異常なデータが混入している場合は異常データを簡便な方法で適切に除外する異常検知方法およびその装置を提供することにある。
上記課題を解決するために、本発明では、設備または装置が稼働中に設備または装置に装着されたセンサから出力される多次元時系列センサ信号を用いて設備または装置の異常を検知する方法において、多次元時系列センサ信号のうち予め指定された期間のセンサ信号を用いて正常モデルを作成して異常判定しきい値を算出する工程と、多次元時系列センサ信号から特徴ベクトルを観察ベクトルとして抽出する工程と、抽出した観察ベクトルと作成した正常モデルとを用いて観察ベクトルの異常測度を算出する工程と、算出した観測ベクトルの異常測度と異常判定しきい値とを比較して設備または装置の異常を検知する工程とを含み、正常モデルを、多次元時系列センサ信号の予め指定された区間のセンサ信号のうち一部の区間の信号を除外した多次元時系列センサ信号を用いて作成することを特徴とする。
また、上記した課題を解決するために、本発明では、設備または装置が稼働中に設備または装置に装着されたセンサから出力される多次元時系列センサ信号を用いて設備または装置の異常を検知する方法において、設備または装置の異常を検知する方法は学習する工程と異常を検知する工程とを含み、学習する工程において、多次元時系列センサ信号のうち予め指定された期間のセンサ信号から一部の期間のセンサ信号を除外して学習データを作成し、作成した学習データから異常判定しきい値を算出し、異常を検知する工程において、学習データを用いて正常モデルを作成し、多次元時系列センサ信号から特徴ベクトルを観測ベクトルとして抽出し、抽出した観測ベクトルと作成した正常モデルとを用いて観測ベクトルの異常測度を算出し、算出した観測ベクトルの異常測度と異常判定しきい値とを比較して設備または装置の異常を検知するようにした。
また、上記課題を解決するために、本発明では、設備または装置が稼働中に設備または装置に装着されたセンサから出力される多次元時系列センサ信号を用いて前記設備または装置の異常を検知する装置を、多次元時系列センサ信号のうち予め指定された期間のセンサ信号を用いて正常モデルを作成して異常判定しきい値を算出する演算部と、 多次元時系列センサ信号から特徴ベクトルを観察ベクトルとして抽出する観察ベクトル抽出部と、観察ベクトル抽出部で抽出した観察ベクトルと演算部で作成した正常モデルとを用いて観察ベクトルの異常測度を算出する異常測度算出部と、異常測度算出部で算出した観測ベクトルの異常測度と演算部で算出した異常判定しきい値とを比較して設備または装置の異常を検知する異常検知部とを備えて構成し、演算部は、正常モデルを、多次元時系列センサ信号の予め指定された区間のセンサ信号のうち一部の区間の信号を除外した多次元時系列センサ信号を用いて作成するようにした。
更に、上記課題を解決するために、本発明では、設備または装置が稼働中に設備または装置に装着されたセンサから出力される多次元時系列センサ信号を用いて設備または装置の異常を検知する装置を、多次元時系列センサ信号を蓄積するセンサ信号蓄積部と、多次元時系列センサ信号をもとに特徴ベクトルを抽出する特徴ベクトル抽出部と、特徴ベクトル抽出部で抽出された予め指定された学習期間の特徴ベクトルから学習除外区間の特徴ベクトルを除外して学習データを作成するする学習データ作成部と、学習データ作成部で作成された学習データを用いて各時刻の特徴ベクトルに対応する正常モデルを作成する正常モデル作成部と、特徴ベクトル抽出部で抽出された各時刻の特徴ベクトルと正常モデル作成部で作成された正常モデルとを用いて異常測度を算出する異常測度算出部と、学習データ作成部で作成された学習データと正常モデル作成部で作成された正常モデルとを用いて異常測度算出部で算出された異常測度に基づいて学習データから除外する区間を設定する除外区間設定部と、学習データ作成部で作成された学習データについて異常測度算出部で算出した異常測度に基づいてしきい値を算出するしきい値算出部と、異常測度算出部で算出された各特徴ベクトルの異常測度としきい値算出部で算出されたしきい値とを比較することにより設備または装置の異常を検知する異常検知部とを備えて構成した。
本発明によれば、学習データから異常測度が高い区間を除外して異常測度を再計算することを逐次繰り返し、各回の結果に基づいて学習データから除外する区間と異常判定しきい値を設定するため、適切に学習データから異常な区間を除外して低い異常判定しきい値を設定することができ、高感度な異常検知を実現できる。
以上の手法を適用したシステムにより、ガスタービンや蒸気タービンなどの設備のみならず、水力発電所での水車、原子力発電所の原子炉、風力発電所の風車、航空機や重機のエンジン、鉄道車両や軌道、エスカレータ、エレベータ、工場の生産設備、そして機器・部品レベルでは、搭載電池の劣化・寿命など、あるいは脳波や心電図など人を対象としたセンシングデータにおいて、対象の異常を早期に検出することが可能となる。
本発明の実施例1に係る設備状態監視システムの概略の構成を示すブロック図である。 センサ信号の例を示す信号リストの表である。 本発明の実施例1に係る設備状態監視システムの学習時の処理の流れを示すフロー図である。 本発明の実施例1に係る設備状態監視システムの学習データの異常測度算出の流れを示すフロー図である。 局所部分空間法を説明する図である。 本発明の実施例1に係る設備状態監視システムの学習時の別の例の処理の流れを示すフロー図である。 本発明の実施例1に係る設備状態監視システムの異常検知時の処理の流れを示すフロー図である。 本発明の実施例1に係る設備状態監視システムにおけるレシピ設定のためのGUIの1例を表す表示画面の正面図である。 本発明の実施例1に係る設備状態監視システムにおける結果表示画面の例で複数の時系列データを表示した画面の正面図である。 本発明の実施例1に係る設備状態監視システムにおける結果表示画面の例で複数の時系列データを拡大表示した画面の正面図である。 本発明の実施例1に係る設備状態監視システムにおける結果表示画面の例で学習データ選別の詳細を表示した画面の正面図である。 本発明の実施例1に係る設備状態監視システムにおけるレシピ設定のためのテスト結果の一覧を表示した画面の正面図である。 本発明の実施例1に係る設備状態監視システムにおける結果表示対象指定のためのGUIの1例を表す表示画面の正面図である。 本発明の実施例1に係る設備状態監視システムにおける結果表示画面に含まれる期間表示ウィンドウの表示例である。 本発明の実施例2に係る設備状態監視システムの概略の構成を示すブロック図である。 本発明の実施例2に係る設備状態監視システムの学習時の処理の流れを示すフロー図である。 本発明の実施例2に係る設備状態監視システムのイベント信号の例を示す信号リストの表である。 本発明の実施例2に係る設備状態監視システムの設備の可動状態を分割して4種のモードの何れかに分類した状態を示すイベント信号の模式図である。 本発明の実施例3に係る設備状態監視システムの学習除外条件の例を示す条件リストの表である。
本発明は、設備に装着されたセンサから出力されるセンサ信号に基づいて前記設備の異常を検知する異常検知装置、及び設備の異常を検知する異常検知方法において、学習データから異常測度が高い区間を除外して異常測度を再計算することを逐次繰り返し、各回の結果に基づいて学習データから除外する区間と異常判定しきい値を設定するようにして、適切に学習データから異常な区間を除外して低い異常判定しきい値を設定することができるようにし、高感度な異常検知を実現できるようにしたものである。
以下に、本発明の実施例を、図を用いて説明する。
図1に、本発明の異常検知方法を実現するための異常検知システム100の一構成例を示す。
本異常検知システム100は、センサ信号解析部120と、入出力部130とを備えている。センサ信号解析部120は、設備101から出力されるセンサ信号102を生データとして蓄積するセンサ信号蓄積部103、センサ信号102をもとに特徴ベクトルを抽出する特徴ベクトル抽出部104、予め指定された学習期間の特徴ベクトルから学習除外区間の特徴ベクトルを除外する学習データ選別部105、選別された学習データを用いて各時刻の特徴ベクトルに対応する正常モデルを作成する正常モデル作成部106、各時刻の特徴ベクトルと作成された正常モデルに基づいて異常測度を算出する異常測度算出部107、選別された学習データの異常測度に基づいて学習データから除外する区間を設定する除外区間設定部108、選別された学習データの異常測度に基づいてしきい値を算出するしきい値算出部109、各特徴ベクトルの異常測度と算出されたしきい値との比較により異常を検出(検知)する異常検出部110を備えて構成される。入出力部130は、表示画面131を備えている。
本異常検知システム100の動作には、蓄積されたデータを用いて学習データの生成、保存を行う「学習」と入力信号に基づき異常を検知する「異常検知」の二つのフェーズがある。基本的に前者はオフラインの処理、後者はオンラインの処理である。ただし、後者をオフラインの処理とすることも可能である。以下の説明では、それらを学習時、異常検知時という言葉で区別する。
本異常検知システム100で状態監視の対象とする設備101は、例えばガスタービンや蒸気タービンなどの設備やプラントである。設備101は、その状態を表すセンサ信号102を出力する。センサ信号102はセンサ信号蓄積部103に蓄積されている。センサ信号102をリスト化して表形式に表した例を図2に示す。センサ信号102は一定間隔毎に取得される多次元時系列信号であり、それをリスト化した表は、図2に示すように、日時の欄201と設備101に設けられた複数のセンサ値のデータの欄202からなる。センサの種類は、数百から数千といった数になる場合もあり、例えば、シリンダ、オイル、冷却水などの温度、オイルや冷却水の圧力、軸の回転速度、室温、運転時間などである。出力や状態を表すのみならず、何かをある値に制御するための制御信号の場合もある。
センサ信号解析部120における学習時の処理の流れを図3を用いて説明する。学習時はセンサ信号蓄積部103に蓄積されたデータのうち指定された期間のデータを用いて、特徴ベクトルを抽出する。ここで抽出されたデータを学習データと呼ぶ。除外区間を除く学習データの異常測度を交差検証により算出し、その結果に基づき学習から除外する区間を決定し異常判定のしきい値を算出することを繰り返す。異常検知時には繰り返しが終了したときの学習除外区間と異常判定しきい値を採用する。
まず、特徴ベクトル抽出部104、学習データ選別部105、正常モデル作成部106、異常測度算出部107、除外区間設定部108、しきい値算出部109における処理の流れを、図3を用いて説明する。
始めに、特徴ベクトル抽出部104において、センサ信号蓄積部103から学習期間として指定された期間のセンサ信号102を入力し(S301)、センサ信号毎に正準化した後(S302)、特徴ベクトルの抽出を行い(S303)、特徴ベクトルを複数区間、例えば1日につき一つの区間に分ける(S304)。次に、除外区間設定部108で除外区間を決めるためのパラメータを入力する(S305)。パラメータは、最大繰り返し回数N、最大保留回数M、有効下がり幅Δである。予め、パラメータファイルまたはGUIにより設定しておく。
次に、異常測度算出部107で学習期間の全特徴ベクトルの異常測度算出し、除外区間設定部108で設定した除外候補区間を除く学習期間における異常測度の最大値を抽出する(S306)。初回は、除外候補区間はなしである。初回の場合、または、(前回までに設定されたしきい値−異常測度最大値)で算出される下がり幅がパラメータΔより大きい場合は(S307)、しきい値算出部109において、異常測度最大値をしきい値とし、除外区間設定部108において、除外候補区間を学習除外区間にとする(S308)。
ステップS307でNOの場合(2回目以降、または、下がり幅がパラメータΔ以下の場合)は、しきい値はそれまでの値を継承する。また、学習除外区間もそのままとする。そして、下がり幅をチェックし(S309)、下がり幅が負、すなわち増加する場合(S309でYESの場合)、保留回数をカウントアップする(S310)。保留回数の初期値は図示していないがもちろん0である。一方、下がり幅が正又はゼロ、すなわち減少または変化しない場合(S309でNOの場合)、保留回数はそのままとする。
ステップS308またはS309またはS310の処理の後、除外区間設定部108において、異常測度最大値の区間を除外候補区間に追加する(S311)。繰り返し回数及び保留回数をチェックし(S312)、繰り返し回数がN回目または保留回数がパラメータMより大きい場合(S312でYESの場合)、処理を終了し、S307へ進む。終了時の学習除外区間としきい値を学習結果として記録しておく。
ここで繰り返し回数とはステップS306を実行した回数のことであり、保留回数とはステップS310でカウントされる数のことである。ステップS312においてNOの場合(繰り返し回数がN回目より少なく、かつ、保留回数がパラメータM以下の場合、ステップS306に戻る。
次に、主なステップについて詳細に説明する。
ステップS302においては、特徴ベクトル抽出部104において、各センサ信号の正準化を行う。例えば、指定された期間の各センサ信号の平均と標準偏差を用いて、平均を0、分散を1となるように変換する。異常検知時に同じ変換ができるよう、各センサ信号の平均と標準偏差を記憶しておく。あるいは、各センサ信号の指定された期間の最大値と最小値を用いて最大が1、最小が0となるように変換する。あるいは、最大値と最小値の代わりに予め設定した上限値と下限値を用いてもよい。異常検知時に同じ変換ができるよう、各センサ信号の最大値と最小値または上限値と下限値を記憶しておく。センサ信号の正準化は、単位およびスケールの異なるセンサ信号を同時に扱うためのものである。
ステップS303においては、特徴ベクトル抽出部104において、時刻毎に特徴ベクトル抽出を行う。センサ信号を正準化したものをそのまま並べることが考えられるが、ある時刻に対して±1,±2,…のウィンドウを設け,ウィンドウ幅(3,5,…)×センサ数の特徴ベクトルにより、データの時間変化を表す特徴を抽出することもできる。また、離散ウェーブレット変換(DWT: Discrete Wavelet Transform)を施して、周波数成分に分解してもよい。さらに、ステップS303において、特徴選択を行う。最低限の処理として、分散が非常に小さいセンサ信号および単調増加するセンサ信号を除く必要がある。
また、相関解析による無効信号を削除することも考えられる。これは、多次元時系列信号に対して相関解析を行い、相関値が1に近い複数の信号があるなど、極めて類似性が高い場合に、これらは冗長だとして、この複数の信号から重複する信号を削除し、重複しないものを残す方法である。
このほか、ユーザが指定するようにしてもよい。また、長期変動が大きい特徴を除くことも考えられる。長期変動が大きい特徴を用いることは正常状態の状態数を多くすることにつながり、学習データの不足を引き起こすためである。例えば、1周期期間毎の平均と分散を算出し、それらのばらつきによって長期変動の大きさを推定できる。
ステップS306における処理の詳細を、図4を用いて説明する。始めに、学習データ選別部105において、全学習期間で抽出された特徴ベクトルから、除外区間設定部108において設定された除外候補区間に含まれる特徴ベクトルを除いたものを学習データとする(S401)。次に、学習期間の特徴ベクトルの中から1個目の特徴ベクトルに注目し(S402)、正常モデル作成部106において、注目ベクトルと同じ区間を除く学習データを用いて、正常モデルを作成する(S403)。なお、ここでの区間はステップS401における区間と同じ分割に基づくものでもよいし、独立した分割を定義してもよい。異常測度算出部107において、注目ベクトルと正常モデルの距離に基づいて異常測度を算出する(S404)。全ベクトルの異常測度算出が終了していれば(S405)、ステップS306の処理を終了してステップS307へ進む。ステップS405において全ての異常測度算出が終了していなければ、次の特徴ベクトルに注目し(S406)、ステップS403からS405の処理を繰り返す。
正常モデル作成手法としては、局所部分空間法(LSC: Local Sub−space Classifier)や投影距離法(PDM: Projection Distance Method)が考えられる。
局所部分空間法は、注目ベクトルqのk−近傍ベクトルを用いてk−1次元のアフィン部分空間を作成する方法である。図5にk=3の場合の例を示す。図5に示すように、異常測度は図に示す投影距離で表されるため、注目ベクトルqに最も近いアフィン部分空間上の点を求めればよい。評価データqとそのk−近傍ベクトルxi( i = 1,…,k )から算出することができる、qをk個並べた行列Qとxiを並べた行列Xから
Figure 2015114967
により相関行列Cを求め、
Figure 2015114967
によりbを計算する。bは、xiの重み付けを表す係数ベクトルである。
異常測度dはqとXbの間の距離であるから次式で表される。
Figure 2015114967
なお、図2ではk=3の場合を説明したが、特徴ベクトルの次元数より十分小さければいくつでもよい。k=1の場合は、最近傍法と等価の処理になる。
投影距離法は、選択された特徴ベクトルに対し独自の原点をもつ部分空間すなわちアフィン部分空間(分散最大の空間)を作成する方法である。なんらかの方法で注目ベクトルに対応する複数の特徴ベクトルを選択し、以下の方法でアフィン部分空間を算出する。まず、選択された特徴ベクトルの平均μと共分散行列Σを求め、次にΣの固有値問題を解いて値の大きい方から予め指定したr個の固有値に対応する固有ベクトルを並べた行列Uをアフィン部分空間の正規直交基底とする。rは特徴ベクトルの次元より小さくかつ選択データ数より小さい数とする。あるいはrを固定した数とせず、固有値の大きい方から累積した寄与率が予め指定した割合を超えたときの値としてもよい。異常測度は、注目ベクトルのアフィン部分空間への投影距離とする。ここで、複数の特徴ベクトルの選択方法としては、予め指定した数十から数百の数の特徴ベクトルを注目ベクトルから近い順に選択する方法が考えられる。また、学習対象の特徴ベクトルを予めクラスタリングしておき、注目ベクトルに最も近いクラスタに含まれる特徴ベクトルを選択するようにしてもよい。
この他、注目ベクトルqのk−近傍ベクトルの平均ベクトルまでの距離を異常測度とする局所平均距離法や、ガウシアンプロセスなどを用いてもよい。
ステップS308では、しきい値算出部109において異常測度最大値をしきい値として設定することを説明したが、それ以外のしきい値算出方法の変形例を説明する。異常測度最大値以外のしきい値としては、除外候補区間を除く学習期間の全特徴ベクトルの異常測度を昇順にソートし、予め指定した1に近い比率に到達する値をしきい値とする方法が有る。あるいはこの値にオフセットを加える、定数倍するなどの処理によりしきい値を算出することも可能である。この場合、異常測度最大値を第一のしきい値、上記手順で算出されたしきい値を第二のしきい値とし、ステップS307における比較で用いるのは第一のしきい値とし、ステップS308では、第一のしきい値と第二のしきい値の両方を更新し、処理終了後(S313)、第二のしきい値を異常判定しきい値として記録する。
上記に示したように、異常測度最大の区間を学習から除外することを逐次的に行い、予め定めたパラメータに従って学習除外区間の決定と繰り返しの停止を行うことにより、適切な除外区間を見つけ、適切なしきい値を設定して高感度な異常検知を実現可能とする。逐次的に行うのは、学習データが変化すると各特徴ベクトルの異常測度が変化するためである。
ステップS307における下がり幅は、除外した区間の妥当性を評価する目安である。下がり幅が大きいときには除外した区間のデータが他の区間の学習データから離れており、学習にもあまり使われていないことを示している。すなわち異常である可能性が高いため除外すべきである。小さい場合は、除外することによるしきい値の低下が小さいということであり、メリットがなく異常かどうかの判断が難しいため除外しなくてもよい。負の場合は、除外することによりしきい値が上昇するということであり、除外した区間のデータが他の区間のデータの学習に使用されていたことを示している。本来は除外すべきではないが、類似する異常が2つの区間で発生していた場合、一方を除外するともう一方の異常測度が上昇することが起こるため、保留という考えを導入した。最大保留回数Mの設定により、このような対になる異常区間をM組までまとめて除外することが可能となる。
図3に示すフローでは、除外候補区間を一つずつ追加していたが、複数追加するようにしてもよい。その場合、ステップS306において、区間別に異常測度最大値を算出する。さらに、ステップS311において、区間別の異常測度最大値が(しきい値−Δ)より大きい全ての区間を除外候補区間とする。
学習時の処理の流れの、図3で説明した処理フローとは別の実施例を図6を用いて説明する。始めに、特徴ベクトル抽出部104において、センサ信号蓄積部103から学習期間として指定された期間のセンサ信号102を入力し(S601)、センサ信号毎に正準化した後(S602)、特徴ベクトルの抽出を行い(S603)、特徴ベクトルを複数区間、例えば1日につき一つの区間に分ける(S604)。ここまでの処理は、図3に示したステップS301〜S304までと同じである。
次に、除外区間を決めるためのパラメータを入力する(S605)。入力するパラメータは、最大繰り返し回数Nと除外ペナルティ係数pである。予め、パラメータファイルまたはGUIにより設定しておく。次に、学習期間のベクトルの異常測度算出を実行する(S606)。初回は、除外候補区間は無い。除外区間設定部108において、除外候補区間を除く異常測度最大値の区間を除外候補区間に追加する(S607)。次に、繰り返し回数をチェックし(S608)、繰り返し回数がN回目の場合(S608でYESの場合)、(異常測度最大値+繰り返し回数*p)が最小となるときの異常測度最大値をしきい値とし、そのときの除外候補区間を学習除外期間とし(S609)、処理を終了する。学習除外区間としきい値を学習結果として記録しておく。ステップS608において繰り返し回数がN回未満であった場合(S608でNOの場合)、ステップS606に戻る。
上記に示したように、異常測度最大の区間を学習から除外することを予め決められた回数だけ逐次的に行い、各回の結果に基づいて予め決められたパラメータに従って学習除外区間としきい値を決定することにより、適切な除外区間を見つけ、適切なしきい値を設定して高感度な異常検知を実現可能とする。除外ペナルティ係数pには、図3に示す処理フローにおける有効下がり幅Mと類似した作用がある。pを0とすると、しきい値が最も低くなるように学習除外区間が決定される。pを0より大きくすると、異常かどうか判断の微妙な区間の除外を抑制する。
異常検知時の処理の流れを図7を用いて説明する。異常検知時はセンサ信号蓄積部103に蓄積されたデータのうち指定された期間のデータあるいは新たに観測されたデータの異常測度を算出し、正常か異常かの判定を行う。
図7は、特徴ベクトル抽出部104、学習データ選別部105、正常モデル作成部106、異常測度算出部107、異常検出部110における異常検知時の処理の流れを説明する図である。始めに、学習データ選別部105において、学習除外区間を除く学習期間の特徴ベクトルを学習対象の特徴ベクトルとする(S701)。これらの特徴ベクトルを単に学習データと呼ぶこととする。次に、特徴ベクトル抽出部104において、センサ信号蓄積部103または設備101からセンサ信号102を入力し(S702)、センサ信号毎に正準化した後(S703)、特徴ベクトルの抽出を行う(S704)。
センサ信号の正準化には、図3のステップS302に示す処理において、学習データの正準化に用いたものと同じパラメータを用いる。特徴ベクトルの抽出は、ステップS303の処理と同じ方法で行う。したがって、ステップS303において特徴選択を実行した場合は同じ特徴を選択する。ここで抽出された特徴ベクトルを、学習データと区別するために観測ベクトルと呼ぶこととする。
次に、正常モデル作成部106において、学習データを用いて正常モデルを作成し(S705)、異常測度算出部107において、正常モデルと観測ベクトルの距離に基づいて異常測度を算出する(S706)。正常モデル作成の方法は学習時と同じ方法とする。異常検出部110において、学習時に算出したしきい値と異常測度を比較して、異常測度がしきい値より大きければ異常、そうでなければ正常と判定する(S707)。次に、未処理の観測データがないかをチェックし(S708)未処理の観測データがない場合には(S708でYESの場合)、処理を終了する。一方、未処理の観測データが残っている場合には(S708でNOの場合)、ステップS702からS707までの処理を対象データがある限り、繰り返す。
以上の方法を実現する異常検知システム100の入出力部130の表示部131に表示するGUIの実施例を説明する。
学習期間および処理パラメータ設定のためのGUIの例を、図8に示す。以下の説明ではこの設定のことを単にレシピ設定と呼ぶことにする。また、過去のセンサ信号102は設備IDおよび時刻と対応付けられてデータベースに保存されているものとする。表示部131に表示されるレシピ設定画面801では、対象装置、学習期間、使用センサ、基準算出パラメータ、しきい値設定パラメータを入力する。
設備ID入力ウィンドウ802には、対象とする設備のIDを入力する。設備リスト表示ボタン803押下により図示はしていないがデータベースに保存されているデータの装置IDのリストが表示されるので、リストから選択入力する。学習期間入力ウィンドウ804には、学習データを抽出したい期間の開始日と終了日を入力する。センサ選択ウィンドウ805には、使用するセンサを入力する。
リスト表示ボタン806のクリックによりセンサリスト807が表示されるので、カーソル820をリスト上の所望のセンサに上に移動させてクリックすることにより選択入力する。リストから複数選択することも可能である。正常モデルパラメータ入力ウィンドウ808には、正常モデル作成において使用するパラメータを入力する。
図は正常モデルとして局所部分空間を採用した場合の例であり、モデル作成に使う近傍ベクトル数と正則化パラメータを入力する。正則化パラメータは、数2において相関行列Cの逆行列が求められないことを防ぐため、対角成分に加算する小さい数である。しきい値設定パラメータ入力ウィンドウ809には、しきい値設定処理において使用するパラメータを入力する。図は、累積ヒストグラムに適用する比率の例である。ここには0以上1以下の実数を入力する。1の場合、ステップS308において異常測度最大値をしきい値とする。1未満の場合、変形例として説明したように、除外候補区間を除く学習期間の全特徴ベクトルの異常測度を昇順にソートし、ここで指定した比率に達する値を第二のしきい値とし、繰り返し終了後に第二のしきい値を異常判定しきい値とする。
レシピ名入力ウィンドウ811には、入力された情報に対応付けるユニークな名前を入力する。全ての情報を入力したらテスト期間入力ウィンドウ1311にテスト対象期間を入力する。ここは空欄にしてもよい。その場合は学習のみ行う。以上の情報を入力後、テストボタン813の押下により、レシピのテストを行う。
この操作により、同じレシピ名で実行したテストの通し番号が採番される。装置ID情報、使用センサ情報、学習期間、特徴ベクトル抽出に用いるパラメータ、正常モデルパラメータをレシピ名およびこのテスト番号と対応付けて保存しておく。
次に、図3に示した処理フローに従って学習を実行する。ステップS302の正準化においては、指定した学習期間の全センサ信号を用いて平均と標準偏差を求める。この平均と標準偏差の値は、センサ毎にレシピ名およびテスト番号に対応付けて保存しておく。ステップS304における区間の分割は例えば1日毎とし分割番号を日付に対応付けて保存しておく。
ステップS306からS311までの処理は、ステップS312において終了条件を満たすまで繰り返される。繰り返しの際には、1から始まる処理番号を順に振っておく。ステップS306における除外候補区間の番号、算出された全学習期間の異常測度および異常測度最大値、ステップS308において決定した、あるいは前回から継承されたしきい値と学習除外区間、その時点での保留回数を処理番号と併せて保存しておく。また、図3には示されていないが、表示のため、ステップS306において算出された異常測度最大値をしきい値として全学習期間の異常判定を行い、結果を保存しておく。また、繰り返し終了時のしきい値と学習除外区間が決定された処理番号も保存しておく。
次に、テスト期間のセンサ信号102を用いて、学習時の処理番号に対応させて、図7に示す異常検知の処理を行い、異常測度と判定結果を処理番号と併せて保存する。各回のステップS701における学習除外区間は、学習時の対応する処理番号のステップS306において使用された除外候補区間とする。各回のステップS707におけるしきい値は、学習時の対応する処理番号のステップS306において算出された異常測度最大値とする。
レシピテスト終了後、テストの結果がユーザに示される。そのためのGUIの例を図9Aおよび図9Bおよび図9Cに示す。各画面の上部に表示されたタブを選択することにより、結果表示画面901と結果拡大表示画面902と学習データ選別詳細表示画面903を切り換えることができる。
図9Aには、表示部131に表示される結果表示画面901を示す。結果表示画面901には、指定された全期間の異常測度、しきい値、判定結果とセンサ信号の時系列グラフなどの全体を表示する。期間表示ウィンドウ904には、指定された学習期間およびテスト期間が表示される。処理番号表示ウィンドウ905には、表示中のデータの処理番号を表示する。最初は、繰り返し終了時のしきい値と学習除外区間が決定された処理番号が表示されるものとする。異常測度表示ウィンドウ906には、指定された学習期間およびテスト期間および処理番号の異常測度としきい値と判定結果が表示される。また、学習に使用した区間に丸印が表示される。センサ信号表示ウィンドウ907には、指定された期間の指定されたセンサの出力値が表示される。センサの指定は、センサ名選択ウィンドウ908への入力によって行う。ただし、ユーザが指定する前は、先頭のセンサが選択されている。カーソル909は、拡大表示の時の起点を表し、マウス操作により移動できる。表示日数指定ウィンドウ910には、この画面では使用しないが、結果拡大表示画面902での、拡大表示の起点から終点までの日数が表示される。この画面で入力することもできる。日付表示ウィンドウ911には、カーソル位置の日付が、表示される。終了ボタン912押下により結果表示画面901、結果拡大表示画面902、学習データ選別詳細表示画面903とも消去し終了する。
図9Bには、結果拡大表示画面902を示す。結果拡大表示画面902には、結果表示画面901において、カーソル909で示された日付を起点として、指定された日数の異常測度、しきい値、判定結果とセンサ信号の拡大した時系列グラフを表示する。期間表示ウィンドウ904には、結果表示画面901と同じ情報が表示される。異常測度表示ウィンドウ906およびセンサ信号表示ウィンドウ907には、結果表示画面901と同様の情報が、拡大表示される。表示日数指定ウィンドウ910で、拡大表示の起点から終点までの日数を指定する。日付表示ウィンドウ911には、拡大表示の起点の日付が表示されている。スクロールバー913で表示の起点を変更することも可能であり、この変更はカーソル909の位置と日付表示ウィンドウ911の表示に反映される。スクロールバー表示領域914の全体の長さは結果表示画面901に表示されている全期間に相当する。また、スクロールバー914の長さは表示日数指定ウィンドウ910で指定された日数に相当し、スクロールバー913の左端部が拡大表示の起点に対応する。終了ボタン912押下により終了する。
図9Cには、表示部131に表示される学習データ選別詳細表示画面903の例を示す。学習データ選別詳細表示画面903には、しきい値、学習除外区間、区間毎の異常検知結果を処理番号別に表示する。期間表示ウィンドウ904には、指定された学習期間およびテスト期間が表示される。パラメータ表示ウィンドウ915には、学習データ選別のためのパラメータが表示される。
学習データ選別詳細表示ウィンドウ916は、処理番号欄917、しきい値欄918、更新チェック欄919、区間表示欄920、学習区間チェック欄921、異常検知区間チェック欄922からなる。処理番号欄917には処理番号、しきい値欄918には、異常測度最大値が表示される。更新チェック欄919には、各処理番号に対し、図3のステップS308の処理を行った場合に丸印を表示する。そのうち、繰り返しの中で最後になる場合は二重丸を表示する。区間表示欄920には区間を表す情報を表示する。この例では月と日である。区間の分け方に合わせて時間を表示してもよいし、単純に区間番号を表示してもよい。学習区間チェック欄921には、対応する区間が対応する処理番号において、学習期間の除外候補区間の場合はバツ印、その他の場合は丸印、テスト期間の場合はハイフンを表示する。異常検知区間チェック欄922には、対応する区間が対応する処理番号において、一度でも異常検知された場合は丸印を表示する。一度も検知されない場合は空欄とする。
最終結果表示ウィンドウ923には、繰り返し処理終了後に確定したしきい値と学習除外区間と確定したときの処理番号、すなわち更新チェック欄919に二重丸が表示された処理番号を表示する。ここに表示されるのは学習結果であるが、異なる処理番号の結果を学習結果として保存したい場合、処理番号入力ウィンドウ924に番号を入力し、処理番号変更ボタン925を押下することにより、最終結果表示ウィンドウ923に表示される内容が入力された処理番号に対応する情報に書き換えられる。また、入力された処理番号が学習結果として保存される。終了ボタン912押下により終了する。
図9A〜Cに示すいずれかの画面で、終了ボタン912押下により異常検出結果および学習データ選別結果の確認が終了したら、図8に示すレシピ設定画面801の表示に戻る。テスト番号表示ウィンドウ814には、上記のテストで採番された番号が表示されている。確認した内容に問題があれば、学習期間や選択センサ、パラメータなどを変更し、テストボタン813の押下により、再度テストを行う。あるいは、一度行ったテストの結果を再度確認することもできる。テスト番号表示ウィンドウ814からテスト番号を選択入力し、表示ボタン815を押下する。この操作により、レシピ名とテスト番号に対応付けて保存された情報をロードし結果表示画面901を表示する。タブの切り替えにより結果拡大表示画面902または学習データ選別詳細表示画面903を表示させることもできる。確認が済んだら終了ボタン912押下により、レシピ設定画面801の表示に戻る。
レシピ設定画面801上においてカーソル820を登録ボタン816の上に移動させて登録ボタン816を押下げる(クリックする)ことにより、上記レシピ名とテスト番号表示ウィンドウ814に表示中のテスト番号に対応付けて保存されている情報をレシピ名と対応付けて登録し、終了する。キャンセルボタン817が押下された場合は、何も保存しないで終了する。
また、テスト結果一覧ボタン818が押下された場合は、図10に示す、テスト結果一覧表示画面1001を表示する。テスト結果リスト1002には、全てのテストの学習期間、テスト期間、選択センサ番号、正常モデル作成パラメータ、しきい値設定パラメータ学習データ選別パラメータなどのレシピ情報と、しきい値、学習除外区間、異常区間数などの学習・テスト結果情報を表示する。リストの左端に選択チェックボタンがあり、いずれか一つのみ選択することができる。詳細表示ボタン1003押下により、レシピ名とテスト番号に対応付けて保存された情報をロードし、結果表示画面901を表示する。タブの切り替えにより結果拡大表示画面902または異常検知結果表示画面903を表示させることもできる。
確認が済んだら終了ボタン912の押下により、テスト結果一覧表示画面1001の表示に戻る。登録ボタン1004の押下により、選択中のテスト番号に対応付けて保存されている情報をレシピ名と対応付けて登録し、テスト結果一覧表示画面1001の表示およびレシピ設定画面801の表示を終了する。戻るボタン1005が押下された場合は、レシピの登録は行わずにレシピ設定画面801の表示に戻る。
登録されたレシピは、活性か不活性かのラベルをつけて管理され、新しく観測されたデータに対しては、装置IDが一致する活性なレシピの情報を用いて図7を用いて説明した特徴ベクトル抽出から異常検出までの処理を行い、結果をレシピ名と対応付けて保存しておく。
以上の異常検知処理の結果を表示画面131上に表示するGUIの例を、図11に示す。図11は、表示対象を指定するGUIの例である。表示対象指定画面1101から表示対象の設備、レシピおよび期間を指定する。始めに、装置ID選択ウィンドウ1102により装置IDを選択する。次に、レシピ名選択ウィンドウ1103により、装置IDを対象としたレシピのリストから表示対象のレシピを選択する。データ記録期間表示部1104には、入力されたレシピを用いて処理され、記録が残されている期間の開始日と終了日が表示される。結果表示期間指定ウィンドウ1105には、結果を表示したい期間の開始日と終了日を入力する。表示センサ指定ウィンドウ1106には、表示したいセンサの名を入力する。表示ボタン1107押下により図9Aに示す結果表示画面901を表示する。終了ボタン912押下により終了する。
結果表示にかかわるGUIの画面および操作は、図9Aおよび図9Bに示すテスト結果表示にかかわるGUIとほぼ同じであるため、異なる部分のみ説明する。結果表示画面901、結果拡大表示画面902における期間表示ウィンドウ904には、図12に示すように結果表示期間指定ウィンドウ1105で指定された表示期間1201が表示される。結果表示画面901において、異常測度表示ウィンドウ906には、指定された表示期間の異常測度としきい値と判定結果が表示される。また、学習に使用した区間に丸印9061が表示される。センサ信号表示ウィンドウ907には、指定された期間の、表示センサ指定ウィンドウ1106により指定されたセンサの出力値が表示される。表示対象センサは、センサ名選択ウィンドウ908への入力によって変更することも可能である。新しく観測されたデータの結果表示の時には、学習データ選別詳細表示画面903は表示されない。
以上に説明したようなGUI上で、センサ信号、抽出した特徴、異常測度、しきい値を視覚的に確認しながら除外区間を設定して異常を検出するための正常モデルを設定することができるので、異常データを含まないデータを用いてよりよい正常モデルを作成することが可能になった。
上記実施例は学習データ設定をオフライン、異常検知処理をリアルタイム、結果表示をオフラインでそれぞれ処理するものであるが、結果表示もリアルタイムに行うことが可能である。その場合、表示期間の長さ、表示対象とするレシピ、表示対象とする情報を予め定めておき、一定時間毎に最新の情報を表示するよう構成すればよい。
逆に、任意の期間を設定し、レシピを選択して、オフラインで異常検知処理を行う機能を付加したものも本発明の範囲に含まれる。
本異常検知システム100は、センサ信号解析部120と、入出力部130とを備えている。
実施例1においては、設備から出力されるセンサ信号に基づき異常検知する方法の実施例を説明したが、別の実施例として、さらに、設備から出力されるイベント信号も利用して異常検知する方法を説明する。図13Aに、本実施例における異常検知方法を実現する異常検知システム1300の構成を示す。異常検知システム1300は、センサ信号解析部1320と、入出力部1330とを備えている。本実施例における異常検知システム1300は、図1に示した実施例1における異常検知システム100のセンサ信号解析部120の構成に、モード分割部1302を加えたものとなっている。図1で説明した構成と同じ番号を付した部分は、実施例1で説明したのと同じ機構を備えているので、説明を省略する。
モード分割部1302は、設備101からイベント信号1301を入力し、これに基づき設備101の稼動状態を表すモードに分割する。モード分割の結果は、除外区間設定部108およびしきい値算出部109に入力され、図3で説明した処理フローと同じ処理が実施され、モード別にしきい値が設定される。除外区間の設定には、予め指定した1つのモードのみに着目しステップS306からS311までの処理を実施する。ただし、異常測度最大値は毎回モード別に記録しておく。また、異常検出部110におけるステップS707の異常判定を、対応するモードのしきい値を用いて行う。
あるいは、除外区間もモード別に設定することが考えられる。その場合は、全てのモードについて、1つずつ、着目したモードのみの異常測度に基づいて学習除外区間を決定する。このように決められた除外区間の対応するモードの部分を学習データから除外する。
次に、全てのモードについて、1つずつ、着目したモードのみの異常測度に基づいて学習除外区間を決定する処理のフローを、図13Bを用いて説明する。
始めに、特徴ベクトル抽出部104において、センサ信号蓄積部103から学習期間として指定された期間のセンサ信号102を入力し(S1341)、センサ信号毎に正準化した後(S1342)、特徴ベクトルの抽出を行い(S1343)、特徴ベクトルを複数区間、例えば1日につき一つの区間に分ける(S1344)。次に、除外区間設定部108で除外区間を決めるためのパラメータを入力する(S1345)。パラメータは、最大繰り返し回数N、最大保留回数M、有効下がり幅Δである。予め、パラメータファイルまたはGUIにより設定しておく。
一方、設備101から出力されたイベント信号1301をモード分割部1302に入力し(S1361)、不定期に出力される設備の操作開始・操作停止・故障・警告を表す信号であるイベント信号を図14Aに示す様な所定の文字列またはコードで表示したデータの中から検索して起動シーケンスと停止シーケンスの切り出しを行う(S1402)。その結果をもとに、停止シーケンスの終了時刻から、図14Bに示すような、起動シーケンスの開始時刻までの「定常OFF」モード1411、起動シーケンス中の「起動」モード1412、起動シーケンスの終了時刻から停止シーケンスの開始時刻までの「定常ON」モード1413、停止シーケンス中の「停止」モード1414の4つの稼動状態に分割する(S1363)。
次に、S1344で複数区間に分けた特徴ベクトルのうち、S1363で分割したモードのn番目のモードに対応する特徴ベクトルを抽出し(S1364)、異常測度算出部107でn番目のモードに対応する特徴ベクトルの異常測度算出し、除外区間設定部108で設定した除外候補区間を除く異常測度最大値を算出する(S1346)。初回は、除外候補区間はなしである。初回の場合、または、(前回までに設定されたしきい値−異常測度最大値)で算出される下がり幅がパラメータΔより大きい場合は(S1347)、しきい値算出部109において、異常測度最大値をしきい値とし、除外区間設定部108において、除外候補区間を学習除外区間にとする(S1348)。
ステップS1347でNOの場合(2回目以降、または、下がり幅がパラメータΔ以下の場合)は、しきい値はそれまでの値を継承する。また、学習除外区間もそのままとする。そして、下がり幅をチェックし(S1349)、下がり幅が負、すなわち増加する場合(S1349でYESの場合)、保留回数をカウントアップする(S1350)。保留回数の初期値は図示していないがもちろん0である。一方、下がり幅が正又はゼロ、すなわち減少または変化しない場合(S1349でNOの場合)、保留回数はそのままとする。
ステップS1348またはS1349またはS1350の処理の後、除外区間設定部108において、異常測度最大値の区間を除外候補区間に追加する(S1351)。繰り返し回数及び保留回数をチェックし(S1352)、繰り返し回数がN回目または保留回数がパラメータMより大きい場合(S1352でYESの場合)、S1363で分割した全てのモードについて処理を行ったかをチェックし(S1365)、YESの場合は処理を終了し、終了時の学習除外区間としきい値を学習結果として記録しておく。ここで繰り返し回数とはステップS1346を実行した回数のことであり、保留回数とはステップS1350でカウントされる数のことである。
ステップS1352においてNOの場合(繰り返し回数がN回目より少なく、かつ、保留回数がパラメータM以下の場合、ステップS1346に戻る。
また、ステップS1365においてNOの場合(全てのモードについて除外区間の設定が完了していない場合)には、nを1繰り上げて(S1366)、新たなモードのセンサ信号に対してS1364からS1351までの処理を実行する。
実施例1で説明した処理と異なる部分であるイベント信号に基づくモード分割方法の実施例を図14A及びBを用いて説明する。イベント信号の例を図14Aに示す。不定期に出力される設備の操作・故障・警告を表す信号であり、時刻と操作・故障・警告を表す文字列またはコードからなる。図14Bには、停止シーケンスの終了時刻から起動シーケンスの開始時刻までの「定常OFF」モード1411、起動シーケンス中の「起動」モード1412、起動シーケンスの終了時刻から停止シーケンスの開始時刻までの「定常ON」モード1413、停止シーケンス中の「停止」モード1414の4つの稼動状態に分割した例を示す。
シーケンス切り出しのためには、予めシーケンスの開始イベントおよび終了イベントを指定しておき、イベント信号の先頭から最後まで以下の要領でスキャンしながら切り出していく。
(1)シーケンスの途中でない場合は、開始イベントを探索する。見つかったらシーケンスの開始とする。
(2)シーケンスの途中の場合は、終了イベントを探索する。見つかったらシーケンスの終了とする。ここで終了イベントとは、指定の終了イベントのほか、故障、警告、指定の開始イベントとする。
以上のように、イベント信号を利用することにより、多様な稼動状態を正確に分けることができ、モード別にしきい値を設定することにより、「起動」モード1412および「停止」モード1414の過渡期において学習データ不足により感度を落とす必要がある場合でも、「定常OFF」モード1411および「定常ON」モード1413では高感度な異常検知が可能になる。
実施例1および2では、異常測度算出結果に基づいて学習除外区間を決定していたが、本実施例では、ユーザが指定した区間やユーザが指定した条件を満たす区間を学習除外区間として初期設定する。実施例1において図3を用いて説明した学習時のステップS305あるいは図6のステップS605の前に、学習除外区間を設定するステップを挿入する。
ユーザによる区間指定の方法は、専用のGUIを用いても良いし、ファイル入力でもよい。例えば1行に1個年月日を表す「20090726」のような数値を書いておく。これは2009年7月26日のことである。もちろん区間番号で指定するようにしてもよい。
ユーザによる条件指定の方法の例を以下に示す。
第一の例は、イベント信号を利用した学習除外区間設定処理である。基本的には、イベント信号に基づき異常状態を含む区間かどうかを判断する。異常状態と判断する条件は例えば以下のとおりである。(1)故障あるいは警告のイベントが発生、(2)異常な起動シーケンスを含む、(3)起動シーケンスの回数が所定範囲外、(4)終了シーケンスからの経過時間が所定範囲外である起動シーケンスを含む、(5)頻度の低いイベントが発生などである。(1)(3)(5)の条件指定は、イベント番号と許容回数によって行える。(1)の場合は故障・警告に対応するイベントを指定し、(5)の場合は、予めイベントの頻度を調べておき、頻度の低いイベントを指定する。1回以上指定イベントが含まれる区間は異常であるとする。(3)の場合は、起動シーケンスの開始イベントを指定し、1区間で許容される回数を指定する。(2)の条件指定は、3つのイベント番号の指定によって行う。起動シーケンスの開始イベント、起動シーケンスの終了イベントと異常終了イベントの組合せである。異常終了イベントには、起動開始イベントと停止開始イベントがある。起動シーケンスの開始イベント、起動シーケンスの終了イベントの間に異常終了イベントがある場合は、異常終了イベントを含む区間を異常とする。(4)の条件指定は2つのイベント番号指定とイベント間の時間間隔の許容範囲によって行う。停止シーケンスの開始イベントと起動シーケンスの開始イベントを指定し、それらのイベント間の時間間隔が許容範囲外であれば、起動シーケンスの開始イベントが含まれる区間を異常とする。
第二の例は、センサ信号を利用した学習除外区間設定処理である。予め指定したセンサ信号に対する条件を満たす時間を含む区間を除外区間とする。図15は、条件を記述したファイルの例である。条件の記述はセンサ名1501、符号1502、しきい値1503からなる。符号は「=」、「<」、「<=」、「>=」「>」、「<>」からなる。それぞれ等しい、未満、以下、以上、より大きい、異なる、を意味する。図の例では、「Sensor.A」が−100未満または「Sensor.D」が500以上の場合に異常状態であると判断し、異常状態を含む区間を除外する。
100…異常検知システム 101…設備 102…センサ信号 103…センサ信号蓄積部 104…特徴ベクトル抽出部 105…学習データ選別部 106…正常モデル作成部 107…異常測度算出部 108…除外区間設定部 109…しきい値算出部 110…異常検出部 120…センサ信号解析部120 130…入出力部130。

Claims (12)

  1. 設備または装置が稼働中に前記設備または装置に装着されたセンサから出力される多次元時系列センサ信号を用いて前記設備または装置の異常を検知する方法であって、
    前記多次元時系列センサ信号のうち予め指定された期間のセンサ信号を用いて正常モデルを作成して異常判定しきい値を算出する工程と、
    前記多次元時系列センサ信号から特徴ベクトルを観察ベクトルとして抽出する工程と、
    該抽出した観察ベクトルと前記作成した正常モデルとを用いて該観察ベクトルの異常測度を算出する工程と、
    該算出した観測ベクトルの異常測度と前記異常判定しきい値とを比較して前記設備または装置の異常を検知する工程と
    を含み、前記正常モデルを、前記多次元時系列センサ信号の前記予め指定された区間のセンサ信号のうち一部の区間の信号を除外した前記多次元時系列センサ信号を用いて作成することを特徴とする異常検知方法。
  2. 請求項1記載の異常検知方法であって、前記多次元時系列センサ信号の前記予め指定された区間のセンサ信号から除外する信号の前記一部の区間を、前記多次元時系列センサ信号のうち前記予め指定された区間のセンサ信号から特徴ベクトルを抽出し、該抽出した特徴ベクトルの異常測度を算出し、該算出した異常測度の情報を用いて前記指定された区間のセンサ信号の中から前記除外する一部の区間を決定することを特徴とする異常検知方法。
  3. 請求項2記載の異常検知方法であって、前記抽出した特徴ベクトルの異常測度を算出することを、前記予め指定された区間のセンサ信号のうち前記特徴ベクトルを抽出した注目ベクトルに対応する区間のセンサ信号を除いた残りのセンサ信号から特徴ベクトルを求め、該残りのセンサ信号から求めた特徴ベクトルを用いて正常モデルを作成し、該作成した正常モデルと前記注目ベクトルとの距離に基づいて前記異常測度を算出して行うことを特徴とする異常検知方法。
  4. 設備または装置が稼働中に前記設備または装置に装着されたセンサから出力される多次元時系列センサ信号を用いて前記設備または装置の異常を検知する方法であって、
    該設備または装置の異常を検知する方法は学習する工程と異常を検知する工程とを含み、
    前記学習する工程において、
    前記多次元時系列センサ信号のうち予め指定された期間のセンサ信号から一部の期間のセンサ信号を除外して学習データを作成し、
    該作成した学習データから異常判定しきい値を算出し、
    前記異常を検知する工程において、
    前記学習データを用いて正常モデルを作成し、
    前記多次元時系列センサ信号から特徴ベクトルを観測ベクトルとして抽出し、
    該抽出した観測ベクトルと前記作成した正常モデルとを用いて前記観測ベクトルの異常測度を算出し、
    該算出した観測ベクトルの異常測度と前記異常判定しきい値とを比較して前記設備または装置の異常を検知する
    ことを特徴とする異常検知方法。
  5. 請求項4記載の異常検知方法であって、前記学習する工程において、前記学習データを作成することを、前記多次元時系列センサ信号のうち予め指定された期間のセンサ信号から特徴ベクトルを抽出し、該抽出した特徴ベクトルの異常測度を算出し、該算出した異常測度の情報を用いて前記指定された期間のセンサ信号の中から除外する期間を決定し、
    該決定した除外する期間を除いた前記センサ信号の特徴ベクトルを用いて学習データを作成することを特徴とする異常検知方法。
  6. 請求項5記載の異常検知方法であって、前記学習する工程において、前記抽出した特徴ベクトルの異常測度を算出することを、前記予め指定された区間のセンサ信号のうち前記特徴ベクトルを抽出した注目ベクトルに対応する区間のセンサ信号を除いた残りのセンサ信号から特徴ベクトルを求め、該残りのセンサ信号から求めた特徴ベクトルを用いて正常モデルを作成し、該作成した正常モデルと前記注目ベクトルとの距離に基づいて前記異常測度を算出して行うことを特徴とする異常検知方法。
  7. 設備または装置が稼働中に前記設備または装置に装着されたセンサから出力される多次元時系列センサ信号を用いて前記設備または装置の異常を検知する装置であって、
    前記多次元時系列センサ信号のうち予め指定された期間のセンサ信号を用いて正常モデルを作成して異常判定しきい値を算出する演算部と、
    前記多次元時系列センサ信号から特徴ベクトルを観察ベクトルとして抽出する観察ベクトル抽出部と、
    該観察ベクトル抽出部で抽出した観察ベクトルと前記演算部で作成した正常モデルとを用いて該観察ベクトルの異常測度を算出する異常測度算出部と、
    該異常測度算出部で算出した観測ベクトルの異常測度と前記演算部で算出した異常判定しきい値とを比較して前記設備または装置の異常を検知する異常検知部と
    を備え、前記演算部は、前記正常モデルを、前記多次元時系列センサ信号の前記予め指定された区間のセンサ信号のうち一部の区間の信号を除外した前記多次元時系列センサ信号を用いて作成する
    ことを特徴とする異常検知装置。
  8. 請求項7記載の異常検知装置であって、前記演算部は、前記多次元時系列センサ信号の前記予め指定された区間のセンサ信号から除外する信号の前記一部の区間を、前記多次元時系列センサ信号のうち前記予め指定された区間のセンサ信号から特徴ベクトルを抽出し、該抽出した特徴ベクトルの異常測度を前記異常測度算出部で算出した異常測度の情報を用いて前記指定された区間のセンサ信号の中から前記除外する一部の区間を決定することを特徴とする異常検知装置。
  9. 請求項8記載の異常検知装置であって、前記異常測度算出部で前記抽出した特徴ベクトルの異常測度を算出することを、前記予め指定された区間のセンサ信号のうち前記特徴ベクトルを抽出した注目ベクトルに対応する区間のセンサ信号を除いた残りのセンサ信号から特徴ベクトルを求め、該残りのセンサ信号から求めた特徴ベクトルを用いて正常モデルを作成し、該作成した正常モデルと前記注目ベクトルとの距離に基づいて前記異常測度を算出して行うことを特徴とする異常検知装置。
  10. 設備または装置が稼働中に前記設備または装置に装着されたセンサから出力される多次元時系列センサ信号を用いて前記設備または装置の異常を検知する装置であって、
    前記多次元時系列センサ信号を蓄積するセンサ信号蓄積部と、
    前記多次元時系列センサ信号をもとに特徴ベクトルを抽出する特徴ベクトル抽出部と、
    該特徴ベクトル抽出部で抽出された予め指定された学習期間の特徴ベクトルから学習除外区間の特徴ベクトルを除外して学習データを作成するする学習データ作成部と、
    該学習データ作成部で作成された学習データを用いて各時刻の特徴ベクトルに対応する正常モデルを作成する正常モデル作成部と、
    前記特徴ベクトル抽出部で抽出された各時刻の特徴ベクトルと前記正常モデル作成部で作成された正常モデルとを用いて異常測度を算出する異常測度算出部と、
    前記学習データ作成部で作成された学習データと前記正常モデル作成部で作成された正常モデルとを用いて前記異常測度算出部で算出された異常測度に基づいて前記学習データから除外する区間を設定する除外区間設定部と、
    前記学習データ作成部で作成された学習データについて前記異常測度算出部で算出した異常測度に基づいてしきい値を算出するしきい値算出部と、
    前記異常測度算出部で算出された前記各特徴ベクトルの異常測度と前記しきい値算出部で算出されたしきい値とを比較することにより前記設備または装置の異常を検知する異常検知部と
    を備えたことを特徴とする異常検知装置。
  11. 請求項10記載の異常検知装置であって、前記学習データ作成部において、前記学習データを作成することを、前記多次元時系列センサ信号のうち予め指定された期間のセンサ信号から特徴ベクトルを抽出し、該抽出した特徴ベクトルの異常測度を算出し、該算出した異常測度の情報を用いて前記指定された期間のセンサ信号の中から除外する期間を決定し、
    該決定した除外する期間を除いた前記センサ信号の特徴ベクトルを用いて学習データを作成することを特徴とする異常検知装置。
  12. 請求項11記載の異常検知装置であって、前記学習データ作成部において、前記抽出した特徴ベクトルの異常測度を算出することを、前記予め指定された区間のセンサ信号のうち前記特徴ベクトルを抽出した注目ベクトルに対応する区間のセンサ信号を除いた残りのセンサ信号から特徴ベクトルを求め、該残りのセンサ信号から求めた特徴ベクトルを用いて正常モデルを作成し、該作成した正常モデルと前記注目ベクトルとの距離に基づいて前記異常測度を算出して行うことを特徴とする異常検知装置。
JP2013258215A 2013-12-13 2013-12-13 異常検知方法およびその装置 Active JP6216242B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013258215A JP6216242B2 (ja) 2013-12-13 2013-12-13 異常検知方法およびその装置
EP14197018.6A EP2884363B1 (en) 2013-12-13 2014-12-09 Anomaly detecting method, and apparatus for the same
US14/568,268 US9940184B2 (en) 2013-12-13 2014-12-12 Anomaly detecting method, and apparatus for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013258215A JP6216242B2 (ja) 2013-12-13 2013-12-13 異常検知方法およびその装置

Publications (3)

Publication Number Publication Date
JP2015114967A true JP2015114967A (ja) 2015-06-22
JP2015114967A5 JP2015114967A5 (ja) 2016-11-04
JP6216242B2 JP6216242B2 (ja) 2017-10-18

Family

ID=52144399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013258215A Active JP6216242B2 (ja) 2013-12-13 2013-12-13 異常検知方法およびその装置

Country Status (3)

Country Link
US (1) US9940184B2 (ja)
EP (1) EP2884363B1 (ja)
JP (1) JP6216242B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017151598A (ja) * 2016-02-23 2017-08-31 株式会社安川電機 異常判定装置、異常判定プログラム、異常判定システム、及びモータ制御装置
JP2018112863A (ja) * 2017-01-11 2018-07-19 株式会社東芝 異常検知装置、異常検知方法、および異常検知プログラム
JP2018151821A (ja) * 2017-03-13 2018-09-27 株式会社日立製作所 設備機器の異常診断システム
JP2018160121A (ja) * 2017-03-23 2018-10-11 株式会社日立パワーソリューションズ 異常検知装置
JP2019114168A (ja) * 2017-12-26 2019-07-11 宇部興産株式会社 プラント管理システム、プラント管理サーバ、プラント管理装置、推定用モデルの生成方法、及び学習用データの生成方法
JP2019133212A (ja) * 2018-01-29 2019-08-08 株式会社日立製作所 異常検知システム、異常検知方法、および、プログラム
JP2019204342A (ja) * 2018-05-24 2019-11-28 株式会社日立ハイテクソリューションズ 予兆診断システム
JP2020201890A (ja) * 2019-06-13 2020-12-17 株式会社日立ハイテクソリューションズ 異常検知装置及び異常検知方法
WO2021149226A1 (ja) * 2020-01-23 2021-07-29 三菱電機株式会社 アノマリ検知装置、アノマリ検知方法及びアノマリ検知プログラム
KR102298708B1 (ko) * 2020-06-15 2021-09-07 한국생산기술연구원 검사 대상에 존재하는 결함을 검사하는 방법 및 이를 수행하는 장치들
JP2022069608A (ja) * 2017-12-26 2022-05-11 Ube株式会社 プラント管理システム、プラント管理サーバ、プラント管理装置、推定用モデルの生成方法、及び学習用データの生成方法
US11657121B2 (en) 2018-06-14 2023-05-23 Mitsubishi Electric Corporation Abnormality detection device, abnormality detection method and computer readable medium
JP7304401B1 (ja) 2021-12-20 2023-07-06 エヌ・ティ・ティ・コミュニケーションズ株式会社 支援装置、支援方法および支援プログラム

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10572368B2 (en) * 2014-11-24 2020-02-25 Micro Focus Llc Application management based on data correlations
FR3032273B1 (fr) * 2015-01-30 2019-06-21 Safran Aircraft Engines Procede, systeme et programme d'ordinateur pour phase d'apprentissage d'une analyse acoustique ou vibratoire d'une machine
US9824243B2 (en) * 2015-09-11 2017-11-21 Nxp Usa, Inc. Model-based runtime detection of insecure behavior for system on chip with security requirements
WO2017135947A1 (en) * 2016-02-04 2017-08-10 Hewlett Packard Enterprise Development Lp Real-time alerts and transmission of selected signal samples under a dynamic capacity limitation
US10333958B2 (en) * 2016-07-19 2019-06-25 Cisco Technology, Inc. Multi-dimensional system anomaly detection
JP6675297B2 (ja) * 2016-12-09 2020-04-01 Dmg森精機株式会社 情報処理方法、情報処理システム、および情報処理装置
US10677943B2 (en) * 2016-12-16 2020-06-09 Smiths Detection, Llc System and method for monitoring a computed tomography imaging system
CN110226140B (zh) * 2017-01-25 2023-04-11 Ntn株式会社 状态监视方法及状态监视装置
EP3591484A4 (en) * 2017-03-03 2020-03-18 Panasonic Intellectual Property Management Co., Ltd. ADDITIONAL LEARNING PROCEDURE FOR A DEGRADATION DIAGNOSTIC SYSTEM
US10719772B2 (en) * 2017-10-27 2020-07-21 The Boeing Company Unsupervised multivariate relational fault detection system for a vehicle and method therefor
JP7106847B2 (ja) * 2017-11-28 2022-07-27 横河電機株式会社 診断装置、診断方法、プログラム、および記録媒体
US11509540B2 (en) 2017-12-14 2022-11-22 Extreme Networks, Inc. Systems and methods for zero-footprint large-scale user-entity behavior modeling
US10664966B2 (en) * 2018-01-25 2020-05-26 International Business Machines Corporation Anomaly detection using image-based physical characterization
US11036715B2 (en) * 2018-01-29 2021-06-15 Microsoft Technology Licensing, Llc Combination of techniques to detect anomalies in multi-dimensional time series
JP2019179395A (ja) * 2018-03-30 2019-10-17 オムロン株式会社 異常検知システム、サポート装置および異常検知方法
EP3553615A1 (en) 2018-04-10 2019-10-16 Siemens Aktiengesellschaft Method and system for managing a technical installation
JP7378089B2 (ja) * 2018-06-13 2023-11-13 パナソニックIpマネジメント株式会社 不正通信検知装置、不正通信検知方法及び製造システム
US10579932B1 (en) * 2018-07-10 2020-03-03 Uptake Technologies, Inc. Computer system and method for creating and deploying an anomaly detection model based on streaming data
KR102194352B1 (ko) * 2018-08-31 2020-12-23 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 제조 프로세스 감시 장치
JP7230600B2 (ja) * 2019-03-13 2023-03-01 オムロン株式会社 表示システム
JP7272020B2 (ja) * 2019-03-13 2023-05-12 オムロン株式会社 表示システム
DE102019112099B3 (de) * 2019-05-09 2020-06-18 Dürr Systems Ag Überwachungsverfahren für eine Applikationsanlage und entsprechende Applikationsanlage
JP7483341B2 (ja) * 2019-09-26 2024-05-15 キヤノン株式会社 情報処理方法、情報処理装置、機械設備、物品の製造方法、プログラム、記録媒体
US11184222B2 (en) 2019-09-27 2021-11-23 Ciena Corporation Learning alarm and PM threshold values in network elements based on actual operating conditions
WO2021144858A1 (ja) * 2020-01-14 2021-07-22 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 異常検知システム、異常検知装置、及び異常検知方法
JP7527294B2 (ja) * 2020-01-31 2024-08-02 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 異常検知方法、及び異常検知装置
DE102020205895A1 (de) 2020-05-11 2021-11-11 Iba Ag Verfahren sowie Vorrichtung zur automatischen Überwachung eines zyklischen Prozesses
DE102020208642A1 (de) 2020-07-09 2022-01-13 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zur Anomaliedetektion in technischen Systemen
JP7318612B2 (ja) * 2020-08-27 2023-08-01 横河電機株式会社 監視装置、監視方法、および監視プログラム
CN113595784B (zh) * 2021-07-26 2024-05-31 招商银行股份有限公司 网络流量检测方法、装置、设备、存储介质及程序产品
CN117347902A (zh) * 2023-10-26 2024-01-05 自然资源部第四海洋研究所(中国-东盟国家海洋科技联合研发中心) 一种10kv输入直流一体化不间断电源用监测系统
CN117370916B (zh) * 2023-11-30 2024-02-23 南方电网科学研究院有限责任公司 变压器绕组振动异常诊断方法、装置、电子设备及介质
CN117992759B (zh) * 2024-04-07 2024-06-18 江西省水利科学院(江西省大坝安全管理中心、江西省水资源管理中心) 一种基于遥感数据的大坝监测方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070635A (ja) * 2009-08-28 2011-04-07 Hitachi Ltd 設備状態監視方法およびその装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5363927B2 (ja) * 2009-09-07 2013-12-11 株式会社日立製作所 異常検知・診断方法、異常検知・診断システム、及び異常検知・診断プログラム
JP5364530B2 (ja) * 2009-10-09 2013-12-11 株式会社日立製作所 設備状態監視方法、監視システム及び監視プログラム
JP5342708B1 (ja) * 2013-06-19 2013-11-13 株式会社日立パワーソリューションズ 異常検知方法及びその装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070635A (ja) * 2009-08-28 2011-04-07 Hitachi Ltd 設備状態監視方法およびその装置

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017151598A (ja) * 2016-02-23 2017-08-31 株式会社安川電機 異常判定装置、異常判定プログラム、異常判定システム、及びモータ制御装置
US10663518B2 (en) 2016-02-23 2020-05-26 Kabushiki Kaisha Yaskawa Denki Abnormality determining apparatus, abnormality determining method, and abnormality determining system
CN110121724A (zh) * 2017-01-11 2019-08-13 株式会社东芝 异常检测装置、异常检测方法及存储介质
JP2018112863A (ja) * 2017-01-11 2018-07-19 株式会社東芝 異常検知装置、異常検知方法、および異常検知プログラム
WO2018131219A1 (ja) * 2017-01-11 2018-07-19 株式会社東芝 異常検知装置、異常検知方法、および記憶媒体
CN110121724B (zh) * 2017-01-11 2023-08-08 株式会社东芝 异常检测装置、异常检测方法及存储介质
JP2018151821A (ja) * 2017-03-13 2018-09-27 株式会社日立製作所 設備機器の異常診断システム
JP2018160121A (ja) * 2017-03-23 2018-10-11 株式会社日立パワーソリューションズ 異常検知装置
JP7339382B2 (ja) 2017-12-26 2023-09-05 Ube三菱セメント株式会社 プラント管理システム、プラント管理サーバ、プラント管理装置、推定用モデルの生成方法、及び学習用データの生成方法
JP2019114168A (ja) * 2017-12-26 2019-07-11 宇部興産株式会社 プラント管理システム、プラント管理サーバ、プラント管理装置、推定用モデルの生成方法、及び学習用データの生成方法
JP7043831B2 (ja) 2017-12-26 2022-03-30 宇部興産株式会社 プラント管理システム、プラント管理サーバ、プラント管理装置、推定用モデルの生成方法、及び学習用データの生成方法
JP2022069608A (ja) * 2017-12-26 2022-05-11 Ube株式会社 プラント管理システム、プラント管理サーバ、プラント管理装置、推定用モデルの生成方法、及び学習用データの生成方法
JP2019133212A (ja) * 2018-01-29 2019-08-08 株式会社日立製作所 異常検知システム、異常検知方法、および、プログラム
JP7108417B2 (ja) 2018-01-29 2022-07-28 株式会社日立製作所 異常検知システム
JP7217593B2 (ja) 2018-05-24 2023-02-03 株式会社日立ハイテクソリューションズ 予兆診断システム
JP2019204342A (ja) * 2018-05-24 2019-11-28 株式会社日立ハイテクソリューションズ 予兆診断システム
US11657121B2 (en) 2018-06-14 2023-05-23 Mitsubishi Electric Corporation Abnormality detection device, abnormality detection method and computer readable medium
JP2020201890A (ja) * 2019-06-13 2020-12-17 株式会社日立ハイテクソリューションズ 異常検知装置及び異常検知方法
JP7344015B2 (ja) 2019-06-13 2023-09-13 株式会社日立ハイテクソリューションズ 異常検知装置及び異常検知方法
JP7016459B2 (ja) 2020-01-23 2022-02-04 三菱電機株式会社 アノマリ検知装置、アノマリ検知方法及びアノマリ検知プログラム
JPWO2021149226A1 (ja) * 2020-01-23 2021-07-29
WO2021149226A1 (ja) * 2020-01-23 2021-07-29 三菱電機株式会社 アノマリ検知装置、アノマリ検知方法及びアノマリ検知プログラム
KR102298708B1 (ko) * 2020-06-15 2021-09-07 한국생산기술연구원 검사 대상에 존재하는 결함을 검사하는 방법 및 이를 수행하는 장치들
JP7304401B1 (ja) 2021-12-20 2023-07-06 エヌ・ティ・ティ・コミュニケーションズ株式会社 支援装置、支援方法および支援プログラム
JP2023099875A (ja) * 2021-12-20 2023-07-14 エヌ・ティ・ティ・コミュニケーションズ株式会社 支援装置、支援方法および支援プログラム

Also Published As

Publication number Publication date
EP2884363A3 (en) 2015-07-22
JP6216242B2 (ja) 2017-10-18
US9940184B2 (en) 2018-04-10
EP2884363B1 (en) 2019-10-02
US20150169393A1 (en) 2015-06-18
EP2884363A2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP6216242B2 (ja) 異常検知方法およびその装置
JP6076751B2 (ja) 異常診断方法およびその装置
EP2905665B1 (en) Information processing apparatus, diagnosis method, and program
JP5301717B1 (ja) 設備状態監視方法およびその装置
JP5945350B2 (ja) 設備状態監視方法およびその装置
JP5431235B2 (ja) 設備状態監視方法およびその装置
JP5342708B1 (ja) 異常検知方法及びその装置
JP5538597B2 (ja) 異常検知方法及び異常検知システム
JP5364530B2 (ja) 設備状態監視方法、監視システム及び監視プログラム
JP5331774B2 (ja) 設備状態監視方法およびその装置並びに設備状態監視用プログラム
JP2020119605A (ja) 異常検出システム、異常検出方法、異常検出プログラム及び学習済モデル生成方法
WO2013011745A1 (ja) 設備状態監視方法およびその装置
JP6223936B2 (ja) 異常傾向検出方法およびシステム
JP2013143009A (ja) 設備状態監視方法およびその装置
WO2010095314A1 (ja) 異常検知方法及び異常検知システム
JP2015088079A (ja) 異常診断システム及び異常診断方法
JP2015088078A (ja) 異常予兆検知システム及び異常予兆検知方法
JP2015088154A (ja) ヘルスマネージメントシステム及びヘルスマネージメント方法
JP2023106472A (ja) 異常検知装置及び異常検知方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170922

R150 Certificate of patent or registration of utility model

Ref document number: 6216242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117