JP2018112863A - 異常検知装置、異常検知方法、および異常検知プログラム - Google Patents

異常検知装置、異常検知方法、および異常検知プログラム Download PDF

Info

Publication number
JP2018112863A
JP2018112863A JP2017002521A JP2017002521A JP2018112863A JP 2018112863 A JP2018112863 A JP 2018112863A JP 2017002521 A JP2017002521 A JP 2017002521A JP 2017002521 A JP2017002521 A JP 2017002521A JP 2018112863 A JP2018112863 A JP 2018112863A
Authority
JP
Japan
Prior art keywords
data
learning
self
target data
encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017002521A
Other languages
English (en)
Other versions
JP6545728B2 (ja
Inventor
大橋 純
Jun Ohashi
純 大橋
佑美 尾崎
Yumi OZAKI
佑美 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Digital Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Digital Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Digital Solutions Corp filed Critical Toshiba Corp
Priority to JP2017002521A priority Critical patent/JP6545728B2/ja
Priority to CN201780081392.0A priority patent/CN110121724B/zh
Priority to PCT/JP2017/034599 priority patent/WO2018131219A1/ja
Priority to US16/476,449 priority patent/US11501163B2/en
Publication of JP2018112863A publication Critical patent/JP2018112863A/ja
Application granted granted Critical
Publication of JP6545728B2 publication Critical patent/JP6545728B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/088Non-supervised learning, e.g. competitive learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/2257Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using expert systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/60General implementation details not specific to a particular type of compression
    • H03M7/6041Compression optimized for errors

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Debugging And Monitoring (AREA)

Abstract

【課題】異常検知を高精度で行うことができる異常検知装置、異常検知方法、および異常検知プログラムを提供することである。【解決手段】実施形態の異常検知装置は、検知部と、除去部と、学習部とを持つ。検知部は、異常検知の対象となる検知対象データを、学習の対象となる第1学習対象データに基づく学習が行われた第1自己符号化器に入力することにより、前記検知対象データ内の第1異常データを検知する。除去部は、前記第1学習対象データを、前記検知部によって検知された前記第1異常データに基づく学習が行われた第2自己符号化器に入力することにより、前記第1学習対象データから、前記第1異常データと関連付けされたデータを除去して第2学習対象データを生成する。学習部は、前記除去部により生成された前記第2学習対象データに基づいて前記第1自己符号化器を学習させる。【選択図】図1

Description

本発明の実施形態は、異常検知装置、異常検知方法、および異常検知プログラムに関する。
近年、自己符号化器を用いたデータの異常検知方法が知られている。この異常検知方法では、正常データ間における関係性やパターンを利用して、データを可能な限り損失無く圧縮して再構成するモデルを用いて異常データの検知を行う。このモデルを用いて正常データを処理した場合、データ損失が少ない、即ち、圧縮前の元データと再構成後のデータとの差分(以下、「再構成誤差」と呼ぶ)が小さくなる。一方、異常データを処理した場合、データ損失が大きく、即ち、再構成誤差が大きくなる。この異常検知方法では、このような再構成誤差の大きさに基づいてデータの異常が検知される。
上記の異常検知方法は、教師なし学習であるため、データに対して異常または正常のラベル付をする手間なく利用可能であるというメリットがあり、各種機器の故障検知、ネットワークの不正アクセス検知などに幅広く利用されている。
上記の異常検知方法は、モデルを生成するために、予め、学習データを用いた学習処理を行う必要があるが、この学習データには、正常データ以外に異常データを含んでいる場合がある。このような異常データを含む学習データを用いて学習処理を行うと、異常検知の精度が低下する場合がある。
特開2016−4549号公報
本発明が解決しようとする課題は、データの異常検知を高精度で行うことができる異常検知装置、異常検知方法、および異常検知プログラムを提供することである。
実施形態の異常検知装置は、検知部と、除去部と、学習部とを持つ。検知部は、異常検知の対象となる検知対象データを、学習の対象となる第1学習対象データに基づく学習が行われた第1自己符号化器に入力することにより、前記検知対象データ内の第1異常データを検知する。除去部は、前記第1学習対象データを、前記検知部によって検知された前記第1異常データに基づく学習が行われた第2自己符号化器に入力することにより、前記第1学習対象データから、前記第1異常データと関連付けされたデータを除去して第2学習対象データを生成する。学習部は、前記除去部により生成された前記第2学習対象データに基づいて前記第1自己符号化器を学習させる。
第1の実施形態の異常検知装置の一例を示す機能ブロック図。 第1の実施形態の異常検知装置の処理の一例を示すフローチャート。 第1の実施形態の異常検知装置の異常データ除去処理の一例を示すフローチャート。 第1の実施形態の異常検知装置の異常データ除去処理を示す図。 第1の実施形態の異常検知装置の学習処理の一例を示すフローチャート。 第1の実施形態の異常検知装置の処理の他の例を示すフローチャート。 第2の実施形態の異常検知装置の一例を示す機能ブロック図。 第2の実施形態の異常検知装置における自己符号化器の関係の一例を示す図。 第2の実施形態の異常検知装置の異常データ除去処理の一例を示すフローチャート。 第2の実施形態の異常検知装置の学習処理の一例を示すフローチャート。 実施例の評価試験において使用したデータセットを示す図。 実施例の評価試験の評価手順を示す図。
以下、実施形態の異常検知装置、異常検知方法、および異常検知プログラムを、図面を参照して説明する。
(第1の実施形態)
本実施形態の異常検知装置は、自己符号化器を用いて異常検知の実施時(運用時)に検知した異常データを使用して、学習時に使用する学習の対象となるデータ(以下、「学習対象データ」と呼ぶ)の中に含まれる異常データを除去する。そして、この異常データが除去された学習対象データを用いて自己符号化器を学習させることで、異常検知の性能を向上させることができる。
図1は、第1の実施形態の異常検知装置1の一例を示す機能ブロック図である。異常検知装置1は、異常検知の対象となるデータ(以下、「検知対象データ」と呼ぶ)の異常検知を行う。本実施形態における異常検知とは、検知対象データ内に存在する大多数のデータ(正常データ)と異なる傾向のデータ(異常データ)を発見することを示す。異常検知装置1は、異常検知を行うための前準備として、正常データの圧縮および再構成処理(復号処理)を行うことで、正常データにおけるデータ間の関係性やパターンを把握し、再構成誤差の小さな圧縮および復号処理を行うための手順を学習する。例えば、異常検知装置1は、学習のために準備された学習対象データの圧縮および再構成処理を行い、学習対象データに適合するモデル(正常モデル)を生成する。
異常検知装置1は、検知対象データに含まれる正常データに対しては再構成誤差の小さな圧縮および再構成処理を行うが、異常データに対して圧縮および再構成処理を行った場合、その再構成誤差が大きくなる。異常検知装置1は、この再構成誤差を大きさに基づいて、異常データを検知することができる。
異常検知装置1は、例えば各種センサである外部装置Aから検知対象データを取得する。検知対象データは、例えば、各種センサによって測定されたセンサデータ、各種装置の動作ログデータ、各種数値データなど、任意のデータを含む。
異常検知装置1は、例えば、制御部10と、取得部12と、検知部14と、除去部16と、学習部18と、受付部20と、表示部22と、記憶部24とを備える。記憶部24は、例えば、検知対象データ記憶部D1と、異常データ記憶部D2と、学習対象データ記憶部D3と、モデル記憶部D4とを備える。制御部10は、異常検知装置1の各部の動作の制御を行う。
取得部12は、外部装置Aから検知対象データを取得し、検知対象データ記憶部D1に記憶させる。取得部12は、例えば、外部装置Aから検知対象データを継続的に取得する。或いは、取得部12は、所定の周期で、外部装置Aに蓄積された検知対象データを取得してもよい。また、受付部20が異常検知装置1のユーザによるデータ取得指示を受け付けた場合に、取得部12が、外部装置Aから検知対象データを取得してもよい。
検知部14は、検知対象データ記憶部D1から検知対象データを読み出して異常検知を行う。検知部14は、例えば、学習対象データを用いた学習を行った第1自己符号化器30を含む。第1自己符号化器30は、モデル記憶部D4に記憶された正常モデルを用いて検知対象データの圧縮および再構成処理を行い、再構成データを生成する。正常モデルとは、学習対象データを用いた学習により算出された正常データに適合するモデルである。第1自己符号化器30は、正常データを処理した場合、再構成誤差が小さな圧縮および再構成処理を行う。一方、第1自己符号化器30は、異常データを処理した場合、再構成誤差が大きな圧縮および再構成処理を行う。検知部14は、この再構成誤差の大きさに基づいてデータの異常検知を行う。
検知部14は、例えば、検知対象データの再構成誤差(第1差異)を算出し、算出した再構成誤差が所定の閾値以上である場合には異常データと判定し、算出した再構成誤差が閾値未満である場合には正常データと判定する。この閾値は、平均二乗誤差などを用いて予め定義される。例えば、この閾値は、正常データの平均二乗誤差のα倍(αは正の数)などに設定されてよい。検知部14は、検知した異常データを異常データ記憶部D2に記憶させる。
除去部16は、学習対象データ記憶部D3から学習対象データを読み出し、この学習対象データの中に含まれる異常データを除去する。除去部16は、例えば、異常データを用いた学習を行った第2自己符号化器32を含む。第2自己符号化器32は、モデル記憶部D4に記憶された異常モデルを用いて検知対象データの圧縮および再構成処理を行い、再構成データを生成する。異常モデルとは、異常データを用いた学習により算出された異常データに適合するモデルである。即ち、除去部16は、学習対象データから、検知部14によって検知された異常データと関連付けされたデータを削除する。除去部16は、学習対象データから、検知部14によって検知された異常データと同じ性質(傾向)を持つ異常データを削除する。
除去部16は、例えば、学習対象データの再構成誤差(第2差異)を算出し、算出した再構成誤差が所定の閾値以上である場合には異常データと判定し、算出した再構成誤差が閾値未満である場合には正常データと判定する。この除去部16によって異常データと判定されたデータは、検知部14によって行われる異常検知においては、正常データと判定されるべきデータである。また、この除去部16によって正常データと判定されたデータは、検知部14によって行われる異常検知においては、異常データと判定されるべきデータである。
除去部16は、学習対象データの中から、除去部16が正常データと判定したデータ(検知部14によって異常データと判定されるべきデータ)を除去することで、異常データの割合が低減された新たな学習対象データを生成する。即ち、除去部16は、学習対象データの中から、除去部16が異常データと判定したデータ(検知部14によって正常データと判定されるべきデータ)を抽出する。除去部16は、新たな学習対象データを学習対象データ記憶部D3に記憶させる。
学習部18は、第1自己符号化器30および第2自己符号化器32の学習処理を制御する。学習部18は、例えば、学習対象データに基づいて第1自己符号化器30を学習させる。また、学習部18は、例えば、第1自己符号化器30に対して検知対象データを入力することにより得られる異常データに基づいて第2自己符号化器32を学習させる。
受付部20は、異常検知装置1のユーザによる操作を受け付ける。受付部20は、例えば、マウス、キーボード、タッチパネルなどの入力端末である。
表示部22は、例えば、検知部14による異常検知の結果などを表示する。例えば、表示部22は、液晶ディスプレイなどである。表示部22が、タッチパネル対応のディスプレイである場合、表示部22は、上記の受付部20の機能を備えてもよい。
上記の異常検知装置1の各機能部のうち一部または全部は、プロセッサがプログラム(ソフトウェア)を実行することにより実現されてよい。この場合、異常検知装置1は、上記のプログラムをコンピュータ装置に予めインストールすることで実現してもよい。或いは、CD−ROMなどの記憶媒体に記憶された上記のプログラム、又はネットワークを介して頒布される上記のプログラムを、コンピュータ装置に適宜インストールすることで実現してもよい。また、異常検知装置1の各機能部のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)などのハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの組み合わせによって実現されてもよい。
記憶部24は、検知対象データ、異常検知装置1の内部で処理される各種内部データ、各種モデルなどを記憶する。記憶部24は、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)、フラッシュメモリなどで実現される。検知対象データ記憶部D1は、取得部12によって外部装置Aから取得された検知対象データを記憶する。異常データ記憶部D2は、検知部14によって異常と判定された異常データを記憶する。学習対象データ記憶部D3は、第1自己符号化器30の学習処理に使用される学習対象データを記憶する。モデル記憶部D4は、検知部14の異常検知処理および除去部16の除去処理において使用される各種モデルを記憶する。
次に、本実施形態の異常検知装置1の動作について説明する。図2は、本実施形態の異常検知装置1の処理の一例を示すフローチャートである。
まず、取得部12は、制御部10の制御下において、外部装置Aから検知対象データを取得し、検知対象データ記憶部D1に記憶させる(ステップS101)。例えば、取得部12は、外部装置Aから検知対象データを継続的に取得する。或いは、取得部12は、所定の周期で、外部装置Aに蓄積された検知対象データを取得するようにしてもよい。
次に、制御部10は、外部装置Aから取得した検知対象データに対する異常検知処理を実行するか否かを判定する(ステップS103)。制御部10は、例えば、受付部20が異常検知装置1のユーザによる異常検知処理の実行指示を受け付けた場合に、異常検知処理を実行すると判定する。或いは、制御部10は、所定の時間が経過した場合に異常検知処理を実行すると判定してもよい。尚、制御部10による異常検知処理を実行するか否かの判定は行わず、外部装置Aから検知対象データを取得した場合には必ず異常検知処理を実行してもよい。
制御部10が検知対象データに対する異常検知処理を実行すると判定した場合、検知部14は、検知対象データ記憶部D1から検知対象データを読み出し、学習対象データ(第1学習対象データ)に基づいて学習した第1自己符号化器30を用いて検知対象データを圧縮および再構成し、再構成誤差を算出する(ステップS105)。
次に、検知部14は、算出した再構成誤差が閾値以上であるか否かを判定する(ステップS107)。この閾値は、正常データの平均二乗誤差などを用いて予め定義される。
検知部14が算出した再構成誤差が閾値以上であると判定した場合、即ち、検知対象データが異常データであると判定した場合、検知部14は、この検知対象データを、異常データとして異常データ記憶部D2に記憶させる(ステップS109)。一方、検知部14が算出した再構成誤差が閾値未満であると判定した場合、即ち、検知対象データが正常データであると判定した場合、検知部14は、この検知対象データを異常データ記憶部D2に記憶させない。検知対象データが複数する場合には、検知対象データの各々に対して、上記の再構成誤差に基づく異常検知および記憶処理を行う。尚、制御部10は、検知部14によって検知された異常データに関する情報を、表示部22に表示させてもよい。
次に(或いは、制御部10が検知対象データに対する異常検知を実行しないと判定した場合)、制御部10は、異常データ除去処理を実行するか否かを判定する(ステップS111)。例えば、制御部10は、受付部20が異常検知装置1のユーザによる異常データ除去処理の実行指示を受け付けた場合に、異常データ除去処理を実行すると判定する。或いは、制御部10は、所定の時間が経過した場合に異常データ除去処理を実行すると判定してもよい。尚、制御部10による異常データ除去処理を実行するか否かの判定は行わず、必ず異常データ除去処理を実行してもよい。
制御部10が異常データ除去処理を実行すると判定した場合、除去部16は、異常データ除去処理を実行する(S113)。異常データ除去処理の詳細については後述する。
次に(或いは、制御部10が異常データ除去処理を実行しないと判定した場合)、制御部10は、学習処理を実行するか否かを判定する(ステップS115)。例えば、制御部10は、受付部20が異常検知装置1のユーザによる学習処理の実行指示を受け付けた場合に、学習処理を実行すると判定する。或いは、制御部10は、所定の時間が経過した場合に学習処理を実行すると判定してもよい。尚、制御部10による学習処理を実行するか否かの判定は行わず、必ず学習処理を実行してもよい。制御部10が学習処理を実行しないと判定した場合、検知対象データの取得処理を再度行う。
制御部10が学習処理を実行すると判定した場合、学習部18は、学習処理を実行する(S117)。学習処理の詳細については後述する。以後、検知対象データの取得処理を再度行う。
次に、本実施形態の異常検知装置1の異常データ除去処理について説明する。図3は、本実施形態の異常検知装置1の異常データ除去処理の一例を示すフローチャートである。図4は、本実施形態の異常検知装置1の異常データ除去処理を示す図である。
まず、学習部18は、異常データ記憶部D2から異常データを読み出し、この異常データに基づいて第2自己符号化器32を学習させる(ステップS201)。
次に、除去部16は、学習対象データ記憶部D3から第1学習対象データを読み出し、異常データに基づいて学習した第2自己符号化器32に対して入力する(ステップS203)。第2自己符号化器32は、この第1学習対象データを圧縮して再構成して再構成データを生成する。
次に、除去部16は、第1学習対象データと、再構成データと用いて、再構成誤差を算出する(ステップS205)。第1学習対象データ内に複数のデータが存在する場合には、各データに対して、再構成誤差を算出する。
次に、除去部16は、第1学習対象データから異常データを除去する(ステップS207)。除去部16は、例えば、再構成誤差が閾値以上であるデータを、学習対象データ記憶部D3に記憶させることで、異常データが除去された学習対象データ(第2学習対象データ)を生成する。除去部16は、第1学習対象データから、検知部14によって検知された異常データと関連付けされたデータを削除する。以上により、本フローチャートの処理を終了する。
次に、本実施形態の異常検知装置1の学習処理について説明する。図5は、本実施形態の異常検知装置1の学習処理の一例を示すフローチャートである。
まず、学習部18は、学習対象データ記憶部D3から学習対象データ(上記の異常データ除去処理により異常データが除去された第2学習対象データ)を読み出し、この第2学習対象データを第1自己符号化器30に対して入力させる(ステップS301)。
次に、学習部18は、第1自己符号化器30を学習させ、第2学習対象データに適合するノード間の結合係数を算出させる(ステップS303)。ここで、この結合係数は、例えばバックプロパゲーション法(誤差逆伝播法)等を使用して算出させる。
次に、学習部18は、算出した結合係数を正常モデルとして、モデル記憶部D4に記憶させる(ステップS305)。以上により、本フローチャートの処理を終了する。
以上で説明した本実施形態によれば、異常検知を高精度で行うことができる異常検知装置、異常検知方法、および異常検知プログラムを提供することができる。本実施形態において、第1自己符号化器30が、除去部16によって異常データが除去された学習対象データに基づく学習を行うことで、検知部14による異常検知の精度を向上させることができる。本実施形態の異常検知装置1は、各種機器の出力データに基づく故障または異常検知、製品の画像に基づく製造ラインでの検品、ネットワークの不正アクセス検知などに利用することができる。
尚、本実施形態では、「異常データ除去処理(ステップS113)」を行った後に、「学習処理(ステップS117)」を行う例について説明したが、図6に示すように、「学習処理(ステップS117)」を行った後に、「異常データ除去処理(ステップS113)」を行ってもよい。
また、本実施形態では、「異常データ除去処理(ステップS113)」の最初に第2自己符号化器32の学習処理を行う例について説明したが、第2自己符号化器32の学習は、「学習処理(ステップS117)」において行ってもよい。
(第2の実施形態)
次に、第2の実施形態について説明する。第1の実施形態と比較して、本実施形態における異常検知装置は、複数の自己符号化器を用いて、異常データの除去処理を行う点が異なる。このため、本実施形態の説明において、上記の第1の実施形態と同様の部分には同じ参照番号を付与し、その説明を省略あるいは簡略化する。また、第2学習対象データまでの処理については、第1の実施形態で説明しているので省略する。
学習対象データの中には、互いに性質の異なる複数の種類の異常データが存在する場合がある。これらの複数の種類の異常データの各々に適合した複数の自己符号化器を用いることで、異常データの除去性能を向上させることができる。
図7は、本実施形態の異常検知装置2の一例を示す機能ブロック図である。第1の実施形態と比較して、本実施形態の異常検知装置2は、複数の自己符号化器を用いて異常データの除去処理を行う除去部17を備える。
除去部17は、例えば、N−1個の自己符号化器(第2から第N自己符号化器)を備える。Nは2以上の自然数である。図8は、本実施形態の異常検知装置2における第2から第Nの自己符号化器の関係の一例を示す図である。第2自己符号化器32は、第1自己符号化器30に対して検知対象データを入力することにより得られた第1異常データを用いて学習を行う。第3自己符号化器34は、第2自己符号化器32に対して第1異常データを入力することにより得られた第2異常データを用いて学習を行う。第4自己符号化器36は、第3自己符号化器34に対して第2異常データを入力することにより得られた第3異常データを用いて学習を行う。第N自己符号化器38は、第N−1自己符号化器に対して第N−2異常データを入力することにより得られた第N−1異常データを用いて学習を行う。
すなわち、除去部17は、第n番目の学習対象データを、第n番目の異常データに基づく学習が行われた第n+1番目の自己符号化器に入力することにより、第n番目の学習対象データから、第n番目の異常データを除去して第n+1番目の学習対象データを生成する。第n番目の異常データは、第n−1番目の異常データ内における、第n−1番目の異常データと、第n番目の自己符号化器により第n−1番目の異常データを圧縮して再構成することにより生成された再構成データとの間の差異が閾値以上のデータである。学習部18は、第n+1番目の学習対象データに基づいて第1自己符号化器30を学習させる。ここで、nは、2以上の自然数である。
モデル記憶部D4は、第2から第N自己符号化器によって用いられる第2から第N異常モデルを記憶する。例えば、第2自己符号化器32は、モデル記憶部D4に記憶された第2異常モデルを用いて検知対象データの圧縮および再構成処理を行う。
次に、本実施形態の異常検知装置2の動作について説明する。異常検知装置2の全体の処理の流れは、異常データ除去処理および学習処理を除いて、図2に示す第1実施形態における異常検知装置1と同じである。以下、異常検知装置2の異常データ除去処理および学習処理についてのみ説明する。図9は、本実施形態の異常検知装置2の異常データ除去処理の一例を示すフローチャートである。
まず、制御部10は、第1異常データに含まれる異常データの除去処理を実行するか否かを判定する(ステップS401)。例えば、制御部10は、受付部20が異常検知装置2のユーザによる異常データ除去処理の実行指示を受け付けた場合に、異常データ除去処理を実行すると判定する。
制御部10が第1異常データに含まれる異常データの除去処理を実行すると判定した場合、除去部16は、第2自己符号化器32以外の自己符号化器(第3から第N自己符号化器)用いた再構成誤差を算出する(ステップS403)。次に、除去部16は、算出した再構成誤差が閾値以下であるデータを除去する(ステップS405)。
即ち、除去部16は、第3異常モデルを用いる第3自己符号化器34に対して第1異常データを入力して再構成誤差を算出する。次に、除去部16は、算出した再構成誤差が閾値以下であるデータを第1異常データから除去する。ここで、再構成誤差が閾値以下であるデータ、即ち、再構成誤差が小さいデータは、第1異常データに含まれる異常データに相当する。
次に、第3自己符号化器34を用いて異常データの除去処理が行われたデータに対して、第4自己符号化器36を用いて同様な異常データの除去処理を行う。以後、第5から第N自己符号化器を用いて同様な異常データの除去を繰り返し行うことで、第2自己符号化器32の学習対象とすべき異常データの割合が高いデータが得られる。尚、第3、第4、・・・、第N自己符号化器の順で異常データの除去処理を行う必要はなく、第3から第N自己符号化器は任意の順で異常データの除去処理を行ってよい。
以後(或いは、制御部10が第1異常データに含まれる異常データの除去処理を実行しないと判定した場合)、第3から第N自己符号化器に対して、上記の異常データの除去処理を行う。尚、上記の異常データ除去処理の後に、異常データ除去処理が行われた異常データに基づいて第2から第N自己符号化器の学習処理を行ってもよい。
次に、制御部10は、学習対象データに含まれる異常データの除去処理を実行するか否かを判定する(ステップS407)。例えば、制御部10は、受付部20が異常検知装置2のユーザによる異常データ除去処理の実行指示を受け付けた場合に、異常データ除去処理を実行すると判定する。
制御部10が学習対象データに含まれる異常データの除去処理を実行すると判定した場合、除去部16は、第2異常モデルを用いる第2自己符号化器32に対して、学習対象データを入力して再構成誤差を算出する(ステップS409)。次に、除去部16は、算出した再構成誤差が閾値以下であるデータを除去する(ステップS411)。次に、第2自己符号化器32を用いてデータの除去処理を行ったデータに対して、第3自己符号化器34を用いて同様なデータ除去処理を行う。以後、第4から第N自己符号化器を用いて同様なデータの除去処理を行うことで、異常データが少なく、第1自己符号化器30の学習対象とすべき正常データの割合が高い学習対象データ(第2学習対象データ)が得られる。除去部16は、第2学習対象データを、学習対象データ記憶部D3に記憶させる。尚、第2、第3、・・・、第N自己符号化器の順でデータの除去処理を行う必要はなく、第2から第N自己符号化器は任意の順でデータの除去処理を行ってよい。以上により、本フローチャートの処理を終了する。
次に、本実施形態の異常検知装置2の学習処理について説明する。図10は、本実施形態の異常検知装置2の学習処理の一例を示すフローチャートである。
まず、制御部10は、正常モデルの学習処理を実行するか否かを判定する(ステップS501)。例えば、制御部10は、受付部20が異常検知装置2のユーザによる正常モデルの学習処理の実行指示を受け付けた場合に、学習処理を実行すると判定する。
制御部10が正常モデルの学習処理を実行すると判定した場合、学習部18は、学習対象データ記憶部D3から学習対象データ(例えば、上記の異常データ除去処理が行われた第2学習対象データ)を読み出し、この第2学習対象データを第1自己符号化器30に入力させる(ステップS503)。
次に、学習部18は、第1自己符号化器30に第2学習対象データを学習させ、第2学習対象データに適合する結合係数を算出させる(ステップS505)。
次に、学習部18は、算出した結合係数を正常モデルとして、モデル記憶部D4に記憶させる(ステップS507)。
次に、制御部10は、第2異常モデルの学習処理を実行するか否かを判定する(ステップS509)。例えば、制御部10は、受付部20が異常検知装置2のユーザによる第2異常モデルの学習処理の実行指示を受け付けた場合に、学習処理を実行すると判定する。
制御部10が第2異常モデルの学習を実行すると判定した場合、学習部18は、異常データ記憶部D2から第1異常データを読み出し、この第1異常データを第2自己符号化器32に入力させる(ステップS511)。
次に、学習部18は、第2自己符号化器32に第1異常データを学習させ、第1異常データに適合する結合係数を算出させる(ステップS513)。
次に、学習部18は、算出した結合係数を第1異常モデルとして、モデル記憶部D4に記憶させる(ステップS515)。以後、第2から第N自己符号化器を用いて同様な学習処理を行う。尚、第2、第3、・・・第N自己符号化器の順で学習処理を行う必要はなく、第2から第N自己符号化器は任意の順で学習処理を行ってよい。以上により、本フローチャートの処理を終了する。
以上で説明した本実施形態によれば、異常検知を高精度で行うことができる異常検知装置、異常検知方法、および異常検知プログラムを提供することができる。また、本実施形態では、複数の種類の異常データの各々に適合した複数の自己符号化器を用いることで、異常データの除去性能を向上させることができる。
尚、本実施形態では、学習処理において、正常モデル(第1自己符号化器30)の学習後に、異常モデル(第2から第N自己符号化器)の学習を行う例を説明したが、異常モデルの学習後に、正常モデル(第1自己符号化器30)の学習を行ってもよい。
(実施例)
上記の異常検知装置1および2の性能を評価するために、以下の手順の評価試験を行った。図11は、本実施例の評価試験において使用したデータセットを示す図である。図12は、本実施例の評価試験の評価手順を示す図である。
評価手順
手順1:第1学習対象データに基づいて第1自己符号化器30を学習
手順2:第1自己符号化器30に対して検知対象データを入力し、再構成誤差が上位10,000位までのデータを第1異常データとして抽出
手順3:第1異常データに基づいて第2自己符号化器32を学習
手順4:第2自己符号化器32に対して学習対象データを入力し、再構成誤差が下位6,000以内のデータを除去し、第2学習対象データとして保存
手順5:第2学習対象データに基づいて第1自己符号化器30を学習(学習後の第1自己符号化器を第1自己符号化器30Aと呼ぶ)
手順6:第1自己符号化器30および第1自己符号化器30Aの各々に対してテストデータを入力し、異常データの検知性能を評価指標AUC(Area under the curve)にて評価
AUC(Area under the curve)とは、分類器の評価指標となるROC(Receiver Operating Characteristic‥受信者操作特性)曲線の下面積であって、0から1の値を取るものであり、1に近付く程、分類の精度が高いことを示す。AUCが1の場合に対象を完全に分類可能であることを示す。
手順6において、第1自己符号化器30に対してテストデータを入力した場合のAUCは0.76であり、第1自己符号化器30Aに対してテストデータを入力した場合のAUCは0.99となった。これにより、第2自己符号化器32を用いて異常データの除去処理を行うことで、分類の精度が向上することが分かった。
以上で説明した少なくとも一つの実施形態によれば、異常検知の対象となる検知対象データを、学習の対象となる第1学習対象データに基づく学習が行われた第1自己符号化器に入力することにより、前記検知対象データ内の第1異常データを検知する検知部と、前記第1学習対象データを、前記検知部によって検知された前記第1異常データに基づく学習が行われた第2自己符号化器に入力することにより、前記第1学習対象データから、前記第1異常データと関連付けされたデータを除去して第2学習対象データを生成する除去部と、前記除去部により生成された前記第2学習対象データに基づいて前記第1自己符号化器を学習させる学習部と、を備えることにより、データの異常検知を高精度で行うことができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1,2…異常検知装置、10…制御部、12…取得部、14…検知部、16,17…除去部、18…学習部、20…受付部、22…表示部、24…記憶部、30…第1自己符号化器、32…第2自己符号化器、34…第3自己符号化器、36…第4自己符号化器、38…第N自己符号化器、A…外部装置、D1…検知対象データ記憶部、D2…異常データ記憶部、D3…学習対象データ記憶部、D4…モデル記憶部

Claims (9)

  1. 異常検知の対象となる検知対象データを、学習の対象となる第1学習対象データに基づく学習が行われた第1自己符号化器に入力することにより、前記検知対象データ内の第1異常データを検知する検知部と、
    前記第1学習対象データを、前記検知部によって検知された前記第1異常データに基づく学習が行われた第2自己符号化器に入力することにより、前記第1学習対象データから、前記第1異常データと関連付けされたデータを除去して第2学習対象データを生成する除去部と、
    前記除去部により生成された前記第2学習対象データに基づいて前記第1自己符号化器を学習させる学習部と、
    を備える異常検知装置。
  2. 前記検知部は、前記検知対象データと、前記第1自己符号化器により前記検知対象データを圧縮して再構成することにより生成された再構成データとの間の第1差異を算出し、前記第1差異に基づいて、前記第1異常データを検知する、
    請求項1に記載の異常検知装置。
  3. 前記除去部は、前記第1学習対象データと、前記第2自己符号化器により前記第1学習対象データを圧縮して再構成することにより生成された再構成データとの間の第2差異を算出し、前記第2差異に基づいて、前記第1学習対象データから、前記第1異常データと関連付けされたデータを除去して前記第2学習対象データを生成する、
    請求項1または2に記載の異常検知装置。
  4. 前記除去部は、前記第2学習対象データを、第2異常データに基づく学習が行われた第3自己符号化器に入力することにより、前記第2学習対象データから、前記第2異常データを除去して第3学習対象データを生成し、前記第2異常データは、前記第1異常データ内における、前記第1異常データと、前記第2自己符号化器により前記第1異常データを圧縮して再構成することにより生成された再構成データとの間の差異が閾値以上のデータであり、
    前記学習部は、前記第3学習対象データに基づいて前記第1自己符号化器を学習させる、
    請求項1から3のいずれか一項に記載の異常検知装置。
  5. 前記除去部は、第n番目の学習対象データを、第n番目の異常データに基づく学習が行われた第n+1番目の自己符号化器に入力することにより、前記第n番目の学習対象データから、前記第n番目の異常データを除去して第n+1番目の学習対象データを生成し、前記第n番目の異常データは、第n−1番目の異常データ内における、第n−1番目の異常データと、第n番目の自己符号化器により前記第n−1番目の異常データを圧縮して再構成することにより生成された再構成データとの間の差異が閾値以上のデータであり、
    前記学習部は、前記第n+1番目の学習対象データに基づいて前記第1自己符号化器を学習させ、
    前記nは、2以上の自然数である、
    請求項1から3のいずれか一項に記載の異常検知装置。
  6. 異常検知の対象となる検知対象データを、学習の対象となる第1学習対象データに基づく学習が行われた第1自己符号化器に入力することにより、前記検知対象データ内の第1異常データを検知し、
    前記第1学習対象データを、検知された前記第1異常データに基づく学習が行われた第2自己符号化器に入力することにより、前記第1学習対象データから、前記第1異常データと関連付けされたデータを除去して第2学習対象データを生成し、
    生成された前記第2学習対象データに基づいて前記第1自己符号化器を学習させる、
    異常検知方法。
  7. 前記第2学習対象データを、第2異常データに基づく学習が行われた第3自己符号化器に入力することにより、前記第2学習対象データから、前記第2異常データを除去して第3学習対象データを生成し、前記第2異常データは、前記第1異常データ内における、前記第1異常データと、前記第2自己符号化器により前記第1異常データを圧縮して再構成することにより生成された再構成データとの間の差異が閾値以上のデータであり、
    前記第3学習対象データに基づいて前記第1自己符号化器を学習させる、
    請求項6に記載の異常検知方法。
  8. コンピュータに、
    異常検知の対象となる検知対象データを、学習の対象となる第1学習対象データに基づく学習が行われた第1自己符号化器に入力することにより、前記検知対象データ内の第1異常データを検知させ、
    前記第1学習対象データを、検知された前記第1異常データに基づく学習が行われた第2自己符号化器に入力することにより、前記第1学習対象データから、前記第1異常データと関連付けされたデータを除去して第2学習対象データを生成させ、
    生成された前記第2学習対象データに基づいて前記第1自己符号化器を学習させる、
    異常検知プログラム。
  9. 前記第2学習対象データを、第2異常データに基づく学習が行われた第3自己符号化器に入力することにより、前記第2学習対象データから、前記第2異常データを除去して第3学習対象データを生成させ、前記第2異常データは、前記第1異常データ内における、前記第1異常データと、前記第2自己符号化器により前記第1異常データを圧縮して再構成することにより生成された再構成データとの間の差異が閾値以上のデータであり、
    前記第3学習対象データに基づいて前記第1自己符号化器を学習させる、
    請求項8に記載の異常検知プログラム。
JP2017002521A 2017-01-11 2017-01-11 異常検知装置、異常検知方法、および異常検知プログラム Active JP6545728B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017002521A JP6545728B2 (ja) 2017-01-11 2017-01-11 異常検知装置、異常検知方法、および異常検知プログラム
CN201780081392.0A CN110121724B (zh) 2017-01-11 2017-09-25 异常检测装置、异常检测方法及存储介质
PCT/JP2017/034599 WO2018131219A1 (ja) 2017-01-11 2017-09-25 異常検知装置、異常検知方法、および記憶媒体
US16/476,449 US11501163B2 (en) 2017-01-11 2017-09-25 Abnormality detection device, abnormality detection method, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017002521A JP6545728B2 (ja) 2017-01-11 2017-01-11 異常検知装置、異常検知方法、および異常検知プログラム

Publications (2)

Publication Number Publication Date
JP2018112863A true JP2018112863A (ja) 2018-07-19
JP6545728B2 JP6545728B2 (ja) 2019-07-17

Family

ID=62839409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017002521A Active JP6545728B2 (ja) 2017-01-11 2017-01-11 異常検知装置、異常検知方法、および異常検知プログラム

Country Status (4)

Country Link
US (1) US11501163B2 (ja)
JP (1) JP6545728B2 (ja)
CN (1) CN110121724B (ja)
WO (1) WO2018131219A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019240164A1 (ja) 2018-06-13 2019-12-19 第一三共株式会社 心筋障害治療薬
KR20200088682A (ko) * 2019-01-15 2020-07-23 삼성전자주식회사 전자 장치 및 이의 제어 방법
WO2020175147A1 (ja) * 2019-02-28 2020-09-03 日本電信電話株式会社 検知装置及び検知プログラム
JP2021174194A (ja) * 2020-04-23 2021-11-01 株式会社Screenホールディングス 学習用データ処理装置、学習装置、学習用データ処理方法、およびプログラム
JP6998099B1 (ja) * 2021-08-03 2022-01-18 サイバーマトリックス株式会社 アクセスリクエストの不正を検知する方法
JP2022519348A (ja) * 2019-01-29 2022-03-23 アプライド マテリアルズ インコーポレイテッド 半導体製造装置ツールにおけるニューラルネットワークを用いたチャンバ整合化
CN115176184A (zh) * 2020-03-03 2022-10-11 三菱电机株式会社 用于材料、器件、以及结构的逆向设计的生成模型

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10643153B2 (en) 2017-04-24 2020-05-05 Virginia Tech Intellectual Properties, Inc. Radio signal identification, identification system learning, and identifier deployment
JP6874708B2 (ja) * 2018-02-13 2021-05-19 日本電信電話株式会社 モデル学習装置、モデル学習方法、プログラム
WO2020042024A1 (zh) * 2018-08-29 2020-03-05 区链通网络有限公司 一种基于图算法的节点异常检测方法、装置及存储装置
WO2020250730A1 (ja) * 2019-06-11 2020-12-17 日本電気株式会社 不正検知装置、不正検知方法および不正検知プログラム
JP6678843B1 (ja) * 2019-08-28 2020-04-08 三菱電機株式会社 異常部分検知装置、異常部分検知方法及びプログラム
EP3919996A1 (en) * 2020-06-02 2021-12-08 Siemens Aktiengesellschaft Method and apparatus for monitoring of industrial devices
CN111737431B (zh) * 2020-06-19 2024-03-22 海尔优家智能科技(北京)有限公司 设备异常的处理方法及装置、存储介质、电子装置
JP2022074890A (ja) * 2020-11-05 2022-05-18 株式会社東芝 異常判定装置、学習装置及び異常判定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114967A (ja) * 2013-12-13 2015-06-22 株式会社日立ハイテクノロジーズ 異常検知方法およびその装置
JP2016085704A (ja) * 2014-10-29 2016-05-19 株式会社リコー 情報処理システム、情報処理装置、情報処理方法、及びプログラム
WO2016132468A1 (ja) * 2015-02-18 2016-08-25 株式会社日立製作所 データ評価方法および装置、故障診断方法および装置
JP2017097718A (ja) * 2015-11-26 2017-06-01 株式会社リコー 識別処理装置、識別システム、識別処理方法、およびプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5301310B2 (ja) * 2009-02-17 2013-09-25 株式会社日立製作所 異常検知方法及び異常検知システム
JP5538597B2 (ja) * 2013-06-19 2014-07-02 株式会社日立製作所 異常検知方法及び異常検知システム
JP5993897B2 (ja) 2014-06-19 2016-09-14 ヤフー株式会社 特定装置、特定方法及び特定プログラム
JP5845374B1 (ja) * 2015-08-05 2016-01-20 株式会社日立パワーソリューションズ 異常予兆診断システム及び異常予兆診断方法
CN110996785B (zh) * 2017-05-22 2023-06-23 吉尼泰西斯有限责任公司 生物电磁场中异常的机器判别
JP6965798B2 (ja) * 2018-03-12 2021-11-10 オムロン株式会社 制御システムおよび制御方法
US10602940B1 (en) * 2018-11-20 2020-03-31 Genetesis, Inc. Systems, devices, software, and methods for diagnosis of cardiac ischemia and coronary artery disease

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114967A (ja) * 2013-12-13 2015-06-22 株式会社日立ハイテクノロジーズ 異常検知方法およびその装置
JP2016085704A (ja) * 2014-10-29 2016-05-19 株式会社リコー 情報処理システム、情報処理装置、情報処理方法、及びプログラム
WO2016132468A1 (ja) * 2015-02-18 2016-08-25 株式会社日立製作所 データ評価方法および装置、故障診断方法および装置
JP2017097718A (ja) * 2015-11-26 2017-06-01 株式会社リコー 識別処理装置、識別システム、識別処理方法、およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
板橋 広和 外2名: "「誤ラベルデータ検出による半教師有り学習の研究」", 第72回(平成22年)全国大会講演論文集(2), JPN6017047695, 8 March 2010 (2010-03-08), pages 2 - 463, ISSN: 0004036085 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019240164A1 (ja) 2018-06-13 2019-12-19 第一三共株式会社 心筋障害治療薬
KR20200088682A (ko) * 2019-01-15 2020-07-23 삼성전자주식회사 전자 장치 및 이의 제어 방법
KR102601135B1 (ko) * 2019-01-15 2023-11-13 삼성전자주식회사 전자 장치 및 이의 제어 방법
JP2022519348A (ja) * 2019-01-29 2022-03-23 アプライド マテリアルズ インコーポレイテッド 半導体製造装置ツールにおけるニューラルネットワークを用いたチャンバ整合化
JP7200387B2 (ja) 2019-01-29 2023-01-06 アプライド マテリアルズ インコーポレイテッド 半導体製造装置ツールにおけるニューラルネットワークを用いたチャンバ整合化
WO2020175147A1 (ja) * 2019-02-28 2020-09-03 日本電信電話株式会社 検知装置及び検知プログラム
JP2020140580A (ja) * 2019-02-28 2020-09-03 日本電信電話株式会社 検知装置及び検知プログラム
JP7103274B2 (ja) 2019-02-28 2022-07-20 日本電信電話株式会社 検知装置及び検知プログラム
CN115176184A (zh) * 2020-03-03 2022-10-11 三菱电机株式会社 用于材料、器件、以及结构的逆向设计的生成模型
JP2021174194A (ja) * 2020-04-23 2021-11-01 株式会社Screenホールディングス 学習用データ処理装置、学習装置、学習用データ処理方法、およびプログラム
JP7414629B2 (ja) 2020-04-23 2024-01-16 株式会社Screenホールディングス 学習用データ処理装置、学習装置、学習用データ処理方法、およびプログラム
JP6998099B1 (ja) * 2021-08-03 2022-01-18 サイバーマトリックス株式会社 アクセスリクエストの不正を検知する方法

Also Published As

Publication number Publication date
JP6545728B2 (ja) 2019-07-17
US20200057939A1 (en) 2020-02-20
WO2018131219A1 (ja) 2018-07-19
US11501163B2 (en) 2022-11-15
CN110121724A (zh) 2019-08-13
CN110121724B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2018131219A1 (ja) 異常検知装置、異常検知方法、および記憶媒体
CN111902781B (zh) 用于控制系统的设备和方法
JP6811276B2 (ja) 多次元時系列におけるスパース・ニューラル・ネットワーク・ベース異常検出
CN106104496B (zh) 用于任意时序的不受监督的异常检测
JP7103274B2 (ja) 検知装置及び検知プログラム
JP7340265B2 (ja) 異常検出装置、異常検出方法、およびプログラム
US11657121B2 (en) Abnormality detection device, abnormality detection method and computer readable medium
WO2020134032A1 (zh) 用于检测业务系统异常的方法及其装置
KR102079359B1 (ko) 개선된 sax 기법 및 rtc 기법을 이용한 공정 모니터링 장치 및 방법
CN108509324B (zh) 选择计算平台的系统和方法
JP2018041212A (ja) 評価装置、評価方法、および評価プログラム
WO2019045699A1 (en) RECURRENT GAUSSIAN MIXTURE MODEL FOR ESTIMATING SENSOR STATUS IN STATUS MONITORING
Miao et al. A clustering-based strategy to identify coincidental correctness in fault localization
US9170286B2 (en) Real-time spectrum analyzer including frequency mask gate and method of operating the same
JP2022082277A (ja) 検知プログラム、検知装置、および検知方法
US20180067831A1 (en) Fine-Grained Causal Anomaly Inference for Complex System Fault Diagnosis
Agrawal et al. Increasing reliability of fault detection systems for industrial applications
JPWO2020148904A1 (ja) 異常検知装置、異常検知システム及び学習装置、並びに、これらの方法及びプログラム
US11847544B2 (en) Preventing data leakage in automated machine learning
CN110880182B (zh) 图像分割模型训练方法、图像分割方法、装置及电子设备
Xue et al. A one-pass test-selection method for maximizing test coverage
CN115600352A (zh) 故障检测方法、装置、电子设备和可读存储介质
JP7127477B2 (ja) 学習方法、装置及びプログラム、並びに設備の異常診断方法
TWI824681B (zh) 裝置管理系統、裝置的障礙原因推測方法以及非暫時性地記憶程式的記憶媒體
JP7467876B2 (ja) 性能変化検知装置、性能変化検知方法及びプログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190619

R150 Certificate of patent or registration of utility model

Ref document number: 6545728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150