JP7089153B2 - 製氷システム - Google Patents

製氷システム Download PDF

Info

Publication number
JP7089153B2
JP7089153B2 JP2018003946A JP2018003946A JP7089153B2 JP 7089153 B2 JP7089153 B2 JP 7089153B2 JP 2018003946 A JP2018003946 A JP 2018003946A JP 2018003946 A JP2018003946 A JP 2018003946A JP 7089153 B2 JP7089153 B2 JP 7089153B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
ice
expansion valve
ice making
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018003946A
Other languages
English (en)
Other versions
JP2019124382A (ja
Inventor
宏一 北
啓介 中塚
覚 阪江
哲 荒井
武夫 植野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2018003946A priority Critical patent/JP7089153B2/ja
Publication of JP2019124382A publication Critical patent/JP2019124382A/ja
Application granted granted Critical
Publication of JP7089153B2 publication Critical patent/JP7089153B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

本開示は、氷スラリーの製造に適した製氷システムに関する。
特許文献1には、圧縮機、水熱交換器、製氷器、空気熱交換器、液分離器、膨張弁、切替弁、及びそれらを結ぶ配管を含む製氷用冷凍装置が記載されている。
特許文献1の製氷用冷凍装置では、圧縮機の吸入側には液分離器が設けられ、液分離器と製氷器は液戻り管により接続され、製氷器の冷媒出口が飽和又は湿り液となる状態で製氷運転するようなっている。また、製氷器は、満液式蒸発器を採用した二重管式のアイスジェネレータよりなる。
特開2003-185285号公報
満液式蒸発器は、蒸発器出口で過熱を付けると蒸発器に冷凍機油が滞留し、滞留した冷凍機油が圧縮機に戻らず、油切れが発生するという問題がある。従って、満液式蒸発器を採用するアイスジェネレータの場合には、蒸発器出口の冷媒を乾き度0.9程度の湿り状態にせねばならない。
しかし、アイスジェネレータの冷媒として多用されるR404Aは、ポリトロープ指数が比較的小さいため、湿り状態のまま圧縮機に入れると吐出温度が低くなり、吐出過熱度が0になる。従って、冷媒希釈による圧縮機の潤滑不良を招く可能性がある。
この問題を解消するためには、例えば二重管熱交換器よりなる過熱手段を圧縮機の吸入配管に設けるなどの方策があるが、これでは設備コストの高騰化を招くことになる。
本開示は、製氷システムの設備コストを抑制することを目的とする。
(1) 本開示の一態様に係る製氷システムは、蒸気圧縮式の冷凍サイクルを行う冷媒回路と、前記冷媒回路の冷却対象である溶液の循環回路とを備える製氷システムであって、前記循環回路は、アイスジェネレータの溶液流路と、溶液を貯める溶液タンクと、前記溶液流路に溶液を圧送するポンプとを含み、前記冷媒回路は、前記アイスジェネレータの満液式蒸発器と、圧縮機と、凝縮器と、開度の調整が可能な膨張弁とを含み、前記冷媒回路の冷媒が、前記満液式蒸発器からの返油が可能な乾き度で前記圧縮機に吸入されても、当該圧縮機の吐出過熱度が10deg以上となる冷媒よりなる。
本開示の製氷システムによれば、冷媒回路の冷媒が、満液式蒸発器からの返油が可能な乾き度で圧縮機に吸入されても、当該圧縮機の吐出過熱度が10deg以上となる冷媒よりなるので、圧縮機の吐出過熱度を所定範囲に保持する制御を実行することにより、吸入冷媒の過熱手段を設けなくても、圧縮機の潤滑不良を回避することができる。このため、製氷システムの設備コストを抑制することができる。
(2) 本開示の製氷システムにおいて、前記冷媒回路の冷媒は、ポリトロープ指数が1.25以上の冷媒よりなることが好ましい。
その理由は、ポリトロープ指数が1.25以上の冷媒は、満液式蒸発器からの返油が可能な乾き度(例えば0.9)で圧縮機に吸入されても、圧縮機の吐出過熱度が10degになるからである。この冷媒の具体例としては、例えば、R410A及びR32などがある。
(3) 本開示の製氷システムにおいて、前記圧縮機の吐出過熱度が冷媒の種類に応じて予め定めた所定の目標範囲に収まるように、前記膨張弁の開度を調整する膨張弁制御を実行する制御装置を、更に備えることが好ましい。
本開示の製氷システムによれば、制御装置が上記の膨張弁制御を実行するので、満液式蒸発器の出口乾き度を圧縮機に返油可能な乾き度に保持することができる。
(4) 本開示の冷媒回路は、上述の(1)~(3)に記載の製氷システムの構成要素となる冷媒回路である。
従って、本開示の冷媒回路は、上述の(1)~(3)に記載の製氷システムと同様の作用効果を奏する。
本開示の実施形態に係る製氷システムの概略構成図である。 アイスジェネレータの構成例を示す側面図である。 満液式蒸発器を採用するアイスジェネレータの問題点を示す説明図である。図3(a)は、冷媒の出口が過熱状態である満液式蒸発器の内部を示す。図3(b)は、冷媒の出口が湿り状態である満液式蒸発器の内部を示す。 3種類の冷媒の冷凍サイクルを示すモリエル線図である。図4(a)は、R404Aの冷凍サイクルを示すモリエル線図である。図4(b)は、R410Aの冷凍サイクルを示すモリエル線図である。図4(c)は、R32の冷凍サイクルと示すモリエル線図である。 3種類の冷媒の吸入乾き度、吐出過熱度(乾き度)、及びポリトロープ指数の関係を示す対応表である。 制御装置が実行する吐出過熱度に基づく膨張弁制御の一例を示すフローチャートである。
以下、図面を参照しつつ、本開示の実施形態の詳細を説明する。
〔製氷システムの全体構成〕
図1は、本開示の実施形態に係る製氷システム50の概略構成図である。
本実施形態の製氷システム50は、海水タンク8に貯めた海水を原料として製氷機1により氷スラリーを連続的に生成し、生成した氷スラリーを海水タンク8に戻すシステムである。本実施形態の製氷機(以下、「アイスジェネレータ」ともいう。)1は、例えば二重管式製氷機よりなる。
氷スラリーとは、水または水溶液に微細な氷が混濁したシャーベット状の氷のことをいう。氷スラリーは、アイススラリー、スラリーアイス、スラッシュアイス、リキッドアイスとも呼ばれる。
本実施形態の製氷システム50は、海水をベースとした氷スラリーを連続的に生成可能である。このため、本実施形態の製氷システム50は、例えば漁船や漁港などに設置され、海水タンク8に戻された氷スラリーは鮮魚の保冷などに利用される。
図1に示すように、製氷システム50は、蒸気圧縮式の冷凍サイクルを行う冷媒回路60と、海水タンク8とアイスジェネレータ1との間で冷媒回路60の冷却対象である海水を循環させる循環回路70と、を備える。
製氷システム50は、更に、当該製氷システム50に含まれる各機器の動作を制御する制御装置(コントローラ)80を備える。
冷媒回路60は、アイスジェネレータ1の熱交換部20(図2参照)、圧縮機2、熱源側熱交換器3、四路切換弁4、第1膨張弁5、第2膨張弁11、及びレシーバ7などを備える。冷媒回路60は、これらの各機器を図示の経路で配管することにより構成されている。
アイスジェネレータ1の熱交換部20は、冷媒回路60の利用側熱交換器として機能する。圧縮機2は、インバータ制御により容量が可変のインバータ圧縮機よりなる。
第1膨張弁5は、利用側の膨張弁であり、制御信号に応じて開度の調整が可能な電子膨張弁よりなる。第2膨張弁11は、熱源側の膨張弁であり、制御信号に応じて開度の調整が可能な電子膨張弁よりなる。
循環回路70は、アイスジェネレータ1の海水流路12A(図2参照)、海水タンク8、及びポンプ9などを備える。循環回路70は、これらの各機器を図示の経路で配管することにより構成されている。
アイスジェネレータ1の海水流路12Aは、循環回路70においてシャーベット状の氷スラリーの生成区間として機能する。
ポンプ9は、海水タンク8から海水を吸い込んでアイスジェネレータ1の海水流路12Aに海水を圧送する。海水流路12Aで生成された氷スラリーは、ポンプ圧によって海水とともに海水タンク8に戻される。
〔アイスジェネレータの構成〕
図2は、アイスジェネレータ1の構成例を示す側面図である。
図2に示すように、本実施形態のアイスジェネレータ1は、内管12及び外管13を含む横置き型の二重管式製氷機よりなる。
内管12は、軸方向(図2では左右方向)の両端が封止された金属製の円筒部材よりなる。内管12の内部スペースは、海水及び氷スラリーが通過する海水流路12Aを構成する。内管12の海水流路12Aには、ブレード機構15が設けられている。
ブレード機構15は、内管12の内周面に生成された氷粒子を内側に掻き取って内管12の内部に分散させる。内管12の軸方向一端側(図2の右端側)には、海水の流入口16が設けられている。内管12の軸方向他端側(図2の左端側)には、海水の流出口17が設けられている。
外管13は、内管12よりも直径が大きくかつ長さが短い金属製の円筒部材よりなる。外管13は、内管12と同軸心の状態で内管12の外周面を覆っている。外管13の軸方向両端は、ドーナツ状の封止壁(図示せず)により、内管12の外周面に対して封止されている。
内管12の外周面と外管13の内周面とで区画される、横断面形状がドーナツ状の環状スペースは、冷媒が通過する冷媒流路13Aを構成する。アイスジェネレータ1の熱交換部20は、冷媒流路13Aを構成する内管12及び外管13の周壁部分よりなる。
外管13の下部には、複数(図例では3つ)の冷媒の流入口18が設けられている。外管13の上部には、複数(図例では2つ)の冷媒の流出口19が設けられている。
図2に示すように、氷粒子を掻き取るためのブレード機構15は、回転軸21、支持バー22、及びブレード23を備える。
回転軸21は、内管12と同軸心の状態で海水流路12Aに収容されている。回転軸21の軸方向両端部は、内管12の軸方向両端を封止する封止壁24の中心部に回転自在に取り付けられている。
回転軸21の軸方向一端部(図2の左端部)には、モータ25が接続されている。モータ25は、ブレード機構15を所定方向に回転させる駆動部として機能する。
支持バー22は、回転軸21の外周面から径方向外側に突出する棒状部材よりなる。支持バー22は、回転軸21の軸方向に所定間隔おきに配置されている。ブレード23は、各支持バー22の先端に固定されている。ブレード23は、例えば樹脂製の帯板部材よりなる。ブレード23の回転方向の前側の端縁は鋭利な先細り形状となっている。
アイスジェネレータ1は、一対のブレード23,23よりなるスクレーパーアセンブリ(以下、「アセンブリ」と略記する。)を有する。
1つのアセンブリを構成する一対のブレード23,23は、軸方向位置が同じでかつ回転方向位置が180度ずれている。アセンブリは、回転軸21の軸方向に沿って複数組(図例では6組)設けられている。
〔製氷システムの運転モード〕
本実施形態の製氷システム50の運転モードには、通常時の製氷運転と、異常発生時に行われるデフロスト運転とが含まれる。
製氷運転では、四路切換弁4が図1の実線の状態に保持される。この場合、圧縮機2が吐出する高温高圧のガス冷媒は、製氷運転において凝縮器として機能する熱源側熱交換器3に流入する。
熱源側熱交換器3に流入したガス冷媒は、送風ファン10が送風する空気と熱交換して凝縮・液化する。熱源側熱交換器3において液化した冷媒は、第2膨張弁11(製氷運転では全開)及びレシーバ7を経由して第1膨張弁5に流入する。
液化した冷媒は、第1膨張弁5により所定の低圧に減圧され、アイスジェネレータ1の流入口18(図2参照)から、製氷運転において蒸発器として機能するアイスジェネレータ1の熱交換部20に流入する。
アイスジェネレータ1の熱交換部20に流入した冷媒は、ポンプ9により内管12の海水流路12Aに圧送された海水と熱交換して蒸発する。冷媒の蒸発により海水が冷却されると、内管12の内面及びその近傍に氷粒子が生成される。
生成された氷粒子は、ブレード機構15により掻き取られ、海水流路12Aの内部で海水と混合して氷スラリーとなる。氷スラリーは、内管12の流出口17から流出して海水タンク8に戻る。アイスジェネレータ1の熱交換部20で蒸発して気化した冷媒は、四路切換弁4を経由して圧縮機2に戻される。
アイスジェネレータ1の内管12内で氷が蓄積して海水の流れが悪化する現象(アイスアキュムレーション)が発生すると、製氷運転を継続できなくなる。そこで、海水流路12Aに滞留した氷を溶かすためのデフロスト運転が行われる。
デフロスト運転では、四路切換弁4が図1の破線の状態に保持される。この場合、圧縮機2が吐出する高温高圧のガス冷媒は、四路切換弁4を経由して、デフロスト運転において凝縮器として機能するアイスジェネレータ1の熱交換部20に流入する。
熱交換部20に流入したガス冷媒は、内管12内の氷を含む海水と熱交換して凝縮・液化する。これにより、海水流路12Aに蓄積した氷が溶かされる。熱交換部20において液化した冷媒は、第1膨張弁5(デフロスト運転では全開)及びレシーバ7を経由して第2膨張弁11に流入する。
液化した冷媒は、第2膨張弁11により所定の低圧に減圧され、減圧された冷媒は、デフロスト運転において蒸発器として機能する熱源側熱交換器3に流入する。熱源側熱交換器3に流入した冷媒は、送風ファン10の作動により空気と熱交換して気化し、圧縮機2に吸入される。
〔制御装置の構成〕
図1に示すように、制御装置80は、CPU81とメモリ82とを備える。メモリ82には、EEPRON又はフラッシュメモリなどの揮発性メモリを有する。制御装置80は、コンピュータプログラムを格納するHDD又はSSDなどのストレージも備える。
制御装置80は、メモリ82に読み出したコンピュータプログラムをCPU81が実行することにより、製氷システム50の運転に関する各種の制御を実現する。
例えば、制御装置80は、冷媒回路60の随所に設けられた圧力センサ、温度センサ、及び電流センサなどの計測値に基づいて、四路切換弁4の切換操作、第1及び第2膨張弁5,11の開度調整制御、及び圧縮機2の容量制御などを実行可能である。
本実施形態の制御装置80は、圧縮機2の吐出過熱度に基づく膨張弁制御(図6)を実行可能である。この膨張弁制御に必要なセンサは、冷媒回路60に設けられる以下のセンサ31,32である。なお、当該膨張弁制御の詳細は後述する。
吐出圧力センサ31:圧縮機2の吐出配管に取り付けられ、吐出配管から吐出された冷媒の圧力を計測する圧力センサである。吐出圧力センサ31の計測値は、冷媒回路60で行われる冷凍サイクルの高圧と実質的に等しい。
吐出温度センサ32:圧縮機2の吐出配管に取り付けられ、吐出配管の温度を計測する温度センサである。吐出温度センサ32の計測値は、圧縮機2から吐出された冷媒の温度と実質的に等しい。
〔満液式蒸発器の場合の問題点とその解決策〕
以下においては、製氷運転の場合を想定して、アイスジェネレータ1の「熱交換部20」を「蒸発器20」という。
アイスジェネレータ1の蒸発器20は、一般に満液式蒸発器20Aを採用することが多い。本実施形態の製氷システム50においても、アイスジェネレータ1の蒸発器20は満液式蒸発器20Aよりなる。
図3は、満液式蒸発器20Aを採用するアイスジェネレータ1の問題点を示す説明図である。図3(a)の「過熱状態」は、冷媒の出口が過熱状態である満液式蒸発器20Aの内部を示す。図3(b)の「湿り状態」は、冷媒の出口が湿り状態である満液式蒸発器20Aの内部を示す。
図3(a)に示すように、満液式蒸発器20Aの出口(流出口19)の冷媒が過熱状態であると(図例ではSH=5deg)、冷凍機油を含む液冷媒が満液式蒸発器20Aの内部に滞留し、冷凍機油が圧縮機2に戻り難くなり、圧縮機2の油切れが発生し得る。
これに対して、図3(b)に示すように、満液式蒸発器20Aの出口の冷媒が、例えば乾き度が0.9程度の湿り状態の場合には、冷凍機油を含む液冷媒が出口までに到達するので、冷凍機油が圧縮機2に戻り易くなり、圧縮機2の油切れを防止ないし抑制できる。
従って、満液式蒸発器20Aを採用するアイスジェネレータ1では、圧縮機2の潤滑不良を防止するために、満液式蒸発器20Aの出口の冷媒の乾き度が0.9程度となる湿り状態に保持する必要がある。
一方、アイスジェネレータ1の冷媒は一般的に「R404A」が使用される。アイスジェネレータ1などの低温機器では、空調機器と比べて蒸発温度が低い分だけ、吐出温度が空調機器よりも高いため、冷媒物性的に吐出温度が低いR404Aがよく使用される。
しかし、R404Aはポリトロープ指数が小さいため、湿り状態のまま圧縮機2に戻すと吐出温度が低くなり、圧縮機2での吐出過熱度が0degになる。このため、冷媒の希釈による潤滑不良を招く可能性がある。かかる問題点を回避する方策として、例えば次の方策1及び2の少なくとも1つを採用することが考えられる。
方策1) 満液式蒸発器20Aからの戻りの冷媒を過熱状態にする過熱手段(二重管熱交換器や電熱ヒータなど)を、圧縮機2の吸入配管に設ける。
方策2) 圧縮機2の吸入配管にアキュムレータ(気液分離器)を設置し、満液式蒸発器20Aから戻る冷媒から冷凍機油を回収して圧縮機2に戻す。
しかし、上記の方策1及び2では、過熱手段やアキュムレータを設置する分だけ製氷システム50の設備コストが高騰するとともに、運転効率の低下を招く原因になり得る。
また、満液式蒸発器20Aの場合には、比較的大量の冷媒を使用するが、例えばアキュムレータを採用する場合には、冷媒回路60に必要な冷媒量が更に増加し、この点でもコスト高になるという欠点もある。
そこで、本実施形態の製氷システム50では、以下の選定条件を満たす冷媒を採用することにより、上記の方策1及び2を講じなくても、圧縮機2の潤滑不良を回避できるようにした。
選定条件) 満液式蒸発器20Aからの返油が可能な乾き度(例えば0.9)で圧縮機2が冷媒を吸入しても、冷媒の希釈による潤滑不良を招来しない吐出過熱度(例えば10deg)以上で圧縮機2が冷媒を吐出可能であること。
〔選定条件を満たす冷媒の具体例〕
図4は、冷媒回路60に一般的に使用される、3種類の冷媒の冷凍サイクルを示すモリエル線図である。
具体的には、図4(a)は、R404Aの冷凍サイクルを示すモリエル線図である。図4(b)は、R410Aの冷凍サイクルを示すモリエル線図である。図4(c)は、R32の冷凍サイクルと示すモリエル線図である。
図4(a)に示すように、R404Aでは、圧縮機2の吸入側の乾き度(以下、「吸入乾き度」という。)xが0.9である場合には、圧縮機2の吐出側の乾き度xが0.95となる。すなわち、吐出側の過熱度(以下、「吐出過熱度」という。)SHは0degとなる。このため、R404Aは、上述の選定条件を満たす冷媒ではないので、本実施形態の製氷機システム50には採用しない。
図4(b)に示すように、R410Aでは、吸入乾き度xが0.9である場合には、圧吐出過熱度SHは11degとなる。このため、R410Aは、上述の選定条件を満たす冷媒であり、本実施形態の製氷システム50に採用し得る。
図4(c)に示すように、R32では、吸入乾き度xが0.9である場合には、吐出過熱度SHは25degとなる。このため、R32は、上述の選定条件を満たす冷媒であり、本実施形態の製氷システム50に採用し得る。
従って、本実施形態の製氷システム50において、冷媒回路60の冷媒としてR410A又はR32を採用すれば、満液式蒸発器20Aから返油が可能な乾き度(例えば0.9)の冷媒を圧縮機2がそのまま吸入しても、圧縮機2は、潤滑不良を招来しない10degの吐出過熱度にて冷媒を吐出することができ、圧縮機2の信頼性を確保できるようになる。
図5は、3種類の冷媒(R404A、R410A、及びR32)の吸入乾き度、吐出過熱度(乾き度)、及びポリトロープ指数の関係を示す対応表である。
図5に示すように、圧縮機2の吐出過熱度SHは、ポリトロープ指数が大きくなるほど高くなる。また、吐出過熱度SHが11degであるR410Aのポリトロープ指数は1.27であり、吐出過熱度SH=10degに対応するポリトロープ指数は概ね1.25である。
このため、ポリトロープ指数が1.25以上の冷媒は、吸入乾き度x=0.9である場合の吐出過熱度SHが10deg以上の冷媒であるということになる。
従って、ポリトロープ指数が1.25以上の冷媒を採用すれば、上述の選定条件を満たすことになり、圧縮機2の信頼性を確保できる冷媒回路60が得られる。
〔吐出過熱度に基づく膨張弁制御〕
上述の選定条件を満たす冷媒(例えば、R410A又はR32)を採用する場合、満液式蒸発器20Aの出口乾き度を概ね0.9に保持する制御が必要になる。
また、満液式蒸発器20Aと圧縮機2との間に過熱手段やアキュムレータを設置しない場合(方策1及び2を採用しない場合)には、満液式蒸発器20Aの出口乾き度xは圧縮機2の吸入乾き度とほぼ等しい。
従って、満液式蒸発器20Aの出口乾き度xを0.9に保持するためには、製氷運転において、吸入乾き度=0.9の場合の圧縮機2の吐出過熱度が、使用する冷媒ごとに定まる所定値に維持されるように、第1膨張弁5の開度を調節する制御を実行すればよい。
そこで、本実施形態の制御装置80は、圧縮機2の吐出過熱度の算出値SHdが、使用する冷媒に応じて予め設定された目標範囲(下限値SHL~上限値SHU)に収束するように、第1膨張弁5の開度を調節する。
図6は、制御装置80が実行する吐出過熱度に基づく膨張弁制御の一例を示すフローチャートである。
制御装置80は、製氷運転中において、図6のフローチャートに示す膨張弁制御を所定の制御周期(例えば1~10秒)ごとに実行する。
図6に示すように、制御装置80は、まず、吐出圧力センサ31の計測値と吐出温度センサ32の計測値とを読み込む(ステップS10)。
次に、制御装置80は、吐出圧力センサ31の計測値と吐出温度センサ32の計測値を用いて、圧縮機2の吐出過熱度SHを算出する(ステップS11)。
具体的には、制御装置80は、吐出圧力センサ31の計測値と冷媒(例えば、R410A又はR32)の物性とから、吐出圧力センサ31の計測値における冷媒の飽和温度を算出し、算出した飽和温度を吐出温度センサ32の計測値から差し引くことにより、圧縮機2の吐出過熱度を算出する。
次に、制御装置80は、圧縮機2の吐出過熱度の算出値SHdを、予め記憶する吐出過熱度の目標範囲と比較する(ステップS12)。
目標範囲は、所定の下限値SHLから所定の上限値SHUまでの範囲である。下限値SLは、冷媒ごとに異なる吐出過熱度の目標値SH_tgtである。例えば、R410Aの場合は目標値SH_tgt=11であり、R32の場合は目標値SH_tgt=25degである。上限値SHUは、目標値SH_tgt+マージン量(例えば1deg)である。
制御装置80は、吐出過熱度の算出値SHdが目標範囲の下限値SHLよりも低い場合(SHd<SHL)は、第1膨張弁5の開度を所定量だけ縮小する(ステップS13)。
制御装置80は、吐出過熱度の算出値SHdが目標範囲の上限値SHUよりも高い場合(SHd>SHU)は、第1膨張弁5の開度を所定量だけ拡大する(ステップS14)。
制御装置80は、吐出過熱度の算出値SHdが目標範囲内である場合(SHL≦SHd≦SHU)は、第1膨張弁5の開度を維持する(ステップS15)。
このように、制御装置80が、吐出過熱度の算出値SHdが冷媒の種類に応じた所定の目標範囲(下限値SHL~上限値SHU)に収束するように、第1膨張弁5の開度を調整するので、満液式蒸発器20Aの出口乾き度をほぼ0.9(すなわち、方策1及び2を採用しなくても圧縮機2に返油可能な乾き度)に保持することができる。
〔その他の変形例〕
今回開示した実施形態は、すべての点で例示であって制限的なものではない。本開示の権利範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。
上述の実施形態では、「横型」の二重管式製氷機よりなるアイスジェネレータ1を例示しているが、アイスジェネレータ1は「縦型」或いは「傾斜型」の二重管式製氷機であってもよい。
上述の実施形態では、アイスジェネレータ1を1台備えた製氷システム50を例示したが、2台以上のアイスジェネレータ1の海水流路12Aを循環回路70内で直列に接続してもよい。
上述の実施形態では、冷媒回路60に用いる冷媒が、R410A又はR32である場合を例示したが、冷媒回路60に用いる冷媒は、上述の選定条件を満たす限り、所定の混合比で複数種類の原料気体を混合した混合気体であってもよい。
上述の実施形態では、冷媒回路60の冷却対象が「海水」である製氷システム50を例示したが、冷媒回路60の冷却対象は、海水に限定されるものではなく、エチレングリコール水溶液などを含む「溶液」に一般化することができる。
冷却対象を溶液に一般化する場合には、上述の実施形態に記載の「海水」を「溶液」と読み替えればよい。
1 二重管式製氷機(アイスジェネレータ)
2 圧縮機
3 熱源側熱交換器(凝縮器)
4 四路切換弁
5 第1膨張弁
7 レシーバ
8 海水タンク(溶液タンク)
9 ポンプ
10 送風ファン
11 第2膨張弁
12A 海水流路(溶液流路)
12 内管
13 外管
13A 冷媒流路
15 ブレード機構
16 流入口(海水用)
17 流出口(海水用)
18 流入口(冷媒用)
19 流出口(冷媒用)
20 熱交換部(蒸発器)
20A 満液式蒸発器
21 回転軸
22 支持バー
23 ブレード
24 封止壁
25 モータ
31 吐出圧力センサ
32 吐出温度センサ
50 製氷システム
60 冷媒回路
70 循環回路
80 制御装置
81 CPU
82 メモリ

Claims (4)

  1. 蒸気圧縮式の冷凍サイクルを行う冷媒回路(60)と、前記冷媒回路(60)の冷却対象である溶液の循環回路(70)とを備える製氷システム(50)であって、
    前記循環回路(70)は、アイスジェネレータ(1)の溶液流路(12A)と、溶液を貯める溶液タンク(8)と、前記溶液流路(12A)に溶液を圧送するポンプ(9)とを含み、
    前記冷媒回路(60)は、前記アイスジェネレータ(1)の満液式蒸発器(20A)と、圧縮機(2)と、凝縮器(3)と、開度の調整が可能な膨張弁(5)とを含み、
    前記膨張弁(5)の開度を調整する膨張弁制御を実行する制御装置(80)をさらに備え、
    前記冷媒回路(60)の冷媒が、ポリトロープ指数が1.25以上の冷媒よりなり、
    前記制御装置(80)は、前記満液式蒸発器(20A)からの返油が可能な湿り状態の乾き度で当該満液式蒸発器(20A)の流出口(19)から冷媒を流出させると共に、前記圧縮機(2)に吸入させ、かつ、当該圧縮機(2)の吐出過熱度が10deg以上となるように、前記膨張弁制御を実行する、製氷システム(50)。
  2. 前記圧縮機(2)の吸入させる冷媒の乾き度が0.9である、請求項1に記載の製氷システム(50)。
  3. 前記制御装置(80)は、前記圧縮機(2)の吐出過熱度が冷媒の種類に応じて予め定めた所定の目標範囲に収まるように、前記膨張弁制御を実行する請求項1に記載の製氷システム(50)。
  4. 蒸気圧縮式の冷凍サイクルを行う冷媒回路(60)を備えた製氷システムであって、
    前記冷媒回路(60)が、溶液を冷却するためのアイスジェネレータ(1)の満液式蒸発器(20A)と、圧縮機(2)と、凝縮器(3)と、開度の調整が可能な膨張弁(5)とを含み、
    前記膨張弁(5)の開度を調整する膨張弁制御を実行する制御装置(80)をさらに備え、
    前記冷媒回路(60)の冷媒が、ポリトロープ指数が1.25以上の冷媒よりなり、
    前記制御装置(80)は、前記満液式蒸発器(20A)からの返油が可能な湿り状態の乾き度で当該満液式蒸発器(20A)の流出口(19)から冷媒を流出させると共に、前記圧縮機(2)に吸入させ、かつ、当該圧縮機(2)の吐出過熱度が10deg以上となるように、前記膨張弁制御を実行する、製氷システム(50)。
JP2018003946A 2018-01-15 2018-01-15 製氷システム Active JP7089153B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018003946A JP7089153B2 (ja) 2018-01-15 2018-01-15 製氷システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018003946A JP7089153B2 (ja) 2018-01-15 2018-01-15 製氷システム

Publications (2)

Publication Number Publication Date
JP2019124382A JP2019124382A (ja) 2019-07-25
JP7089153B2 true JP7089153B2 (ja) 2022-06-22

Family

ID=67399321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018003946A Active JP7089153B2 (ja) 2018-01-15 2018-01-15 製氷システム

Country Status (1)

Country Link
JP (1) JP7089153B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194015A (ja) 1999-10-18 2001-07-17 Daikin Ind Ltd 冷凍装置
JP2002333220A (ja) 2001-05-09 2002-11-22 Kubota Corp 圧縮式ヒートポンプ
JP2006226605A (ja) 2005-02-17 2006-08-31 Takuma Co Ltd 製氷装置
JP2017101850A (ja) 2015-11-30 2017-06-08 ダイキン工業株式会社 製氷装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194015A (ja) 1999-10-18 2001-07-17 Daikin Ind Ltd 冷凍装置
JP2002333220A (ja) 2001-05-09 2002-11-22 Kubota Corp 圧縮式ヒートポンプ
JP2006226605A (ja) 2005-02-17 2006-08-31 Takuma Co Ltd 製氷装置
JP2017101850A (ja) 2015-11-30 2017-06-08 ダイキン工業株式会社 製氷装置

Also Published As

Publication number Publication date
JP2019124382A (ja) 2019-07-25

Similar Documents

Publication Publication Date Title
ES2710669T3 (es) Dispositivo de refrigeración
JP2008267787A5 (ja)
JP6494659B2 (ja) 冷却機を作動させる方法
JP6540872B1 (ja) 製氷システム
JP6192806B2 (ja) 冷凍装置
JP2004360998A (ja) 冷却装置及び冷却装置の冷媒封入量設定方法
CN111602016B (zh) 制冰系统
EP2009371B1 (en) Heat pump hot water supplier
WO2020137055A1 (ja) 製氷システム、及び、製氷方法
JP2004354017A (ja) 冷却装置
JP2011163729A (ja) 冷却装置
JP6758506B2 (ja) 空気調和装置
JP7089153B2 (ja) 製氷システム
JP7007573B2 (ja) 製氷システム
JP2020122626A (ja) 空気調和機
JP6760361B2 (ja) 製氷機の運転制御方法
JP6614250B2 (ja) 製氷システム
WO2018198220A1 (ja) 冷凍装置
JP2020038039A (ja) 二重管式の満液式蒸発器及び製氷機
JP4282864B2 (ja) 蓄熱式冷凍システム
JP7060787B2 (ja) 製氷システムとこれに用いる蒸発温度の制御方法
JP2020026923A (ja) 製氷システム
JP2020026924A (ja) 製氷機の運転制御方法
JP2007292423A (ja) 冷凍システムおよび貯蔵装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R151 Written notification of patent or utility model registration

Ref document number: 7089153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151