JP7096238B2 - 極低温熱サイホンの受動流れ方向バイアシング - Google Patents

極低温熱サイホンの受動流れ方向バイアシング Download PDF

Info

Publication number
JP7096238B2
JP7096238B2 JP2019518312A JP2019518312A JP7096238B2 JP 7096238 B2 JP7096238 B2 JP 7096238B2 JP 2019518312 A JP2019518312 A JP 2019518312A JP 2019518312 A JP2019518312 A JP 2019518312A JP 7096238 B2 JP7096238 B2 JP 7096238B2
Authority
JP
Japan
Prior art keywords
flow
flow loop
cooling device
stainless steel
helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019518312A
Other languages
English (en)
Other versions
JP2020501624A (ja
JP2020501624A5 (ja
Inventor
マシュー ヴォス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of JP2020501624A publication Critical patent/JP2020501624A/ja
Publication of JP2020501624A5 publication Critical patent/JP2020501624A5/ja
Application granted granted Critical
Publication of JP7096238B2 publication Critical patent/JP7096238B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3804Additional hardware for cooling or heating of the magnet assembly, for housing a cooled or heated part of the magnet assembly or for temperature control of the magnet assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

以下は、一般に、冷却技術、極低温冷却技術、超伝導磁石技術、超伝導磁石磁気共鳴イメージング(MRI)デバイス技術等に関する。
いくつかの商用磁気共鳴イメージング(MRI)デバイスは、必要な高強度静(B)磁場を高効率で発生するために超伝導磁石巻線を使用する。従来より、そのような磁石は、超伝導材料を臨界超伝導温度より下に維持するために液体ヘリウムに浸される。しかしながら、この手法は、磁石始動時に液体ヘリウムの大量使用及び液体ヘリウムの可用性を必要とする。
超伝導磁石を冷却するための別の知られている手法は熱サイホンを使用する。超伝導磁石は、熱隔離を維持するために真空デュワー内で、作動流体としてヘリウムを使用する極低温冷却器(すなわち、コールドヘッド)によって冷却される熱伝導性(例えば、銅)基体上に配置される。より詳細には、コールドヘッドは、一次冷却回路を流れるヘリウムを冷却する。二次冷却回路は、熱交換器によって一次冷却回路に熱的に接続される。二次冷却回路は、超伝導巻線を冷却するために銅基体に接続された(例えば、ろう付けされたか又は溶接された)配管に冷却されたガスヘリウムを送り出す。始動は、有利には、ガスヘリウムのみで実行される。一次冷却材回路が作動ガスヘリウムを冷却するとき、作動ガスヘリウムは、ガスヘリウム及び液体ヘリウム(LHe)の二相混合物に移行し、LHeは一次冷却回路のヘリウムタンクに集まる。ヘリウムタンク内にLHeの貯蔵部を構築すると、運用段階の間一次回路の温度安定性が強化される。二次冷却回路では、ヘリウムは、十分に低い圧力であり、その結果、ヘリウムは、二次冷却材回路内で単相ガスのままであり、それによって、二次冷却回路内の受動熱サイホン流れが促進される。この手法は、より伝統的なLHe液浸と比べて利点がある。熱サイホン手法は、大量のLHeの供給なしに始動することができる。
以下は、上述の問題等に対処する新しい改善されたシステム及び方法を開示する。
開示する1つの態様において、冷却デバイスは、熱交換器と、コールドシンクと熱交換器とを接続する第1の流れループと、ホットシンクと熱交換器とを接続する第2の流れループとを含む。第1の受動一方向バルブが、第1の流れループに配置されており、第1の流れループにおける許容流れ方向の流れを許容し、第1の流れループにおける反対の阻止流れ方向の流れを阻止するように方向付けられる。第2の受動一方向バルブが、第2の流れループに配置されており、第2の流れループにおける許容流れ方向の流れを許容し、第2の流れループにおける反対の阻止流れ方向の流れを阻止するように方向付けられる。第1の流れループにおける許容流れ方向の流れと第2の流れループにおける許容流れ方向の流れとの組合せが、熱交換器内に向流を生成する。
開示する別の態様において、冷却方法が開示される。第1の冷却剤流体は、コールドシンクと熱交換器とを接続する第1の流れループを流れ、第2の冷却剤流体は、ホットシンクと熱交換器とを接続する第2の流れループを流れる。第1の冷却剤流体を流すことと、第2の冷却剤流体を流すこととは、第1の流れループに第1の冷却剤流体を流すことを許容方向では許容し、一方、反対の阻止方向では流れを阻止するために第1の受動一方向バルブを使用し、第2の流れループに第2の冷却剤流体を流すことを許容方向では許容し、一方、反対の阻止方向では流れを阻止するために第2の受動一方向バルブを使用することによって熱交換器内に向流を生成するように抑制される。
開示する別の態様において、極低温磁石は、熱交換器と、極低温コールドヘッドと、1つ又は複数の超伝導磁石巻線とを含む。第1の流れループは、極低温コールドヘッドと熱交換器とを接続する。第2の流れループは、1つ又は複数の超伝導磁石巻線と熱交換器とを接続する。第1の受動一方向バルブが、第1の流れループに配置されており、第1の流れループにおける許容流れ方向の流れを許容し、第1の流れループにおける反対の阻止流れ方向の流れを阻止するように方向付けられる。第2の受動一方向バルブが、第2の流れループに配置されており、第2の流れループにおける許容流れ方向の流れを許容し、第2の流れループにおける反対の阻止流れ方向の流れを阻止するように方向付けられる。第1の流れループにおける許容流れ方向の流れと第2の流れループにおける許容流れ方向の流れとの組合せが、熱交換器内に向流を生成する。
開示する別の態様では、磁気共鳴イメージング(MRI)デバイスは、検査領域に静磁場を発生させるように構成された、直前の段落に記載されている極低温磁石を含み、検査領域の静磁場に傾斜磁場を重ね合わせるように構成された傾斜磁場コイルを更に含む。
1つの利点は、熱サイホン冷却システムの改善されたより信頼できる起動を提供することにある。
別の利点は、効率的な熱交換を促進する熱交換器の向流を保証するために一次及び二次冷却剤回路の流れ方向が積極的に制御される熱サイホン冷却を提供することにある。これはまた、重力場の幾何学的配置を利用することが可能でない場合に流れ方向の制御を可能にする。
別の利点は、前述の利点のうちの1つ又は複数を有する極低温熱サイホン冷却を提供することにある。
別の利点は、ハーメチックシールされた一次及び二次冷却回路を用いたそのような極低温熱サイホン冷却を提供することにある。
別の利点は、前述の利点のうちの1つ又は複数を有し、ヘリウム作動流体を使用する極低温熱サイホン冷却を提供することにある。
別の利点は、ヘリウム作動流体を使用する極低温熱サイホン冷却によって冷却された超伝導磁石を提供することにあり、冷却システムは前述の利点のうちの1つ又は複数を有する。
別の利点は、ヘリウム作動流体を使用する極低温熱サイホン冷却によって冷却された超伝導磁石を含む磁気共鳴イメージング(MRI)デバイスを提供することにあり、冷却システムは前述の利点のうちの1つ又は複数を有する。
所与の実施形態は、本開示を読み理解する際に当業者には明らかになるように、前述の利点のどれも提供しないか、1つ、2つ、更に多く、若しくはすべてを提供し、及び/又は他の利点を提供する。
本発明は、様々な構成要素及び構成要素の構成並びに様々なステップ及びステップの構成の形態をとる。図面は、単に好ましい実施形態を示すためのものであり、本発明を限定するものとして解釈されるべきではない。特に明記しない限り、図面は、概略的なものであり、正しい縮尺であるとして又は異なる構成要素の相対寸法を示しているとして解釈されるべきではない。
ヘリウム作動流体を使用する極低温冷却デバイスによって冷却される超伝導磁石を含む磁気共鳴イメージング(MRI)デバイスを概略的に示す図である。挿入図は、1つの超伝導磁石コイルの一部分の拡大断面図を示す。 請求項1に記載の極低温冷却デバイスを概略的に示す図である。 図1の極低温冷却デバイスにおいて一方向バルブとして適切に使用されるテスラバルブの概略的な平面図である。図3は、更に、テスラバルブを形成するために、例えば、ろう付け接合部によって一緒に固定された、ミル加工されたテスラバルブ導管パターンをもつ2つのステンレス鋼ブロックを示す。 代替の一方向バルブを概略的に示す図である。
熱交換器において、高温冷却剤流体は、低温冷却剤流体を運ぶ流路に隣接する流路を流れ、熱が高温冷却剤流体から低温冷却剤流体に移動して、高温冷却剤流体の温度が下がる。熱交換器において、高温冷却剤流体がその流路を通る流れは、低温冷却剤流体がその流路を通る流れと平行にすることができる。代替として、高温冷却剤流体がその流路を通る流れは、低温冷却剤流体がその流路を通る流れと逆平行(すなわち、反対方向)にすることができる。この後者の構成は、向流構成と呼ばれ、並流構成よりも効率的である。その理由は、並流路に沿った点の平均温度差がより高いからである。
熱交換器によって接続された一次及び二次冷却剤回路を使用する既存の熱サイホン冷却デバイスについて本明細書で認識している問題は、そのような冷却デバイスが一般に熱交換器における一次及び二次冷却剤の向流を保証しないことである。そのような向流は、効率的な熱交換には最適である。冷却デバイスは、並流(所望の向流ではなく)が熱交換器に存在する場合、依然として作動するが、伝熱効率は、所望の向流構成と比較して大幅に低下する。
その問題は以下のように理解することができる。重力に対して任意の方位の対称熱サイホン設計では、一次及び二次冷却剤回路には固有の優先的な流れの方向がない。そのような優先的方向は、一般に、ループの垂直脚の一方をホット又はコールドシンクとなるように構成することによって熱サイホン中に設計される。しかしながら、所与のシステムレイアウトの形状はこれを可能にしないことがある。より一般的に考えれば、流れ方向は、他方向に対する一方向の流れの総合的抵抗によって熱サイホン動作の初期起動時に決定され、その結果、垂直脚又は他のレイアウト設計構成は、ループに所望の流れ方向を確実に設定するには不十分であることがある。
更なる困難は、冷却剤ループ内の流れの方向を外部から決定することが困難であるか又は不可能であることである。向流の欠如による冷却効率の低下を知ることによって望ましくない並流を検出することができる。しかしながら、これには、実際に達成可能な冷却効率に精通しており、この効率を測定するツール及び技術を有する専門家による性能分析が必要とされる。その上、冷却効率の低下が分かった場合でさえ、非最適効率は、多くの要因(例えば、一方又は両方の冷却ループからの冷却剤流体の漏洩、損なわれた断熱等)のうちのいずれかによって引き起こされ、その結果、原因としての望ましくない並流を分離するために更なる調査が必要とされる。更に、望ましくない並流が、熱サイホン冷却デバイスの起動時に導入された場合、これは、冷却デバイスが最終動作状態に達するまで検出することができない。
本明細書で開示する実施形態では、熱交換器内に向流を生成するために所望の流れ方向を確実にするのに、受動一方向バルブが、少なくとも二次冷却剤回路に、好ましくは、更に一次冷却剤回路に含まれる。一般に、任意のタイプのチェックバルブ又は逆止めバルブが受動一方向バルブとして使用される。
本明細書で開示するいくつかの例示の実施形態において、磁気共鳴イメージング(MRI)デバイスの超伝導磁石を冷却することに関連して、熱サイホン冷却デバイスを開示する。これらは、単に例示の実施形態であり、開示する熱サイホン冷却デバイスは、種々の用途に適用される。
図1を参照すると、例示の磁気共鳴イメージング(MRI)デバイス8は超伝導磁石10を含み、超伝導磁石10は、例示の実施形態では、水平ボア12を画定する水平ソレノイド超伝導磁石10であり、水平ボア12内に、患者又は他のイメージング対象者がMRI検査のために入れられる。カウチ又は他の患者支持体(図示せず)が、患者を載せるために設けられる。MRIデバイス8は、超伝導磁石10に加えて、MRI技術分野で知られている他の構成要素、例えば、抵抗性傾斜磁場コイル14、全身無線周波数(RF)コイル16(及び/又は1つ又は複数の局所RFコイル、図示せず)等を更に含む。これらの構成要素は、MRI画像を取得するために、知られているやり方で使用される。例えば、1つの例示のイメージングシーケンスでは、稼働している超伝導磁石10は、ボア12内の検査領域に静(B)磁場を生成する。いくつかの実施形態において、この磁場の大きさ|B|は、1.5テスラ、3.0テスラ、7.0テスラ等である。B磁場は、(統計的に)、核スピンを特定の方向に向け、核スピンは、RFコイル16によって印加されるRFパルスにより励起される。励起された磁気共鳴は、傾斜磁場コイル14により検査領域内で静(B)磁場に重畳される傾斜磁場によって、空間的に制限され、及び/又は位相及び/又は周波数符号化され、このように操作され励起された磁気共鳴は、RFコイル16によって検出されてMRIイメージングデータを発生する。選ばれた空間符号化に適する画像再構成アルゴリズムが、取得されたMRIイメージングデータからMRI画像を再構成するために適用される。
引き続き図1を参照すると、超伝導磁石10の1つのコイル20の一部分が、挿入図においてより詳細に示される。超伝導巻線22(ボックスとして概略的に示されているが、一般に1つ又は多数の巻線層を含む)が、ボア12を取り囲む銅又は銅合金のフープ又はリング等の環状熱伝導性巻型24のまわりに巻きつけられる。巻型24が電導性である(銅/銅合金の事例である)場合、熱伝導性であるが電気絶縁性のスペーサ26、例えば1つ又は複数のガラス繊維シートが設けられ、超伝導巻線22を巻型24から電気的に絶縁する。同様に、内側絶縁リング(図示せず)が、銅合金基体ループ24の内径(ID)に設けられる。絶縁要素28、30が、オプションとして、位置決め又は他の目的のために端部に設けられる。二次冷却剤回路(後述)の一部であるパイプ32が、銅合金基体ループ24にろう付けされるか、溶接されるか、又は他のやり方で固定され、その結果、基体24及び支持された超伝導導体巻線22は、固定されたパイプ32を介して二次冷却剤回路によってヒートシンクされる。
図1の主要図に戻って参照すると、例示の2つ又は(一般に)それを超えるそのような磁石巻線コイル20は、超伝導巻線22及び熱伝導性基体フープ24を含む冷却アセンブリを熱的に絶縁するために真空デュアー34に配置される。当技術分野で知られているように、より一般的には、異なるサイズ、コイル巻線の数等の多くのそのような巻線コイル20が、ボア12内の検査領域に高度の空間均一性をもつ静(B)磁場を生成するために磁石設計に従って位置付けられる。
引き続き図1を参照し、更に図2を参照すると、磁石巻線コイル20は、極低温冷却デバイス40によって冷却される。図2は、冷却デバイス40を概略的に示す。概略的に示したコールドヘッド42、44は、第1段のヘリウムコールドステーション42と第2段のヘリウムコールドステーション44とを含む。コールドヘッド42、44は、ヘリウム作動流体を冷却するように動作可能な任意の極低温冷却器によって具現される。2つのコールドステーションが示されているが、コールドステーションの数は、その代りに、1つであってもよく、又は3つ以上であってもよい。一般的な構成では、第1のコールドステーション42は、第2のコールドステーション44よりも高い温度であるが、他の構成も可能である。コールドヘッド42、44は、一般に、作動流体が冷却される熱力学サイクルを実施するために作動流体(例えば、ヘリウム)の周期的な圧縮及び膨張を可能にするピストン等(図示せず)によって動作する。いくつかの実施形態では、コールドヘッド42、44の動作は、液体ヘリウム(LHe)、又はヘリウムガスとLHeの二相混合物を発生させるためにヘリウムガスを液化するのに有効である。これは、図1の例示の実施形態の場合であり、ヘリウムタンク46は気液分離器として働き、LHeは、ヘリウムタンク46の底部に集まり、ヘリウムタンク46の容積の残りは、ヘリウムガスによって満たされる。
極低温冷却デバイス40は熱交換器50を更に含む。第1の流れループ52は、コールドシンクを熱交換器50に接続する。第2の流れループ54は、ホットシンクを熱交換器50に接続する。特定の例示の例では、コールドシンクは、コールドヘッド42、44と、ヘリウムタンク46とを含み、一方、ホットシンクは、1つ又は複数の磁石コイル20を含む。しかしながら、より一般的には、コールドシンク及びホットシンクは、それぞれの第1及び第2の流れループ52、54によって熱交換器50に接続される任意の質量体であり、コールドシンクは、ホットシンクよりも低い温度である。極低温冷却デバイスでは、コールドシンクはまた、室温より低い温度である。説明を明瞭にするために、図1では、第1の流れループ52は実線を使用して描かれており、一方、第2の流れループ54は点線を使用して描かれている。
熱交換器50は、第1の流れループ52の流れと第2の流れループ54の流れとを十分に接近させて、第2の流れループ54内を流れる暖かい冷却剤流体から第1の流れループ52内を流れる冷たい冷却剤流体への適切に効率的な伝熱を可能にする構成を使用する。例えば、熱交換器はシェルアンドチューブ構成(図示せず)を有し、一方の冷却剤流体は、他方の冷却剤流体が流れる周囲のシェルに含まれる管内を流れる。最大の熱伝達効率のために、パイプ内の流れがシェル内の流れと反対方向である向流構成が実施されるべきである。より一般的に、熱交換器の特定のレイアウトは、三角形の流れ方向インジケータによって図1の熱交換器に概略的に示されている向流構成を規定する。
前に論じたように、第1の流れループ52及び第2の流れループ54における適切な流れ方向は、ループの適切なレイアウトによって確立される。しかしながら、本明細の他のところで開示しているようにこの手法には欠点がある。本明細書で開示する実施形態では、熱交換器50において向流を達成するために適切な流れ方向を確実にするのに、受動一方向バルブ62、64が設けられる。より詳細には、第1の受動一方向バルブ62は、第1の流れループ52に配置され、第1の流れループ52における許容流れ方向Fの流れを許容し、第1の流れループ52における反対の阻止流れ方向の流れを阻止するように方向付けられる。同様に、第2の受動一方向バルブ64は、第2の流れループ54に配置され、第2の流れループ54における許容流れ方向Fの流れを許容し、第2の流れループ54における反対の阻止流れ方向の流れを阻止するように方向付けられる。受動一方向バルブ62、64の方位は、第1の流れループ52における許容流れ方向Fの流れと第2の流れループ54における許容流れ方向Fの流れとの組合せが、熱交換器50において向流を生成するように選ばれる。2つの受動一方向バルブ62、64は、2つの流れループ52、54に確立される流れ方向が熱交換器50に向流を与えるように正しく方向付けられるという積極的保証を提供する。
超伝導磁石コイル20の冷却に関するより具体的な例として、第1の流れループ52は、作動流体として(すなわち、冷却剤流体として)ヘリウム流体を含む。第1の流れループ52内のヘリウム流体は、高圧に、例えば、いくつかの実施形態では最初に2000psiより高く維持される。最初、このヘリウム流体は、単相のヘリウムガスである。しかしながら、コールドヘッドが動作してヘリウムガスを冷却するとき、コールドステーション44は、最終的に、第1の流れループ52の圧力のヘリウムが液化し始める温度(例えば、一般に、圧力に応じて約3Kから4K)に達する。それにより、第1の流れループ52にヘリウム流体がもたらされ、それは、ヘリウムガス及び液体ヘリウム(LHe)の二相混合物に移行する。ヘリウムタンク46は、LHeがヘリウムタンク46の底部に集まる気液分離器として働き、第1の流れループ52内のヘリウム流体を極低温に維持し、コールドヘッド42、44への電力を一時的に失った場合の磁石のクエンチングを遅らせるための冷却剤貯蔵部を提供する。第1の流れループ52の圧力はまた、ヘリウムが最終動作状態で部分的に液化されるので、冷却の間に数psiの程度(例えば、いくつかの実施形態では約8psi)の圧力まで減少する。
第2の流れループ54も、作動流体(すなわち、冷却剤流体)としてヘリウム流体を含む。しかしながら、第2の流れループ54のヘリウム流体は、冷却の間、気相のままであり(これは、熱によるサイホン流れが冷却の間、維持されることを保証する)、そのために本明細書ではヘリウムガスと呼ぶ。典型的な実施形態では、第2の流れループ54内のヘリウムガスは、最初に数百psiであり、最終的に、約3Kから4Kの温度、すなわち、第1の流れループ52内のヘリウム流体の温度(わずかに上であるが)に匹敵する温度まで冷却する。いくつかの例示の実施形態では、動作状態において、第2の流れループ54内のヘリウムガスも、やはり、最終動作状態で数psiの圧力である。
上記のように、第2の流れループ54内の流れは、熱サイホン動作によるものである。第2の流れループ54内の流れを駆動するのに機械式ポンプは接続されない。第1の流れループ52内の流れは、コールドヘッド42、44の冷却動作による自然循環によって駆動される。受動一方向バルブ62、64も、好ましくは受動デバイスである。その結果、極低温冷却デバイス40は、有利には、コールドヘッド42、44のピストン又は他の機構を駆動する電気機械入力を除いて完全に受動的である。その上、受動一方向バルブ62、64によって与えられる流れ方向バイアスにより、冷却デバイス40の構成要素と流れループ52、54の空間レイアウトとは、有利には、これらの構成要素の適正な構成及び流れループのレイアウトによる重力利用の流れバイアスを用意する必要なしに、任意のやり方で配置される。
図3を参照して、受動一方向バルブ62、64の例示の実施形態を説明する。この例示の実施形態では、各受動一方向バルブはテスラバルブである。例えば、Nikola Tesla、米国特許第1,329,559号(1920年2月3日に発行された)を参照されたい。図3は、例証となる例として一方向バルブ62を示すが、他の一方向バルブ64も同じ構造を有することができる。例示のテスラバルブ62は、ミル加工されたテスラバルブ導管パターン72を有する第1のステンレス鋼ブロック70と、ミル加工されたテスラバルブ導管パターン76を有する第2のステンレス鋼ブロック74とを含む。第1及び第2のステンレス鋼ブロック70、74は、ろう付け接合部78を形成するために例えばろう付けによって一緒にハーメチックシールされ、第1及び第2のステンレス鋼ブロック70、74のテスラバルブ導管パターン72、76が、ハーメチックシールされた第1及び第2のステンレス鋼ブロックを通過するテスラバルブ導管80(図3の組み立て済み一方向バルブ62では点線で示される隠されたフィーチャ)を画定して、一方向バルブ62を形成する。
参照により全体が本明細書に組み込まれる米国特許第1,329,559号においてより詳細に説明されているように、テスラバルブ導管は、許容流れ方向(図3では左から右の方向)の流体流れに対して比較的妨げられない経路を示すが、阻止流れ方向(図3では右から左の方向)の流体流れに対して蛇行性流路を示す。本明細書で開示する製造手法は、低分子密度ヘリウム作動流体に対してさえ漏洩を無視できるテスラバルブ導管80のハーメチックシールを行うために、大きい接触区域を有するろう付け接合部78によるテスラバルブを提供する。ミル加工されたテスラ導管パターン72、76を有するステンレス鋼ブロック70、74のろう付けは好ましい手法であるが、テスラ導管パターン72、76を形成するのに、及び/又は接合部78を形成するために2つのブロック70、74を接合するのに、他の機械加工技法が使用されてもよい。
テスラバルブは、極低温冷却デバイス40の受動一方向バルブ62、64としての使用に十分に適している。その理由は、これらのバルブ62、64が、許容流れ方向対阻止流れ方向において非常に高い差異抵抗を有する必要がないからである。前に述べたように、それぞれの第1及び第2の流れループ52、54の流れ方向は、他方向に対する一方向の流れの総合的抵抗によって初期起動時に決定される。したがって、受動一方向バルブ62は、許容方向Fの第1の流れループ52の総合的流れ抵抗が反対方向の流れ抵抗よりも低いことを保証にするのに十分な方向性バイアスを有しさえすればよい。同様に、受動一方向バルブ64は、許容方向Fの第2の流れループ54の総合的流れ抵抗が反対方向の流れ抵抗よりも低いことを保証するのに十分な方向性バイアスを有しさえすればよい。テスラバルブは、このレベルの方向性バイアスを容易に提供することができる。
図4を参照すると、テスラバルブは極低温冷却デバイス40の受動一方向バルブ62、64の好ましい実施形態であるが、より一般的には、任意のタイプの一方向バルブを使用することができる。図4は、フラップチェックバルブ設計の代替受動一方向バルブの実施形態を示す。バルブ本体90(例えば、短い長さのパイプ又は管)が、フラップチェックバルブを通る流路を画定し、ヒンジ型バルブフラップ92がバルブシート94と嵌合し、その結果、バルブフラップ92が、許容方向の流れ(図4の左から右への)を許容するように一方向に(図4の右側に)のみバルブシート94から離れることができ、一方、阻止方向の(図4の右から左への)流れが、バルブフラップ92をバルブシート94にしっかりと押し込んで流れを阻止する。そのようなバルブは、受動一方向バルブ62、64としての使用に適しているが、作動流体が残留水分を含んでいる場合の極低温でのヒンジの凍結の可能性等の多少の不都合がある。
ヘリウム作動流体で動作する極低温冷却デバイス40のコンテキストで説明しているが、開示する改良は、より一般的には、任意の極低温冷却デバイスにおいて、例えば、液体窒素、空気、冷水、又は別の作動流体を使用するものにおいても使用することができることが理解されよう。開示する改良は、更により一般的には、熱交換器と、熱交換器内に向流を生成するそれぞれの第1及び第2の流れループの許容方向の流れの組合せを保証するように方向付けられた受動一方向バルブをもつ第1及び第2の流れループとを含む任意の熱サイホン冷却デバイスを含むことができる。
例示の実施形態、例えば図2では、熱交換器50は、流れF、Fが直接熱的に結合される単段熱交換器である。他の実施形態では、熱交換器が多段熱交換器であることが考えられ、少なくとも1つの中間流れ(FI、図示せず)が、2段で熱を間接的に移送する(F→FI→F)ために流れFと流れFとに熱的に結合される。そのような多段熱交換器を使用する場合、一方向バルブ62、64は、(多段)熱交換器に流れF、Fの向流を確立するために正しい流れ方向を確立するのに依然として有利に使用される。追加として、第3の一方向バルブ(図示せず)が、好ましくは、中間FI流体ループに向流のための正しい流れ方向を確立するために含まれる。
好ましい実施形態を参照して本発明を説明した。前述の詳細な説明を読み理解する際、変更及び改変を他の人が思いつくことがある。本発明は、すべてのそのような変更及び改変が添付の特許請求の範囲及びその均等物の範囲内に入る限り、それらを含むと解釈されるように意図されている。

Claims (15)

  1. 熱交換器と、
    コールドシンク及び前記熱交換器を接続する第1の流れループと、
    ホットシンクと前記熱交換器とを接続する第2の流れループと、
    前記第1の流れループに配置され、前記第1の流れループにおける許容流れ方向の流れを許容し、前記第1の流れループにおける反対の阻止流れ方向の流れを阻止するように方向付けられた第1の受動一方向バルブと、
    前記第2の流れループに配置され、前記第2の流れループにおける許容流れ方向の流れを許容し、前記第2の流れループにおける反対の阻止流れ方向の流れを阻止するように方向付けられた第2の受動一方向バルブと
    を含む冷却デバイスであって、
    前記第1の流れループにおける前記許容流れ方向の流れと前記第2の流れループにおける前記許容流れ方向の流れとの組合せにより、前記熱交換器内に向流を生成する、冷却デバイス。
  2. 前記第1の受動一方向バルブが第1のテスラバルブを含み、前記第2の受動一方向バルブが第2のテスラバルブを含む、請求項1に記載の冷却デバイス。
  3. 前記第1のテスラバルブ及び前記第2のテスラバルブが、各々、
    ミル加工されたテスラバルブ導管パターンを有する第1のステンレス鋼ブロックと、
    ミル加工されたテスラバルブ導管パターンを有する第2のステンレス鋼ブロックと
    を含み、
    前記第1及び第2のステンレス鋼ブロックが一緒にハーメチックシールされ、前記第1及び第2のステンレス鋼ブロックの前記テスラバルブ導管パターンが、ハーメチックシールされた前記第1及び第2のステンレス鋼ブロックを通過するテスラバルブ導管を画定する、請求項2に記載の冷却デバイス。
  4. 各テスラバルブの前記第1及び第2のステンレス鋼ブロックが、ろう付け接合部によって一緒にハーメチックシールされる、請求項3に記載の冷却デバイス。
  5. 前記第1の流れループに配置されたヘリウム流体と、
    前記第2の流れループに配置されたヘリウムガスと
    を更に含む、請求項1から4のいずれか一項に記載の冷却デバイス。
  6. 前記第2の流れループの流れを駆動するのに、機械式ポンプが接続されない、請求項1から5のいずれか一項に記載の冷却デバイス。
  7. 前記ホットシンクに含まれる超伝導磁石巻線と、
    前記コールドシンクに含まれる極低温コールドヘッドと
    を更に含む、請求項1から6のいずれか一項に記載の冷却デバイス。
  8. 前記コールドシンクに含まれる気液相分離器を更に含む、請求項7に記載の冷却デバイス。
  9. 1つ又は複数の超伝導磁石巻線を含む磁石と、
    極低温コールドヘッドと、
    請求項1から7のいずれか一項に記載の冷却デバイスであって、前記冷却デバイスの前記ホットシンクが、前記1つ又は複数の超伝導磁石巻線を含み、前記冷却デバイスの前記コールドシンクが、前記極低温コールドヘッド及び液体ヘリウムタンクを含む、前記冷却デバイスと
    を含む、磁気共鳴イメージングデバイス。
  10. コールドシンクと熱交換器とを接続する第1の流れループを通して第1の冷却剤流体を流すステップと、
    ホットシンクと前記熱交換器とを接続する第2の流れループを通して第2の冷却剤流体を流すステップと、
    前記第1の流れループに前記第1の冷却剤流体を流す前記ステップを許容方向では許容し、一方、反対の阻止方向では流れを阻止するために第1の受動一方向バルブを使用し、前記第2の流れループに前記第2の冷却剤流体を流す前記ステップを許容方向では許容し、一方、反対の阻止方向では流れを阻止するために第2の受動一方向バルブを使用することによって、前記熱交換器内に向流を生成するために、前記第1の冷却剤流体を流す前記ステップと前記第2の冷却剤流体を流す前記ステップとを抑制するステップと
    を有する、冷却方法。
  11. 前記第1の受動一方向バルブが第1のテスラバルブを含み、前記第2の受動一方向バルブが第2のテスラバルブを含む、請求項10に記載の冷却方法。
  12. 第1のステンレス鋼ブロックにテスラバルブ導管パターンをミル加工し、
    第2のステンレス鋼ブロックにテスラバルブ導管パターンをミル加工し、
    前記第1及び第2のステンレス鋼ブロックを一緒にハーメチックシールし、前記第1及び第2のステンレス鋼ブロックの前記テスラバルブ導管パターンが、ハーメチックシールされた前記第1及び第2のステンレス鋼ブロックを通過するテスラバルブ導管を画定することによって、
    前記第1のテスラバルブ及び前記第2のテスラバルブの各々を構築するステップを更に有する、請求項11に記載の冷却方法。
  13. 前記ハーメチックシールするステップが、前記第1及び第2のステンレス鋼ブロックを一緒にろう付けするステップを有する、請求項12に記載の冷却方法。
  14. 前記第1の冷却剤流体がヘリウム流体であり、前記第2の冷却剤流体がヘリウムガスである、請求項10から13のいずれか一項に記載の冷却方法。
  15. 前記第1の流れループを流れる液体ヘリウム相の前記ヘリウム流体を、前記第1の流れループに接続されたヘリウムタンクに集めるステップを更に有する、請求項14に記載の冷却方法。
JP2019518312A 2016-10-06 2017-10-04 極低温熱サイホンの受動流れ方向バイアシング Active JP7096238B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662404907P 2016-10-06 2016-10-06
US62/404,907 2016-10-06
PCT/EP2017/075203 WO2018065458A1 (en) 2016-10-06 2017-10-04 Passive flow direction biasing of cryogenic thermosiphon

Publications (3)

Publication Number Publication Date
JP2020501624A JP2020501624A (ja) 2020-01-23
JP2020501624A5 JP2020501624A5 (ja) 2020-11-12
JP7096238B2 true JP7096238B2 (ja) 2022-07-05

Family

ID=60143678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019518312A Active JP7096238B2 (ja) 2016-10-06 2017-10-04 極低温熱サイホンの受動流れ方向バイアシング

Country Status (5)

Country Link
US (1) US11275136B2 (ja)
EP (1) EP3523582B1 (ja)
JP (1) JP7096238B2 (ja)
CN (1) CN109804208B (ja)
WO (1) WO2018065458A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110769643B (zh) * 2018-07-27 2021-05-04 宏碁股份有限公司 散热模块
FR3097948B1 (fr) * 2019-06-26 2021-06-25 Lair Liquide Sa Pour Letude Et L’Exploitation Des Procedes Georges Claude Refroidisseur cryogénique pour détecteur de rayonnement notamment dans un engin spatial
US11835607B2 (en) * 2020-07-14 2023-12-05 General Electric Company Auxiliary cryogen storage for magnetic resonance imaging applications
CN112197033B (zh) * 2020-09-21 2022-07-26 周天桥 一种可调速的特斯拉阀
CN114427380A (zh) * 2020-10-13 2022-05-03 中国石油化工股份有限公司 一种井下流体单向导通高速截止阀及使用其的方法
CN112228596A (zh) * 2020-11-06 2021-01-15 刘西振 一种具有单向流体加速功能的单向阀
US11719236B2 (en) * 2021-06-17 2023-08-08 United States Department Of Energy Flow control valve
CN113325140B (zh) * 2021-07-08 2022-08-05 全球能源互联网研究院有限公司 一种基于特斯拉阀的气体纯度检测净化系统
GB202113063D0 (en) * 2021-09-14 2021-10-27 Rolls Royce Plc Fluid pump
CN114220985A (zh) * 2021-12-14 2022-03-22 清华大学 一种可变进气式燃料电池流场及其控制方法
CN114739056B (zh) * 2022-04-20 2023-02-10 华中科技大学 一种变径节流管及其应用
CN115167572B (zh) * 2022-06-30 2024-03-22 浙江工业大学 一种集成式微温控器件及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004236A (ja) 1999-06-24 2001-01-12 Mitsubishi Electric Corp 極低温冷却装置および極低温冷却方法
JP2014530060A (ja) 2011-09-28 2014-11-17 コーニンクレッカ フィリップス エヌ ヴェ 無冷媒mriマグネットに対する非常に効率的な熱交換器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1329559A (en) 1916-02-21 1920-02-03 Tesla Nikola Valvular conduit
US5598721A (en) * 1989-03-08 1997-02-04 Rocky Research Heating and air conditioning systems incorporating solid-vapor sorption reactors capable of high reaction rates
IT1293502B1 (it) * 1997-07-29 1999-03-01 Gabriella Cacchi Procedimento di montaggio di cliche' su maniche e relativo montaggio delle maniche su rulli di macchine da stampa flessografiche
WO1999062127A1 (fr) 1998-05-22 1999-12-02 Sumitomo Electric Industries, Ltd. Procede et dispositif de refroidissement d'un supraconducteur
US6442949B1 (en) * 2001-07-12 2002-09-03 General Electric Company Cryongenic cooling refrigeration system and method having open-loop short term cooling for a superconducting machine
DE102004053972B3 (de) 2004-11-09 2006-07-20 Bruker Biospin Gmbh NMR-Spektrometer mit gemeinsamen Refrigerator zum Kühlen von NMR-Probenkopf und Kryostat
JP4381998B2 (ja) 2005-02-24 2009-12-09 株式会社日立製作所 液冷システム
GB2462626B (en) 2008-08-14 2010-12-29 Siemens Magnet Technology Ltd Cooled current leads for cooled equipment
US8676282B2 (en) 2010-10-29 2014-03-18 General Electric Company Superconducting magnet coil support with cooling and method for coil-cooling
US9958519B2 (en) 2011-12-22 2018-05-01 General Electric Company Thermosiphon cooling for a magnet imaging system
EP2734020B1 (en) 2012-11-19 2017-07-12 ABB Schweiz AG Cooling arrangement with a two-phase thermosyphon for cooling a multiplicity of electric devices
US8650877B1 (en) * 2013-03-11 2014-02-18 Gary R. Gustafson Solar panels that generate electricity and extract heat: system and method
DE102013213020A1 (de) * 2013-07-03 2015-01-08 Bruker Biospin Ag Verfahren zum Umrüsten einer Kryostatanordnung auf Umlaufkühlung
WO2015071795A1 (en) 2013-11-13 2015-05-21 Koninklijke Philips N.V. Superconducting magnet system including thermally efficient ride-through system and method of cooling superconducting magnet system
US10184711B2 (en) 2014-05-19 2019-01-22 General Electric Company Cryogenic cooling system
CN204730538U (zh) 2015-05-28 2015-10-28 光宇清源(香港)有限公司 热虹吸系统及流体单向控制器
JP2020014236A (ja) 2019-09-24 2020-01-23 株式会社東芝 無線通信装置、無線通信システム、無線通信方法およびプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004236A (ja) 1999-06-24 2001-01-12 Mitsubishi Electric Corp 極低温冷却装置および極低温冷却方法
JP2014530060A (ja) 2011-09-28 2014-11-17 コーニンクレッカ フィリップス エヌ ヴェ 無冷媒mriマグネットに対する非常に効率的な熱交換器

Also Published As

Publication number Publication date
EP3523582B1 (en) 2022-05-18
EP3523582A1 (en) 2019-08-14
JP2020501624A (ja) 2020-01-23
US20210278491A1 (en) 2021-09-09
CN109804208B (zh) 2021-06-22
WO2018065458A1 (en) 2018-04-12
US11275136B2 (en) 2022-03-15
CN109804208A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
JP7096238B2 (ja) 極低温熱サイホンの受動流れ方向バイアシング
JP6181127B2 (ja) 無冷媒型磁石のための管状の熱スイッチ
JP6165267B2 (ja) Mri冷却装置
JP4417247B2 (ja) 超伝導磁石と冷凍ユニットとを備えたmri装置
JP4617251B2 (ja) ヘリウム再凝縮用の同軸多段パルス管
RU2606036C2 (ru) Высокоэффективный теплообменник для свободного от криогена магнита для магнитно-резонансной томографии (mri)
JP2013522574A (ja) 静止状態及び流動状態のガスを用いて超低温冷却クライオスタットにおける温度を制御するための方法およびその装置
JP5809391B2 (ja) 超伝導マグネット冷却の装置及び方法
CN105745553A (zh) 包括热学有效的跨越系统的超导磁体系统以及用于冷却超导磁体系统的方法
Barclay et al. Propane liquefaction with an active magnetic regenerative liquefier
JP5833284B2 (ja) 冷却装置
JP2008538856A (ja) クライオスタットアセンブリ
JP2016211795A5 (ja)
JP2007078310A (ja) 極低温冷却装置
JP6021791B2 (ja) 永久電流スイッチ及びこれを備える超電導装置
JP5920924B2 (ja) 超電導磁石装置及び磁気共鳴撮像装置
JP7208914B2 (ja) 超電導磁石用のサーマルバス熱交換器
JP2014044018A (ja) 極低温冷凍機
JP7012410B2 (ja) 極低温機器の冷却構造
Jahromi et al. Development of a 50 mK-10 K Flight-Worthy Vibration-Free Continuous Adiabatic Demagnetization Refrigerator
JP5893490B2 (ja) パルス管冷凍機によるシールド板冷却装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210806

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220623

R150 Certificate of patent or registration of utility model

Ref document number: 7096238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150